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By Chi-Teh Wang and Harry Zuckerberg
SUMMARY

An investigation was carried out to study the elastic behavior
efter buckling of a rectangular plate reinforced with longitudinal
stiffeners and subjected to compresslive loads in a direction parallel
to the stiffeners. Two possible buckling modes were investigated;
namely, the plate may buckle around the stiffeners as nodal lines and
the plate may buckle with the intermediate stiffeners as a unit. The
edge stiffeners were assumed to have finite torsional rigidity, infinite
bending rigidity perpendicular to the plate, and either infinite or zero
bending rigidity in the plane of the plate. For the first buckling mode
the calculated results were compared with experimental results and the
agreement was found to be good. The method of analysis used is a modi-
fied variational procedure. Instead of solving three nonlinear partial
differential equations simultaneously, the transverse deflection w 1is
assumed in the form of a function which satisfies the boundary condi-
tions but contains undetermined parameters. In terms of this assumed
expression for w, the other displacement components u and v may be
solved from the differential equations. Then the unknown parameters
in w are determined from the condition that the potential energy of
the system must be stationary. It was found that this modified varia-
tional procedure will give much better results with the same amount of
computational labor.

INTRODUCTION

Adrcraft engineers are confronted with the difficult task of
designing monocoque structures to fulfill all strength requirements and
yet to remaln within the limits prescribed by weight economy. To obtain
an efficient monocoque structure, the engineer must have accurate infor-
mation regarding the stress distribution in the structure. One of the
most important component parts of the monocoque structure is the rein-
forced plate under the action of compressive loads.
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A reinforced plate considered in this report is a sheet reinforced
with stiffeners in the direction of the applied loads and equally spaced
dividing the sheet into panels (fig. 1(a)). Under the action of the
applied compressive load, the plate may deflect around the stiffeners as
nodal lines as in case 1 or the system may displace as a complete unit,
as shown in case 2, the stiffeners bowing with the plate (fig. 1(b)).

In case 1, it is possible to consider the plate as one of the panels of
the continuous plate attached to the stiffeners. In case 2, it is nec-
essary to consider the stiffeners and the plate together.

As mentioned previously, to obtain the apportionment of the applied
loads to the plate and the stiffeners it is necessary to know the stress
distribution in the elastic structure. Up to and including buckling,
the stress distribution in the panels may be satisfactorily predicted
by the linear- or small-deflection theory. After buckling, however, the
linear theory fails and the large-deflection theory of plates must be
used. The large-deflection theory requires the solution of nonlinear
differential equations which are generally intractable. In many cases,
however, good approximate solutions can be obtained by the energy
method or the variational method.

In this report an investigation was carried out to determine the
stress distribution after buckling in rectangular plates reinforced with
longitudinal stiffeners and subjected to compressive loads in a direc-
tion parallel to the stiffeners. Instead of following the energy or
variational method as generally employed, a modified procedure is used.
It may be recalled that the fundamental differential equations to be
solved consist of three simultaneous nonlinear equations in terms of
displacements u, v, and w. However, if w 1is assumed to be of some
form, two of the differential equations become linear in uw and v
and can then be solved. Therefore an alternative way of carrying out
the energy method may be as follows. First assume w in terms of a
series which satisfies the boundary conditions but contains undetermined
parameters. Substitution of w into two of the differential equations
mgkes it possible to solve for u and v in terms of these undeter-
mined parameters instead of by the usual way of assuming u and v in
the form of series with additional parameters. The values of these
parameters may now be ascertained so that the potential energy of the
system is stationary. This condition implies that the third differential
equation is approximately satisfied. This alternative procedure has two
advantages. First, 1t is relatively easy to represent accurately the
deflection surface w by a series of a few terms because of the
existing experimental observations. Second, without any additional
parameters in u and v only the parsmeters in w need to be deter-
mined in this case and much more accurate results can be obtained than
could be obtained otherwise by the same amount of computational labor.
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The behavior of a rectangular panel after buckling according to
case 1 of the buckling mode has been treated by Dumn (reference 1).
One may, however, take issue with Dunn's work on two counts. First,
instead of satisfying the three equilibrium equations, Dunn's solution
satisfies only two of the three equations and the third equation is
replaced by an empirical relationship. Second, in determining the
buckling load Dunn used one set of boundary conditions, but in studying
the behavior after buckling another set of boundery conditions was used
which was not at all competible with the first set.

In this report, analysis has been carried out for both case 1 and
case 2 of the buckling modes. Deflection pattern, stress distribution,
and effective width are calculated to compare with Dunn's results and
the experimental results obitained by Ramberg, McPheréon, and Levy
(reference 2).

The work was carried out at the Daniel Guggenheim School of
Aeronautics, College of Engineering, New York University, umnder the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. The authors are indebted to Professor F. K.
Teichmann, Chairman of the Department of Aeronautics, for his under-
standing cooperation.

SYMBOLS
a length of rectangular plate
Agg stiffener area
b width of rectangular plate
C torsional stiffness of a sturdy stiffener whén attached to
rectangular plate
CBT torsion-bending constant of stiffener sectional area
d distance between stiffeners
D plate stiffness per unit width (Et3/l2(l - v2))
E,E ¢ Young's modulus for plate and stiffener, respectively

G modulus of rigidity

I moment of inertia
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polar moment of inertia of stiffener sectional area about
axis of rotation
torsion factor of stiffener

buckling constant (dcrbet /4(2D)

number of half waves into which plate buckles in x-direction
number of bays and stiffeners, respectively

lateral pressure
strain .energy

x- and y-components of displacements, respectively
lateral plate deflection

effective width

coordinate axes (fig. 2)

aspect factor (A/b) ‘

shearing strain

5 = EstAst/E dat

8" =E_A (1 - pe) /B at

S &
|
A

p = bD/C

pu' = dp/ac

v

axial strain in x- and y-direction, respectively
constant of proportionality defining location of stiffener

half-wave length (a/m)

Poisson's ratio

p = 2Estlst/dD

(o}

compressive stress in stiffener
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Ox»0y normel stress in x- and y-direction, respectively

Og4€ gt stiffener stress and strain, respectively

T shear stress
¢ = m/a

cr quantity at buckling, used as a subscript
GOVERNING DIFFERENTTAT, EQUATIONS AND BOUNDARY CONDITIONS

In terms of the displacement components wu, v, and w and con-
sidering the case where w 1is large compared with u and v, the dif-

ferentlal equations of equilibrium for a thin flat plate may be written
as

Uy, + uyy + i f : Q%Ex + ka) +-1 ? Y Gﬁﬂfxx + wywxy) T Wy W. - wywxy =0

(1)

+ + 1+v + + 2 + + =0
Vex ¥ Vyy ¥ T xiéﬁqy vyv) T - v(wiwxy wyyy39 Vay = iy =

V)'"W - % - t_lg (uX + -%: wxe)(wn + VWW + (vy + :—2L wyz)(wyy + Wxx) +
2(1 - v) (uy + v+ wxwy)wxg =0 (3)

L L L
au+2 82+Bh,
ox Bxeby oy

plate, and the subscripts denote partial differentiation. The median-
fiber strains are

where Vu =

p 1s the lateral loading on the
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"\
€x' = Uy +'% w2
1 2
'— —
Ey = vy + 5 wy & (h)
Yy VY=u + vV +WW
Xy y X Xy )
and the median-fiber stresses are
"\
1 B 1 1
. =—7_l¢ + Vg )
1 E | B ]
o = e +ve )b (5)
N l_v2(y X)
L B H
Txy T BT + V) 7xy Y,

The extreme-fiber bending and shearing stresses are

-
A )
11 E-t
% = o1 - vg)(ww AL (6)
" Rt
Txy TTB( +y) Xy y

Equations (1) to (3) may be obtained by substituting relations (k)
and (5) into the three equilibrium equations as given in reference 3,
page 305.

To formulate the boundary conditions, it is necessary to survey
briefly the general picture of the structure to be analyzed, the condi-
tions which exist within it, and the loads that are imposed on it. The
structure consists of a thin flat plate to which are continuously
attached parallel and equidistant stiffeners. It is assumed that the
length parallel to the stiffeners is large in comparison with the
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stiffener spacing. The structure is loaded with a compressive load
parallel to the stiffeners in such a way that the axial loads are
identical in each stiffener.

The stiffeners along the edges of the plate are assumed to have
Infinite bending rigidity in the z-direction; that is,

w=0 at y=0endb (7N

In the y-direction, the sizes of the stiffeners are usually such that
the bending rigldity is much smaller than that in the z-direction. In
the theoretical treatment, two limiting cases may be teken. First, the
stiffeners may be assumed to have zero bending rigidity. In such a
case, the ?oundary condition is that along the edges the median-fiber
stress oy 1s zero; that is,

g, =0 at y=0andb (8a)

On the other hand, the stiffeners may be assumed to have infinite
bending rigidity, and, in such a case, the boundary condition is

v=0 at y=0aeandb (8p)

In the x-direction, it is assumed that the stiffeners are under a
uniform compressive strain € o3 that is,

u = - x at y=\0 and b (9)

The slopes of the deflection surface along the eﬁges depend on the
torsional rigidity of the stiffeners. Along the edge of the plate
adJacent to the stiffepner at y = O +the internal bending moment may be
written 1n the form: -

M, = -D(wyy + wxx) (10)
where D 1s the flexural stiffness of the plate.

Assuming the plate cut along the stiffener, the moment given by
equation (10) may be considered as an externally applied moment acting
on the stiffener. This bending moment, which acts at any point x,
produces twisting in the stiffener. The moment per unit length of the
edge is numerically equal to the rate of change of the twisting moments
in the stiffener at the point x. Expressed analytically,

My = 'G;?a (22)
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For a sturdy stiffener attached to a plate in compression, it was
shown by Lundquist and Stowell (reference 4) that the moment required
to rotate the plate through 1 radian is

2 2
b1 70
= e— - — -
C 2(GJ ol + }“2 ECBT) (12)

where A 1is the half wave of the buckled pattern of the plate in the
direction of the applied load, GJ 1is the torsional rigidity of the
stiffener, o 1is the uniformly distributed compressive stress in the
stiffener, I, is the polar moment of inertia of stiffener sectional
area gbout axis of rotation, and Cgp 1is the torsion-bending constant

of the stiffener sectional area about the axis of rotation at or near
the edge of the plate. Thus

M, =C g% (13)

where €@ 1is the angle of twist. Since

. oW
~ dy
the boundary condition (11), after substitution, becomes
D(wy'y' + vwn) = Cilyyy (1k)

f
Similarly, along the edge y = b one obtains

D@ + VW )=CW (15)

¥y Xx XXy

Consider the limiting cases of zero torsional stiffness and
Infinite torsional stiffness. In the case of zero torsional stiffness,
C = 0 and equations (14) and (15) reduce to =0 at y=0andb,
which corresponds to the case usually referred to as simply supported
edges. In the case of infinite torsional stiffness, C = «» and equa-
tions (14) and (15) reduce to 6 = dw/dy =0 at y = O and.b, which
corresponds to the case usually referred to as clamped edges.

METHOD OF SOLUTION

Equations (1), (2), and (3) are three nonlinear partial differential
equations to be solved simultaneously. The exact solution of these
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equations is very difficult, if not impossible, with the present
boundary conditions. Approximate solutions, however, can be obtained
by means of a variational method or the finite-differences method. In
the present work, a modified variational method is to be used.

In the theory of elasticity, it is a well-known fact that the first
variation of the potential energy of the elastic body with respect to
the displacements u, v, and w leads to the differential equations of
equilibrium which are, in the present case, equations (1), (2), and (3).
The potential energy is defined as the difference between the strain
energy and the virtual work which the surface stresses do over that
portion of the boundary where these stresses are prescribed. For stable
equilibrium, this stationary value is a minimum. The fact that the
potential energy has a stationary value can be easily utilized in trans-
forming the variational problem into an ordinary extreme-value problem
by the Rayleigh-Ritz procedure as follows. Assume expressions for u,
v, and w 1in terms of infinite series which satisfy the given boundary
conditions but contain undetermined parameters. Substitute these
expressions into the potential-energy expression and set the first
derivatives of the resulting expression with respect to these parameters
equal to zero. These parameters are then determined by solving the
resultant- simultaneous equations. With the values of the parameters so
determined, the resulting expressions for wu, v, and w satisfy both
the boundary conditions and the differential equations. If infinite
terms of the series are retained and the series consist of complete sets
of functions, the solution may be proved to be exact. For the numerical
determination of these parameters, however, only a finite number of
terms can be retained. In such a case, the solution is then only
approximate.

In the case of a thin plate, the deflectlon surface form can be
easily observed from experimental tests, and consequently the deflec-
tion w can be represented fairly accurately by a series with only a
few terms. It may also be observed that equations (1) and (2) reduce
to linear differential equations if w is known. Therefore, for the
same amount of computational lsbor, much more accurate results can be
obtained by carrying out the variational procedure as follows. Assume
an expression for w 1in terms of a series which can represent well the
deflection from observed tests. The series satisfies the boundary con-
ditions and contains undetermined parameters. Substitution of this
assumed w into equations (1) and (2) results in two linear differential
equations in u and v. Solving these equations simultaneously, "exact"
solutions of u and v in terms of the parameters may be obtained.
Vith the expression for w so assumed and expressions for u and Vv so
obtained, these parameters can be determined by the usual Rayleigh-Ritz
procedure. Following this procedure, only a few parameters will be used
and therefore there are only a few resulting simultaneous equations to
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be solved. The amount of labor in the computation can thus be greatly
reduced.

To satisfy the boundary conditions of w, the deflection surface
may be assumed to be of the form:

2
% = IE-JO(l - cos —g‘t—f) + Wy sin ?} sin E;—“ (16)

where W, and W, are arbitrary deflection amplitudes to be deter-

mined and +t is the thickness of the plate. The form of equation (16)
is selected so that w satisfies the conditions of simply supported
edges when Wo = O and the conditions of clamped edges when Wj; = O.
The ratio WO/W]_ is therefore a measure of edge restraint.

This ratio WO/W]_ is related to the elastic restraint of the
sides through the boundary condition given by equation (1k):

D(Wyy + wax) = ~CVypy (17)

Since w = 0 at the side edges and w 1is assumed to be of the form
given by equation (16), the foregoing equation may be written in the
form

2
Dv,., = Co iy (18)

at y = 0, wvhere @ = mn/a.

Substitution of equation (16) for w in equation (18) yields the
following relationship

- (19)

where pu = bD/Cv is the ratio of the flexural rigidity of the plate
between 'th(; edge stiffeners to the torsional rigidity of the stiffeners
and B = A/b.

The deflection-surface form may now be given in terms of the
meximum emplitude W,, with the replacing of Wy in equation (16) by
equation (19), and is as follows:
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% =Wy(1 - cos 2Bpy + A sin B@y) sin qx (20)

where A =-§ pBE.

It may be noted that at y = b the condition given by equa-
tion (15) is also satisfied. For plates with simply supported edges
becomes infinite, W, becomes zero, and then AW, becomes W; as
defined before.

Expressions of u and w

The expressions for the displacement functions u and v may be
obtained by solving the simultaneous differential equations (1) and (2)

with the given w expression (20). These equations, being linear in u
and v, may be solved as follows.

The complementary solution of equations (1) and (2) may be
obtained by solving the following homogeneous equations:

~

> l V
Wy + Uy T V(uxx + vxﬁ 0
- (21)
. 1+v
V.. + W +l-v(' +vyy) OJ
To fulfill the boundary condition (7), the appropriate form of the
complementary solution can be shown to be as follows:

Il

= q)-b2w02 [(Cl + 02) cosh 29y + 2C @y sinh 29y + (03 + Gh) sinh 2@y +

2C)Qy cosh 2cpy:| sin 20x - QPt2E x (22)

1 -
= ptoW 2{1+¥ - cl> sinh 2¢y - 2C,Qy cosh 29y + (1 — Xy -

. 03) cosh 2¢y - 2C,@y sinh QCPy]cos 2px + CsB + 0652%} (23)

e e e e e e — e e e e e — - ——— e .
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where @Pt2T.q = egys and Cy, Cp, C3, Cy, Cs, and Cg are inte-
gration constants. Physically, the complementary solution gives the
displacements due to bending.

The particular integrals of the differential equations (1) and (2)
give the additional displacements u and v due to large deflection.

The method for determining these particular integrals is given in
appendix A where the following forms for uw and v are obtained:

u = qatawOE(Eo + Ej sin By + Ep cos 289y + E3 sin 3Bgy +

E), cos hB@y) sin 2¢x (2k)

v = QtszEB[KFl cos By + Fo sin 2Bpy + F3 cos 3PPy +

Fy, sin 4pgy) cos 2gx + (F5 cos By + Fg sin 28y + Fy cos 3Bgy +
g sin bsar) (25)

The expressions for the E's and F's are to be found in appendix A.

The general solutions for the displacement functions u end v
are the sums of the complementary solutions and the particular integrals.
The integration constants Ci» Co) 03, Cy» C5, and Cg may now be

determined from the given boundary conditions as is carried out in
gppendix B. With the boundary conditions satisfied, the general solu-
tions may now be written as:

u = gt 2 [(cl +.Cp - 2C2q3y)(cosh 2py - sinh 2¢y) + Ey + Ey sin oy +
E, cos 2By + E3 sin 3Bpy + E) cos LBy + E5 sin 5B¢%] sin 2¢x -

P=t2 X (26)
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v = qatszE‘Hch . —11—;—% 2c, - ECQCPy)(cosh opy - sinh 2@y) +

B(Fl cos Bey + F, sin 2Bgy + F3 cos 3By + F) sin hB@y)] cos 2@x +

5(05 + CgoBy + T cos Bay + Fg sin 2Bgy + F, cos 3pgy +

Fg 5in hsqayj} (27

In equations (26) and (27), Cis Coy 05, and Cg are now known

functions of the deflection parameters. The expressions for these
coefficients are to be found in appendix B.

Evaluation of Potential Energy

As mentioned previously, the potentlal energy is the difference
between the strain energy and the virtual work. The total strain
energy of the panel is the sum of the strain energies of the plate and
stiffeners. The strain energy of the plate is composed of two parts,
one due to the bending of the plate pr and the other due to the

extension or stretching of the plate Vep' Let VP denote the total

plate strain energy, then

V =V, +7V 28
P bp €p ( )

where
3
V'bp = ﬁ_—;e—jfjﬁwxx + wy'y>2 - 2(1 - v) (W}Q{Wy.y - nyz):l ax dy (29)

and

p = 2(1EJ_G ) ff[(ex')e * (Ey')e +2ver'ey' +5(L - V)(7XY')2] i

(30)

<l
(1]
|
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The above integrations are to be taken over the total plate area. For
rectangular plates with edges held in the original plane it can be
proved that

j]("n"w - wgys) dx dy = 0 (31)

With the assumed expression for w in equation (20), and the
expressions for u and v given by equations (26) and (27), integra-
tion of equations (29) and (30) gives

pr = .M_Z'E MW, (32)
lL-v
and
Eg*tJab L - .2 ~ 2
Vep = 1 - 2 (Mzwo + M3‘58'13‘;'70 + Myegy ) . (33)

The evaluation of these expressions is carried out in detail in
appendix C. The expressions for My, Mo, M3, and M), are given by

equations (C3), (C6), and (CT) in appendix C.
The strain energy of a stiffener Vg 1is composed of three parts,

namely, the extensional strain energy V., the bending strain energy Vyg,
and the twisting strain energy Vts' The total strain energy is

therefore

Vg = Vg

s + Vg + Vig (34)

8

and the expressions for V., Vpg, and Vi, are:

a

Ves =% EstAstj; (ex )2y='qb dx (35) .

a
1 - 2
Vps = 3 EstIstj; (Wxx) y=nb dx (36)
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ol

Vig =

v

c f: (e )y & (37)

where nb gives the location of the stiffeners 1 = j/n, n 1s the
number of bays, and J 1is an integer which is equal to or less than n.

The evaluation of equations (35), (36), and (37) is also carried out in
gppendix C. After some simplification, it is found that ’

2
1 Ny - -
Ves =5 oHME AL &ou{'_g_ + N22) - B Ngegy, + Gste:‘ (38)

N
1 3
Vs =2 q)h'l"aﬂst:[f:','l:a]";ro2 3 (39)
N
Vig = % qu*tECaNog E—h (40)

The expressions for Nl’ N2, N3, and Nu are given in appendix C.

Introducing the following parameters

_ Esthst
Edt

51 o EstAst(];_ VE)

Edt

_ EstIst
dp




16 NACA TN 2671

where 4 = b/h is the distance between stiffeners, the strain energy
of & stiffener then becomes

4.5 Ny N
EQ t7ab[d'/ 2 L 5' _ 3 4 o . B' . o
VB = N v2 EIE(NI + 2N22)W0 + (? N2€St + o + m—nu, WO + 5n €5t

(k1)
The virtual work W is the product of the external load and the

displacement in the direction of the load over that portion of the
boundary where the boundary load is prescribed. In the present case,

W is
v =x/i/??x'u)x=a dy dz

>
= €5 o(BgtPathet + Ebt) (k2)

where Dot is the number of stiffeners.

The potential energy U of the panel is the sum of the strain
energy of the plate and the strain energy of the stiffeners minus the
virtual work

N ST LY (S w e

1-v

My +

p%% ZM) W 2 +l: ngtd’

+ 8o My + —5— -

2n
Est Ast _
(1-v?)(TeE st 1)}54% (43)

In writing equation (43) it is assumed that all the stiffeners have the
same properties, and E N; indicates the sum of Ni with

nb =4, 24, 3d, end so forth.
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Determination of Unknown Parameters

In the previous paragraphs, the solution of the differential
equations (1), (2), and (3) has been carried out in the following
manner. Assume an expression for w vwhich satisfies the boundary
conditions but contains undetermined parameters. Solve equations (1)
and (2) in terms of tue assumed w expression. If this assumed w
also satisfies equation (3), then the solution is exact. In the present
analysis an attempt will be made to satisfy equation (3) spproximately
by using the condition that at equilibrium the potential energy has a
stationary value. In reference 1 a similar problem was treated by Dunn;
the difference between Dunn's method and the method used in this report
is that Dunn determined the parameters in w by-empirical relations
instead of by equetion (3).

The parameters to be determined in w are Wo and PB. Inspection
of equation (43) shows that the potential energy U is of the form

U = By - RoTay - Rg)Wo2 + ByFy? (1)

where R R and R are functions of B and Rh is a constant.

1’ 27 3

It is observed from experiments that once a plate buckles, the
number of buckled waves remains the same when the buckling strain is
exceeded. The factor B, which defines the number of buckles in the
direction of loading, is therefore to be taken as a constant after
buckling and equal to the value at buckling.

The parameter Wy may now be determined from the condition that

the potential energy U has a stationary value with respect to Wg,.

The condition %%— = 0 1leads to
o

W I:aﬁlwoe - (RoFet - R'3)] =0 (45)
Equation (45) gives three roots for Wy, namely
W, =0 (16)

and

S
Wo =i\/R—2—ZR—l—.—3 (47)
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The root Wo = O represents the unbuckled state. The positive and
negative signs in equation (47) indicate that the plate may buckle
indifferently in or out. Since these two possibilities are irrelevant
to the present analysis, the positive sign will be taken in the sub-
sequent discussions. Equation (¥7) also shows that when

R3
Gs-t < R—2

there is no real root and therefore Wo = O 1is the only possible
solution for equation (45). Physically, it indicates that when € st
is below a certain value, the panel will not buckle and the unbuckled
state is the only possible equilibrium form. The limiting condition
occurs when

z -3
(GSt )CI' B R2 ()48)
which indicates the buckling of the panel.

»

Substituting equation (48) into equation (473, one obtains

R
Wy =\/§§1(§_t ) 1) (49)

-

The buckling stress of a plate is usually written in the following
form:

2
. - KnoFt (50)

or 12(1 - v h?

where K i1s a nondimensional coefficient that depends on conditions of
edge restraint and shape of the plate. The buckling strain €., is of
course related to ogy according to Hooke's law. Rewrite equation (5)
as follows:

e (51)
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When the boundary conditions are that cy' =0 along y=0 and y =D,

at buckling stress Uy' = 0 everywhere. Therefore, one obtains

€cp = Ocy/E

and

Hence

K =

lH
oo
o lww

(52)
B

On the other hand, when the boundary conditions are that v =0

along y =0 and y = b, at buckling stress it can be seen from equa-
tion (BL4) that qg' = 0 everywhere. From equation (51) oy' = -Voy'
and e,' = (1 -V )crx'/E. Therefore, one obtains

2

€cy © (1 - VE)Ucr/E
and

-2l @)% : (53)

BQ

Equations (52) and (53) give K as a function of B = a/mb. For a
given value of m, K may be plotted against a/b for a given value
of p which specifies the edge-support conditions. In a given problem,
when a/b and i are known, the value of K may be obtained by
choosing the minimum value from the curves. The corresponding value

of m 1is the number of half waves which actually occur. In practical
cases, the dimensions of the panels are usually such that the curves K
against a/b become stralght lines and-the value of -K approaches-the
minimum value. For these cases, the values of f may be taken to be
those which correspond to the minimum values of K. With B determined,
W, may be found from equation (L49) at any eg. The median-fiber
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strains and stresses may be computed from equations (4) and (5) and
the extreme-Tiber bending stresses, from equations (6).

. RESULTS AND DISCUSSION

Case l: Rectangular Plate with Edge Stiffeners

As mentioned in the introduction, when a stiffened rectangular

. panel is under the action of compressive load two buckling modes may
occur. One case is that the plate may deflect around the stiffeners as
nodal lines. 1In such a case, it is possible to consider only one of
the panels between two stiffeners and to regard it as a rectangular
plate elastically supported along the two unloaded edges by stiffeners

having infinite bending rigidity in the z-direction but finite torsional

rigidity.

Neglecting the extensional strain energy of the stiffeners and
letting b in this case be the width of the panel, the potential
energy of the panel becomes

L N
U=%’i5—g-JE Wt + (M3est+M1+ l‘ W2 + [Mh..
-V

(-7 (Ce g2 1)] } (54)

The condition JU/W, = O becomes
W, 2M2W02 + E{3€st + My + (Nh/Ell-pﬂ} =0 (55)

At buckling strain (e"st )cr,

M3(Fgt)er + M1 + (I /2l) = 0 (56)

In terms of K as defined by equations (52) and (53), if the edge
stiffeners are assumed to have negligible bending stiffness in the

y-direction, that is, cy' =0 at y=0 and y = Db,
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K = E@ﬁ”(o.uo% + 0.810682 + 0.40538%) + 1p(1.0808 + 2.16158% +
2.70198") + (0.75 + 262 + hﬁ”):l/;a?(o 40538":2 + 1.08078% + 0.75)
(57)

and if the edge stiffeners are assumed to have infinite bending stiff-
ness in the y-direction, that is, v =0 at y =0 and y =

K =

Gﬂk‘

ABQ) + 76? B2(1 + B2)% + 5 ph(1 + Bg)gui‘ +

n

l
/ E3 (3 + wp?) + if—é B2(1 + vER ) + fé g1 + vse)uej

mIG"¢4kﬂ

(58)

For given values of pu and B, K for these cases can be calculated
from equations (57) or (58) and is plotted against B for various
values of p in figure 3. For a large a/b ratio, it is pointed out
in a previous paragraph that the minimum values of K or Kpi, may be
used. The values of XKpin and the corresponding values of B are
plotted in figures 4 and 5, respectively. The values of B corre-
sponding to Kp;,, may be calculated from the condition dK/dB = 0, and

Knin may then be computed. The condition dK/dp = 0, however, results

in an equation with twelfth power in B and is difficult to solve.
But with the approximate values of p obtained from figure 3, one may
use Newton's method to calculate more-accurate values.

Now for a given p the values of B corresponding to Kﬁin

be determined from figure 5, and W, may be calculated from equation (49)

as a function of € 4. In figure 6 the values of FQ747csst/ecr) -1
are plotted against u. ;

With Wy and B calculated, it is thus possible to compute the
stress distribution and the effective width of the plate at a given
value of €t

[
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Substituting in equatic;n (5) the expressions of €' and &'

given by equations (B3) and (B4) in appendix B, the median-fiber
stress 0y' may be written in the following form:

o ' = l—:EV—Q cpz-tawoe{[é(l - V) (cl - 29C,y + :—lL—j—?% 02)(cosh o0y -
sinh 2@y) + (GO + vHO) + (Gl + le) sin Bpy + ((}2 + vHe) cos 2Bpy +
(G3 + ‘VH3) sin 3Bcpﬂ cos 29x + (VBQC6 + Gl# + th) +

+ vH sinﬂq:y+G+v1§_r)cosesq:y+ + VH7) sin 3Boy +
G5 + VvHs 6 * VEg Gy + VHy

(G8 + VHg ) cos UBpys - —E 5 Cpgte?st (59)
1-v

The distributions of oy' over the loaded edges of the plate with
different boundary conditions are plotted in figure T as compared with
those calculated by Dunn.

The total load carried by the plate for a given stiffener stress

b
P=tfcrxdy
0

The effective width of a plate in compression is by definition

is

P = ~2Wetcs.t

where the negative sign indicates that o454 15 a compressive stress.

The ratio of the effective width to the plate width may now be written
as

< = LUX' dy (60)

It is shown in reference 1 that the distribution of stress at the
nodal lines gives the actual load carried by the plate and any variation
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of the stress distribution between the nodal lines is balanced by the
shearing stresses at the stiffener. Therefore, the effective width of
the plate may be found from equation (60) when @¢x 1is taken to be
equal to =, 2w, and so forth; carrying out the integration and taking
gx = n, equation (60) becomes

2
W 1 E Yo

= - -
b 2(1 - @) By €st

vp2Ccg ) + %(Gl + V) + G5 + VHg) + ge;‘(cg *+ VHg + Gy + vﬁra} (61)

1 _2v_
2(Pb(cl+ T + v Ce) + (GO + VHp + G + VH) +

The ratio of total effective width to initial width or 2we/b is
plotted in figure 8 for the two limiting conditions pt =0 and p = w.

To compare these results with test results given in reference 2

where the panels were stiffened by z-shaped stiffeners, a panel with
the following dimensions is chosen as a typical specimen:

p = 0.198

19 inches

®
1]

b = 4.0 inches

t = 0.025 inch

P = 6800 pounds
Agy = 0.39 square inch

With these dimensions and the boundary conditions Uy' = 0 one
obtains B = 0.688 from figure 5. The calculated length of buckle
developed is A = 0.688 x 4 = 2.752 inches. The corresponding number
of buckles in the direction of the length of panel is m = 19/2.752 = 6.90
or 7 buckles since m must be an integer. Observed data showed the
existence of seven buckles with a corresponding measured length of
buckle of A = 2.70 inches. The critical buckling stress may be calcu-
lated utilizing the coefficient K obtained from figure 4, and is
found to be 0., = 2570 psi, to compare with the observed value of
Ocp = 2500 psi. .

The wave form of the plate between the stiffeners under the com-
pression load of 6800 pounds may be obtained in the following manner.
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Yo

V(Gst/ecr) -1

is 0.538. The stiffener straiﬂ corresponding to the test load of
6800 pounds is egq = 11 X 10~ *. Using equation (20), the results of

the calculation of the wave form through the crest of a buckle x = X/2
are shown in figure 9. The wave forms calculated by the present method
show good agreement with those observed from the test.

For W = 0.198 and B = 0.688, the amplitude factor

With the boundary conditions v = O, the value of f from fig-
ure 5 is 0.835. The calculated length of buckle developed is
A =0.835 x 4 = 3.340 inches. The corresponding number of buckles in
the direction of the length of panel is m = l9/3.3h0 = 5.70 or
6 buckles since m must be an integer. This is compared with the test
observance of seven buckles having a measured length of A = 2.70 inches.
The critical buckling stress, utilizing figure 4 for the value of K,
is calculated to be 2170 psi, as compared with the observed data
of o.p = 2500 psi.

The wave form of the plate between the stiffeners under the com-
pression load of 6800 pounds is calculated in a similar manner as for

the boundary condition cy' = 0 utilizing figure 6 for the amplitude
factor L , and is shown graphically in figure .

V(Est/%cr) -1

The experimental values of EWe/b from these tests are also

plotted in figure 8 for comparison. It is seen from the figure that
with boundary conditions o' = 0, the calculated values give very good

comparison. It thus seems ¥ t, for the z-shaped stringers used, the
_boundary cordition can be well spproximated by assuming dy' = 0 along
the stiffeners.

It may be pointed out here that in reference 5 Dunn implicitly
used. the condition Uy' = 0 in the determination of the buckling stress
and then he took the results obtained in this case together with the
boundary condition v = O in the study of the behavior after buckling.
It is easily seen that these two boundary conditions are not compatible
at all with each other. . )

Case 2: Rectangular Panel with Intermediate Stiffeners

When the longitudinal stiffeners have small bending and torsional
rigidities, the rectangular panel will buckle as s unit with inter-
mediste stiffeners bowing out with the plate. The edge stiffeners are
assumed to have infinite bending rigidity in the z-direction. Four cases
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will be considered, namely, the edge stiffeners having either zero or
infinite bending rigidity in the y-direction, together with either zero
or infinite torsional rigidity.

Consider first the case where the edge stiffeners have zero
bending rigidity in the y-direction and zero torsional rigidity; p = o
in this case and AW, TDecomes Wl. In terms of W, the potential
energy U of the panel in equation (43) becomes now

n .t5' B t A t _ )
Eih + _Zn - (l - v2)<—E§— —b’i ng +1 Gstg (62)

Where

M= (1 - vz)[l2 + gk - (3B5/1T)]/1021I-
M3' = -(1 —v2)/8
My = (1 - v2)/2

> (63)

Nl' = BQEV -(V + 1 g A4 m])(cosh 2¢pnb - sinh 2q>n'b§|/8
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The condition OU/Wj = 0 leads to ‘
Wy 2;»112 My + %Z@qlt)Q + Q(Ne')ﬂ:} + (M3' - _SD_'Z Ne')ESt +
2520 22
Ml' + ~“1tn +'EBEu'
The buckling strain is therefore

RIS AR % /N
st -
cr -M3' + (stNet/n>

Il
o

(6k)

and

‘- (1 _ Va)ne L8nMy * + ZEN3' + (Nu'/u')] (66)
g2 g+ 3 oy

From equation (64), one obtains

(~ N1
Mg+ Y[+ (1, 2
_ 1 ZI:3 + My “)] (ESJC'J)> (67)
96rM," + 21&8'2 [(Nl')2 + 2(N2')2] =

With these equations, one may proceed with the computation as in
case 1 when the number of intermediate stiffeners is given.

Consider next the case where the edge stiffeners have zero bending
rigidity in the y-direction and infinite torsional rigidity. The
potential energy U of the panel is given by equation (43). With
p = 0, one obtains

-
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5 \
M1=[2+(1+h52)]/96 :
- E,5(1 - vz)/256] " {(1 - va)sh[z 1+ 32)—2]/32} _
{(1 i 52)-,5[7 + (27 + 8) B2 + 138" + 336]/%}
M, = 3(1 - v2) |
M, = (1-v%)f
- (68)
N, = Bh{E[(l + 2y) + B - q)'qb(l + B3 (1 + vﬂ(cosh 2pnb -
sinh 2pnb) + Vge + p(g2 - Vg cos 2mn b /(1 + ;32)2'
o(1 + 52)
N2=-g---%'cos 2mm +%cos by °
N3 = sin®nn/4
,+ = hB sin 21
/

Then (Est)c » K, and W, are given by the following expressions:

{Z o + ) o
oo (L)
(1 ) v2 2‘ 48rMy + Z I:N3 Nh/u:l

K = 7 ('70)
B "DM3 + Z SNE

(69)
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1
2
(71)

My + ) [oNg + (M/k)] fegy 1)
‘ €cr
96uM, + 245" Z (Nl2 + 2N22)

The third case to be considered is that of the edge stiffeners
having infinite bending rigidity in the y-direction and zero torsional
rigidity. The potential energy- U of the panel is given by equa-
tion (62) with

\
4 1 - vy
Myt = (3 - v3) (1 +8 ) +le2+3———7—“- 256
- v
g = -1+ ve®)/8 F(12)
' = vp2 |:1 - (1 - ; ‘_” : eqmb)('cosh oonb - sinh 2cp'r|b):l 8

S
My', My, Np', N3', and N),' being the same as given by equation (63).

One can calculate (.est)cr and Wy from equations (65) and (6T) by the
use of new Mp', M3', and N;' as given by equations (72). From the
definition of K 1in this case

- 48ny ! + ZE:N3' + (Nll_'/u'):l (73)

)
ke -nM3' + ZB’NE’

The fourth case is that the edge stiffeners have infinite bending
rigidity in the y-direction and infinite torsional rigidity. The
potential energy U of the panel is again given by equation (43) with
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L5 - 17\;2) 3vB N Bh[@ 1 - 2 2 3+

l + B2

(1 - v)9(1+2v+ W )
16x(3 - v (1 + g2)*

= -(3 + MVBQZ/B } (74)

L
BH(1 + 2v + vp2) (1 + V)
N, = (2pmb - 3)(cosh 2pnb - sinh 2¢qb)| +
1 2(1 + B2)2(3 - V) I - ° 1

2( o2
B‘ﬁg —~ Vg cos 21
o(1 + p2

-
Mj, My, Nj, Ny, N3, and N) being the same as given by equations (68).

Equations (69) and (71) give ('e‘st)cr and Wy, while K is

2 1;8an + Z E)N3 + (Nh/u*)] 5

5 -
h'ﬁ —I].M3 +Z 5'N2

Numerical calculations have been carried out in the case of one
stifféner in the middle of the plate. This case is important because
in the case of multistiffeners approximate analysis can be made by the
substitution of the single-stiffener method. In this case, n = 2.
The bending rigidity ratio p is plotted against Kyip Iin figure 10

with & or &' equal to O and 0.4; the corresponding B is plotted
in figure 11. In figure 12 are plotted Woﬁaist/ecr) -1 and

W%/J(?ét/ihr) - 1. Finally, the distribution of oy' along the loaded

K =
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edge of the plate is plotted in figure 13 &t Est/ecr = 10 for boundary

condition oy' = O and in figure 14 at €gt/€cr = 10 for boundary
condition v = O.

Daniel Guggenheim School of Aeronautics
College of Engineering
New York University
New York, N. Y., December 29, 1949
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APPENDIX A

DETERMINATION OF PARTICULAR INTEGRAILS

FOR.EQUATIONS (1) AND (2)

The nonhomogeneous differential equations are:

1
un"'u:yy"'lt:(uxx"'vxy)

Vxx"'vyy”"it:(uxy*'vyy)

where

t(w) = -7 ? ” (waxx + wywxy) - (wayy

g(w) = -3 ‘_2 Y (wxwxy + wywyy) - (w}mwy

t(w)

£(w)

- VyVxy)

\

- waxy)

-

(A1)

(A2)

(83)

Substituting the expression for w, equation (20), into equations (A3),

t(w) and E(w) are obtained as follows:

2y 2
t(w) = %t-_—wz—{%lz3 - ll-vse) + (1 - st)AQ:l +

%EE + (3 - llV)B"EJA sin By - %E‘ + (9 - V)BE:IA sin 3oy -

%E + 8(1 - v)pe + (2 + 232)A2:| cos 2Bpy +

%(1 + 4g2) cos thpy} sin 2¢x
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t2v, 2
£(v) = 331—_—:—8 {E%(a - 2p2)4 cos poy +

2
(3 + 6694 cos 3pqy - (2 * %P- A2> sin 2Bgy +

(1 + 1;52) sin lLf3cl7y:| cos 29x - %(3\/ + 2(32)A cos By +

2
%(3\1 - 6B2)A cos 3By - (Ev + i;2-ﬁ— A?-) sin 2Bgy +

(v - 4g2) sin haw}

Substituting the expressions just obtained into equations (Al)
and (A2) for {f(w) and £(w), it is possible now to solve the differ-
ential equations and to obtain the particular integrals of the displace-
ment functions u and v in terms of the undetermined deflection
parameter Wgy. The method of solution used here is the so-called method

of undetermined coefficients. Examining the expressions for ¢{(w)
and E(w), the particular integrals for u and v may be assumed to
be of the following form:

u = q>t2w02(E0 + Eq sin B@y + Ep cos 2By + E3 sin 3Bqy +

E) cos 48gy) sin 2gx (AL)

<
]

q)tzwoeﬁ BFJ- cos By + F, sin 2BQy + F3 cos8 3fpy +
F) sin th)y) cos 2¢x + (F5 cos By + Fg sin 2Boy +

F7 cos 3Bpy + Fg sin hﬁqay):l (a5)
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Substituting equations (A4) and (A5) into equations (A1) and (A2)
and equating the coefficients of like terms, the E and F coefficients

may be determined to be as follows:

Eg =~1%E3 - bvp2) + (1 - sz)AE_]

Eq = _.——-———-—[zh + 2(6 - 11v)[3 + 7BlE|A
)-l-(’++ B2)
Ep = {E#E. + (2 - Vg2 + QBIE] (1 + (32) A2}
16(1+ p2)2

- 1 2, L
Fo = —— L 18 + 2(18 - v)p~ + U5pHA
E4=-:—ng
Fq= —=——— 2-(16+11)52-2B A
Yo Bz)el: ) !
Fp= ——x— {1 - sz) + (1 + g2)2 a2
* 161+ 62)2[( ( ) J
pom o3 fi+ (26 - v)p2 + 28874
] Bk + 932)2[
F) =—%‘-

Fs = 1%5(3\;4 262)A

rg= Ll (v - #24d

Fo=-—t(yo-2p2)a o -
7 12;52(v p2)
FB = - ...2-_(‘\) - ].].Be)

302
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APPENDIX B

DETERMINATION OF INTEGRATION CONSTANTS

OF EQUATIONS (1) AND (2)

The general solutions for the displacements u and v are the
sums of the complementary solutions and the particular integrals:

u = CPt2W02[(cl + 02) cosh 29y + 2Copy sinh 29y + (03 + Ch) sinh 29y +
)9y cosh 29y + Eg + E; sin Boy.+ E, cos 2By + E3 sin 3By +

E), cos hﬁqJ;yzl sin 2¢x - cgate'éstx (B1)

1l -v
v:mewog{[(m %2 - Cl) sinh 2qu - 2C2q)y cosh 2q)y +

G;:QC)_P -C3) cosh 29y - 2C),Qy sinh2cpy+B(Fl cos Boy +

F, sin 2Bgy + F3 cos 3By + F), sin h—Bcpy):l cos 20x + B(C5 + CgpBy +

F5 cos By + Fg sin 2By + F7 cos 3Bgy + Fg sin )-I—BCP}’)} (B2)

Consider first the case where the edge stiffeners have negligible
bending stiffness in the y-direction; that is,

Oyt = —-E—g(ey' + vex') = 0 along the edges y =0 and y = b.

v 1-v
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The strains in the median surface of the plate are given by equa-
tions (L4). Substitution of the expressions for u, v, and w given

by equations (Bl), (B2), and (20) into equations (4) gives the following
strain expressions:

' = q)ztewoz{[a(cl +Cy + 2qocl‘y) cosh 29y + 2(03 + C,h‘+:‘
QqCQy) sinh 29y + Gp + Gy sin By + G éoslaﬁqay +

Gz sin BBqu' cos 20X + Gy + Gs sin BQy + Gg cos 2By +

G, sin 38gy + Gg cos lquJy} - 9262,

(B3)
ey = 9%t {[ 1 . V Ycy, -Cq - emcw) cosh 29y +
2(1+3V04 -EqXJEy)sinheqay+H0+Hlsintpy+
H, cos 2Bgy + H3 sin 313%’] cos 29x + 3206 + H) + .
115 sin Bey + Hg cos 2By + Hy sin 3By + Hg cos lqsqay}»: (BY4)

= ¢t2W 2E+ T C + 2q301,y) sinh 29y +

lL(C3 * 12+vv Cyp + gq’CZy) cosh 29y + Jy cos foy + Jp sin 2Bgy +_

J3 cos 3Bcpy] sin 2¢x (B5)

_ - - e
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- 1 2 2)
= —————5 B\1 - vB
Hp N BE (1-v
By = ——=— p2a(k - 982
] n(y + 9p2)2 (

1

Jl = (—h—zF llﬁ3A(l + V)
+ B

1

do =WB3(1 + V)

T, = - —2—— 3831 + )

3 (4 +9p2)?

37
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The boundary condition (8a) leads to the following three equations:

N
(Ho +vGO) + (H2 + vG2) + 2(1 - v)(%—y- Co - Cl) =0
w02‘13206 + (Hl; + th) + (H6 - vG6) + (H8 + VGB):| - v"e's,c =0

?(B6)

(Bo + vGg) + (Hp + vap) + 2(1 - v) (i—;—" Cp - Cp - zqﬂhb) cosh 2¢b +°

L}

2(1—\/)(1‘;304-03-2q102b) sinh 2gb = O J

These equations result from the stipulation that the boundary con-
dition must be satisfied for all values of x; thus it is necessary that
the coefficients of each trigonometric term In X +vanish at the
boundaries.

The boundary condition (9) that u = -6gtX at y =0 end y = b
gives the following relations:

(cq + Cp + 20,gb) cosh 2gb + (c3 + ¢y + 2C,0b) sinh agb + S (B7)

N

J

Equations (B6) and (BT) comsist of five equations for the determination
of the six imtegration constants. One more equation therefore is needed
in order to determine these constants uniquely. This equation may be
obtained by specifying that v 1is a constant at a certain point. How-
ever, since the actual value of v 1s immaterial to the problem,
equations (B6) and (BT) will be used to determine Cj, Cp, C3, Cy,
and Cg, with Cs undetermined. Solving these equations, one obtains:
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\2 a
1 = Ty (o + Vo) + (B2 + wp) - 5P(e, + 6, +
G)_l_+G6+G8)]
Co = —E]('{%)-I:(HO+VGO) + (H2+VG2) + (1 - v)(Go+G2+
Gh + G6 + Géﬂ
Y
C3=-—]-|.%]:*-+‘\})(HO+VGO) + (H2+VG2) "H(%*’GE“L
> (B8)
Gy + G + og)] L2 -1
Ch=ﬁ(ﬂo+vc}o) +(H2+VG2‘)+(1-V)(GO+G2+
Gy + G + o) cosh b - 1
€
Cg = Bie[v%—sg - (m, + VGM):,

<J

Since 2¢b = 2x/ and B = a/mb, for usual panel dimension e2Pb -
is large compared with e~2Pb ang 1. It is therefore sufficiently
accurate to take

sinh 2¢b ® cosh 2¢b

x

e2D (B9)

noj =
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With these simplifications, it is obvious that .

(B10)
Co ® -Cy

Now consider the case where the edge stiffeners have infinite
bending rigidity in the y-direction. The boundary condition that v =0

at y =0 and y =b +then yields the following relations: ,
~
1 -v
T7v Xy -C3+ (F1+F3)5_0

C5+F5+F7=O

1-v 1-v R
(mzce-cl-zchcpb) sinh2cpb+(l+v2ch-c3-L (B11)

202cpb) cosh 2gb ~ B(Fy + F3) = 0

C5+JIC6—F5-F7=O

-

Solving simultaneously equations (B1ll) and equations (B7) which
result from the boundary condition u = -€gx at y = 0 &and y =D,

one obtains
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Q
[
!

= _KO + Ep +E4)(H2 sinh 2¢b - 2q)b) + B(Fl +F3)(1 +

cosh mb]/(i% sinh 2¢b - 2cpb)

Cp = -KEO + Ep + E) sinh 2gb - B(F1+F3)(l+

cosh mb]/(i z t sinh 2¢b - 2cpb)
Cy = B—;—L’ 2(Eg + Ep + By, )(cosh 2b - 1) + B(Fy + F3)(sinh 2gb -
o) /(&5

Cy = l:(EO + Ep + E),)(cosh 2¢b - 1) - B(Fy +

: sinh 2¢b - 2cpb>

F3) sinh eqngl/(—i;—: sinh 2gb - 2q>b)

Cs = ~(F5 + Fq)

Ce = %(F5 + Fr)

iy

> (B12)

J

With the simplification given by equation (B9), the values of Cj,

Co, C3, and C) become

\

1 V2(E0+E2+E)+) +§sz(Fl+F3_)—J

Cl""C3“"|:3:v

%fz[(EO‘“Ee*Eu) 'B(F1+F3il

Caﬁ -C)_I_R: -

J

(B13)

Since C7 x -C and Co o -C in both cases, the general solutions for
1 3 2= )-l- 2

u and v
and (27).

may be written in the simpler form as given by equations (26)
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APPENDIX C
EVATUATION OF STRATN ENERGY

The bending strain energy of the plate is given by equation (29)
and is

Et3 2
Wy = ——————< Woxe + W. dx dy (c1)
°P 2&(1-v2)ff (e + )
Since
Wax = Q2tWo(-1 + cos 28y - A sin Bgy) sin ¢x
Wy = metwo(h82cos 2oy - A,B2 gin qu) sin @x

by substituting in expression (Cl) and integrating over the area of the
plate, the bending strain energy is found to be

)
t-ab 2
= 5 MW, (c2)
1-v

pr

where

1 o\2 2)2,2 , 32 2)2
Ml-ml_g_+3(l+4ﬁ) +3(l+B)A +—ﬂ—(1+B)A (c3)

The extensional strain energy of the plate is given by equation (30)
and 1is

Vep = alEf—vz)-‘-/‘f Kex')z + (ey')z + 2vex'ey' + :—2L-(1 - V)(7xy')2:| dr dy

(ck)

The strains in the median surface of the plate are given by equa-
tions (B3), (B4), and (B5). Recalling that C; »~ -C3 and Cp = -Cy,
inserting these expressions for strain components in equation (Ch4), and
integrating over the area of the plate, the extensional strain energy
becomes: .

 Et9gtep 4 _ . ~ 2
Vep = _1 2 Moot + M3z Wo?P + Myfet (c5)




where with the boundary condition Uy' =0 at y=0 and y=>
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and with the boundary condition v =0 at y =0 and y =b,
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The extensional strain energy of a stiffener is

1 & 2 (
V ==D5 A f € ' (]x 08)
es stist X
2 0 ( ) y=nb
at y = nb; write
ex' = chtQ[WOQ(Nl cos 2¢x + NE) - Est] (c9)

where ’

Ny = 2(cy + Co)(cosh 2gmb - sinh 2gnb) - 4Copnb(cosh 2gnb - sinh 2pnb) +
Go + Gy sin Benb + Gp cos 2Benb + G3 sin 3Benb (c10)

and

Ny = Gy + G5 sin Bgndb + Gg cos 2Bpnb + Gy sin 3Bpnb + Gg cos 4Bgnbd

(c11)
Integration of equation (C8) therefore glves
I Ly
1 2 2y — - 2 3
Ves = 5 Q tJ*ES'bASta Wou< ) + Ne) - EWO NQGSt + €5t (C12)
The bending strain energy of a stiffener is
a
1 2
Vps =5 EqtI W ax (c13)
bs T2 Est st/; (xx) y=nb

since

k) = -¢PtH,(1 - cos 2Bpnb + A sin Borb) sin qx
**/y=nb

integration of equation (C13) gives

Y5

_1 ot 2 N3
s =3 0 BT g, 2 (e14)
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where
N, = (1 - cos 2fgnb + A sin Bonb) 2 (c15)

The twisting strain energy of a stiffener is

1 2
Vig =5 C j: (wxy) g dx (c16)
Since
(wxy)y=nb = cpg'l:WoB[E sin 2Bpnb + A cos qua cos Qx
integration gives
Vs = = @H2CaN,2 % (c17)

Where

N) = 132(2 sin 2Benb + A cos qub)2 (c18)
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(2) Rectangular plate with stiffeners.

A%

CASE 2 CASE

(b) Case 1, plate deflecting around stiffeners; case 2, system displacing
as complete unit.

Figure 1.- Sketch of reinforced plate.




Y
}
= -
— PV
o —_— d -——
X = = <«— Oy
—_— -
- ¢
—_— -
— -
o —— a - QQ:EQEEZ;’

Figure 2.- Coordinate system for rectangular plate with longitudinal
' : stiffeners,

HL

TL92 NI VOVN



NACA TN 2671

_,_ -
/ ._vB.u .
- v - 2
SRIRREI R
. \\ 1q
14 L
VL
f (A
/ / =
4
NN A
.\ | | | \ @
\\ ! \ . °
\ \ \
[
\ \ \ .\ © o )
\ yd . \ \X ¥ 3 7o)
M..\\ \ 2 ﬂ.w \m( ] ﬁ. o "
LWy 2
§ ° $ 8 ¢ & &
H0190v4d SS3AHIS = A

Figure 3.~ Variatlion of X with aspect factor g.



FAGTOR

K,2STRESS

T0

6.5

6.0

55

n=|

V=0

——— CALGULATED

——- DUNN (REF IJ

£0 —T '
N\
O |
N R
45 F_\\“ -
’ \\\\-T\\- AT an '
e [ - 400 a;'O
~————
~———f---——-280 V=0
40 :
0 2 4 6 8 10 12 14 — 00

J = TORSIONAL RIGIDITY FAGTOR

Figure 4.~ Varietion of Kpyp with p.

VN

,.
[

T.9C NI V



FACTOR

8= ASPECT

120

110
v=0: 0
RO.: p= 375.5
ay=0 B=1.68 9,,._0
100 \ =t
[-Te] P ks A vl
= - u L
n=|
——— CALOULATED
~——— DUNN (REF {)
R e
K\W
'600 2 4 8 10 12 4 —Q
FIXED END 2=TORSIONAL RIGIDITY FACTOR SIMDLE

AU R bt

A

TL92 NI VOVN



5
\x
40 N\
_.EQ_ V=0
.El'l’._.|
EOR 30
n=|
.20
AT p=Q0
AW—>W, .9as@’-0)ﬁ
.10 _
T - (eoTtv=0)
o
V&
0
0 10 12 14 16 —= Q0

T,92 NI VOVN

<

-]

e



5k NACA TN 2671

120

10.0

8.0

Gen 60

40

20

Y/b

Figure T7.- Axial stress distribution. x = A.
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