CASE FILE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS **TECHNICAL NOTE 3151** EXACT SOLUTIONS OF LAMINAR-BOUNDARY-LAYER EQUATIONS WITH CONSTANT PROPERTY VALUES FOR POROUS WALL WITH VARIABLE TEMPERATURE By Patrick L. Donoughe and John N. B. Livingood Lewis Flight Propulsion Laboratory Cleveland, Ohio Washington September 1954 ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### TECHNICAL NOTE 3151 EXACT SOLUTIONS OF LAMINAR-BOUNDARY-LAYER EQUATIONS WITH CONSTANT PROPERTY VALUES FOR POROUS WALL WITH VARIABLE TEMPERATURE By Patrick L. Donoughe and John N. B. Livingood #### SUMMARY Exact solutions of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes. The results indicate that increasing the wall-temperature gradient yields steeper temperature profiles in the boundary layer for a given coolant flow. The steeper temperature profiles produce increased local heat-transfer coefficients. These effects of the wall-temperature gradient were reduced as the coolant flow was increased. Wall-temperature variations resulting in zero boundary-layer temperature gradients at the wall were found to be increased by increased pressure gradient and decreased by increased coolant flow. #### INTRODUCTION A knowledge of the behavior of the boundary layer adhering to cooled or heated bodies immersed in a moving fluid is essential for accurate prediction of heat transfer or skin friction. When the boundary layer is laminar, solutions of the boundary-layer equations resulting from wedge-type flow (flow for which the main-stream velocity is proportional to a power of the distance from the stagnation point) have been reported for a permeable wall with a constant wall temperature and for an impermeable wall with variable wall temperature. (These solutions will be discussed later in the INTRODUCTION). The simultaneous effects of a variable temperature and a permeable wall on the heat transfer apparently have not been obtained heretofore. These effects are analyzed herein by solution of the laminar-boundary-layer equations with constant property values and wedge-type flow. Solutions for wedge-type flow can be used directly as a first approximation for calculating local heat-transfer coefficients to bodies of arbitrary cross section such as turbine blades (refs. 1 and 2), airfoils (ref. 2), and cylinders (ref. 3). When the need arises for more accurate heat-transfer predictions, a second or better approximation which utilizes the solutions for wedge-type flow is presented in references 4 to 6. In references 7 to 9 exact solutions of the laminar-boundary-layer equations are presented for wedge-type flow with a constant wall temperature under conditions of variable property values, transpiration cooling, and small Mach numbers. Experimental velocity distributions for an isothermal, porous flat plate are available in reference 10. References 5 and 7 to 9 summarize previous analyses of wedge-type flow with constant wall temperature. Consequently, only the investigations which include the effects of variable wall temperature will be noted herein. Such calculations contained in the references which follow were made only for the impermeable or solid wall. Exact solutions of the energy equation for a variable wall temperature with wedge-type flow were first presented by Fage and Falkner (ref. 11). These solutions were obtained for conditions of constant property values, a Prandtl number of 0.77, and a linear velocity increase normal to the wall; heat produced by friction and compression were neglected. Calculations given by Schuh (ref. 12) for constant property values and a Prandtl number of 0.7 employ the exact velocity distributions of Hartree (ref. 13); frictional and compression heating were again neglected. Chapman and Rubesin give results for zero pressure gradient (the flat-plate case or zero wedge-opening angle) for a Prandtl number of 0.72 and an arbitrary surface-temperature variation; these results include frictional heating (ref. 14). Heat-transfer results are reported by Levy (ref. 15) for wedge-type flow and a range of Prandtl numbers appropriate for gases and liquids (Prandtl numbers from 0.7 to 20); frictional and compression heating are partially accounted for. Approximate solutions for the heat-transfer rate with an arbitrary distribution of main-stream velocity and wall temperature are obtained by Lighthill (ref. 16). These solutions are discussed and utilized in references 17 to 20. In reference 16 the formulas are of the nature of an asymptotic formula for large Prandtl number and it is shown that the approximate asymptotic formulas are not too much in error even for a Prandtl number of 0.7. A different method of solution for large Prandtl number is given by references 21 and 22. For either large Prandtl number or large wall-temperature variations, asymptotic solutions are found in reference 23; extensions, corrections, and simplifications are contained in references 24 to 27. The previous literature indicates quite pronounced effects of a variable wall temperature on heat transfer. Current interest in transpiration cooling led to an investigation of such effects for porous surfaces. This investigation was conducted at the NACA Lewis laboratory and the results are presented herein. Solutions of the laminar-boundary-layer equations with constant property values are given for ranges of pressure-gradient parameters, dimensionless flow rates through the porous wall, and dimensionless wall-temperature gradients. Velocity and temperature distributions and their derivatives are tabulated. For each case, nondimensional forms of heat-transfer and friction coefficients, and various dimensionless boundary-layer thicknesses are also tabulated. The numerical calculations were made on the IBM Card Programmed Calculator under the supervision of Lynn U. Albers. #### SYMBOLS The following symbols are used in this report: B,C constants of proportionality $C_{\mathbf{f}}$ $\frac{\mathbf{\tau}_{\mathbf{w}}}{\frac{\rho U_{\mathbf{w}}}{2}}$ c_n specific heat at constant pressure Eu Euler number, $\frac{-x\frac{dp}{dx}}{2}$; $U_{\infty} = Cx^{Eu}$ f dimensionless stream function f',f",f''' first, second, and third derivatives of f with respect to n H local heat-transfer coefficient at x k thermal conductivity Nu local Nusselt number, Hx/k n temperature gradient parameter, $\left[x/(T_w-T_w)\right]$ (dT_w/dx) ; $T_w-T_w=Bx^n$ Pr Prandtl number, $c_p \mu/k$ p static pressure Re Reynolds number, $\frac{U_{\infty}x}{y}$ T temperature U fluid velocity at edge of boundary layer u fluid velocity in boundary layer parallel to wall v fluid velocity in boundary layer normal to wall x distance along surface Y temperature difference ratio, $(T-T_{\infty})/(T_{W}-T_{\infty})$ Y',Y" first and second derivatives of Y with respect to η y distance normal to surface δ boundary-layer thickness $\delta *$ displacement boundary-layer thickness, $\delta * = \int_{0}^{\infty} \left(1 - \frac{u}{U_{\infty}}\right) dy$ δ_c convection boundary-layer thickness, $\delta_c = \int_0^{\infty} \frac{u}{U_{\infty}} \left(\frac{T - T_{\infty}}{T_{W} - T_{\infty}} \right) dy$ δ_i momentum boundary-layer thickness, $\delta_i = \int_0^{\infty} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}}\right) dy$ δ_t thermal boundary-layer thickness, $\delta_t = \int_0^{\infty} \frac{T - T_{\infty}}{T_w - T_{\infty}} dy$ η nondimensional boundary-layer coordinate, $y\sqrt{\frac{U_{\infty}}{v_X}}$ μ absolute viscosity of fluid ν kinematic viscosity of fluid, μ/ρ ρ density of fluid shear stress Subscripts: location along plate (see fig. 3) w wall main stream, outside boundary layer #### ANALYSIS ## Laminar-Boundary-Layer Equations The equations of the laminar boundary layer for steady-state flow of a fluid with constant properties may be written: Momentum: $$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial v^2} - \frac{1}{\rho} \frac{\partial p}{\partial x}$$ (1) Continuity: $$\frac{\partial x}{\partial n} + \frac{\partial \lambda}{\partial n} = 0 \tag{5}$$ 5 Energy: If the temperature differences between the wall and the main stream are assumed large as compared with temperature changes caused by compression and frictional heating and appendix A is used, the energy equation may be written: $$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{v}{Pr} \frac{\partial^2 T}{\partial v^2}$$ (3) The boundary conditions are for y = 0: $$u = 0; v = v_w; T = T_w$$ and for $y \to \infty$: $$u \to U_\infty; \frac{\partial u}{\partial y} \to 0; \frac{\partial^2 u}{\partial y^2} \to 0; \dots \frac{\partial^m u}{\partial y^m} \to 0$$ $$T \to T_\infty; \frac{\partial T}{\partial y} \to 0; \frac{\partial^2 T}{\partial y^2} \to 0; \dots \frac{\partial^m T}{\partial y^m} \to 0$$ $$(4)$$ In order to reduce the number of calculations and increase the flexibility of the results, dimensionless parameters for pressure and walltemperature variations are introduced. Parameters for Pressure and Wall-Temperature Gradients For wedge-type flow, the main-stream-velocity variation is given by $$U_{\underline{}} = Cx^{\underline{E}u} \tag{5}$$ where Eu is a constant for a given wedge. Differentiation of equation (5) with Eu constant and use of Bernoulli's equation yield $$E_{\rm U} =
\frac{x}{U_{\infty}} \frac{dU_{\infty}}{dx} = \frac{-x}{oU_{\infty}} \frac{dp}{dx}$$ (6) Equation (6) shows that the Euler number is a dimensionless measure of the main-stream pressure gradient. A similar procedure may be employed in the determination of the wall-temperature-gradient parameter. It is assumed that the difference between the wall and the stream temperature is proportional to a power of the distance from the leading edge, that is $$T_{w} - T_{\infty} = Bx^{n}$$ (7) where n and T_{∞} are constant. This relation is used in references 11, 12, 14, and 15. Differentiation of equation (7) gives $$n = \frac{x}{(T_w - T_m)} \frac{dT_w}{dx}$$ (8) 336 Equation (8) offers a formula for calculation of the walltemperature-gradient parameter similar to equation (6) which has been used (e.g., refs. 2 and 4) to calculate the pressure-gradient parameter. ## Transformation to Ordinary Differential Equations The transformation from partial to ordinary differential equations is accomplished by the following changes in variables: $$\eta = y \sqrt{\frac{U_{\infty}}{v_{x}}}$$ $$Y = \frac{T - T_{\infty}}{T_{w} - T_{\infty}}$$ $$f = \frac{\psi}{\sqrt{v_{x}U_{\infty}}}$$ (9) where η is the dimensionless independent variable of Blasius and f and Y are dimensionless dependent variables representing stream function and temperature, respectively. The continuity equation (2) is satisfied by the stream function $\,\psi\,$ since $$u = \frac{\partial \psi}{\partial y}$$ and $v = \frac{-\partial \psi}{\partial x}$ (10) Transformation of the momentum equation (1) and the energy equation (3) into ordinary differential equations is accomplished by use of equations (5) through (10). The momentum equation becomes $$f''' = Eu(f')^2 - \frac{(Eu+1)}{2} ff'' - Eu$$ (11) and the energy equation becomes $$Y'' = \frac{-(Eu+1)}{2} Pr fY' + n Pr f'Y$$ (12) with the boundary conditions for $\eta = 0$: $$f = f_{\mathbf{w}}; \ f' = 0; \ \text{and} \ \ Y = 1$$ and for $\eta \to \infty$: $$f' \to 1; \ f'' \to 0; \ f''' \to 0; \ \dots; \ f^m \to 0$$ $$Y \to 0; \ Y' \to 0; \ Y'' \to 0; \ \dots; \ Y^m \to 0$$ $$(13)$$ From equations (9) and (10) there results $$- v = \frac{Eu+1}{2} \sqrt{\frac{U_{\infty}^{\nu}}{x}} f + \frac{Eu-1}{2} \frac{y}{x} U_{\infty} f'$$ (14) Use of the boundary conditions at the wall (η = 0) gives the following explicit expression for f_w (a dimensionless measure of the coolant flow through the porous wall) in terms of the velocity v_w out of the porous wall: $$f_{W} = \frac{-2}{(Eu+1)} \frac{v_{W}}{U_{m}} \sqrt{Re}$$ (15) For numerical solution of equation (11), f_w is usually assumed to be a constant. Use of equations (15) and (5) shows that this constancy Eu-1 dictates $v_w \propto x^{-2}$. In the absence of conduction and radiation, a constant f_w yields a constant wall temperature (ref. 28). Only conduction along the wall, or radiation, or both may lead to a variation in wall temperature if f_w is constant. It should be noted that equations (11) and (12) can be made identical to those employed by previous investigators (refs. 11, 12, and 15) and that the inclusion of transpiration cooling into the investigation results only in a change in one of the boundary conditions (eq. (13)) at the wall; that is, at $\eta = 0$, f now equals f_w which may be nonzero. For the case where the heat transferred to the plate from the boundary layer is zero, a boundary condition Y'(0) = 0 is utilized in solution of equation (12). Under this condition, two solutions are possible. The mathematically trivial solution Y = 0 has been published by Chapman and Rubesin (ref. 14) and results in $T = T_{\infty}$ everywhere so that the wall temperature is constant. The other solution is obtained by determination of the value of n which satisfies equation (12) when Y'(0) = 0. Attention in this report is confined to the latter solution for each combination of the parameters considered. Formulas for Boundary-Layer Thicknesses, Heat Transfer, and Friction From equations (9) and (10) the boundary-layer velocity distribution is expressible as follows: $$u/U_{m} = f' \tag{16}$$ Use of equations (9) and (16) in the definitions of the various boundary-layer-thicknesses as given in the SYMBOLS yields the following dimensionless formulas for these thicknesses: Displacement thickness: $$\frac{\delta^* \sqrt{Re}}{x} = \int_0^\infty (1 - f') d\eta$$ (17) Momentum thickness: $$\frac{\delta_i \sqrt{Re}}{x} = \int_0^\infty f'(1 - f') d\eta$$ (18) Convection thickness: The convection thickness defined in the SYMBOLS and in reference 29, (pp. 118, 119) becomes, by use of equations (9) and (16) $$\frac{\delta_{c} \sqrt{Re}}{x} = \int_{0}^{\infty} f' Y d\eta$$ (19) Thermal thickness: $$\frac{\delta_{t} \sqrt{Re}}{x} = \int_{0}^{\infty} Y \, d\eta \tag{20}$$ A balance between the heat transfer by convection $H(T_{\infty}-T_{W})$ and the heat transfer by conduction $k(\partial T/\partial y)_{W}$ along with equations (9) and (10) and the definitions of Nu and Re yield $$Nu/\sqrt{Re} = -Y'(0)$$ (21) an expression for the dimensionless local heat-transfer coefficient to the surface. The shear stress T is given by $$\tau = \mu \frac{\partial u}{\partial u}$$ A friction coefficient $C_{\mathbf{f}}$ is defined as $$C_{f} = \frac{\tau_{w}}{\frac{\rho U_{w}}{2}}$$ so that by use of equations (9) and (16) $$\frac{C_{f}}{2}\sqrt{Re} = f_{w}^{"} \tag{23}$$ an expression for the dimensionless skin friction. ## NUMERICAL CALCULATION The numerical solutions of equations (11) and (12) were obtained for a Prandtl number of 0.7 (appropriate for air), pressure variations represented by values of Eu of 0, 1/2, and 1, flow rates through the porous wall represented by values of $f_{\rm w}$ of 0, -1/2, and -1, and wall- temperature variations represented by values of n from the value corresponding to a zero boundary-layer temperature gradient at the wall to unity. For the case of constant property values considered herein, equations (11) and (12) are independent; consequently, equation (11) is solved previous to solution of equation (12). Since the f solutions given by reference 8 were obtained by desk computation, the punch cards required for solution of equation (12) on the IBM calculator were not available. In order to obtain the punch cards it was found more expedient to solve the f problem anew. NACA TN 3151 Equation (11) together with the boundary conditions, equation (13), constitutes a nonlinear boundary-value problem with parameters $\,f_W^{}\,$ and Eu. It was solved by an iterative method using punched cards on the IBM Card Programmed Calculator. Each step of the iterative method required an estimation of $\,f''(0)$ and a subsequent integration, using five-point formulas, of the resulting initial value problem. As soon as values of $\,f\,$ and its derivatives were considered correct to four decimal places, results were punched for use in the related Y problem. (The $\,f\,$ solutions obtained herein are in good agreement with those tabulated in ref. 8.) Equations (12) and (13) constitute a linear boundary-value problem with parameters n and Eu (when Pr is fixed) and input data f and f'. Being linear, the problem should be solvable by combining any two independent solutions. In practice, however, it is necessary to combine two solutions near the final one to obtain a result valid to four decimal places. Hence, four trials were necessary for each solution of a Y problem. The integration technique used for both problems is described in detail in the appendix of reference 30 and more concisely in appendix B of reference 31. The accuracy of results is believed to be within one in the fourth decimal place. ## RESULTS AND DISCUSSIONS The results of the calculations for each of the 29 cases investigated are presented in table I. Values of f and its derivatives and of Y and its derivatives are tabulated as functions of η ; f' represents the velocity distribution, and Y the temperature distribution through the boundary layer. Table II presents a summary of the principal results, which are obtained from table I and the use of formulas (17) through (23). For the cases where n=0, the results were taken from references 8 and 9. Table II also gives the part number of table I where the velocity and temperature distributions and their derivatives are listed. For the cases where n=0, the distributions and their derivatives may be obtained from reference 8. In addition to the tables, some of the results are also presented in the form of curves. The graphical presentations are used to indicate the influence of the various parameters on such quantities as velocity and temperature distributions, dimensionless convection, thermal thicknesses, and heat-transfer coefficients. Plots of dimensionless displacement, momentum thicknesses, and friction coefficients may be found in references 7 and 9. ## Boundary-Layer Profiles Figure 1 shows the velocity distribution f' plotted as a function of the dimensionless-boundary-layer coordinate η with the coolant-flow parameter f_w for each of the Euler numbers considered (Eu = 0, 1/2, and 1). The velocity distributions for Eu = 0, f_w = -0.75, and for Eu = 1, f_w = -3.1905, and f_w = -4.3346 were obtained from reference 32. The variables η and f' used in reference 32 were converted to those given herein. In figure 1(a) an increase in coolant flow ($|f_w|$ increasing) is seen to thicken the boundary layer for all Eu and also to result in the S-shape velocity profile which is undesirable from the stability viewpoint. It is noted in reference 33 that the velocity gradient at the wall becomes zero (f''(0) = 0) for Eu = 0 when $f_w = -1.23849$. Although calculations for the f_w values that result in f''(0) = 0 have not been made for other Euler numbers, comparison of figures 1(a), (b), and (c) indicate that the boundary layer with pressure gradient can tolerate much more coolant flow than a flat plate. Calculations
for Eu = 1 with $f_w = -4.3346$ yield velocity profiles which appear to be quite stable (have no inflection point) as may be seen in figure 1(c). Indeed, it is shown in reference 32 for stagnation-point flow (Eu = 1) that coolant emission from the wall regardless of its magnitude never results in a point of inflection inside the boundary layer. Figure 2 contains plots of the temperature profile Y against the dimensionless boundary-layer coordinate η , with f_w as parameter, for various values of the wall-temperature-gradient parameter n for a flatplate or zero pressure gradient (Eu = 0). Figure 2(a) presents the temperature profiles for the case with zero temperature gradient at the wall, that is, Y'(0) = 0. The values of n for this case vary with the parameter f_w , and hence the curves are distinguished as solid-, dashed-, and broken-line curves. Figure 2(b) presents the temperature distributions for the various values of the parameter $f_{\rm W}$ for the case of a constant wall temperature, that is, for n=0. The distributions for a Prandtl number of unity are obtained quite simply from the velocity distributions, since for a constant wall temperature and a flat plate with ${\rm Pr}=1$, equations (11) and (12) are similar, so that for this case, ${\rm Y}=1$ - ${\rm f'}$. The distributions so obtained are in good agreement with those reported in reference 28 where the velocity distributions of reference 32 were utilized. The effect of the coolant flow $f_{\rm W}$ is similar to that shown in figure 2(a); viz, $|f_{\rm W}|$ increasing forces the temperature boundary layer away from the wall. It is also interesting to note that for $f_w = 0$, the stipulation of Pr = 1 yields a larger temperature gradient at the wall than for Pr = 0.7; whereas for $f_w = -1.0$, the gradient is less for Pr = 1 than for Pr = 0.7. As illustrated by the following table of -Y'(0) for Eu = 0 = n, when $f_w = -0.5$ the gradient at the wall is about the same for both Prandtl numbers: | f _w | -Y'(0)
(Pr=0.7)
Eu=0=n | -Y'(0)
(Pr=1.0)
Eu=0=n | |----------------|------------------------------|------------------------------| | 0 | 0.2927 | 0.3320 | | 5 | .1662 | .1648 | | -1.0 | .0516 | .0355 | Figure 2(c), obtained from table I, presents curves for the cases where n = 1.0. The increased boundary-layer temperature gradients due to the influence of n are apparent by comparing figure 2(c) with figures 2(a) and (b). For $T_{\rm w} > T_{\rm w}$, the wall temperature increases in flow direction for positive n and decreases for negative n as depicted in figure 3. These changes in the wall temperature are transmitted into the boundary layer with a certain delay due to the heat capacity of the boundary layer, as previously pointed out by Schuh (ref. 12). At a location x_1 , the temperatures in the boundary layer T are greater, therefore, for n > 0 and smaller for n < 0 than for constant wall temperature n = 0. This disparity may be noted quantitatively in figure 2 and qualitatively in figure 3. Figure 4 also shows temperature distributions in the boundary layer but for stagnation-point flow (Eu = 1.0). Figure 4(a) is for zero boundary-layer temperature gradient at the wall. Figure 4(b) (note the different scale for the abscissa) presents results for constant wall temperature for Pr = 0.7 (ref. 8) and for Pr = 1.0 (ref. 28). At the common curve for both Prandtl numbers ($f_w = 0$), the negative of the temperature gradient at $\eta = 0$ is 0.4958 for Pr = 0.7 and 0.570 for Pr = 1.0. The coolant flows of -3.1905 and -4.3346 both resulted in a zero temperature gradient at $\eta = 0$. Figure 4(c) shows the temperature profiles for n = 1. The influence of the wall-temperature variation for Eu = 1 is similar to the influence for Eu = 0. Figure 4 (and fig. 2, as well) reveal that increases in $|f_w|$ diminish the temperature gradients in the boundary layer for all values of Ç the wall-temperature-gradient parameter. Increases in the wall-temperature gradient, however, increase the boundary-layer temperature gradient. These increases due to wall temperature gradient are similar to those encountered in the velocity boundary layer due to main-stream velocity gradient (cf. fig. 1). A positive pressure gradient forces the velocity boundary layer into the wall; the wall-temperature gradient (for positive n) draws the temperature boundary layer into the wall resulting in steeper temperature profiles. Whereas the velocity boundary layer is affected by velocity gradients in the main stream (outer edge of the boundary layer), the temperature boundary layer is influenced not only by the velocity gradient but also by the temperature gradient along the wall (inner edge of the boundary layer). ## Heat-Transfer Results Dimensionless local heat-transfer coefficients are presented in figure 5. (These coefficients are in general agreement with those reported in the literature as discussed in appendix B.) For each Euler number and coolant flow, there is a wall-temperature variation which results in Y'(0) = 0. These values of n are given by the intercepts of the various curves with the horizontal axis. A curve to be presented later will illustrate the zero-heat-transfer cases more thoroughly. For fixed values of the Euler number and the coolant flow, increases in the wall-temperature gradient yield increases in the local heat-transfer coefficient. This behavior is a result of the increased gradients in the temperature profiles due to increased n and was noted in the discussion of figure 2. In all instances the effect of the coolant emission from the wall is to reduce the local heat-transfer coefficients. This reduction is more marked for the flat-plate case (Eu = 0) than for the flow with velocity gradient (Eu \neq 0). It is seen in figures 5(a) and (c) that for a linear wall-temperature gradient (i.e., n = 1.0), a coolant flow represented approximately by $f_{\rm W}$ = -0.5 is required to obtain about the same heat-transfer coefficient as for a solid wall with a constant temperature. The influence of the pressure-gradient parameter. Eu can be determined from the positions of the various curves in figure 5. It can be seen that, in general, as the Euler number increases from 0 to 1, the value of the dimensionless local heat-transfer coefficient Nuv Re increases considerably for fixed values of the wall-temperature-gradient parameter n and the coolant-flow parameter $f_{\rm W}$. Exceptions can be noted, however. For an Euler number of 1 and a cooled wall ($f_{\rm W}$ = -0.5 and -1.0), these curves are essentially the same as the corresponding ones for Eu = 0.5. This similarity emphasizes that the primary pressure gradient effects occur as Eu changes from 0 to 0.5. The pressure gradient also influences the impermeable wall only slightly as Eu increases from 0.5 to 1.0. Comparison of figures 5(a) and (b) for $f_w = 0$ and -0.5 reveals that the effect on the local heat-transfer coefficient of increasing the wall-temperature-gradient parameter from 0 to 1 is from one and a half to twice the effect of the pressure-gradient parameter (e.g., for $f_w = 0 = Eu$, a change in n from 0 to 1 causes about a 65-percent increase in Y'(0). For $f_w = 0 = n$, a change in Eu from 0 to 0.5 causes about a 40-percent increase in Y'(0).). For the strongly cooled wall $(f_w = -1)$, the opposite trend is observed, namely, that the pressure-gradient effects overshadow the effects of the wall-temperature-gradient parameter. Figures 5(b) and (c) indicate that a change in n from 0 to 1 is about twice as influential as the pressure gradient on the local heat-transfer coefficient for an impermeable wall. For a cooled wall, as noted before, the pressure gradient is not influential as Eu changes from 0.5 to 1, whereas an increase in wall-temperature-gradient parameter from 0 to 1 about doubles the value of the heat-transfer coefficient. Figure 6 presents plots of the ratio of the gas-to-wall heat-transfer coefficient for a variable-wall temperature to that for a constant wall temperature against n for the different Euler numbers with $f_{\rm W}$ as parameter. These ratios were obtained by dividing the ordinates of figure 5 for various values of n by the ordinate for n = 0 for each coolant-flow parameter and Euler number. This method of plotting the results emphasizes the influence of a nonzero wall-temperature gradient on the local heat-transfer coefficient. For each Euler number, the curves represented by the different coolant-flow rates cross at the value n = 0. The intercept of each curve with the horizontal axis again gives the value of n for no heat transfer at the wall. The effect of a variable wall temperature on the local heat-transfer coefficient for an impermeable flat plate with a turbulent boundary layer can be obtained by utilizing reference 34. For the turbulent case, the ratio $\rm H_n/\rm H_{n=0}$ is found to be 1.22, 1.13, and 0.86 for n of 1.0, 0.5, and -0.3, respectively. These values may be compared with the corresponding coordinates ($\rm f_w$ = 0) given in figure 6(a) for the laminar boundary layer. This comparison indicates that a wall-temperature variation with a turbulent boundary layer influences the local heat-transfer coefficient about one third as much as a similar variation with a laminar boundary layer. Dimensionless convection boundary-layer thicknesses are plotted in figure 7 against n with $f_{\rm w}$ as parameter, for each of the Euler numbers considered. Figures 7(a), (b), and (c) show $\frac{\delta_c\sqrt{\text{Re}}}{x}$ for Eu = 0, 0.5, and 1.0, respectively. The effect of coolant flow is more marked for $n \geq 0$ than for n < 0. In fact, for Eu = 0 (fig. 7(a)), when n = 1, there are only slight differences in the convection thickness for the different coolant flows. For all Euler numbers and coolant flows, an increase in the wall-temperature gradient results in a decrease in the convection thickness. This behavior is due
to the influence of the wall-temperature gradient on the boundary-layer temperature profile. Thus, from figures 2 and 4, an increase in n results in a smaller Y for a given η , Eu, and f_w , which is reflected in the convection thickness, since $$\frac{\delta_{c} \sqrt{Re}}{x} = \int_{0}^{x} f' Y d\eta$$ The dimensionless thermal boundary-layer thicknesses presented in figure 8 indicate trends similar to those found for the convection thickness; increases in n result in decreases in the thermal thickness. For given values of the parameters $\mathbf{f}_{\mathbf{W}}$, n, and Eu, the thermal boundary-layer thickness is greater than the convection thickness. This is to be expected since $$\frac{\delta_{t} \sqrt{Re}}{x} = \int_{0}^{\infty} Y d\eta$$ whereas the convection thickness is tempered by the velocity profile as noted in the preceding equation. It was already pointed out that the intercepts of the various curves with the horizontal axes in figures 5 and 6 give the values of n for which there is a zero temperature gradient at the wall. Figure 9 presents this same information in a more compact form. The value n is plotted against the Euler number with the coolant-flow rate as parameter. The values for $f_{\rm W}=0$ have been presented by Levy (ref. 15). The increase in n for increasing $\left|f_{\rm W}\right|$ indicates that a smaller wall-temperature gradient is needed to reduce the gradient at the wall to zero when coolant flow is emitted than for the impermeable plate. Because of the larger local heat-transfer coefficient for increased Euler number, a larger |n| is needed to reduce the temperature gradient at the wall to zero for Eu > 0 than for Eu = 0. # 3365 ## SUMMARY OF RESULTS Numerical solutions of the laminar-boundary-layer equations were obtained for a porous wall with a variable temperature and a pressure gradient. The assumptions utilized were constant-property values, negligible temperature changes caused by compression and frictional heating compared with the difference between the wall and the main-stream temperature, constant pressure and wall-temperature-gradient parameters, and a Prandtl number of 0.7. Tabulation was made of the velocity and temperature distributions, their derivatives, and dimensionless forms of the heat-transfer and friction coefficients and boundary-layer thicknesses. A summary of the results of this investigation follows: - 1. The temperature distributions indicated that increased temperature gradients throughout the boundary layer resulted from increases in the wall-temperature-gradient parameter. Correspondingly, the local heat-transfer coefficients also increased. - 2. Coolant-flow emission acted in a fashion similar to reducing the wall-temperature gradient, that is, increasing the coolant flow decreased the local heat-transfer coefficient. To obtain about the same local heat-transfer coefficient for a linear wall-temperature variation as for an impermeable wall with constant temperature, it was necessary to supply a coolant flow represented by $f_{\rm W} = -0.5$. - 3. Wall-temperature variations which result in zero-boundary-layer temperature gradient at the wall were obtained. As the pressure gradient was increased, larger wall-temperature variation was required to obtain a zero temperature gradient at the wall. Flow through the porous wall reduced the wall-temperature variation needed to yield a zero temperature gradient for all pressure gradients. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, July 15, 1954 ## APPENDIX A # ALLOWABLE MAGNITUDE FOR WALL-TEMPERATURE VARIATION It is noted in reference 14 and also in the discussion of reference 19 that equation (3) is valid when $\delta/x \ll 1$ and $$(\partial T/\partial x)_{\mathbf{W}} \leq (T_{\mathbf{W}} - T_{\mathbf{w}})/\delta \tag{A1}$$ By use of equation (7) and from reference 14, $\delta/x \approx 6/\sqrt{Re}$, equation (A1) becomes $$n \le \frac{\sqrt{Re}}{6} \tag{A2}$$ For the flow of air, Re is on the order of 10^4 away from stagnation point. Thus, n may be quite high and still allow equation (3), which neglects the effect of conduction within the fluid in the streamwise direction, to be used. ## APPENDIX B ## COMPARISON OF PRESENT RESULTS WITH RESULTS FROM PREVIOUS INVESTIGATIONS The following table shows values of the negative of the boundary-layer-temperature gradient at the impermeable wall (local heat-transfer coefficient) for the present results and the results previously reported in the literature for Pr = 0.7. For each investigation, the relation between -Y'(0) and the notation employed in the reference is given. $$-Y'(0) \text{ for } f_W = 0 \text{ and } Pr = 0.7$$ | Eu | n | Pohlhausen
(ref. 35) | Eckert (ref. 4) | Schuh
(ref. 12) | Levy
(ref. 15) | Present | |------|------|-------------------------|--------------------------|---|--|---------| | 0 | 0 | 0.2925 | 0.2927 | 0.293 | 0.2874 | 0.2927 | | | •5 | | | | .4023 | .4059 | | | 1.0 | | | .407 | .4770 | .4803 | | 1.0 | 5 | , | | .318 | | .3228 | | | 0 | | . 4959 | .496 | •4879 | .4958 | | | .5 | | : | | .6094 | .6159 | | | 1.0 | | | .707 | .7033 | .7090 | | -Y'(| 0) = | <u>8</u> 2 | $\sqrt{\frac{m+1}{2}}$ A | $-\sqrt{\frac{m+1}{2}} \left(\frac{d\theta_v}{dz}\right)_0$ | $-\sqrt{\frac{m+1}{2}} \left(\frac{d\theta}{d\eta}\right)_{n=0}$ | -Y'(O) | Examination of the table reveals a check for Eu = 0, n = 0 between the present results and those reported by Pohlhausen, Eckert, and Schuh. At Eu = 1 and n = 0, the present results are in agreement with those presented by Eckert and Schuh. As already pointed out by Levy (ref. 15) his results are subjected to an error of the order of 1 to 2 percent. If the present results are assumed correct, this small error is seen to hold true for n = 0 with both the flat-plate and stagnation-point flow. For $n \neq 0$, there is better agreement between Levy's results and the present results. Levy (ref. 15) also noted the validity of Schuh's results (ref. 12) for stagnation-point flow and the discrepancy for flat-plate flow with a variable wall temperature. The validity for Eu = 1 and Eu = 0, n = 0 as well as the discrepancy for Eu = 0, n = 1 is apparent from the table. ## REFERENCES - 1. Livingood, John N. B., and Eckert, E. R. G.: Calculation of Transpiration-Cooled Gas-Turbine Blades. Trans. A.S.M.E., vol. 75, no. 7, Oct. 1953, pp. 1271-1278. - 2. Brown, W. Byron, and Donoughe, Patrick L.: Extension of Boundary-Layer Heat-Transfer Theory to Cooled Turbine Blades. NACA RM E50F02, 1950. - 3. Eckert, E., and Drewitz, O.: Calculation of the Temperature Field in the Laminar Boundary Layer of an Unheated Body in a High Speed Flow. R.T.P. Trans. No. 1594, British M.A.P. - 4. Eckert, E.: Die Berechnung des Wärmeubergangs in der laminaren Grenzschicht umströmter Körper. VDI Forchungsheft 416, Bd. 13, Sept. und Okt. 1942. - 5. Eckert, E. R. G., and Livingood, John N. B.: Method for Calculation of Laminar Heat Transfer in Air Flow Around Cylinders of Arbitrary Cross Section (Including Large Temperature Differences and Transpiration Cooling). NACA Rep. 1118, 1953. (Supersedes NACA TN 2733.) - 6. Staniforth, R.: Contributions to the Theory of Effusion Cooling of Gas Turbine Blades. Paper presented at the General Discussion on Heat Transfer. Inst. Mech. Eng. (London) and A.S.M.E. (New York) Conference (London), Sept. 11-13, 1951. - 7. Brown, W. Byron: Exact Solution of the Laminar Boundary Layer Equations for a Porous Plate with Variable Fluid Properties and a Pressure Gradient in the Main Stream. A.S.M.E. Proc. First U. S. Nat. Cong. Appl. Mech., pub. by A.S.M.E., 1952, pp. 843-852. - 8. Brown, W. Byron, and Donoughe, Patrick L.: Tables of Exact Laminar-Boundary-Layer Solutions When the Wall is Porous and Fluid Properties are Variable. NACA TN 2479, 1951. - 9. Brown, W. Byron, and Livingood, John N. B.: Solutions of Laminar-Boundary-Layer Equations which Result in Specific-Weight-Flow Profiles Locally Exceeding Free-Stream Values. NACA TN 2800, 1952. - 10. Libby, Paul A., Kaufman, Lawrence, and Harrington, R. Paul: An Experimental Investigation of the Isothermal Laminar Boundary Layer on a Porous Flat Plate. Jour. Aero. Sci., vol. 19, no. 2. Feb. 1952, pp. 127-134. - 11. Fage, A., and Falkner, V. M.: On the Relation Between Heat Transfer and Surface Friction for Laminar Flow. R.&M. No. 1408, British A.R.C., Apr. 1931. - 12. Schuh, H.: Laminar Heat Transfer in Boundary Layers at High Velocities. Rep. and Trans. 810, British M.A.P., Apr. 15, 1947. - 13. Hartree, D. R.: On an Equation Occurring in Falkner and Skan's Approximate Treatment of the Equations of the Boundary Layer. .Proc. Cambridge Phil. Soc., vol. 33, pt. 2, Apr. 1937, pp. 223-239. - 14. Chapman, Dean R., and Rubesin, Morris W.: Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature. Jour. Aero. Sci., vol. 16, no. 9, Sept. 1949, pp. 547-565. - 15. Levy, Solomon: Heat Transfer to Constant-Property Laminar Boundary-Layer Flows with Power-Function Free-Stream Velocity and Wall-Temperature Variations. Jour. Aero. Sci., vol. 19, no. 5, May 1952, pp. 341-348. - 16. Lighthill, M. J.: Contributions to the theory of heat transfer through a laminar boundary layer. Proc. Roy. Soc. (London), ser. A, vol. 202, no. Al070, Aug. 7, 1950, pp. 359-377. - 17. Tifford, Arthur N.: On the Theory of Heat Transfer Through a Laminar Boundary Layer. Jour. Aero. Sci., vol. 18, no. 4, Apr. 1951, pp. 283-284. - 18. Tifford, Arthur N., and Chu, Sheng To: On Heat Transfer, Recovery Factors, and Spin for Laminar Flows. Jour. Aero. Sci., vol. 19, no. 11, Nov. 1952, pp. 787-789. - 19. Scesa, Steve, and Levy, Solomon: Heat Transfer to Constant-Property Laminar Boundary-Layer Wedge Flows with Stepwise and Arbitrary Wall-Temperature
Variation. Trans. A.S.M.E., vol. 76, no. 2, Feb. 1954, pp. 279-286. - 20. Bryson, A. E., and Edwards, R. H.: The Effect of Nonuniform Surface Temperature on the Transient Aerodynamic Heating on Thin-Skinned Bodies. Jour. Aero. Sci., vol. 19, no. 7, July 1952, pp. 471-475. - 21. Tifford, Arthur N.: Specific Aerodynamic and Propulsion Problems. 1. Some Prandtl Number Effects on the Transfer of Heat. Eng. Exp. Station News, The Ohio State Univ., vol. XXII, no. 1, Feb. 1950, p. 11. - 22. Tifford, Arthur N., and Chu, S. T.: Heat Transfer in Laminar Boundary Layers Subject to Surface Pressure and Temperature Distributions. Proc. Second Midwestern Conf. on Fluid Mech., Ohio State Univ., Mar. 17-19, 1952, pp. 363-377. 22 NACA TN 3151 23. Schuh, H.: On Asymptotic Solutions for the Heat Transfer at Varying Wall Temperatures in a Laminar Boundary Layer with Hartree's Velocity Profiles. Jour. Aero. Sci., vol. 20, no. 2, Feb. 1953, pp. 146-147. - 24. Punnis, B.: A Remark on "On Asymptotic Solutions for the Heat Transfer at Varying Wall Temperatures in a Laminar Boundary Layer with Hartree's Velocity Profiles". Jour. Aero. Sci., vol. 20, no. 7, July 1953, p. 505. - 25. Tifford, Arthur N., and Chu, Sheng To: On Asymptotic Solutions for the Heat Transfer at Varying Wall Temperatures in a Laminar Boundary Layer with Hartree's Velocity Profiles. Jour. Aero. Sci., vol. 20, no. 9, Sept. 1953, pp. 643-644. - 26. Fettis, Henry E.: On a Differential Equation Occurring in the Theory of Heat Flow in Boundary Layers with Hartree's Velocity Profiles. Jour. Aero. Sci., vol. 21, no. 2, Feb. 1954, pp. 132-133. - 27. Herbeck, M.: Approximate Solutions for Heat Transfer with Convection Flows. Jour. Aero. Sci., vol. 21, no. 2, Feb. 1954, pp. 142-144. - 28. Eckert, E. R. G.: Heat Transfer and Temperature Profiles in Laminar Boundary Layers on a Sweat-Cooled Wall. Tech. Rep. No. 5646, Air Materiel Command, Nov. 3, 1947. - 29. Eckert, E. R. G.: Introduction to the Transfer of Heat and Mass. McGraw-Hill Book Co., Inc., 1950. - 30. Ostrach, Simon: An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the Generating Body Force. NACA Rep. 1111, 1953. (Supersedes NACA TN 2635.) - 31. Moore, Franklin K.: Laminar Boundary Layer on Cone in Supersonic Flow at Large Angle of Attack. NACA Rep. 1132, 1953. (Supersedes NACA TN 2844.) - 32. Schlichting, Hermann, und Bussmann, Karl: Exakte Lösungen für die laminare Grenzschicht mit Absaugung und Ausblasen. Schriften d. D. Akad. Luftfahrtforschung, Bd. 7B, Heft 2, 1943. - 33. Emmons, H. W., and Leigh, D.: Tabulation of the Blasius Function with Blowing and Suction. Interim Tech. Rep. No. 9, Combustion Aero. Lab., Div. Appl. Sci., Harvard Univ., Nov. 1953. (Army Ord. Dept. Contract No. DA-19-020-ORD-1029.) NACA TN 3151 . 23 34. Rubesin, Morris W.: The Effect of an Arbitrary Surface-Temperature Variation Along a Flat Plate on the Convective Heat Transfer in an Incompressible Turbulent Boundary Layer. NACA TN 2345, 1951. 35. Pohlhausen, E.: Der Wärmeaustausch zwischen festen Körpen und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z.f.a.M.M., Bd. 1, Heft 2, 1921, pp. 115-121. TABLE I. - VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE | | | | | | A | LONG THE | POROUS | WALL | | | | | | |-----|-------------------------|--------------------|---|--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|-------------------------|---|-------------------------|-------------------|----------------------|----------------| | | | | | | | $f_W = 0.0$ |); Eu = 0 | .0 | | | | | | | | | | - | | | (1) | | | (2) $\frac{n = 0.5}{\overline{Re}} = 0.5$ $\frac{\overline{Re}}{1.5} = 1.5$ | | | (3) | | | | | . — | | [| η
η | 1 = -0.5
∕Re | | 5.4 | n = 0.5
∕Re | | δ _c 4/ | Re 1.0 | | | | | <u>5 1∕Re</u> , | 1.7215 | | x | = 1. | 8610 | - x | = 0.5 | 782 | x | = 0.4:
 | | | | | δ ₁ √Re | • 0.6652 | | δtV | Re = 3. | 4167 | δtw | /Re
= 1.5 | 617 | 5 t 1/2 | 'Re
= 1.30 | 627 | | | | | | | | | | x | · | Υ" | Y | Y' | Υn | | | f | f' | f" | f" | Y | Υ' | Υ" | Y | Υı | | | | | | 0 | 0 | 0 | 0.3320 | 0 | | 0 0033 | 0 0232 | 1.0000 | -0.4059 | .0223 | 1.0000 | -0.4803
4759 | .0431 | | .2 | .0066
.0266
.0597 | .0664 | .3319 | 0011
0044 | .9998
.9987 | 0023
0093 | 0463 | .9190
.8388 | 4036
3971
3867
3728 | .0427 | .8102 | 4759
4635 | .0796 | | .6 | .0597 | .1989 | .3314
.3300
.3273 | 0099 | .9958 | 0208 | 0689 | .7604
.6844 | 3867 | .0610
.0772 | .7193
.6327 | 4445
4201 | .1094 | | .8 | .1061 | .2647 | 1 | 0174 | .9901 | 0367 | 0903 | | | 1 | | | | | 1.0 | .1655 | .3297 | .3230
.3165
.3078
.2966
.2829 | 0267
0377
0497
0623
0749 | .9808 | 0568
0805 | 1099
1266 | .6114
.5422 | 3560 | .0912
.1027 | .5515 | 3918
3605 | .1500 | | 1.2 | .2379 | .3937
.4562 | .3165 | 0377 | .9671 | 1072 | 1266 | .4770 | 3365
3150
2920
2679 | .1118 | .4762
.4074 | 3276 | .1671 | | 1.4 | .3229
.4202 | .5167 | .2966 | 0623 | .9484
.9241
.8940 | 1359
1656 | 1471
1491 | .4162 | 2920 | .1182 | .3452 | 2940 | .1681 | | 1.8 | .5294 | .5747 | .2829 | 0749 | .8940 | 1656 | 1 | .3602 | 2679 | .1221 | .2898 | 2607 | .1649 | | 2.0 | .6499 | .6297 | .2667 | 0867 | .8579 | 1951 | 1447 | .3091 | 2433
2187 | .1235 | .2409 | 2283
1976
1690 | .1581 | | 2.2 | .7811 | .6812 | .2667
.2483 | 0970 | .8161 | 2230 | 1336 | .2629 | 2187 | .1225 | .1983
.1617 | 1976 | .1486
.1370 | | 2.4 | .9221 | .7289 | .2281 | 1052
1107 | .7689
.7171 | 2691 | 1161 | 1851 | 1945
1711
1489 | .1142 | .1306 | 1429 | .1242 | | 2.6 | 1.0723 | .7723
.8114 | .2064 | 1132 | .6616 | 1951
2230
2481
2691
2850 | 1447
1336
1161
0928
0651 | .2216
.1851
.1531 | 1489 | .1076 | .1044 | 1194 | .1107 | | ļ | | .8459 | .1614 | 1127 | .6035 | | 1 | .1254 | 1281 | .0998 | .0826 | 0986 | .0971 | | 3.0 | 1.3966 | .8760 | .1391 | 1091 | .5440 | 2987 | 0345
0028 | .1017 | 1281
1090
0917 | .0911
.0819
.0725 | .0648 | 0805 | .0839 | | 3.4 | 1.7467 | .9016 | .1179 | 1030 | .4844 | 2961 | .0281 | .0817 | 0917 | .0819 | .0503 | 0650
0518 | .0714 | | 3.6 | 1.9292 | .9232 | .0981 | 0946
0848 | .4259 | 2950
2987
2961
2876
2738 | .0566 | .0510 | 0627 | .0633 | .0294 | 0409 | .0496 | | | 1 | 1 | Ĭ | ĺ | | 2556 | .1003 | 0397 | 0510 | .0544 | .0221 | 0319 | .0405 | | 4.0 | 2.3054 | .9554 | .0642 | 0740
0631 | .3167
.2677 | 2341 | .1140 | .0397 | - 0409 | .0461 | .0165 | 0319
0246
0188 | .0327 | | 4.4 | 2.6920 | .9758 | .0390 | 0525 | .2232 | 2104 | .1220 | .0232 | 0325 | . 0385 | .0122 | 0188 | .0260 | | 4.6 | 2.8878 | .9826 | .0295 | 0426
0337 | .1836 | 1857
1609 | .1246 | .0174 | 0325
0255
0197 | .0317 | .0065 | 0141
0105 | .0158 | | 4.8 | 3.0849 | .9877 | ļ | 1 | 1 | 1 | | 1 | 1 | 1 | .0047 | 0077 | .0121 | | 5.0 | 3.2828 | .9914 | .0159 | 0261
0197 | .1191 | 1370
1146 | .1161 | .0095 | 0151
0114 | .0206 | .0033 | 0056 | .0092 | | 5.2 | 3.4814 | .9941 | .0079 | 0197 | .0732 | 0943 | .0960 | .0048 | 0085 | .0127 | .0024 | 0040 | .0068 | | 5.6 | 3.8798 | .9974 | .0054 | 0105 | .0562 | 0763 | .0840 | .0034 | 0063
0046 | .0097 | .0017 | 0028 | .0051 | | 5.8 | 4.0793 | .9983 | .0037 | 0075 | .0425 | 0607 | .0719 | .0023 | 1 | i . | 1 | ì | 1 | | 6.0 | 4.2791 | .9989 | .0024 | 0051 | .0317 | 0475 | .0600 | .0015 | 0033 | .0055
.0041
.0029 | .0009 | 0014 | .0026 | | 6.2 | 4.4789 | .9993 | .0016 | 0035 | .0233 | 0366 | .0493
.0395
.0311 | .0009 | 0024
0017
0012 | .0029 | .0007 | 0006 | .0013 | | 6.4 | 4.6787 | .9995 | .0010 | 0023 | .0169 | 0277 | .0333 | 1 .0002 | 0012 | .0021 | .0004 | 0004 | .0009 | | 6.6 | 5.0786 | .9998 | .0004 | 0009 | .0085 | 0152 | .0240 | .0000 | 0008 | .0015 | .0004 | 0002 | .0006 | | 7.0 | 5 2786 | .9998 | .0002 | 0006 | .0059 | 0110 | .0182 | 1 | | | .0003 | 0001 | .0004 | | 7.2 | 5.2786
5.4785 | .9998 | .0001 | 0003 | .0040 | 0110
0078 | .0136 | | | ĺ | .0003 | .0000 | .0003 | | 7.4 | 5.6785 | .9999 | .0001 | 0002 | .0027 | 0055
0038 | .0100 | | | | .0003 | .0000 | .0001 | | 7.6 | 5.8785 | .9999 | .0000 | .0000 | .0018 | 0036 | .0051 | | | | | | | | | | 1 | | | .0008 | 0017 | .0037 | | | | | | | | 8.0 | | | | | .0005 | 0011 | .0023 | | | | | 1 | | | 8.4 | 1 | | 1 | | .0003 | 0007 | .0015 | ĺ | | 1 | | | | | 8.6 | | | | | .0002 | 0005 | .0009 | 1 | | | | | | | 8.8 | | | | | | ĺ | | | | | 1. | | | | 9.0 | | | | | .0001 | 0002 | .0005 | 1 | | | | | | | 9.2 | | 1 | | | .0001 | .0000 | .0003 | 1 | | | | | | | 3.4 | | | | | | | _i | | | | | | | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE . | | · | | | | TEMPE | RATURE AL | | | | | | · | | |--|--|---|---|---|--|--|---|--|--|---|--|---|---| | | | | | | | f _w = 0. | 0; Eu = | 0.5 | | | | | | | | | | | | | (4) | | | (5) | • | | - (6) | | | | | δ°4∕Re | = 0.8542 | | δ _c | n = -0.7
1 √Re = 1. | 5
6075 | δc | <u>n</u> = ·0.5
√Re | | δ _c | <u>n = 1.0</u>
√Re _ 0 = | :101 | | | | $\frac{\delta_1 \sqrt[K]{Re}}{x}$ | = 0.8542
=
0.3773 | | δt | $\frac{x}{\sqrt{Re}} = 2.$ | 4034 | δ _t | (5)
n = 0.5
/Re
 - 0.6
/Re
= 1.1 | .861 | δ _t | /Re = 1.0 | 515 | | η | · f | ſ' | f" | | | | | Υ. | Υ'. | Y" | Y | у: | Y" | | .1
.2
.3 | 0
.0044
.0173
.0382
.0667 | 0
.0875
.1700
.2475
.3201 | 0.89975
.2498
.8000
.7507
.7019 | -0.5000
4990
4960
4909
4839 | 1.0000
.9999
.9994
.9980
.9953 | 0
0023
0091
0200
0348 | 0
0459
0891
1293
1661 | 1.0000
.9458
.8919
.8385
.7860 | -0.5426
5411
5367
5296
5201 | 0
.0302
.0579
.0833
.1063 | 1.0000
.9366
.8738
.8121
.7519 | -0.6350
6320
6235
6103
5931 | 0
.0588
.1096
.1529
.1892 | | .5
.6
.7
.8 | .1021
.1441
.1921
.2458
.3046 | .3879
.4509
.5093
.5632
.6128 | .6540
.6070
.5612
.5168
.4740 | 4748
4639
4512
4367
4206 | .9909
.9845
.9759
.9648
.9510 | 0531
0745
0985
1246
1522 | 1990
2274
2510
2692
2816 | .7346
.6844
.6357
.5886
.5433 | 5084
4948
4794
4625
4443 | .1270
.1454
.1617
.1757
.1876 | .6935
.6374
.5837
.5326
.4842 | 5727
5495
5243
4975
4696 | .2190
.2428
.2610
.2742
.2828 | | 1.0
1.1
1.2
1.3 | .3682
.4361
.5080
.5834
.6620 | .6581
.6994
.7368
.7706
.8010 | .4328
.3934
.3560
.3206
.2873 | 4030
3841
3642
3433
3218 | .9344
.9149
.8925
.8673
.8394 | 1807
2095
2380
2656
2917 | 2879
2879
2817
2696
2516 | .4998
.4583
.4188
.3815
.3463 | 4250
4049
3841
3629
3414 | .1973
.2049
.2105
.2140
.2157 | .4387
.3960
.3562
.3193
.2852 | 4411
4123
3835
3552
3274 | .2874
.2883
.2860
.2810
.2737 | | 1.5
1.6
1.7
1.8
1.9 | .7435
.8275
.9138
1.0022
1.0923 | .8282
.8523
.8737
.8925
.9090 | .2562
.2274
.2007
.1762
.1538 | 2999
2779
2558
2341
2129 | .8090
.7763
.7416
.7052
.6675 | 3157
3372
3558
3711
3828 | 2286
2009
1695
1352
0990 | .3132
.2823
.2535
.2269
.2022 | 3198
2983
2771
2563
2360 | .2156
.2138
.2105
.2057
.1997 | .2538
.2250
.1988
.1750
.1535 | 3005
2746
2498
2263
2042 | .2644
.2536
.2415
.2284
.2148 | | 2.0
2.1
2.2
2.3
2.4 | 1.1839
1.2769
1.3710
1.4661
1.5621 | .9234
.9358
.9465
.9557
.9635 | .1336
.1153
.0990
.0845
.0717 | 1923
1726
1539
1363
1199 | .6288
.5895
.5499
.5105
.4715 | 3908
3951
3957
3928
3865 | 0619
0247
.0116
.0462
.0785 | .1796
.1589
.1401
.1230
.1076 | 2164
1975
1795
1624
1463 | .1925
.1845
.1756
.1662
.1563 | .1342
.1168
.1013
.0875
.0754 | 1834
1640
1461
1296
1144 | .2007
.1865
.1723
.1583
.1447 | | 2.5
2.6
2.7
2.8
2.9 | 1.6588
1.7561
1.8539
1.9521
2.0507 | .9701
.9756
.9803
.9841
.9873 | .0605
.0507
.0423
.0350
.0288 | 1048
0909
0783
0670
0570 | .4333
.3962
.3604
.3262
.2937 | 3772
3651
3506
3341
3160 | .1078
.1337
.1557
.1739
.1880 | .0937
.0813
.0703
.0605
.0518 | 1312
1171
1040
0920
0810 | .1461
.1357
.1254
.1151
.1051 | .0646
.0552
.0470
.0398
.0336 | 1006
0881
0768
0667
0576 | .1315
.1189
.1070
.0957
.0853 | | 3.0
3.1
3.2
3.3
3.4 | 2.1495
2.2486
2.3479
2.4474
2.5470 | .9899
.9920
.9938
.9952
.9963 | .0236
.0192
.0155
.0125
.0099 | 0481
0403
0335
0277
0227 | .2631
.2344
.2078
.1832
.1607 | 2967
2765
2559
2352
2147 | .1981
.2043
.2070
.2065
.2030 | .0442
.0376
.0318
.0268
.0225 | 0710
0619
0537
0464
0399 | .0954
.0861
.0773
.0690
.0612 | .0282
.0236
.0197
.0163
.0135 | 0496
0425
0363
0308
0260 | .0755
.0666
.0584
.0510
.0442 | | 3.5
3.6
3.7
3.8
3.9 | 2.6466
2.7464
2.8462
2.9461
3.0460 | .9972
.9979
.9984
.9989 | .0079
.0062
.0049
.0038 | 0185
0149
0120
0096
0076 | .1402
.1217
.1051
.0903
.0772 | 1947
1754
1570
1396
1233 | .1971
.1891
.1795
.1685
.1567 | .0188
.0157
.0130
.0107
.0088 | 0342
0291
0247
0208
0175 | .0540
.0474
.0414
.0359
.0310 | .0111
.0091
.0074
.0060
.0049 | 0219
0184
0153
0127
0105 | .0382
.0329
.0281
.0239
.0202 | | 4.0
4.1
4.2
4.3
4.4 | 3.1459
3.2459
3.3458
3.4458
3.5458 | .9995
.9997
.9998
.9999 | .0023
.0018
.0014
.0010 | 0059
0046
0036
0027
0021 | .0656
.0555
.0467
.0391
.0326 | 1082
0944
0818
0705
0604 | .1445
.1318
.1192
.1070
.0953 | .0072
.0059
.0048
.0038
.0031 | 0146
0121
0100
0083
0068 | .0266
.0227
.0193
.0163
.0137 | .0039
.0031
.0025
.0020 | 0087
0071
0058
0047
0038 | .0171
.0143
.0119
.0099
.0082 | | 4.5
4.6
4.7
4.8
4.9 | 3.6458
3.7458
3.8459
3.9459
4.0459 | 1.0001
1.0001
1.0002
1.0002 | .0006
.0005
.0004
.0003
.0002 | 0016
0012
0009
0007
0005 | .0270
.0223
.0183
.0149
.0121 | 0514
0435
0366
0306
0254 | .0842
.0738
.0643
.0556
.0476 | .0025
.0020
.0016
.0012
.0010 | 0054
0044
0034
0028
0021 | .0112
.0093
.0074
.0062
.0048 | .0012
.0009
.0007
.0005 | 0030
0024
0018
0015
0011 | .0066
.0054
.0042
.0034
.0026 | | 5.0
5.1
5.2
5.3
5.4 | | | | | .0098
.0079
.0063
.0050
.0040 | 0210
0173
0141
0115
0093 | .0406
.0345
.0289
.0242
.0201 | .0008
.0007
.0005
.0004
.0004 | 0018
0013
0012
0007
0005 | .0042
.0031
.0028
.0018
.0014 | .0003
.0002
.0001
.0001 | 0010
0007
0006
0004
0003 | .0023
.0016
.0015
.0009 | | 5.5
5.6
5.7
5.8
5.9 | | | | | .0032
.0025
.0020
.0016
.0013 | 0075
0060
0048
0038
0030 | .0166
.0136
.0111
.0091
.0072 | .0003
.0003
.0003
.0002 | 0004
0003
0002
0001
0001 | .0011
.0008
.0007
.0005 | .0000
.0000
.0000 | 0002
0002
0001
0001 | .0005
.0004
.0003
.0002 | | 6.0
6.1
6.2
6.3
6.4 | | | | | .0010
.0008
.0006
.0005
.0004 | 0024
0019
0015
0011
0008 | .0060
.0048
.0039
.0031
.0021 | .0002 | 0001 | .0002 | | | | | 6.5
6.6
6.7
6.8
6.9
7.0 | | | | - | .0003 | 0006
0005
0004
0003
0002
0002 | .0016
.0013
.0010
.0007
.0004 | | | | | | | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE ALONG THE POROUS WALL | Γ | $f_{W} = 0.0; \text{ Eu} = 1.0$ | | | | | | | | | | | | | | | | |--|--|---|---|---|--|--------------------------------------|---|--|---|---|--|---|---|--|---|---| | | | | | | | (7) | | | (8) | | | (9) | | | (10) | | | | | 5° √Re | ■ 0.6477 | | $\frac{\delta_c \sqrt{Re}}{\pi} = 1.4086$ | | | δ _c | √Re
= 0. | 9185 | . Bc | <u>√Re</u> = 0. | 5861 | δ _c | /Re = 0.5 | 061 | | | | ε ₁ ×/Re | 0.2921 | | δ _{t Λ} | /Re = 2. | .0175 | δt | <u>√Re</u> = 1. | 4398 | δt | $\frac{\sqrt{Re}}{x} = 1.$ | 0361 | δ _t 1 | /Re = 0.9 | 356 | | ņ | ſ | ſ' | t, | f''' | Y | Υ' | Y" | Y | Υ ' | Υ" | Y | Υı | Y" | Y | Υ' | Υ ^H | | 0 • .1 .2 .3 .4 | 0
.0060
.0233
.0510
.0881 | 0
.1183
.2266
.3252
.4145 | 1.2326
1.1328
1.0345
.9386
8463 | -1.0000
9928
9728
9421
9027 | 1.0000
.9999
.9989
.9964
.9916 | 0
0042
0163
0355
0611 | 0
0828
1581
2255
2839 | 1.0000
.9677
.9349
.9015
.8672 | -0.3228
3248
3302
3383
3481 | 0
0387
0688
0905
1043 | 1.0000
.9385
.8774
.8170
.7579 | -0.6159
6138
6078
5980
5850 | .0414
.0795
.1144
.1460 | 1.0000
.9292
.8593
.7908
.7243 | -0.7090
7049
6934
6757
6529 | 0
.0799
.1476
.2042
.2504 | | .5
.6
.7
.8 | .1336
.1867
.2466
.3124
.3835 | .4947
.5663
.6299
.6859
.7351 | .7583
.6752
.5974
.5251
.4587 | 8566
8054
7506
6935
6356 | .9840
.9731
.9585
.9399
.9173 | 0920
1272
1655
2056
2463 | 3321
3691
3940
4063
4059 | .8319
.7954
.7579
.7194
.6800 | 3589
3699
3805
3900
3978 | 1105
1093
1014
0874
0681 | .7001
.6442
.5902
.5384
.4890 | 5690
5502
5291
5061
4813 | .1744
.1996
.2214
.2399
.2550 | .6603
.5992
.5412
.4866
.4355 | 6260
5958
5632
5289
4935 | .2872
.3154
.3358
.3493
.3566 | | 1.0
1.1
1.2
1.3 | .4592
.5389
.6220
.7081
.7967 |
.7779
.8149
.8467
.8738
.8968 | .3980
.3431
.2938
.2499
.2110 | 5777
5209
.4659
4134
3638 | .8907
.8601
.8259
.7883
.7479 | 2863
3245
3596
3907
4170 | 3930
3682
3329
2885
2369 | .6399
.5993
.5586
.5181
.4779 | 4035
4066
4069
4043
3985 | 0445
0175
.0116
.0419
.0722 | .4422
.3980
.3566
.3180
.2822 | 4552
4280
4003
3722
3440 | .2667
.2750
.2800
.2817
.2804 | .3879
.3439
.3035
.2666
.2330 | 4577
4220
3868
3525
3193 | .3584
.3554
.3483
.3378
.3243 | | 1.5
1.6
1.7
1.8
1.9 | .8873
.9798
1.0737
1.1689
1.2650 | .9162
.9324
.9458
.9569 | .1770
.1474
.1218
.1000 | 3176
2751
2363
2013
1701 | .7051
.6605
.6147
.5683
.5219 | 4379
4529
4619
4649
4621 | 1802
1205
0598
0003
.0563 | .4384
.4000
.3629
.3273
.2934 | 3898
3783
3642
3477
3293 | .1016
.1289
.1536
.1749
.1924 | .2492
.2189
.1914
.1664
.1440 | 3162
2889
2623
2368
2125 | .2763
.2696
.2605
.2495
.2368 | .2026
.1754
.1511
.1294
.1104 | 2877
2577
2295
2032
1789 | .3086
.2912
.2725
.2530
.2330 | | 2.0
2.1
2.2
2.3
2.4 | 1.3620
1.4596
1.5578
1.6564
1.7553 | .9733
.9792
.9839
.9877
.9906 | .0659
.0528
.0421
.0333
.0261 | 1425
1184
0975
0796
0645 | .4761
.4313
.3881
.3468
.3078 | 4538
4406
4231
4020
3781 | .1082
.1546
.1941
.2263
.2512 | .2615
.2316
.2038
.1783
.1550 | 3094
2883
2665
2443
2222 | .2059
.2152
.2204
.2217
.2193 | .1239
.1060
.0902
.0764
.0643 | 1895
1680
1479
1295
1126 | .2229
.2079
.1924
.1765
.1607 | .0936
.0790
.0663
.0553
.0459 | 1566
1363
1179
1014
0867 | .2131
.1934
.1742
.1558
.1384 | | 2.5
2.6
2.7
2.8
2.9 | 1.8545
1.9539
2.0534
2.1531
2.2528 | .9929
.9947
.9961
.9971 | .0203
.0157
.0120
.0091
.0069 | 0517
0412
0324
0254
0196 | .2713
.2375
.2064
.1782
.1528 | 3521
3247
2966
2684
2407 | .2685
.2787
.2824
.2801
.2729 | .1338
.1148
.0979
.0829
.0697 | 2006
1796
1595
1406
1230 | .2138
.2056
.1951
.1830
.1695 | .0538
.0448
.0370
.0305
.0249 | 0973
0836
0713
0605
0509 | .1451
.1299
.1154
.1018
.0890 | .0379
.0312
.0254
.0207
.0167 | 0737
0623
0523
0436
0362 | .1220
.1068
.0929
.0802
.0687 | | 3.0
3.1
3.2
3.3
3.4 | 2.3527
2.4525
2.5524
2.6524
2.7523 | .9985
.9990
.9993
.9995
.9997 | .0051
.0038
.0028
.0021 | 0151
0115
0086
0064
0048 | .1301
.1100
.0924
.0770
.0638 | 2139
1885
1647
1427
1226 | .2614
.2467
.2297
.2110
.1916 | .0583
.0483
.0398
.0326
.0265 | 1067
0919
0785
0666
0561 | .1554
.1409
.1264
.1123
.0987 | .0202
.0163
.0131
.0104
.0083 | 0426
0355
0293
0240
0196 | .0773
.0666
.0569
.0483
.0407 | .0134
.0107
.0085
.0067
.0052 | 0298
0245
0199
0161
0130 | .0585
.0495
.0415
.0346
.0286 | | 3.5
3.6
3.7
3.8
3.9 | 2.8523
2.9523
3.0523
3.1523
3.2523 | .9998
.9999
1.0000
1.0001 | .0011
.0008
.0006
.0004 | 0035
0025
0018
0013
0009 | .0525
.0429
.0348
.0280
.0224 | 1044
0882
0739
0615
0507 | .1717
.1523
.1335
.1161
.0997 | .0213
.0171
.0135
.0106
.0083 | 0468
0388
0319
0261
0211 | .0860
.0743
.0635
.0538
.0452 | .0065
.0051
.0039
.0030
.0023 | 0159
0128
0102
0081
0064 | .0340
.0282
.0232
.0190
.0154 | .0040
.0031
.0024
.0018
.0014 | 0104
0082
0065
0051
0040 | .0235
.0192
.0156
.0125
.0100 | | 4.0
4.1
4.2
4.3
4.4 | 3.3523
3.4523 | 1.0001 | .0003 | 0006
0004 | .0178
.0140
.0110
.0086
.0067 | 0415
0337
0271
0217
0172 | .0849
.0716
.0597
.0495
.0405 | .0064
.0048
.0037
.0026
.0019 | 0166
0133
0100
0081
0059 | .0368
.0304
.0236
.0199
.0147 | .0017
.0013
.0009
.0006 | 0049
0038
0027
0022
0015 | .0120
.0096
.0071
.0059
.0041 | .0010
.0007
.0005
.0003
.0002 | 0030
0023
0016
0013
0009 | .0077
.0061
.0044
.0036
.0025 | | 4.5
4.6
4.7
4.8
4.9 | | | | | .0052
.0040
.0031
.0024
.0018 | 0136
0106
0082
0063
0048 | .0328
.0265
.0211
.0166
.0130 | .0014
.0009
.0006
.0004
.0003 | 0052
0032
0020
0012
0009 | .0134
.0084
.0054
.0034
.0025 | .0003
.0002
.0001
.0000 | 0014
0008
0004
0002
0001 | .0038
.0021
.0012
.0006
.0004 | .0001
.0001
.0000
.0000 | 0008
0004
0002
0001
0001 | .0023
.0012
.0006
.0003
.0002 | | 5.0
5.1
5.2
5.3
5.4 | | | | | .0014
.0011
.0009
.0007
.0006 | 0036
0027
0020
0015
0009 | .0100
.0076
.0058
.0044
.0026 | .0002
.0001
.0001
.0000 | 0007
0004
0004
0002
0002 | .0019
.0013
.0011
.0006
.0003 | .0000
.0000
.0000
.0000 | 0001
0001
0001
.0000 | .0003
.0002
.0002
.0001 | .0000
.0000
.0000 | .0000
.0000
.0000 | .0001
.0001
.0001
.0000 | | 5.5
5.6
5.7
5.8
5.9
6.0 | | | | | .0005
.0004
.0004
.0004
.0004 | 0007
0005
0004
0003
0002 | .0020
.0011
.0011
.0008
.0004 | .0000 | .0000 | .0001 | .0000 | .0000 | .0000 | | | | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE ALONG THE POROUS WALL | | | | | | | | = -0.5; | | | <u> </u> | | | | |---|--|---|--|--|---|---|---|--|--|---|--|--|---| | | | | | | | (11) | | | (12) | | | (13) | | | | | $\frac{\delta^{\bullet} \sqrt{Re}}{x}$ $\frac{\delta_{1} \sqrt{Re}}{\sqrt{Re}}$ | = 2.4595
= 0.8288 | | δ _c | = -0.37
\[\sqrt{Re} \] = 1
\[\sqrt{Re} \] = 4 | .9212 | δ _c | $\frac{n = 0.5}{\sqrt{Re}}$ $\sqrt{Re} = 0.$ | 6231
0470 | δ _c | $\frac{n = 1.0}{\sqrt{\text{Re}}} = 0.$ $\sqrt{\frac{\text{Re}}{\text{x}}} = 1.$ | 4724
7627 | | n | f | f f' f" f'' | | | Y | х
У' | Υ" | 1 | у, | Y" | У У | Y' | Υ" | | 0
.2
.4
.6 | -0.5000
4967
4864
4689
4437 | 0
.0337
.0692
.1064
.1454 | 0.1645
.1729
.1816
.1905
.1995 | 0.0411
.0429
.0442
.0447
.0442 | 1.0000
1.0000
.9996
.9985 | 0
0007
0034
0081
0149 | 0
0081
0185
0289
0389 | 1.0000
.9469
.8924
.8368
.7806 | -0.2611
2695
2757
2796
2815 | -0.0457
0367
0253
0147
0040 | 1.0000
.9348
.8680
.8007
.7335 | -0.3211
3306
3358
3369
3342 | -0.0562
0374
0151
.0044
.0228 | | 1.0
1.2
1.4
1.6
1.8 | 4106
3691
3190
2599
1916 | .1862
.2287
.2727
.3182
.3649 | .2082
.2165
.2241
.2307
.2359 | .0427
.0400
.0357
.0300
.0226 | .9924
.9865
.9780
.9666
.9517 | 0238
0359
0490
0653
0835 | 0513
0631
0746
0857
0956 | .7243
.6684
.6131
.5589
.5062 | 2809
2785
2740
2674
2589 | .0068
.0175
.0279
.0379 | .6673
.6028
.5404
.4808 | 3272
3178
3053
2903
2732 | .0399
.0554
.0691
.0807
.0901 | | 2.0
2.2
2.4
2.6
2.8 | 1139
0266
.0703
.1769
.2930 | .4125
.4606
.5088
.5567
.6038 | .2396
.2413
.2408
.2378
.2323 | .0136
.0032
0085
0270
0340 | .9331
.9102
.8830
.8513
.8152 | 1035
1249
1472
1698
1919 | 1039
1099
1129
1124
1079 | .4555
.4069
.3609
.3177
.2775 | 2485
2366
2233
2088
1934 | .0558
.0634
.0698
.0748
.0785 | .3717
.3228
.2779
.2372
.2007 | 2544
2345
2138
1929
1722 | .0972
.1019
.1043
.1044
.1025 | | 3.0
3.2
3.4
3.6
3.8 | .4183
.5526
.6955
.8464
1.0047 | .6495
.6933
.7348
.7735
.8091 | .2242
.2136
.2007
.1858
.1694 | 0469
0590
0698
0787
0851 | .7747
.7302
.6823
.6317
.5790 | 2127
2313
2470
2591
2668 | 0993
0865
0699
0499
0276 | .2404
.2065
.1759
.1485
.1242 | 1775
1613
1451
1291
1138 | .0806
.0813
.0805
.0784
.0752 | .1683
.1399
.1151
.0939
.0759 | 1520
1328
1147
0980
0828 | .0988
.0936
.0871
.0799 | | 4.0
4.2
4.4
4.6
4.8 | 1.1698
1.3409
1.5175
1.6986
1.8838 | .8412
.8698
.8948
.9163 | .1520
.1341
.1162
.0990
.0827 | 0889
0899
0882
0840
0779 | .5252
.4713
.4182
.3667
.3177 | 2700
2685
2622
2517
2375 | 0040
.0197
.0423
.0625
.0796 |
.1029
.0845
.0686
.0552
.0440 | 0991
0855
0729
0614
0512 | .0709
.0658
.0602
.0542
.0481 | .0607
.0481
.0377
.0293
.0226 | 0692
0571
0467
0377
0302 | .0641
.0561
.0484
.0412
.0346 | | 5.0
5.2
5.4
5.6
5.8 | 2.0722
2.2634
2.4568
2.6519
2.8483 | .9495
.9618
.9715
.9791 | .0679
.0546
.0432
.0334
.0254 | 0703
0618
0530
0443
0362 | .2719
.2298
.1917
.1579
.1284 | 2202
2006
1798
1584
1372 | .0927
.1016
.1063
.1069
.1040 | .0347
.0271
.0209
.0159
.0120 | 0421
0343
0276
0219
0172 | .0421
.0363
.0308
.0258
.0213 | .0172
.0129
.0097
.0071
.0052 | 0238
0186
0144
0110
0083 | .0287
.0235
.0189
.0151
.0119 | | 6.0
6.2
6.4
6.6
6.8 | 3.0458
3.2440
3.4428
3.6419
3.8414 | .9894
.9926
.9950
.9967
.9978 | .0189
.0138
.0099
.0069 | 0288
0224
0170
0126
0092 | .1030
.0815
.0636
.0490
.0372 | 1170
0981
0809
0657
0525 | .0983
.0904
.0811
.0711
.0609 | .0090
.0066
.0048
.0035
.0025 | 0134
0103
0078
0058
0043 | .0174
.0139
.0110
.0086
.0066 | .0038
.0027
.0019
.0013
.0009 | 0062
0046
0034
0024
0017 | .0092
.0071
.0054
.0040
.0030 | | 7.0
7.2
7.4
7.6
7.8 | 4.0410
4.2408
4.4407
4.6406
4.8405 | .9986
.9991
.9995
.9997
.9998 | .0032
.0021
.0014
.0009
.0005 | 0065
0045
0031
0020
0013 | .0279
.0206
.0150
.0107
.0076 | 0413
0320
0244
0183
0135 | .0512
.0421
.0340
.0269
.0210 | .0018
.0012
.0008
.0006
.0004 | 0031
0023
0016
0011
0008 | .0050
.0038
.0028
.0020
.0015 | .0006
:0004
.0003
.0002
.0001 | 0012
0009
0006
0004
0003 | .0022
.0016
.0011
.0008
.0005 | | 8.0
8.2
8.4
8.6
8.8 | 5.0405
5.2405
5.4405
5.6405
5.8405 | .9999
1.0000
1.0000
1.0000 | .0003
.0002
.0001
.0001 | 0008
0005
0003
0002
0001 | .0052
.0036
.0024
.0015 | 0098
0071
0050
0035
0024 | .0160
.0120
.0089
.0064
.0046 | .0003
.0002
.0001
.0001 | 0005
0004
0002
0002
0001 | .0010
.0007
.0005
.0003
.0002 | .0001
.0000
.0000
.0000 | 0002
0001
0001
0001 | .0004
.0002
.0002
.0001
.0001 | | 9.0
9.2
9.4
9.6
9.8
10.0 | | | | | .0006
.0003
.0001
.0000
.0000 | 0016
0011
0007
0004
0003
0001 | .0032
.0022
.0015
.0010
.0007 | .0000
.0000
.0000 | 0001
.0000
.0000
.0000 | .0001
.0001
.0001 | .0000 | .0000 | .0000 | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE ALONG THE POROUS WALL | | | 5988 | 2578 | μ, | -0.1237
0393
.0317
.0896 | .1671
.1885
.2001
.2028
.1984 | .1882
.1739
.1568
.1382 | .1007
.0833
.0676
.0537 | .0320
.0239
.0175
.0126 | .0061
.0042
.0028
.0017 | .00005 | |----------|------|---|---------------------|------------------|-----------------------------------|---|---|--|---|---|--| | | (11) | n = 1.0 | /Re1. | Υ. | -0.4711
4872
4877
4753 | 4224
3866
3476
3072 | 2282
1920
1589
1293 | 0816
0632
0482
0361 | 0192
0136
0095
0065 | 0029
0019
0007 | 0003
0002
0001 | | | | δ _C Λ | x gt v | Ж | 1.0000
.9039
.8062
.7097 | .5291
.4481
.3747
.3092
.2518 | .2023
.1603
.1253
.0965 | .0548
.0404
.0293
.0209 | .0102
.0069
.0046
.0030 | .00012 | .0000 | | | | 582 | .50 | Υ" | -0.1006
0586
0193
.0171 | .0797
.1048
.1253
.1408 | .1560
.1561
.1516
.1431 | .1184
.1039
.0889
.0744 | .0486
.0380
.0290
.0217 | .0113
.0079
.0054
.0036 | .0015 | | | (16) | $\frac{n}{Re} = 0.5$ | <u>Re</u>
= 1.44 | λ, | -0.3834
3993
4070
4072 | 3874
3689
3458
3191
2898 | 2590
2277
1969
1673 | 1147
0925
0732
0569 | 0325
0239
0172
0122 | 0057
0038
0025
0016 | 0004
0002
0002 | | | | δ _C × | ` ' | Y | 1.0000
.9216
.8408
.7593 | .5995
.5238
.4523
.3857
.3248 | .2699
.2212
.1788
.1424 | .0863
.0656
.0491
.0362 | .0186
.0130
.0090
.0060 | .0026
.0017
.0010
.0007 | .0000 | | | | 5.6506 | 929 | λ,, | -0.0071
0554
1008
1419 | 1996
2108
2077
1899 | 1151
0643
0103
.0424 | .1276
.1549
.1707
.1756 | .1592
.1424
.1227
.1024 | .0649
.0495
.0366
.0266 | .0129
.0087
.0057
.0036
.0022
.0013 | | Eu = 0.5 | (15) | $\frac{n}{\sqrt{Re}} = -0.5$ | \sqrt{Re} = 2.5 | Υ. | -0.0272
0335,
0492
0735 | 1431
1843
2264
2664
3014 | 3289
3469
3544
3512 | 3161
2877
2549
2201 | 1521
1219
0953
0728 | 0396
0282
0196
0134 | 0058
0037
0014
0008 | | 1 -0.5; | | γ _ο ς | , φ [†] (α | 7 | 1.0000
.9941
.9860
.9739 | .9313
.8986
.8575
.8082 | .6881
.6204
.5500
.4793 | .3447
.2842
.2299
.1824 | .1082
.0808
.0592
.0424
.0298 | .0205
.0137
.0090
.0057 | | | fw | | 56
7434 | 0904 | μĀ | 0
0518
1017
1477 | 2159
2323
2332
2179 | 1428
0892
0309
.0269 | .1232
.1555
.1754
.1833 | .1696
.1528
.1326
.1112 | .0711
.0545
.0405
.0294
.0208 | .00143
.0096
.0064
.0058
.0029 | | | (14) | = -0.53
/Re = 1. | /Re = 2. | ۲. | 0
0052
0206
0456 | 1179
1652
2099
2562 | 3299
3532
3653
3657 | 3346
3065
2733
2372 | 1655
1331
1045
0801
0600 | 0439
0314
0219
0150 | 0065
0042
0026
0015 | | | | ο ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο | St. | Y | 1.0000
.9997
.9972
.9908 | .9588
.9306
.8930
.8464 | .7282
.6597
.5877
.5144 | .3731
.3088
.2508
.1997 | .1194
.0896
.0659
.0475 | .0232
.0158
.0105
.0068 | .0027
.0017
.0010
.0006
.0003 | | | | | | 111 J | -0.2385
2545
2668
2747. | 2764
2697
2580
2417
2215 | 1984
1735
1479
1230 | 0785
0602
0449
0326 | 0157
0105
0068
0043 | 00016 | 00000. | | | | = 1.0342 | - 0.4440 | f." | 0.6974
.6480
.5958
.5416 | .4307
.3760
.3232
.2731 | .1847
.1475
.1154
.0883 | .0483
.0345
.0240
.0164 | .0070
.0044
.0027
.0016 | .0003 | 0000. | | | | 6. NRe | δ ₁ NRe | <u>-</u> | 0
.1346
.2590
.3728 | .5673
.6479
.7178
.7774 | .8684
.9015
.9277
.9480 | . 9748
. 9830
. 9928
. 9928 | .9972
.9984
.9991
.9995 | .9999
1.0000
1.0000
1.0000 | 1.0000 | | | | | | , ₆₋₁ | -0.5000
4864
4468
3835 | 1940
0723
.0645
.2142 | .5445
.7216
.9047
1.0923
1.2835 | 1.4774
1.6732
1.8704
2.0686
2.2675 | 2.4668
2.6663
2.8661
3.0659 | 3.4658
3.6658
3.8658
4.0658 | 4.4658 | | | | | | n | 0 0 4 0 0 | 0.0.4.0.0 | 0.01.01.01
0.01.4.0.02 | иииии
Ои4юю | 44444
O.G.4.0.0 | 00000
00400 | 0.0.4.0.0.0 | | | | | | | | | | | | | | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE | | | | | | TEMPE | RATURE AI | ONG THE | POROUS W | ALL | | | | | |---------------------------------|--|---|--|---|--|--------------------------------------|---|--|---|---|--|---|---| | | | | | | | f _w = -0 | .5; Eu = | 1.0 | | | | | | | | | | | | ļ | (18) | 100 | | (19) | | | (20) | | | | | δ [*] √Re | → 0 780E | | δc | /Re _ 1 | 5535 | 50 | <u>n</u> = 0.5 | 7065 | δ _c | <u>n</u> ≈ 1.0 | e000 | | | | δ √Re
x
δ ₁ √Re
x | - 0.7603 | , | δ+ | x
√Re | $ \begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & $ | | δ+ | | x = 0.
₄∕Re | , | | | | | x | | | | = 2. | 2880 | | | 2921 | | x = 1. | 1433 | | n | f | f' | f" | | | Ϋ́ | Y" | | Y' | Υ" | Y | Ϋ́ | Y" | | 0
.1
.2
.3 | -0.5000
4952
4813
4588
4282 | 0
.0943
.1832
.2667
.3445 | 0.9692
.9165
.8621
.8065
.7505 | -0.5154
5372
5515
5589
5600 | 1.0000
.9999
.9994
.9980
.9952 | 0
0023
0091
0203
0355 | 0
0456
0901
1330
1695 | 1.0000
.9580
.9149
.8708
.8262 | -0.4132
4262
4364
4439
4487 | -0.1446
1161
0884
0613
0349 | 1.0000
.9489
.8967
.8438
.7908 | -0.5030
5176
5265
5302
5292 | -0.1760
1168
0624
0128
.0321 | | .5
.6
.7
.8 | 3901
3450
2935
2362
1736 | .4168
.4835
.5447
.6007 | .6947
.6396
.5857
.5335
.4832 | 5553
5456
5313
5132
4917 | .9908
.9842
.9752
.9635
.9488 | 0537
0780
1026
1317
1623 | 2109
2450
2735
2968
3135 | .7812
.7361
.6911
.6466
.6027 |
4509
4506
4478
4426
4353 | 0092
.0157
.0398
.0627
.0845 | .7381
.6861
.6352
.5857
.5378 | 5240
5149
5026
4873 | .0723
.1079
.1390
.1657
.1882 | | 1.0
1.1
1.2
1.3
1.4 | 1061
0342
.0415
.1207
.2030 | .6974
.7386
.7754
.8081
.8370 | .4352
.3898
.3470
.3072
.2703 | 4675
4411
4131
3840
3543 | .9310
.9100
.8857
.8582
.8277 | 1941
2266
2588
2901
3196 | 3230
3249
3189
3051
2838 | .5596
.5176
.4768
.4374
.3996 | 4258
4143
4011
3862
3699 | .1050
.1239
.1411
.1564
.1696 | .4919
.4479
.4062
.3668
.3298 | 4498
4283
4056
3820
3578 | .2067
.2213
.2323
.2398
.2441 | | 1.5
1.6
1.7
1.8
1.9 | .2880
.3753
.4647
.5559
.6486 | .8623
.8843
.9034
.9199
.9340 | .2363
.2053
.1773
.1521
.1296 | 3245
2950
2662
2383
2118 | .7944
.7585
.7204
.6805
.6392 | 3466
3705
3908
4069
4185 | 2557
2214
1822
1392
0937 | .3635
.3292
.2968
.2663
.2378 | 3523
3338
3145
2946
2745 | .1807
.1896
.1961
.2004
.2024 | .2953
.2632
.2335
.2063
.1813 | 3333
3088
2845
2608
2377 | .2454
.2441
.2403
.2343
.2265 | | 2.0
2.1
2.2
2.3
2.4 | .7427
.8378
.9338
1.0306
1.1280 | .9459
.9560
.9644
.9714
.9772 | .1097
.0922
.0769
.0638
.0525 | 1867
1633
1418
1220
1042 | .5970
.5542
.5115
.4692
.4278 | 4256
4279
4258
4193
4087 | 0471
0008
.0439
.0858
.1241 | .2114
.1870
.1646
.1441
.1255 | 2542
2341
2143
1950
1764 | .2022
.1999
.1956
.1897
.1823 | .1587
.1382
.1198
.1033
.0886 | 2156
1944
1743
1554
1378 | .2171
.2065
.1948
.1824
.1695 | | 2.5
2.6
2.7
2.8
2.9 | 1.2260
1.3244
1.4232
1.5222
1.6214 | .9820
.9858
.9890
.9915
.9935 | .0429
.0348
.0280
.0224
.0177 | 0883
0741
0617
0510
0417 | .3876
.3490
.3122
.2775
.2451 | 3946
3774
3575
3357
3123 | .1578
.1863
.2094
.2269
.2388 | .1088
.0938
.0804
.0686
.0581 | 1586
1418
1259
1111
0975 | .1735
.1638
.1533
.1422
.1309 | .0757
.0643
.0543
.0457
.0382 | 1215
1066
0929
0805
0694 | .1563
.1432
.1302
.1175
.1053 | | 3.0
3.1
3.2
3.3
3.4 | 1.7209
1.8204
1.9201
2.0199
2.1197 | .9951
.9963
.9973
.9980 | .0140
.0109
.0085
.0065 | 0339
0273
0217
0172
0135 | .2151
.1875
.1624
.1397
.1194 | 2881
2634
2388
2147
1915 | .2453
.2469
.2441
.2374
.2274 | .0490
.0411
.0343
.0284
.0234 | 0850
0736
0633
0542
0460 | .1194
.1081
.0971
.0865
.0765 | .0318
.0263
.0216
.0177 | 0594
0506
0429
0361
0302 | .0937
.0828
.0727
.0633
.0548 | | 3.5
3.6
3.7
3.8
3.9 | 2.2196
2.3195
2.4195
2.5194
2.6194 | .9990
.9993
.9996
.9998 | .0038
.0029
.0022
.0017
.0013 | 0104
0080
0061
0046
0034 | .1014
.0855
.0717
.0596
.0493 | 1693
1486
1293
1116
0956 | .2150
.2006
.1849
.1685
.1518 | .0192
.0156
.0126
.0102
.0081 | 0388
0326
0271
0225
0185 | .0671
.0584
.0504
.0432
.0367 | .0116
.0093
.0074
.0059 | 0251
0207
0170
0139
0113 | .0471
.0402
.0340
.0286
.0239 | | 4.0
4.1
4.2
4.3
4.4 | 2.7194
2.8194
2.9194
3.0195
3.1195 | 1.0000
1.0000
1.0000
1.0000 | .0010
.0008
.0006
.0005 | 0025
0018
0013
0009
0007 | .0405
.0330
.0267
.0215
.0171 | 0812
0685
0573
0476
0392 | .1354
.1195
.1044
.0903 | .0064
.0051
.0040
.0031
.0024 | 0151
0123
0099
0079
0063 | .0310
.0260
.0216
.0178 | .0036
.0028
.0022
.0016 | 0091
0073
0058
0046
0036 | .0198
.0163
.0134
.0109
.0088 | | 4.5
4.6
4.7
4.8
4.9 | 3.2195
3.3194
3.4194
3.5194
3.6194 | 1.0000 | .0003 | 0004 | .0065 | 0320
0260
0209
0167 | .0658
.0553
.0461
.0381
.0313 | .0018
.0014
.0010
.0008 | 0050
0039
0031
0024
0018 | .0119
.0096
.0077
.0061
.0048 | .0009
.0007
.0005
.0003 | 0028
0022
0017
0013
0010 | .0070
.0056
.0044
.0035 | | 5.0
5.1
5.2
5.3
5.4 | 3.7194
3.8194
3.9194
4.0194
4.1194 | | | | .0038
.0029
.0022
.0016
.0012 | 0104
0082
0063
0049
0037 | .0254
.0205
.0163
.0129
.0102 | .0004
.0003
.0002
.0001 | 0014
0011
0008
0006
0005 | .0038
.0029
.0023
.0017
.0013 | .0001
.0001
.0000
.0000 | 0008
0006
0004
0003
0003 | .0021
.0016
.0012
.0009 | | 5.5
5.6
5.7
5.8
5.9 | 4.2194
4.3194
4.4194
4.5194 | | | | .0009
.0006
.0004
.0003
.0002 | 0028
0021
0016
0012
0009 | .0079
.0061
.0047
.0036
.0027 | .0000
.0000
.0000
.0000 | 0003
0002
0002
0001
0001 | .0010
.0008
.0006
.0004 | .0000 | 0002 | .0005 | | 6.0
6.1
6.2
6.3 | | , | | , . | .0001
.0001
.0000 | 0006
0004
0003
0002 | .0020
.0015
.0012
.0007 | .0000 | 0001
0001
.0000 | .0002
.0002
.0001 | | | - | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE ALONG THE POROUS WALL | | | | | | TEMPER | | LONG THE P | | .b | | | | | |--------------------------------------|--|---|--|--|---|--------------------------------------|---|--|---|---|--|--|---| | | | | | | | f _W = | -1; Eu = | | | | | | | | | | | | | | (21) | 384
.9092
.8598 | 5 | (22) $n = 0.5$ | | 5 | (23)
n = 1.0 | | | | | δ [•] √Re
x | 4.3923 | Į. | - C | x = 1 | .9092 | 5 _c | /Re = 0.6 | 6499 | <u>σ</u> 2
δ+ | = 0.4
A/Re | 649 | | | | x x | - 1.0717 | | 0t | x = 5 | .8598 | - '' | = 3.3 | 380 | | | | | η | f | f' | f" | f" | Y | Υ¹ | Υ [#] | | Y' | Υ" | Y | Υ' | Υ" | | 0
.2
.4
.6 | -1.0000
9993
9970
9929
9870 | 0
.0075
.0157
.0248
.0349 | 0.0355
.0392
.0434
.0479
.0529 | 0.0178
.0196
.0216
.0238
.0261 | 1.0000
1.0000
.9999
.9998
.9994 | 0
0001
0005
0013
0024 | 0
0013
0028
0046
0063 | 1.0000
.9782
.9550
.9303
.9042 | -0.1052
1125
1199
1271
1343 | -0.0368
0368
0366
0361
0353 | 1.0000
.9714
.9409
.9086
.8747 | -0.1383
1478
1570
1656
1736 | 0466
0444
0417
0386 | | 1.0
1.2
1.4
1.6
1.8 | 9789
9685
9555
9397
9208 | .0460
.0583
.0718
.0866
.1029 | .0583
.0643
.0708
.0778
.0854 | .0286
.0311
.0338
.0366
.0393 | .9988
.9978
.9964
.9944
.9916 | 0037
0060
0087
0118
0159 | 0090
0118
0148
0183
0222 | .8766
.8477
.8174
.7860
.7533 | 1412
1480
1544
1604
1659 | 0343
0329
0311
0289
0263 | .8392
.8024
.7643
.7251
.6851 | 1810
1876
1933
1980
2017 | 0350
0309
0262
0212
0156 | | 2.0
2.2
2.4
2.6
2.8 | -,8984
8723
8421
8075
7680 | .1208
.1404
.1618
.1850
.2102 | .0936
.1022
.1114
.1210
.1309 | .0420
.0446
.0469
.0488
.0503 | .9880
.9832
.9773
.9699
.9608 | 0207
0265
0332
0410
0498 | 0265
0311
0362
0415
0471, | .7196
.6850
.6496
.6136
.5771 | 1709
1752
1788
1815
1834 | 0233
0198
0159
0116
0068 | .6445
.6035
.5624
.5213
.4807 | 2043
2056
2056
2043
2017 | 0097
0035
.0031
.0098
.0165 | | 3.0
3.2
3.4
3.6
3.8 | 7233
6729
6165
5537
4840 | .2374
.2666
.2978
.3311
.3662 | .1410
.1512
.1613
.1710
.1801 | .0510
.0509
.0497
.0474
.0436 | .9497
.9368
.9214
.9035
.8828 | 0598
0711
0832
0964
1106 | 0528
0584
0638
0686
0727 | .5403
.5035
.4668
.4304
.3947 | 1842
1840
1828
1803
1768 | 0018
.0036
.0092
.0149
.0206 | .4407
.4017
.3638
.3274
.2926 | 1978
1925
1859
1782
1694 | .0232
.0296
.0357
.0413
.0463 | | 4.0
4.2
4.4
4.6
4.8 | 4071
3226
2304
1301
0217 | .4031
.4415
.4811
.5217
.5628 | .1884
.1954
.2009
.2045
.2061 | .0383
.0315
.0231
.0133
.0022 | .8592
.8326
.8029
.7701
.7343 | 1254
1408
1562
1715
1860 | 0757
0773
0771
0749
0704 | .3598
.3260
.2934
.2622
.2327 | 1721
1663
1595
1517
1431 | .0262
.0316
.0365
.0410
.0448 | .2597
.2288
.2000
.1735
.1493 | 1597
1493
1383
1269
1153 | .0505
.0538
.0562
.0576
.0579 | | 5.0
5.2
5.4
5.6
5.8 | .0950
.2199
.3528
.4936
.6420 | .6040
.6448
.6847
.7232
.7598 | .2054
.2022
.1965
.1884
.1780 | 0098
0222
0347
0465
0571 | .6958
.6547
.6114
.5664
.5203
| 1995
2113
2210
2282
2325 | 0635
0542
0426
0290
0138 | .2050
.1792
.1554
.1336
.1139 | 1339
1241
1139
1036
0933 | .0478
.0500
.0513
.0517
.0513 | .1274
.1078
.0904
.0751
.0619 | 1038
0924
0815
0711
0614 | .0573
.0558
.0534
.0503
.0467 | | 6.0
6.2
6.4
6.6
6.8 | .7974
.9595
1.1276
1.3012
1.4797 | .7942
.8260
.8548
.8806 | .1656
.1517
.1367
.1210
.1053 | 0660
0728
0771
0788
0779 | .4737
.4271
.3813
.3369
.2944 | 2336
2315
2261
2176
2064 | .0024
.0188
.0348
.0496
.0625 | .0963
.0806
.0669
.0550 | 0832
0734
0640
0553
0472 | .0500
.0480
.0453
.0421
.0386 | .0505
.0408
.0327
.0259
.0204 | 0525
0444
0371
0307
0251 | .0427
.0385
.0342
.0300
.0259 | | 7.0
7.2
7.4
7.6
7.8 | 1:6623
1.8486
2.0379
2.2297
2.4234 | .9228
.9393
.9531
.9643 | .0900
.0755
.0622
.0502 | 0698
0634
0560 | .2545
.2174
.1836
.1531
.1262 | 1 | .0730
.0807
.0854
.0873
.0864 | .0361
.0288
.0227
.0177
.0137 | 0399
0333
0275
0224
0181 | .0348
.0310
.0272
.0235
.0200 | .0158
.0122
.0093
.0070
.0052 | 0203
0162
0129
0101
0078 | .0220
.0185
.0154
.0126
.0102 | | 8.0
8.2
8.4
8.6
8.8 | 2.6188
2.8155
3.0131
3.2114
3.4102 | .9803
.9858
.9898
.9929 | .0309
.0236
.0176
.0129
.0093 | 0332
0265
0207 | .1027
.0825
.0654
.0513
.0396 | 1090
0929
0779
0644
0524 | .0831
.0780
.0714
.0637
.0560 | .0105
.0079
.0059
.0044
.0032 | 0141
0113
0088
0068
0051 | .0168
.0139
.0113
.0091
.0072 | .0039
.0028
.0020
.0015 | -:0060
-:0045
-:0034
-:0025
-:0018 | .0081
.0064
.0050
.0038
.0029 | | 9.0
9.2
9.4
9.6
9.8 | 3.6093
3.8088
4.0084
4.2082
4.4080 | | .0045
.0030
.0020 | 0086
0061
0042 | .0302
.0227
.0168
.0123
.0089 | 0332 | .0271 | .0023
.0016
.0011
.0008
.0005 | 0015 | .0025 | .0003 | 0013
0010
0007
0005
0003 | .0022
.0016
.0012
.0008 | | 10.0
10.2
10.4
10.6 | 4.8078
5.0078
5.2077 | .9998 | .0005 | 0013
0008
0005 | .0044
.0030
.0020 | 0081
0059
0042 | .0130
.0098
.0073 | .0003
.0002
.0001
.0000 | 0008
0005
0004
0002 | | .0000 | | .0004
.0003
.0002
.0001 | | 11.0
11.2
11.4
11.6
11.8 | | | | - | .0008
.0004
.0002
.0001 | 0014 | .0027 | | | | | | | | 12.0
12.2
12.4 | !] | | | | .0000 | 0002 | .0004 | | | | | | | TABLE I. - Continued. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE TEMPERATURE ALONG THE POROUS WALL | | | | | | | | · | | | | | | |---------|------|--|---------------------|---------------------------------|--|----------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|-------| | | | 699.7 | 5239 | μĀ. | -0.1740
1190
0679
0211 | .0569
.0873
.1115
.1296 | .1481
.1495
.1464
.1396 | .1182
.1052
.0917
.0784 | .0539
.0433
.0342
.0264 | .0149
.0108
.0077
.0054 | .0025
.0016
.0001 | .0003 | | | (56) | $\frac{\delta_c \sqrt{Re}}{x} = 1.0$ $\frac{\delta_t \sqrt{Re}}{x} = 0.$ | Ϋ́ | -0.3314
3606
3792
3880 | 3801
3656
3457
3214 | 2652
2353
2057
1770 | 1252
1028
0831
0661 | 0398
0301
0224
0164 | 0083
0057
0039
0026 | 0010
0006
0004
0002 | 0000 | | | | | ം | ``ادد | Y | 1.0000
.9306
.8565
.7796 | .6249
.5502
.4790
.4123 | .2947
.2446
.2005
.1623 | .1021
.0794
.0608
.0459 | .0251
.0181
.0129
.0091 | .0043
.0029
.0020
.0013 | .0005
.0005
.0000
.0003 | .0003 | | | | 9886 | 7826 | Υ" | -0.1327
1091
0853
0612 | 0126
.0112
.0341
.0555 | .0914
.1048
.1146
.1205 | .1210
.1162
.1087
.0991 | .0766
.0650
.0539
.0437 | .0268
.0203
.0151
.0109 | .0054
.0037
.0024
.0016 | .0006 | | | (52) | $\sqrt{Re} = 0.5$ | √Re = 1. | - Ā | -0.2528
2770
2964
3111 | 3258
3259
3214
3124 | 2826
2630
2410
2174 | 1686
1448
1223
1015 | -,0663
-,0521
-,0402
-,0305
-,0226 | 0165
0118
0083
0057 | 0026
0017
0001 | 0003 | | 0.5 | | δ _C , | a C | Y | 1.0000
.9469
.8895
.8287 | .7007
.6354
.5706
.5072 | .3877
.3331
.2827
.2368 | .1596
.1283
.1016
.0793 | .0460
.0342
.0250
.0180 | .0088
.0060
.0040
.0026 | | 0000 | | 1; Eu = | | 585
.9012 | .0745 | λiλ | 0
0277
0570
0872
1086 | 1426
1680
1835
1920 | 1764
1519
1175
0756 | .0176
.0618
.1001
.1302 | .1616
.1632
.1575
.1454 | .1112
.0926
.0748
.0588 | .0335
.0242
.0172
.0117 | .0047 | | £ 3 | (24) | 0.3 | Re 3 | λ | 0
0028
0112
0257 | 0673
1040
1350
1736 | 2490
2821
3092
3286 | 3404
3324
3161
2929
2647 | 2333
2007
1685
1382
1107 | 0866
0663
0495
0362 | 0181
0121
0081
0052 | 0019 | | | | - 2 × | St v | ¥ | 1.0000
.9998
.9985
.9949 | .9766
.9598
.9357
.9049 | .8200
.7669
.7076
.6437 | .5087
.4412
.3763
.3153 | .2096
.1662
.1278
.0972 | .0527
.0376
.0261
.0176 | .0084
.0042
.0022
.0007 | 0000. | | | | | | II. J | -0.0992
1137
1275
1402 | 1614
1689
1739
1758 | 1698
1618
1509
1375 | 1061
0897
0739
0593 | 0351
0259
0130
0088 | 0058
0037
0023
0014 | 0005
0003
0001 | · | | | | 1.2597 | . 0.5236 | ı,J | 0.5345
.5132
.4890
.4622
.4330 | .4017
.3686
.3343
.2993 | .2297
.1965
.1652
.1363 | .0875
.0679
.0516
.0383 | .0196
.0136
.0091
.0060 | .0024
.0015
.0009
.0005 | .0002 | | | | | × | δ ₁ ν/Re | Į. | 0
.1048
.2051
.3002 | .4733
.5504
.6207
.6841 | . 7898
. 8324
. 8685
. 8986 | .9430
.9584
.9703
.9793 | .9905
.9938
.9961
.9975 | .9991
.9995
.9997
.9999 | 1.0000 | | | | | | | Į. | -1.0000
9894
9584
9078 | | 1063
.0561
.2263
.4031 | .7720
.9622
1.1552
1.3502 | 1.7444
1.9428
2.1418
2.3412
2.5408 | 2.7406
2.9405
3.1404
3.3403
3.5403 | 3.7403
3.9403
4.1403
4.3403 | | | | | | | n | Ó
G 4 8 8 | 0.4.0.0 | 00000
00400 | νυνυν
Οα4•αα | 44444
0040 | იიოიი
ი. 4 | 00000 | 7.0 | 3365 TABLE I. - Concluded. VELOCITY AND TEMPERATURE DISTRIBUTIONS FOR WEDGE FLOW WITH A VARIABLE | WALL | |-------------| | POROUS | | HE | | ALONG | | TEMPERATURE | | (29) | | |---
--------------------------------------| | 1 0 4 1 | 20000.
20000.
20000. | | 200000 | | | Y" Y" 1.1504 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 1.0517 | .0035
.0021
.0007
.0004 | | (28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28) | 0013
0008
0002
0001
0001 | | 1.00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .0005
.0002
.0001
.0001 | | 7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309
7309 | 11
11
20
10
10
10 | | | 00/5
0045
0008
0008 | | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | .0002 | |
-0.28435
-0.28435
-0.28438
-0.33388
-0.33388
-0.285338
-0.28538
-0.285338
-0.28538
-0.28538
-0.28538
-0.0853
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0.08538
-0 | 0000. | | f." 1 0 9448 1 1 0 7565 1 1 1 1 626 1 1 1 626 1 1 1 626 1 1 | T000. | | 1.00000.1 | • | | 1.0000
1.38552
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000000
1.000000
1.000000
1.00000000 | . 65 | | C | | TABLE II. - SUMMARY OF HEAT-TRANSFER AND FRICTION PARAMETERS AND BOUNDARY-LAYER THICKNESSES | f _w | Eu | n | Nu/√Re
-Y' _w | C _f √Re | δ [#] √Re/x | δ ₁ √Re/x | δ _c √Re/x | δ _t √Re/x | Table I part no. | |----------------|------------|---|---------------------------------------|--------------------|----------------------|----------------------|---|--|----------------------| | 0 | 0 | -0.5000
0
.5000
1.000 | 0
0.2927
.4059
.4803 | 0.3320 | 1.7215 | 0.6652 | 1.8610
.8353
.5782
.4582 | 3.4167
1.9590
1.5617
1.3627 | 2 3 | | | . 5 | -0.7500
0
.5000 | 0
.4162
.5426
.6350 | 0.89975 | 0.8542 | 0.3773 | 1.6075
.7921
.6204
.5181 | 2.4034
1.4067
1.1861
1.0515 | 4 5 6 | | | 1.0 | -1.000
5000
0
.5000
1.000 | 0
.3228
.4958
.6159
.7090 | 1.2326 | 0.6477 | 0.2921 | 1.4086
.9185
.7080
.5861 | 2.0175
1.4398
1.1867
1.0361
0.9356 | 7
8
9
10 | | -0.5 | 0 | -0.3702
0
.5000
1.000 | 0
.1661
.2611
.3211 | 0.1645 | 2.4595 | 0.8288 | 1.9212
.9738
.6231
.4724 | 4.1340
2.6495
2.0470
1.7627 | 11
12
13 | | | •5 | -0.5356
5000
0
.5000
1.0000 | 0
.0272
.2594
.3834
.4711 | 0.6974 | 1.0342 | 0.4440 | 1.7434
1.6506
.9944
.7382
.5988 | 2.7060
2.5929
1.7756
1.4450
1.2578 | 14
15
16
17 | | | 1.0 | -0.6789
0
.5000
1.0000 | 0
.2934
.4132
.5030 | 0.9692 | 0.7805 | 0.3439 | 1.5535
.9184
.7265
.6089 | 2.2880
1.5296
1.2921
1.1433 | 18
19
20 | | -1.0 | 0 | -0.2384
0
.5000
1.0000 | 0
.0516
.1052
.1383 | 0.0355 | 4.3923 | 1.0717 | 1.9092
1.1499
.6499
.4649 | 5.8598
4.4140
3.3380
2.8709 | 21
22
23 | | | •5 | -0.3585
0
.5000
1.0000 | 0
.1392
.2528
.3314 | 0.5345 | 1.2597 | 0.5231 | 1.9048
1.2696
.8886
.6997 | 3.0781
2.2737
1.7826
1.5239 | 24
25
26 | | | 1.0 | -0.4235
0
.5000
1.0000 | 0
0.1457
.2553
.3360 | 0.7565 | 0.9448 | 0.4047 | 1.7309
1.2077
.9099
.7402 | 2.6219
1.9946
1.6269
1.4109 | 27
28
29 | Figure 1. - Velocity distribution in constant-property laminar boundary layer for permeable and impermeable wall. (c) Wall-temperature-gradient parameter, 1; Prandtl number, 0.7. Figure 2. - Temperature distribution in constant-property laminar boundary layer for permeable and impermeable wall at variable temperature. Flat-plate flow; Euler number, 0. Figure 4. - Temperature distributions in constant-property laminar boundary layer
for permeable and impermeable wall at variable temperature, Stagnation point flow; Euler number, 1.0. Figure 6. - Effect of variable wall temperature on local heat-transfer coefficient for laminar boundary layer; Prandtl number, 0.7. (b) Euler number, 0.5. (a) Euler number, O. (c) Euler number, 1.0. Figure 9. - Value of n for zero temperature gradient at wall (Y'(0) = 0); Prandtl number, 0.7.