)

Qe

.

V3N /5 6/3/00

NACA TN 3100

BUSINESS AND

TECHNIGAL Dery

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 3100

STATISTICAL STUDY OF TRANSITION-POINT FLUCTUATIONS
IN SUPERSONIC FLOW
By J. C. Evvard, M. Tucker, and W. C. Burgess, Jr.

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
March 1954




860¢% *

CG-1

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3100

STATISTICAL STUDY OF TRANSITION-POINT FLUCTUATIONS
IN SUPERSONIC FLOW

By J. C. Evvard, M. Tucker, and W. C. Burgess, Jr.

SUMMARY

The random movement of the transition point on a 10° cone at a
free-stream Mach number of 3.12 was investigated by means of a large
number of high-speed schlieren photographs. The distribution func-
tions which statistically define the transition-point location were
determined for a range of test-section Reynolds number and two levels
of free-stream turbulence intensity. The intensity was varied by
changing tunnel settling-chamber configurations. Temperature-recovery-
factor distributions were also obtained.

The axial extent of the distribution function determined from the
schlieren data increased with turbulence level. The axial spread of
the transition region denoted by the recovery-factor measurements
roughly corresponded to that of the appropriate distribution function.

These data suggest that a relatively sharp transition from laminar
to turbulent flow takes place and that this flow pattern moves randomly
along the aerodynamic surface. With the use of the statistical distri-
bution functions obtained from the data and surface temperatures (as
time-averaged by the surface thermocouples), the instantaneous surface-
temperature distributions were calculated for two Reynolds numbers.

INTRODUCTION

Transition on an aerodynamic surface refers to that region between
the laminar and fully turbulent regions of the boundary-layer flow.
Transition is affected by Reynolds number, Mach number, stream turbu-
lence, heat transfer, surface roughness, surface curvature, and pres-
sure gradient. For transonic and supersonic flows, the effects of in-
cident shock waves must also be considered.
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The Tollmien-Schlichting theory of laminar-boundary-layer stability
(ref. 1) as extended by Lees and Lin (see refs. 2 and 3) has been pro-
posed as a mechanism leading eventually to the onset of transition,
provided that the stream turbulence is sufficiently low. In a flow
field for which the stream-turbulence intensity is below about 0.1 per-
cent, very small disturbances that are always present in a laminar
boundary layer will be selectively amplified according to frequency,
if the flow Reynolds number is sufficiently high, until large oscil-
lations are developed. These large oscillations, which cannot be
treated by the linearized theory, lead to breakdown of the laminar
flow and to transition. For turbulence intensities greater than from
0.5 to 1.0 percent in low-speed flows, the Tollmien-Schlichting waves
presumably play a minor role compared with that of local adverse pres-
sure gradients associated with the stream turbulence in promoting
transition - a theory advanced by G. I. Taylor (ref. 4) wherein both
intensity and scale of turbulence are considered.

The actual sequence of events in the transition process starting
from breakdown of the laminar flow and culminating in establishment
of fully turbulent flow is not yet known. Hugh L. Dryden has made
the tentative suggestion that transition is always initiated by a
separated boundary layer and that the separation may be intermittent
and local in character. This separation could result from either the
Tollmien-Schlichting waves or the local adverse pressure gradients
suggested by Taylor. A plausible transition sequence would thus be
that the separated boundary layer rolls up into discrete vortices of
scale comparable to the thickness of the layer. These vortices break
up and diffuse rapidly to form turbulent flow, as in the investigation
of mixed periodic-turbulent phenomena reported in reference S. Such
considerations might lead one to expect a fairly rapid change from
laminar to turbulent flow and, in view of the intermittent and local
nature of the separated boundary-layer formation, a random longitudinal
movement of the transition-point location. An alternative view is sug-
gested by Emmons and Bryson in references 6 and 7, wherein transition
is treated as a random process by postulating the sudden and random
appearance in the flow field of turbulent "spots." These turbulent
spots or sources grow with time and eventually join to form a fully
turbulent region.

The experimental distributions of recovery factor (refs. 8 and 9)
and local skin-friction coefficient (ref. 10) seemingly imply that the
change from laminar to turbulent flow is a gradual one. On the other
hand, high-speed schlieren photographs obtained in wind tunnels (about
1 microsec exposure) of boundary-layer development in supersonic flow
suggest that the transition process must take place very quickly.
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The apparent conflict between the sharply defined transition point
observed on schlieren photographs and the relatively broad transition
region obtained in measurements of time-averaged quantities such as re-
covery factor may be resolved by considering that the transition-point
location may fluctuate with time. Experimental evidence is included
in references 11 to 13 which demonstrates that such fluctuations do
occur on models tested in supersonic wind tunnels.

In order to explore this question in greater detail, a study of
transition on a thin-walled stainless-steel 10° cone at a stream Mach
number of 3.12 was made with both schlieren and surface-temperature
measurement techiques. The statistical distribution of transition-
point location was determined by means of a uniformly timed series of
high-speed schlieren photographs. Temperature distributions were ob-
tained concurrently from surface thermocouples mounted along a ray of
the same cone. The measured surface temperatures and statistical dis-
tribution functions were utilized to calculate the shape of a hypothe-
sized instantaneous surface-temperature distribution. These investiga-
tions, which were limited to studies of the effects of Reynolds number
and stream turbulence, were conducted at the NACA Lewis laboratory
during the spring and summer of 1953.

APPARATUS AND PROCEDURE

Four tests were conducted in the Lewis 1- by 1l-foot supersonic
wind tunnel, which is a continuous-flow, nonreturn, variable-pressure
tunnel operating at a Mach number of 3.12 with the specific humidity
sufficiently low (about 4X10-5 1b of water/lb of dry air throughout
most of any given run) to minimize condensation effects. Two cylin-
drical settling-chamber configurations were used to vary the stream-
turbulence level.

In the original tunnel configuration (designated A), the flow en-
tered parallel to the settling-chamber axis, which was transverse to
the tunnel-nozzle axis. A screen having a pressure drop of 8q (where
g designates local stream dynamic pressure) was located in the set-
tling chamber, and a screen with pressure drop of 2q was placed at
the exit of the settling chamber. Measurements of the longitudinal
turbulence intensity were made at the Mach number 0.12 station upstream
of the throat with a hot-wire probe employing tungsten wire 0.0002 inch
in diameter and 0.080 inch long. An intensity of 9.4 percent was ob-
tained for test 1. Because configuration A resulted in a high turbu-
lence level, the settling chamber was replaced. In the revised tunnel
configuration (B), the entrance-air direction and settling-chamber axis
were parallel to the nozzle axis in order to achieve a straight-through
flow. Four damping screens having an over-all pressure drop of 10q
were placed in the settling chamber. A honeycomb was also installed
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upstream of the screens. For configuration B, measurements of the lon-

gitudinal turbulence intensity were also made at the Mach number 0.12 y
station, yielding intensities of 1.0, 0.75, and 0.5 percent at the
pressure levels for tests 2, 3, and 4, respectively (see table I).
Inasmuch as the same nozzle blocks were used for both tunnel configura-
tions, the upstream turbulence intensities could be used as a measure
of the test-section turbulence level. Readings of the apparent inten-
sity were also taken in the test section for configuration B. These
intensities were 3.5 percent for test 2 and 1.0 percent for tests 3

and 4. The apparent intensities should be regarded as qualitative.
Measurements of a preliminary nature revealed the presence of a peak
in the energy-spectrum curve below about 40 cycles per second for both
configurations. The frequency range of the peak suggests that the in-
dicated turbulence intensities include the effects of stream disturb-
ances other than turbulence which could arise from tunnel piping reso-
nances or from the compressor system. That the amplitude of the peak
was much lower, however, for configuration B, reflects the greater
effectiveness of the damping-screen arrangement. Operating conditions
for the various tests are summarized in table I.
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The Ames cone described in reference 8 was available for test 1
only. The Lewis cone, which was used as the test model for tests 2
to 4, is similar to the Ames cone in regard to included angle, 10e;
wall thickness, 0.032 inch; material, 18-8 stainless-steel alloy; and
surface finish (maximum roughness less than 15 microin.); but it is
18%5 inches long instead of 15 inches, and the internal dimensions
differ somewhat near the apex, as shown in figure 1. The two cones
also differ in the number and spacing of the constantan thermocouple
wires soldered into holes in the shell. It is believed that results
obtained from either cone are comparable. Under equilibrium condi-
tions, the surface of these models closely simulates the ideal adia-
batic surface, in view of the stagnant air in the cone interior and
of the thin walls and relatively poor conductivity of stainless steel.

A single stainless-steel wire connected to the base of the cone
completes the thermocouple circuit for each cone. Although the instru-
ments used with the thermocouples have accuracies of +0.25° F, repeat-
ability of temperature measurements during a temperature survey was
probably +0.5° F because of gradual changes in tunnel stagnation tem-
perature. The change in stagnation temperature during the sehilieren
observations to be described was about 3° F.

Figure 2 shows a typical spark-schlieren photograph of the cone
boundary layer taken at an exposure of about 1 microsecond. The point .
at which the boundary-layer flow first appears to change from laminar
to turbulent flow is indicated as the transition point. The location
of the transition point was obtained from many high-speed schlieren
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photographs taken at approximately uniform intervals of 20 seconds. The
numbers of photographs used for tests 1 to 4 were 183, 367, 27z, and
595, respectively. These numbers were dictated by operational
limitations.

RESULTS AND DISCUSSION
Statistical Results

The schlieren observations of the transition-point location were
arranged in the order of increasing distances from the cone apex and
numbered. The total number of times transition occurred upstream of
a given point x on the cone was thus obtained. Division of this
number by the total number of cases yields the proportion of the time
for which transition occurs upstream of a specified point. This func-
tion G(x) is known as the statistical distribution function pertaining
to that location (ref. 14). A second statistical quantity, the proba-
bility density g(n), may be defined. The function g(n) dn represents
the fraction of the time that the transition point is located between
n and N + dn. The relation between the two functions is given by

G(x) = g(n) dn

(o
(A 1list of symbols used will be found in appendix A.)

The statistical distribution functions obtained for tests 1 to 4
are shown by the individual points in figure 3. It is of interest to
compare these with the normal, or Gaussian, distribution functions

G(x) = ;;? \//\ e'(n_"l)2h2 dn

where p is the arithmetic mean and h 1is the precision measure. The
precision measure h and the standard deviation o are related as
2h202 = 1. The arithmetic means of the experimental distributions are
obtained from the discrete analog of the relation
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where g(n) = O when n<a and when 71>p (see appendix B). The
precision measures are then similarly obtained from the relation a

B

Had = (n - w)2 g(n) an

L

The physical meaning of the arithmetic mean 1is well known. The larger
the slope of the central portion of the distribution function, the
larger the precision measure. The quantities p and h for the
various tests are listed in table I. The normal, or Gaussian, dis-
tribution functions corresponding to these listed values of p and
h are plotted as the solid curves in figure 3. The experimental
distribution functions for tests 3 and 4 appeared to fit so closely
to the normal form that the values of p and h obtained from the
data for these particular tests were adjusted for best fit ©o the
normal by the least-squares technique described in appendix B. These
adjusted values are p = 9.93, h = 1.336 and u = 8LOZEWnE—NIEN2508 feor:
tests 3 and 4, respectively.
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The effect of lowered stream turbulence in reducing the width of
the transition zone (a<mn<pB) is quite apparent from figure 3(a),
which shows the distribution functions obtained with the high- and low-
turbulence-level settling chambers at constant test-section Reynolds
number. Both distributions extend upstream from essentially the same

location - about ll% inches from the apex. The effect of increasing

the stream-turbulence level in these tests was to increase the proba-
bility that the instantaneous transition point (in the sense of fig. 2)

would be found farther upstream of the ll%-inch station. Thus, it

would appear that the farthest downstream position at which an instan-

taneous transition is observed is least sensitive to stream-turbulence A
level and presumably represents to first order the transition-point

location for minimum instantaneous stream turbulence. A transition

Reynolds number using as characteristic length the distance farthest

downstream from the apex at which an instantaneous transition is ob-

served might approximate the Reynolds number of transition for free

flight. Such a speculation would require additional experimental

verification.

The distribution functions obtained with the low-turbulence set-
tling chamber (configuration B) are shown in figure 3(b). The primary
effect of changing the test-section Reynolds number is to translate
rather than to spread out the distribution functions. The changes in
precision measure h listed for these tests in table I do not indicate
any consistent trend with either Reynolds number or turbulence level. -
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The close approximation of the distribution functions of tests 3
and 4 to the normal distribution has already been mentioned. The de-
parture of the test 1 distribution function from the normal form would
indicate that the transition process, although random, is being influ-
enced by some nonrandom disturbances. Such disturbances could very well
stem from the tunnel piping resonances and from the compressor system
mentioned in connection with spectrum measurements. Also, with the
large extension of the transition zone occurring at high free-stream
turbulence levels, any three-dimensional model effects stemming from
the change of body radius with axial distance would be accentuated.

Recovery-Factor Distributions

Temperature-recovery-factor distributions obtained are shown in
figures 4 and 5. The readings of the farthest downstream thermocouple
on each of the two cones are believed to be influenced by heat transfer
from the mounting strut and therefore should not be considered. The
large deviation from the faired line of the recovery factors obtained
in test 1 at stations 4%, S, 7, and 8% inches from the cone apex
(fig. 4) are attributed to malfunctioning of the corresponding thermo-
couples, inasmuch as this pattern was also obtained at other Reynolds
numbers with the same installation.

Figure 4 compares the effect of different stream-turbulence levels

(as indicated by the apparent rms intensity of the longitudinal velocity
fluctuations) upon the distribution of recovery factor for constant
test-section Reynolds number, the change in turbulence level being
accomplished by changing settling-chamber configurations. Figure 5
compares the effect of test-section Reynolds number upon recovery-
factor distribution for a fixed settling-chamber configuration (con-
figuration B) and presumsbly fixed turbulence level. Actually, as

may be seen from table I, operation of the compressor system at dif-
ferent pressure levels causes some change in the turbulence level.

Within the limits of experimental accuracy, it appears that
changing the turbulence level or test-section Reynolds number has
little, if any, effeet upon the values of either the peak or turbulent
recoyery tactor, The effect of lowering the turbulenece leyelis: to
intensify the rate at which the recovery factor reaches its maximum
value (fig. 4) and thereby to increase the transition Reynolds number
defined as in reference 8 (indicated schematically in fig. 6) from
about 1.4X106 to 3.2x106. The nominal transition region is thus
broader for the high- than for the low-turbulence-level stream and
corresponds closely to the trend observed on the statistical distri-
bution functions. In view of the earlier discussion it can readily
be seen that the transition Reynolds number defined in reference
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8, which is weighted towards the upstream point of the distribution
function, would be very sensitive to changes in stream turbulence.
The effect of increasing the test-section Reynolds number has been
to translate the recovery-factor distribution curve (fig. 5) towards
the apex of the cone. For tests 3 and 4, the transition Reynolds
number as defined in reference 8 remained constant at 3.2x106; for
test 2, this Reynolds number was 2.8x106.

A study of the schlieren photographs indicated that, for tests 2
to 4, compression-expansion wave systems intersected the cone at sta-
tions 5%, 10, end 12 inches from the apex. The results of a brief
investigation to determine the effects of a compression-expansion
wave system on the recovery-factor distribution are shown in figure 7.
Cellophane-tape strips 0.0025- and 0.005-inch thick and 0.75-inch wide
placed on the tunnel wall generated the disturbance that, on the basis
of schlieren observations, was clearly of greater strength than the
wave systems already present in the flow. The results indicate that
waves (generated by 0.005-in.-thick tape) intersecting the cone in the
transition region do not greatly alter the recovery-factor distribution;
whereas, upstream disturbances even of lower strength tend to move the
transition region forward. Thus, it would appear that the recovery-
factor distributions of tests 3 and 4 were less influenced than that
of test 2 by the wave intersections. Presumably a similar conclusion
would apply to the corresponding distribution functions.

Instantaneous Temperature-Recovery Factors

The temperature-recovery-factor distributions of references 8 and
9 as well as those just presented are time-averaged. The relation of
the statistical distribution functions and the time-averaged recovery
factors may be determined by means of a simple hypothesis. For clarity,
reference will be made to temperature rather than to recovery factor.

An instantaneous temperature distribution that moves with the
transition-point location and is unaffected by translation of the
transition point is postulated. The random movement of the transi-
tion point is specified by a statistical distribution function a(x)
or, equivalently, a probability density function g(n). Thus, when
the transition point is located at a distance m from the cone apex,
a thermocouple at a distance x from the apex is subjected to the
instantaneous temperature 6(x - n) for g(n) dn percentage of the
time. The function 6(x - 1), as shown in appendix B, has its maximum
value at X - 1 = O. Summing over all positions of the transition-
point location gives the time-averaged temperature at the thermocouple:

3098
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(%) = 6(x - 1) g(n) an (1)

In the formulation of equation (1) the function 6(x - n) immediately
upstream of the observed transition point need not be the laminar
value. If the laminar value of the surface temperature is subtracted
from both members of equation (1), there results

i e e i (2)

(e

where T(x)= T(x) - 6p(x) and ©= 6(x - n) - 61(x). By a similar
technique, equation (1) may be converted to recovery factors giving

r(x) = rr(x - 1) &(n) an (3)

(07

where T 1is the time-averaged recovery factor and r; 1is the instan-
taneous recovery factor.

The iteration procedure used to obtain ©(x - n) when T(x) and
g(n) are known is described in appendix B. The temperature 6 was

taken as the temperature indicated by the thermocouple nearest the
cone apex, and the instantaneous temperature distributions o(x - 1)
were obtained for tests 3 and 4. The sixth-iteration distributions
converted to temperature-recovery factor are shown in figure 8. For
tests 3 and 4, the maximum deviations in the derived mean temperatures
obtained from the ®-distributions of figure 8 and the appropriate
probability densities are 0.300 F at x = - 2.0 and 0.580 F at

X = - 0.5. The deviations at other points are for the most part

8,12 8 or Iees.

Even though, in principle, equation (1) has a unique solution for
®(x), many ©® distributions can be found which, with a given proba-
bility density distribution g(n), will yield a time-averaged tempera-
ture distribution T(x) within the accuracy of the temperature measure-
ments. These alternative values of ® oscillate about a mean curve
that closely conforms to the corresponding @©-distribution of figure 8.
Thus, the precise form of © cannot be inferred without greater accu-
racy of the experimental data.
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The instantaneous recovery-factor distributions retain the general
characteristics of the mean distributions but show a steeper rise and -
higher peak recovery factor. In a time-dependent flow, the mixing to
be expected from large-eddy convective-type transfer could disturb the
proportion of heat and momentum transfer and lead to an increase in =
recovery factor. The subsequent levelling off of recovery factor to
the value appropriate for fully turbulent flow suggests the physical
picture of large eddies diffusing rapidly to form a turbulent flow.

It will be recalled that in the derivation of equation (1) the
assumption was made that the instantaneous distribution is not affected
by its position and rate of change of movement through the region of
developing boundary layer. The differences between the two instanta-
neous distributions shown in figure 8 suggest that a more precise
analysis might include some scaling factor to account for a Reynolds
number effect. Such an analysis would require considerably more ex-
perimental data.

3098

Emmons has proposed the concept (ref. 6) that transition on an
aerodynamic surface results from the random appearance of turbulent
sources that grow and eventually join to form a fully turbulent re-
gion. Such a transition process would be expected to produce many
examples of turbulent flow followed downstream by laminar flow. The
data of the present paper suggest that there is a relatively sharp
change from laminar to turbulent flow with predominantly turbulent
flow downstream. The occurrence in the free stream of eddies whose
scale is large compared with the boundary-layer thickness would favor
the probability of observing turbulent flow downstream of the transi-
tion point; the presence of predominantly small-scale eddies would, on
the other hand, increase the probability of observing multiple transi-
tion points. A

A study of the schlieren photographs from test 3 indicates that
about 2 percent of the cases (6 pictures in 272) show, as in figure 9,
the obvious presence of more than one transition point. Thus, while
the growth of turbulent spots that were so evident on Emmons' water-
table experiments is not precluded, the evidence from the schlieren
photographs indicates that such a transition mechanism did not pre-
dominate here. A possible inference would be that the scale of eddies
in the tunnel air stream was large compared with the boundary-layer
thickness.

A rapidly fluctuating transition point followed downstream by
turbulent flow would explain in part, as does also the growth of
turbulent spots, the apparent bursts of turbulence indicated by a -
hot-wire probe located in the transition zone. It should be recog-
nized, however, that the hot-wire probe would also record the influ-
ence of relatively large-scale eddies that are expected to form at
transition.
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CONCLUDING REMARKS

The experimentally determined statistical distribution functions
defining the transition-point location are markedly affected by stream-
turbulence level, their axial extent being broad for high turbulence
and narrow for low turbulence. The data suggest that the transition-
point location for conditions of minimum instantaneous stream turbulence
would correspond closely to the farthest observable downstream point on
a distribution function obtained in a turbulent stream. The axial
spread of the transition region indicated by measurement of local
recovery-factor distributions, in general, corresponds to that of the
distribution function. It would appear that the primary effect of
changing test-section Reynolds number is to translate rather than to
spread out or to sharpen the recovery-factor-distribution curves.

The data suggest a simple concept wherein the flow is postulated
to change sharply from laminar to turbulent flow, this instantaneous
flow field moving randomly in the longitudinal direction about an
aerodynamic surface. The measured recovery factors and distribution
functions were utilized to calculate the hypothesized instantaneous
recovery-factor distribution for several Reynolds numbers. An ex-
tension of the present investigation to include effects of Mach number
upcn transition appears warranted.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 2, 1953
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APPENDIX A

SYMBOLS

The following symbols are used:

distribution function of X; probability that Xx7<n<xp; 1is

given by G(xp) - Glx) = | () an
2l
probability density of 1
precision measure of distribution function related to standard

L
defined by eq. (Bll
o q. (B11)

total number of observations

deviation as

local stream dynamic pressure
time-averaged temperature-recovery factor
instantaneous temperature-recovery factor
time-averaged surface temperature

time-averaged surface-temperature increment above laminar
temperature

position variable measured from cone apex along a ray
upstream limit of transition-point movement, g(n) =0 for 7<u

downstream limit of transition-point movement, g(n) = O for
n>p

increment in function value between successive approximations
defined by eq. (B12)
defined in appendix B in connection with eq. (B15)

variable specifying location from cone apex of instantaneous
transition point

3098




860¢%

NACA TN 3100 13

6 instantaneous surface temperature

® instantaneous surface-temperature increment above laminar
temperature

m arithmetic mean as defined in eq. (B1O)

Subscripts:

L laminar

n order of approximation as used in appendix B




14 NACA TN 3100
APPENDIX B

MATHEMATICAL PROCEDURES

By Hugo Heermann

Fitting of Distribution Functions

In order to find a solution of the integral equation

B
() f 6 (x - 1) g(n) an (1)

it is necessary to process the data in such a way that the probability
density g(n) assumes a satisfactory mathematical form. The difficul-
ties involved and the means of overcoming them are explained herein.

At p distinect points Xy, X5, X3y . . - Xp transition was ob-
served to occur nj, Np, . - - ng, times, respectively. Thus, each
nj Z 1. The total number of times transition was observed to occur

is N, where

N :zp:ni (B2)

i=1
A function G(x) is defined for each x = xp(k = 1,2,3, . . . p) by
means of the relation
i=k
G(Xk) = E ny (BS)
i=1 :

G(x) is a step function that consists of steps of the heights g(xi),
where

at the jump points x;. From equation (B3), with n; = g(xg), it
follows that

3098
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k
e (3)
st=all ‘
or
G(x) - G(xp_1) = s(xg) (BS)

When G(x) is differentiable, the continuous analogs of equations (B4)
and (BS) are

B
G(x) = g(n) dn (B6)

and

86(x) _ g(x) (87)

However, since G(x) is a step function, the difficulties involved in
evaluating g(x) by equation (B7) are evident. Consequently, some
other procedure had to be devised.

After the discontinuous distribution function G(x) for tests 3
and 4 was plotted, it was cbserved that these distributions appeared
to be nearly normal. This means that for an appropriate choice of the
parameters u and h, G(x) can be approximated by

G(x) 2 b Xe-hz(ﬂ-u)z dn (B8)

NE

Thus, if G(x) could be put in the form (B8), it could be immediately
inferred that

V£

The decision that the differentiable distribution function that
best fits the data is a normal distribution means that some procedure
must be evolved for evaluating the parameters p and h. When there
is a very large number of observations, these parameters are usually
obtained from the relations
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o= XiS(Xi)
1=- for discontinuous probability
N L density functions
(B10)
“+oco
o= ng(n) dn for continuous probability density
-0 J +oo
functions g(x) for which g(n) dn = 1
-0
(x5 - w)° e(xy)
L 1= for discontinuous probability
2h N2 L density functions
(B11)
1 +oo
—— = (n - u)2 g(n) an | for continuous probability density
2h
—co +
/ functions for which g(n) dq = 1

In view of the statistically small samples involved in tests 3
and 4, it was thought that the p and h obtained from equations (B10O)
and (Bll) might not be satisfactory. It was therefore decided to choose

~

22
u and h so that —E: e-(n-1)“h dn would approximate the ex-

7
a

perimental G(x) in the sense of least squares in the observed range.
Thus, if

B X .
e(p,h) = Gl - —= e-(n-p)2hé 44 e (B12)

,\/ECL

a

then p and h are to be found so that &(p,h) is a minimum. This
leads to the two equations

-2751 ()= 0 (B13)

3098
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%f; (ih) =6 (B14)

When the values of p and h predicted by equations (B10) and (B1l)
are used as initial approximations, equations (B13) and (Bl4) are
solved with use of finite summations by Newton's method (ref. 15).
With p and h determined in this manner, a satisfactory form for
the probability density is obtained through use of equation (B9).

Solution of Integral Equation

The problem is to find a function ®(x) that satisfies the integral
equation of the first kind with fixed limits:

)= e(x - 1) g(n) dn (2)

a

In order to obtain the physical significance of @®, as implied in the
text, the argument must be replaced by x - n. If it is assumed that
for the given numerical data there exists a continuous function ®(x)
which satisfies this equation, then by the mean-value theorem there
exists a function ¢(x) for which a<{(x)<PB, so that

B
n(x) = o[x - £(x]] f &(n) an (315)

Or,isince
B
g(n) dn =1
(o
then
T(x) =[x - t(x]] (B16)
where
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When h is very large, much more can be said about t(x). From equa-
tions (1.18.1) and (1.16.4) of reference 16 it can be shown that

i || e T(x + W - n)e-hz(ﬂ-u)z an{ = T(x)

fe | A/

@

‘ When equation (Bl) is rewritten in the form

:§? o(x - n)e-hz(ﬂ-u)z dn = T(x)

a

comparison of these equations indicates that, for large h, a good in-
itial approximation to the solution of equation (B1) is

Oo(x) = T(x + w) (B17)

Thus, when h is very large, {(x) = p. By experiment it was found that,

even when h is not large, (B17) still furnishes a reasonable approxi-
mation to the solution of (Bl). In fact, the maximum value of

1x) - [Meglx - )eln) (B18)

(89

occurred gt x = W, and for increasing values of X larger than W,
the difference given by equation (B18) decreases and finally becomes
zero. A similar remark applies when x<p and for decreasing values
of x. Thus, the maximum errors involved in assuming ®o(x) = T(x + )

to be a solution occurred in a neighborhood of the point x = 0, as in
the following sketch:

O(x)

In order to improve on the initial approximation (B17), suppose
that alﬂx) is a solution of (Bl), and let
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@, (x) = 05(x) + Ag(x)

B B
Tiex ) :I ®o(x - n)g(n) dn +I Ao(x - n)g(n) dn

By the mean-value theorem,

7(x) :fﬁ@()(x - me(n) an + Ao - £y(x]

where a<:§l(x)< B. From (B1l8) it follows that the maximum value of

2o x - (x|

occurs at x = p. This suggests the choice

Then

£, (x) = u
so that

[200x - v}
will be largest when X = p.

A method of successive approximations defined in accordance with
the following is thereby indicated:

@O(x) = T(x+p)

B
0(x) = 05(x) + 2p(x); Nolx - u) = T(x) —f Op(x - n)e(n) dn

B
0,1 (x) = 8,(x) + A (x) AL(x - p) = T(x) - f o,(x - naln) an
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If ©,(x) tends uniformly in -=<x< += toa limit ®(x)

o(x) = lim 0, (x)

11 —>00
then ©(x) will satisfy equation (B1).

In the computations the integration step size was taken as 0.25
inch. The spacing of the thermocouple being 0.5 inch, a smaller step
size was not considered warranted.
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TABLE I. - OPERATING CONDITIONS AND DISTRIBUTION-FUNCTION PARAMETERS

Config-| Test Stagna- Stagna-| Test-section|Indicated longitudinal Distribution-

uration|number tion tion Reynolds turbulence intensity function parameters
pressure, |tempera- number Per | Mach pumber Test Arithmetic| Precision
1b/sq in. tgre, foot 0.12 station,|section, | mean, p measure,

abs ¥ percent percent |(eq. (B10)) h

(eq. (B11))

A 1 28.55 43.9 4.8x10° mes s 0.434

B 2 17.67 44.0 3.0x10° @) 505 13.46 ©.822

%) 2801 46.0 4.8 S 1.0 9.96 1.261

4 40.11 48.8 6.6 5 1.0 8.02 15200
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(b) Lewis test cone.

Figure 1. - Test-cone geometry and thermocouple locations.
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Figure 2. - Typical high-speed schlieren photograph showing
point location. Exposure at approximately 1 microsecond.

cone boundary layer and apparent transition-
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Figure 3. - Distribution functions defining statistical location of transition point.
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Normalized distribution function, G
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(b) Fixed settling-chamber geometry (configuration B) and variable test-section Reynolds

Figure 3.

number.

- Concluded.

Distribution functions defining statistical location of transition point.
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Figure 4. - Effect of varying settling-chamber geometry on temperature-recovery-factor distribution at fixed test-

| section Reynolds number of 4.8x10° per foot. Turbulence intensities measured in entrance section at Mach
number 0.12.
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Figure 7. - Effect of compression-expansion wave system intersection on temperature-recovery-factor distribution.
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one boundary layer showing several apparent transition
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