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STATISTICAL STUDY OF TRANSITION-POINT FLUCTUATIONS 

IN SUPERSONIC FLOW 

By J. C. Evvard) M. Tucker) and W. C. Burgess) Jr. 

SUMMARY 

The random movement of the transition point on a 100 cone at a 
free-stream Mach number of 3.12 was investigated by means of a large 
number of high-speed schlieren photographs. The distribution func­
tions which statistically define the transition-point location were 
determined for a range of test ·-section Reynolds number and two levels 
of free-stream turbulence intensity. The intensity was varied by 
changing tunnel settling-chamber configurations . Temperature-recovery­
factor distributions were also obtained. 

The axial extent of the distribution function determined from the 
schlieren data increased with turbulence level. The axial spread of 
the transition region denoted by the recovery-factor measurements 
roughly corresponded to that of the appropriate distribution function. 

These data suggest that a relatively sharp transition from laminar 
to turbulent flow takes place and that this flow pattern moves randomly 
along the aerodynamic surface. With the use of the statistical distri­
bution functions obtained from the data and surface temperatures (as 
time-averaged by the surface thermocouples)) the instantaneous surface ­
temperature distributions were calculated for two Reynolds numbers. 

INTRODUCTION 

Transition on an aerodynamic surface refers to that region between 
the laminar and fully turbulent regions of the boundary-layer flow. 
Transition is affected by Reynolds number) Mach number) stream turbu­
lence) heat transfer) surface roughness) surface curvature) and pres­
sure gradient. For transonic and supersonic flows) the effects of in­
cident shock waves must also be considered. 
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The Tollmien- Schlichting theory of laminar-boundary- layer stability 
(ref . 1) as extended by Lees and Lin (see refs. 2 and 3) has been pro­
posed as a mechanism leading eventually to the onset of transition, 
provided that the stream turbulence is sufficiently low. In a flow 
field for which the stream-turbulence intensity is below about 0 .1 per ­
cent, very small disturbances that are always present in a laminar 
boundary layer will be selectively amplified according to frequency, 
if the flow Reynolds number is sufficiently high, until large oscil­
lations are developed. These large oscillations, which cannot be 
treated by the linearized theory, l~ad to breakdown of the laminar 
flow and t o transition . For turbulence intensities greater than from 
0.5 to 1.0 percent in low- speed flows, the Tollmien-Schlichting waves 
pre sumably playa minor role compared with that of local adverse pres ­
sure gradients associated with the stream turbulence in promoting 
transition - a theory advanced by G. I . Taylor (ref . 4) wherein both 
intensity and scale of turbulence are considered . 

The actual sequence of events in the transition process starting 
from breakdown of the laminar flow and culminating in establishment 
of fully turbulent flow is not yet known. Hugh L. Dryden has made 
the tentative suggestion that transition is always initiated by a 
separated boundary layer and that the separation may be intermittent 
and l ocal in character . This separation could result from either the 
Tollmien-Schlichting waves or the local adverse pressure gradients 
suggested by Taylor . A plausible transition sequence would thus be 
that the separated boundary layer rolls up into discrete vortices of 
scale comparable to the thickness of the layer. These vortices break 
up and diffuse rapidly to form turbulent flow, as in the investigation 
of mixed periodic - turbulent phenomena reported in reference 5 . Such 
considerations might lead one to expect a fairly rapid change from 
laminar to turbulent flow and, in view of the intermittent and local 
nature of the separated boundary- layer formation, a random longitudinal 
movement of the transition-point location. An alternative view is sug­
gested by Emmons and Bryson in references 6 and 7, wherein transition 
is treated as a random process by postulating the sudden and random 
appearance in the flow field of turbulent "spots . " These turbulent 
spots or sources grow with time and eventually join to form a fully 
turbulent region. 

The experimental distributions of recovery factor (refs. 8 and 9) 
and local skin-friction coefficient (ref . 10) seemingly imply that the 
change from laminar to turbulent flow is a gradual one . On the other 
hand , high-speed schlieren photographs obtained in wind tunnels (about 
1 microsec exposure) of boundary- layer development in supersonic flow 
suggest that the transition process must take place very quickly 
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The apparent conflict between the sharply defined transition point 
observed on schlieren photographs and the relatively broad transition 
region obtained in measurements of time - averaged quantities such as re ­
covery factor may be resolved by considering that the transition-point 
location may fluctuate with time . Experimental evidence is included 
in references 11 to 13 which demonstrates that such fluctuations do 
occur on models tested in supersonic wind tunnels . 

In order to explore this question in greater detail) a study of 
transition on a thin-walled stainless - steel 100 cone at a stream Mach 
number of 3 . l2 was made with both schlieren and surface - temperature 
measurement techiques . The sta tist ical distr ibution of transition­
point location was determined by means of a uniformly timed series of 
high- speed schlieren photographs. Tempera~ure distributions were ob ­
tained concurrently from surface thermocouples mounted along a ray of 
the same cone . The measur ed surface temperatures and statistical dis­
tribution functions were utilized to calculate the shape of a hypothe ­
sized instantaneous surface - temperature distribution . These investiga­
tions) which were limited to studies of the effects of Reynolds number 
and stream turbulence) were conducted at the NACA Lewis laboratory 
during the spring and summer of 1953 . 

APPARATUS AND PROCEDURE 

Four tests were conducted in the Lewis 1 - by l-foot supersonic 
wind tunnel) which is a continuous-flow) nonreturn) variable -pressure 
tunnel operating at a Mach number of 3 . 12 with the specific humidity 
sufficiently low (about 4X10- 5 lb of water/lb of dry air throughout 
most of any given run) to minimize condensation effects . Two cylin­
drical settling- chamber configurations were used to vary the stream­
turbulence level. 

In the original tunnel configuration (designated A)) the flow en­
tered parallel to the settling- chamber axis) which was transverse to 
the tunnel - nozzle axis. A screen having a pressure drop of 8q (where 
q designates local stream dynamic pressure) was located in the set ­
tling chamber) and a screen with pressure drop of 2q was placed at 
the exit of the settling chamber. Measurements of the longitudinal 
turbul ence intensity were made at the Mach number 0.12 station upstream 
of the throat with a hot-wire probe employing tungsten wire 0 . 0002 inch 
in diameter and 0.080 inch long. An intensity of 9.4 percent was ob ­
tained for test 1. Because configuration A resulted in a high turbu­
lence level) the settling chamber was replaced. In the revised tunnel 
configuration (B)) the entrance- air direction and settling-chamber axis 
were parallel to the nozzle axis in order to achieve a straight - through 
flow . Four damping screens having an over-all pressure drop of 109 
were placed in the settling chamber . A honeycomb was also installed 
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upstream of the screens . For configuration BJ measurements of the lon­
gitudinal turbulence intensity were also made at the Mach number 0 . 12 
station, yielding intensities of 1 . 0, 0 . 75, and 0 . 5 percent at the 
pressure levels for tests 2, 3, and 4, respectively (see table I) . 
Inasmuch as the same nozzle blocks were used for both tunnel configura­
tions , the upstream turbulence intensities could be used as a measure 
of the test - section turbulence level . Readings of the apparent inten­
sity were also taken in the test section for configuration B. These 
intensities were 3.5 percent for test 2 and 1.0 percent for tests 3 
and 4 . The apparent intensities should be regarded as qualitative . 
Measurements of a preliminary nature revealed the presence of a peak 
in the energy- spectrum curve below about 40 cycles per second for both 
configurations . The frequency range of the peak suggests that the in­
dicated turbulence intensities include the effects of stream disturb ­
ances other than turbulence which could arise from tunnel piping reso­
nances or from the compressor system. That the amplitude of the peak 
was much lower, however, for configuration B, reflects the greater 
effectiveness of the damping- screen arrangement . Operating conditions 
for the various tests are summarized in table I. 

The Ames cone described in reference 8 was available for test 1 
only . The Lewis cone, which was used as the test model for tests 2 
to 4, is similar to the Ames cone in regard to included angle, 100 ; 

wall thickness, 0 . 032 inch; material, 18- 8 stainless- steel alloy; and 
surface finish (maximum roughness less than 15 microin . ); but it is 

l~ inches long instead of 15 inches, and the internal dimensi ons 

differ somewhat near the apex , as shown in figure 1. The two cones 
also differ in the number and spacing of the constantan thermocouple 
wires soldered into holes in the shell . It is believed that results 
obtained from either cone are comparable. Under equilibrium condi­
tions, the surface of these models closely simulates the ideal adia­
batic surface, in view of the stagnant air in the cone interior and 
of the thin walls and relatively poor conductivity of stainless steel. 

A single stainless-steel wire connected to the base of the cone 
completes the thermocouple circuit for each cone . Although the instru­
ments used with the thermocouples have accuracies of ±0.25° F, repeat­
ability of temperature measurements during a temperature survey was 
probably ±0 . 5° F because of gradual changes in tunnel stagnation tem­
perature . The change in stagnation temperature during the schlieren 
observations to be described was about 30 F . 

Figure 2 shows a typical spark-schlieren photograph of the cone 
boundary layer taken at an exposure of about 1 microsecond. The point 
at which the boundary-layer flow first appears to change from laminar 
to turbulent flow is indicated as the transition point . The location 
of the transition point was obtained from many high- speed schlieren 
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photographs taken at approximately uniform intervals of 20 seconds. The 
numbers of photographs used for tests 1 to 4 were 183, 367, 272 , and 
595, respectively . These numbers were dictated by operational 
limitations. 

RESULTS AND DISCUSSION 

Statistical Results 

The schlieren observations of the transition-point location were 
arranged in the order of increasing distances from the cone apex and 
numbered. The total number of times transition occurred upstream of 
a given point x on the cone was thus obtained . Division of this 
number by the total number of cases yields the proportion of the time 
for which transition occurs upstream of a specified point. This func­
tion G(x) is known as the statistical distribution function pertaining 
to that l ocation (ref. 14). A second statistical quantity , the proba­
bility density g (~), may be defined. The function g(~) d~ represents 
the fraction of the time that the transition point is located between 
~ and ~ + d~. The relation between the two functions is given by 

(A list of symbols used will be found in appendix A.) 

The statistical distribution functions obta i ned for tests 1 to 4 
are shown by the individual points in figure 3 . It is of interest to 
compare these with the normal, or Gaussian, distribution functions 

G(x) 

where ~ is the arithmetic mean and h is the preclslon measure. The 
precision measure h and the standard deviation cr are related as 
2h2cr2 = 1. The arithmetic means of the experimental distributions are 
obtained from the discrete analog of the relation 
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where g ( T]) = 0 when T] < a, and when T] > f3 (see appendix B) . The 
precision measures are then similarly obtained from the relation 

The physical meaning of the arithmetic mean is well known . The larger 
the slope of the central portion of the distribution function} the 
larger the precision measure. The quantities ~ and h for the 
various tests are listed in table I . The normal} or Gaussian} dis ­
tribution functions corresponding to these listed values of ~ and 
h are plotted as the solid curves in figure 3 . The experimental 
distribution functions for tests 3 and 4 appeared to fit so closely 
to the normal form that the values of ~ and h obtained from the 
data for these particular tests were adjusted for best fit to the 
normal by the least - squares technique described in appendix B. These 
adjusted values are ~ = 9 . 93} h = 1 . 336 and ~ = 8 . 02 } h = 1.250 for 
tests 3 and 4 } respectively . 

The effect of lowered stream turbulence in reducing the width of 
the transition zone (a,< T] < (3) is quite apparent from figure 3 (a)} 
which shows the distribution functions obtained with the high- and low­
turbulence - level settling chambers at constant test- section Reynolds 
number . Both distributions extend upstream from essentially the same 

location - about ll~ inches from the apex . The effect of increasing 

the stream- turbulence level in these tests was to increase the proba­
bility that the instantaneous transition point (in the sense of fig . 2) 

would be found farther upstream of the ll~- inch station . Thus} it 

would appear that the farthest downstream position at which an instan­
taneous transition is observed is least sensitive to stream-turbulence 
level and presumably represents to first order the transition-point 
location for minimum instantaneous stream turbulence . A transition 
Reynolds number using as characteristic length the distance farthest 
downstream from the apex at which an instantaneous transition is ob ­
served might approximate the Reynolds number of transition for free 
flight. Such a speculation would require additional experimental 
verification . 

The distribution functions obtained with the low- turbulence set ­
tling chamber (configuration B) are shown in figure 3 (b) . The primary 
effect of changing the test - section Reynolds number is to translate 
rather than to spread out the distribution functions . The changes in 
preclslon measure h listed for these tests in table I do not indicate 
any consistent trend with either Reynolds number or turbulence level. 

co 
(j) 

o 
t'f) 
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The close approximation of the distribution functions of tests 3 
and 4 to the normal distribution has already been mentioned . The de ­
parture of the test 1 distribution function from the normal form would 
indicate that the transition process, although random, is being influ­
enced by some nonrandom disturbances . Such disturbances could very well 
stem from the tunnel p iping resonances and from the compressor system 
mentioned in connection with spectrum measurements. Also, with the 
large extension of the transition zone occurring at high free - stream 
turbul ence levels, any three - dimensional model effects stemming from 
the change of body radius with axial distance would be accentuated . 

Recovery-Factor Distributions 

Temperature- recovery- factor distributions obtained are shown in 
figures 4 and 5 . The readings of the farthest downstream thermocouple 
on each of the two cones are believed t o be influenced by heat transfer 
from the mounting strut and therefore should not be considered. The 
l arge deviation from the faired line of the recovery factors obtained 

in test 1 at stations 4~, 5 , 7, and 8~ inches from the cone apex 

(fig . 4) are attributed to malfunctioning of the corresponding thermo­
couples , inasmuch as this pattern was also obtained at other Reynolds 
numbers with the same installation. 

Figure 4 compares the effect of different stream- turbulence levels 
(as indicated by the apparent rms intensity of the longitudinal velocity 
fluctuations) upon the distribution of recovery factor for constant 
test - section Reynolds number, the change in turbulence level being 
accomplished by changing settling- chamber configurations. Figure 5 
compares the effect of test - section Reynolds number upon recovery­
factor distributi on for a fixed settling- chamber configuration (con­
figuration B) and presumabl y fixed turbulence level . Actually, as 
may be seen from table I, operation of the compressor system at dif ­
ferent pressure levels causes some change in the turbulence l evel . 

Within the limits of experimental accuracy , it appears that 
changing the turbulence level or test - section Reynolds number has 
little, if any, effect upon the values of either the peak or turbulent 
recovery factor . The effect of lowering the turbulence level is to 
intensify the rate at which the recovery factor reaches its maximum 
value (fig . 4) and thereby to increase the transition Reynolds number 
defined as in reference 8 (indicated schematically in fig. 6) from 
about 1 . 4X106 to 3 . 2X106 . The nominal transition region is thus 
broader for the high- than for the low- turbulence-level stream and 
corresponds closely to the trend observed on the statistical distri­
bution functions. In view of the earlier discussion it can readily 
be seen that the transition Reynolds number defined in reference 
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8, which is weighted towards the upstream point of the di stributi on 
function, would be very sensitive to changes i n stream turbulence. 
The effect of increasing the test-section Reynolds number has been 
to translate the recovery-factor distribution curve (fig. 5) towards 
the apex of the cone. For tests 3 and 4, the transition Reynolds 
number as defined in reference 8 remained constant at 3.2Xl06 ; f or 
test 2, this Reynolds number was 2.8Xl06. 

A study of the schlieren photographs indicated that, for tests 2 
to 4, compression-expansion wave systems intersected the cone at sta-

1 tions ~, 10, and 12 inches from the apex. The results of a bri ef 

investigation to determine the effects of a compression-expansion 
wave system on the recovery-factor distribution are shown in figure 7. 
Cellophane-tape strips 0.0025- and 0.005-inch thick and 0.75-inch wide 
placed on the tunnel wall generated the disturbance t hat , on t he ba s is 
of schlieren observations, was clearly of greater strength than the 
wave systems already present in the flow. The results indicate that 
waves (generated by 0.005-in.-thick tape) intersecting the cone in the 
transition region do not greatly alter the recovery-factor distribution; 
whereas, upstream disturbances even of ~ower strength tend to move the 
transition region forward. Thus, it would appear that the recovery­
factor distributions of tests 3 and 4 were less influenced than that 
of test 2 by the wave intersections. Presumably a similar conclusion 
would apply to the corresponding distribution functions. 

Instantaneous Temperature-Recovery Factors 

The temperature-recovery-factor distributions of references 8 and 
9 as well as those just presented are time-averaged. The relation of 
the statistical distribution functions and the time-averaged recovery 
factors may be determined by means of a simple hypothesis. For clarity, 
reference will be made to temperature rather than to recovery factor. 

An instantaneous temperature distribution that moves with the 
transition-point location and is unaffected by translation of the 
transition point is postulated . The random movement of the transi­
tion point is specified by a statistical distribution function G(x) 
or, equivalently, a probability density function g(~). Thus, when 
the transiti.on point is located at a distance ~ from the cone apex, 
a thermocouple at a distance x from the apex is subjected to the 
instantaneous temperature e(x - ~) for g(~) d~ percentage of the 
time. The function e(x - ~), as shown in appendix B, has its maximum 
value at x - ~ = O. Summing over all positions of the transition­
point location gives the time -averaged temperature at the thermocouple: 

ro 
m 
o 
~ 
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;rex) ~ I e(x - ~) g(~) d~ (1) 

In the formulati on of equation (1) the function e(x - ~) immediately 
upstream of the observed transition point need not be the laminar 
value . If the laminar value of the surface temperature is subtracted 
from both members of equation (1), there results 

T(x) ~ 1~ s(x - ~) g(~) d~ 

where T(x) == T(x) - eL(x) and e == e(x - T)) - eL(x). By a similar 

technique, equation (1) may be converted to r ecovery f actors giving 

(2) 

where r i s t he t ime-aver aged recovery f act or and rI i s the instan­
t aneous rec overy factor. 

The i t er ation pr ocedure used to obtain e(x - ~) when T(x ) and 
ge T) ) are known is described in appendix B. The temperature eL was 

taken as the temperature indicated by the thermocouple nearest the 
cone apex, and the instantaneous temperature distributions S (x - ~) 
wer e obta ined for tests 3 and 4 . The sixth-iteration distributions 
converted to temperature- recovery factor are shown in figure 8 . For 
tests 3 and 4, the maximum deviations in the derived mean temperatures 
obtained from the e - distributions of figure 8 and the appropriate 
probability densities are 0 . 300 F at x = - 2.0 and 0.580 F at 
x = - 0 . 5 . The deviations at other points are for the most part 
0.10 F or less. 

Even though, in principle, equation (1) has a unique solution for 
e (x), many e distributions can be found which, with a given proba­
bility density distribution g ( ~), will yield a time-averaged tempera­
ture dist r i bution T(x) within the accuracy of the temperature measure ­
ments. These alternative values of e oscillate about a mean curve 
that closely conforms to the corresponding 8 -distribution of figure 8 . 
Thus, the precise form of 8 cannot be infer red without greater accu­
racy of the experimental data . 
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The instantaneous recovery-factor distributions retain the general 
characteristics of the mean distributions but show a steeper rise and 
higher peak recovery factor. In a time - dependent flow, the mixing to 
be expected from large - eddy convective - type transfer could disturb the 
proportion of heat and momentum transfer and lead t o an increase in 
recovery factor . The subsequent levelling off of recovery factor to 
the value appropriate for fully turbulent flow suggests the physical 
picture of large eddies diffusing rapidly to form a turbulent flow. 

It will be recalled that in the derivation of equation (1) the 
assumption was made that the instantaneous distribution is not affected 
by its position and rate of change of movement through the region of 
developing boundary layer. The differences between the two instanta­
neous distributions shown in figure 8 suggest that a more precise 
analysis might include some scaling factor to account for a Reynolds 
number effect. Such an analysis would require considerably more ex­
perimental data. 

Emmons has proposed the concept (ref. 6) that transition on an 
aerodynamic surface results from the random appearance of turbulent 
sources that grow and eventually join to form a fully turbulent re­
gion. Such a transition process would be expected to produce many 
examples of turbulent flow followed downstream by laminar flow. The 
data of the present paper suggest that there is a relatively sharp 
change from laminar to turbulent flow with predOminantly turbulent 
flow downstream. The occurrence in the free stream of eddies whose 
scale is large compared with the boundary-layer thickness would favor 
the probability of observing turbulent flow downstream of the transi­
tion point; the presence of predominantly small-scale eddies WOuld, on 
the other hand, increase the probability of observing multiple transi­
tion points. 

A study of the schlieren photographs from test 3 indicates that 
about 2 percent of the cases (6 pictures in 272) show, as in figure 9, 
the obvious presence of more than one transition point . Thus, while 
the growth of turbulent spots that were so evident on Emmons' water­
table experiments is not precluded, the evidence from the schlieren 
photographs indicate s that such a transition mechanism did not pre­
dominate here. A possible inference would be that the scale of eddies 
in the tunnel air stream was large compared with the boundary-layer 
thickness. 

A rapidly fluctuating transition point followed downstream by 
turbulent flow would explain in part, as does also the growth of 
turbulent spots, the apparent bursts of turbulence indicated by a 
hot-wire probe located in the transition zone. It should be recog­
nized, however, that the hot-wire probe would also record the influ­
ence of relatively large-scale eddies that are expected to form at 
transition. 
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CONCLUDING REMARKS 

The experimentally determined statistical distribution functions 
defining the transition-point location are markedly affected by stream­
turbulence level, their axial extent being broad for high turbulence 
and narrow for low turbulence . The data suggest that the transition­
point location for conditions of minimum instantaneous stream turbulence 
would correspond closely to the farthest observable downstream point On 
a distribution function obtained in a turbulent stream. The axial 
spread of the transition region indicated by measurement of local 
recovery- factor distributions, in general, corresponds to that of the 
distribution function. It would appear that the primary effect of 
changing test-section Reynolds nwnber is to translate rather than to 
spread out or to sharpen the recovery-factor~distribution curves. 

The data suggest a simple concept wherein the flow is postulated 
to change sharply from laminar to turbulent flow, this instantaneous 
flow field moving randomly in the longitudinal direction about an 
aerodynamic surface . The measured recovery factors and distribution 
functions were utilized to calculate the hypothesized instantaneous 
recovery- factor distribution for several Reynolds numbers. An ex­
tension of the present investigation to include effects of Mach number 
upon transition appears warranted. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, OhiO, November 2, 1953 
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APPENDIX A 

SYMBOLS 

The following symbols are used : 

G(x) distribution functi on of x ; p r obability that xl < T) ;; x2 is 

given by 

g(T)) p r obability density of T) 

h precision measure of d istribution function related to standard 
1 

deviation as defined by eq . (Bll) hV2 
N total number of observations 

q local stream dynamic p ressure 

r time - averaged temperature - recovery factor 

rI instantaneous temperature- recovery factor 

T time - averaged surface temperature 

T time - averaged surface - temperature increment above laminar 
temperature 

x position variable measured from cone apex along a ray 

13 

upstream limit of transition- point movement, g (T)) 

downstream limit of transition-point movement, g (T)) 
T»f3 

o for T) < LL 

o for 

6 increment in function value between successive apprOXimations 

~ defined by e q. (B12) 

S defined in appendix B in connection with eq . (B15 ) 

T) variable specifying location from cone apex of instantaneous 
transition point 

co 
(J) 

o 
to 
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e instantaneous surface temperature 

8 instantaneous surface - temperature increment above laminar 
temperature 

~ arithmetic mean as defined in eq . (BI0) 

Subscripts : 

L laminar 

n order of appr oximation as used in appendix B 

13 
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APPENDIX B 

MATHEMATICAL PROCEDURES 

By Hugo Heermann 

Fitting of Distribution Functions 

In order to find a solution of the integral e quation 

T(x) = 1~ e (x - ~) g(~) d~ (Bl) 

i t is necessary to pr ocess the data in such a way that the p r obability 
density g (~) assumes a satisfactory mathematical form . The difficul ­
ties involved and the means of overcoming them are explained herein . 

At P distinct points xl ) x2) x3' .. . ~ transition was ob ­

served to occur nl) n2) ... ~ times) respectively . Thus) each 

ni ~ 1 . The t otal number of times transition was observed to occur 

is N) where 

A function G(x) is defined for each x 
means of the r elation 

(B2 ) 

(B3 ) 

G(x) is a step function that consists of steps of the heights g (xi).' 
where 

at the jump points xi . Fr om e quation (B3) ) with ni 
follows that 

co 
(J) 

o 
1'0 
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k 

G(xk) = ~ g (xi ) 
i=l 

(B4 ) 

or 

(B5 ) 

When G(x ) is differ entiable , t he cont i nuou s analogs of equations (B4) 
and (B5 ) are 

and 

dG (x) = g (x) 
dx 

(B6) 

(B7 ) 

However, since G(X) i s a step function , the difficulties involved in 
eval uating g (x) by equation (B7 ) are evident . Consequently, some 
other procedure had to be devised . 

After the discontinuous distribution function G(x) for tests 3 
and 4 was plotted, it was observed that these distributions appeared 
to be nearly normal . This means that for an appropriate choice of the 
parameters ~ and h , G(x) can be approximated by 

(B8 ) 

Thus , if G(x) could be put in the form (B8), it could be immediately 
inferred that 

(B9) 

The decision that the differentiable distribution function that 
best fits the data is a normal distribution means that some procedure 
must be evolved for evaluating the parameters ~ and h . When there 
is a very large number of observations, these parameters are usually 
obtained from the relations 

------------ ---- - - ____ J 
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i=+ '"' 

11 L Xig(Xi) 
for discontinuou s probability 

density functions 
l=- CX> 

N 
(B10) 

11 1+~ ~g(~) d1') f or continuous p r obability density 

functi ons g (x) for which 1+~ g(~ ) d~ 

1 

2h2 

for discontinuous probability 
density functions 

for continuous probability density 

1 

(Bll) 

1+00 
functions for which -00 g ( 1')) d1') 1 

In view of the statistically small samples involved in tests 3 
and 4) it was thought that the Il and h obtained from equations (B10) 
and (Bll) might not be satisfactory . It was therefore decided to choose 

Il and h 

perimental 
Thus ) if 

so that ~ ~xe_ (~_o)2h2 d~ would approximate the ex-

G(x) in the sense of least squares in the observed range. 

r~ [ h j X ( )2 2 J2 
«O,h) =~ ~(x) - ~ ~ e- ~-O h d:J dx (B12) 

then Il and h are to be found so that ~(Il) h ) is a minimum . This 
leads to the two equations 

o (B13) 

co 
en o 
t'f) 



().l 

o 
to 
en 

L 

NACA TN 3100 l7 

(Bl4) 

When the values of ~ and h predicted by equations (BlO) and (Bll) 
are used as initial approximations, equations (Bl3) and (Bl4) are 
solved with use of finite summations by Newton ' s me~hod (ref. l5) . 
With ~ and h determined in this manner, a satisfactory form for 
the probability density is obtained through use of equation (B9). 

Solution of Integral Equation 

The problem is to find a function e(x) that satisfies the integral 
equation of the first kind with fixed limitsi 

T(x) "~ e(x - ~) g(~) d~ (2) 

In order to obtain the physical significance of e, as implied in the 
text, the argument must be replaced by x -~. If it is assumed that 
for the given numerical data there exists a continuous function e(x) 
which satisfies this equation, then by the mean-value theorem there 
exist,s a functi on S (x) for which a. < Ux) < f3, so that 

(Bl5 ) 

or, since 

then 

T(x) =e [ x - s(xD (Bl6 ) 

where 
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When h is ver y l arge) much mor e can be said about S(x) . From e qua­
tions (1 . 18 .1) and (1 . 16 . 4 ) of refer ence 16 it can be shown that 

When equation (Bl ) is r ewritten in the f orm 

T(x) 

comparison of these equations indicates that) for large h) a good in­
itial appr oximation to the solution of equation (Bl) is 

Thus ) when h is very large ) s (x ) z~ . By experiment it was found t hat ) 
even when h is not large) (B17 ) still furnishes a reasonable approxi ­
mation to t he s olution of (Bl) . In fact) t he maximum val ue of 

(B18 ) 

occurred at x '" ~ ) and f or increasing values of x larger than ~) 
t he difference given by e quation (B18 ) decreases and finally becomes 
zero . A similar remark applies when x< ~ and for decreasing values 
of x . Thus ) the maximum err ors invol ved in assuming 8 0 (x) = T(x + ~) 

to be a solution oc curred in a neighborhood of the point x = 0 ) as in 
the f ollowing sketch : 

x 

In order to improve on t he ini t ial approximation (B17 ) ) suppos e 
t hat G1(x) is a sol ution of (Bl ) ) and let 

co 
m 
o 
to 
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I -

NACA TN 3100 

Then 

().l 
o By the mean- value theorem, 
<.0 
OJ 

where a.< ~l ( x) < (3 . From (B18) it fol l ows that the maximum value of 

~ /60 [x - ~l (x)JI 
a:l 
P occurs at x ~ . This suggests the choice 

so that 

will be largest when x = ~ . 

A method of successive approximations defined in accordance with 
the following is thereby indicated : 

• 

L 

19 
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If en (x) tends uniformly in -00 < x < + 00 to a limit e(x) 

e (x) = lim en (x) 
n-+oo 

then e (x) will satisfy equation (Bl). 

NACA TN 3100 

In the computations the integration step size was taken as 0 . 25 
inch. The spacing of the thermocouple being 0 . 5 inch) a smaller step 
size was not considered warranted . 
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Config-
uration 

A 

B 

'-------

TABLE I . - OPER~TING CONDITI ONS MJD DISTRI BUTION-FUNCTION PARAMETERS 

Te st St agna- Stagna - Te s t - section Indicated l ongitudinal Distribution-
number tion t i on Reynolds t urbulence i ntensity f unction pa ramete rs 

pressure ) tempera- number per Mach number Test Arithmetic Pr ecision I 

lb / s q in . ture ) foot 0 . 1 2 station ) sect i on ) mean ) fl measure ) 
ab s of percent per cent ( eq . (B10 ) ) h 

( eq . (Bll) ) 

1 28 . 55 43 . 9 4 . 8Xl06 9 . 4 - - - 7 . 55 0 . 434 

2 17 . 67 44 . 0 3 . 0Xl06 1. 0 3 . 5 13 . 46 0 . 822 
3 29 . 01 46 . 0 4 . 8 . 75 1. 0 9 . 96 1. 261 
4 40 . 11 48 . 8 6 . 6 . 5 1. 0 8 . 02 1 . 200 
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Figure 2 . - Typical high-speed schlieren photograpb showing cone boundary layer and apparent transition­
point location. Exposure at approximately 1 microsecond. 
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