NACA TN 3283

NACA

v TV
3243
=
NATIONAL ADVISORY COMMITTEE ==
FOR AERONAUTICS 1=

TECHNICAL NOTE 3283

AERODYNAMIC FORCES, MOMENTS, AND STABILITY
DERIVATIVES FOR SLENDER BODIES OF
GENERAL CROSS SECTION
By Alvin H. Sacks

Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington
November 1954

WN ‘ddv) AHVHEIT HOTL




1E

TABLE COF CONTENTS

Summary
Introduction
List of Important Symbols
General Analysis

Differential Equation and Presgsure Relation

Total Forces and Moments

Reduction of the integrals
The complex potential

Stability Derivatives

Reletionships Among the Stabllity Derivatives
Apparent Mass
Applications of the Theory

Wings with Thickness and Camber

Plane Wing-~Body Combination

Wing-Body=Vertical-Fin Combination
Concluding Remarks
Appendix A: Differentiation of a Contour Integral
Appendix B: The Residue A; of the Complex Potential
References
Tables
Figures

TECH LIBRARY KAFB, NM

LR

00kk2un



NATTONAL, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAT. NOTE 3283

AERODYNAMIC FORCES, MOMENTS, AND STABILITY
DERIVATIVES FOR SLENDER BODIES OF
GENERAI. CROSS SECTION

By Alvin H. Sacks
SUMMARY

The problem of determining the total forces, moments, and stability
derivetives for & slender body performing slow maneuversg in a compressible
fluid is treated within the assumptions of slender-body theory. General
expressions for the total forces (except drag) and moments are developed
in terms of the geometry and motions of the airplane, and formulas for
the stability derivatives are derived in terms of the mepping functions
of the cross sections.

All components of the motlon are treated simultanecusly and second
derivatives as well as first are obtained, with respect to both the
motion components and their time rates of chenge. Coupling of the longi-
tudinal and lateral motions 1s thus automatically included. A number of
general relationships among the various stability derivatives are found
which are independent of the configuration, so that, at most, only 35
of a total of 325 first and second derivatives need be calculated
directly. Calculations of stability derivatives are carried out for two
triangulaer wings with camber and thickness, one with & blunt trailing
edge, and for two wing-body combinations, one having a plane wing and
vertical -fin.

The influence on the staebility derlvatives of the squared terms in
the pressure relation is demonstrated, and the apparent mass concept as
applied to slender-body theory is discussed at some length in the light
of the present anaslysis. It is shown that the stability derivatives can
be calculated by apparent mass although the general expressions for the
total forces and moments involve additional terms.

INTRODUCTION

Ever since R. T. Jones (ref. 1) in 1946 demonstrated the use of
Munk's apparent mass concept of 1924 (ref. 2) for solving problems of
slender wings in a compressible flow, an ever-incressing number of
investigators have entered the field of analysis now commonly known as
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slender-body theory. The stability derivatives of slender triangular
wings were treated by Ribner (ref. 3) in 1947 following the pattern of
Jones, and in 1948 Spreiter (ref. L) extended the latter's result by
means of conformel mepping to include certain wing-body combinations.
Shortly thereafter, in 1949, Ward's general anslysis for slender pointed
bodies in steady supersonic flow (ref. 5) was published.

After the appearance of Ward's analysis, a number of papers were
written on various aspects of slender~body theory including extensions
to subsonic flow and to "not-so-glender" bodies (e.g., refs. 6 and 7),
and in 1952 Phythian (ref. 8) developed an analysis which included time
variations in forwerd velocity and angles of incidence. Although many
papers (e.g., refs. 9 and 10) have been devoted to the calculation of
various stabillity derivatives for specific configurations, it is only in
the past few months that & report by Miles (ref. 11) has given the com-
Plete counterpart of Ward's analysis for unsteady flow.

The determination of stability derivatives has long been of concern
to the englneer in connection with the dynemic behavior of airplanes,
but the problem has assumed even greater proportions in the more recent
slender conflgurations of missile design. The stabillity derivatives them-
selves correspond to the coefflclents of a Taylor expasnsion representing
a particular component of force (say 1ift) or moment as a function of
the airplane motions. The coefficient of any particular motion (say q)
in the expansion 1s egual to the partial derivative of the force or
moment cowponent with respect to that motion. Ordinarily, stability
derivatives are defined as these partial derivatives eveluated with all
of the independent varisbles except o set to zero, so that the usual
stability derivatives depend upon the initial angle of attack as well as
on the configuration. In the present paper, however, all derivatives .
are evaluated with all of the independent variasbles (a, B, P, 4, T, Gy B,
P, 4, T) set to zero. The advantages of this choice will become apparent
in the course of the analysis. .

The present paper employs an approech believed to be novel in
slender-body theory and is concerned with developing formulaes for the
forces and moments as well as the stability derivatives for general
slender wing=body combinations.®* The significance of the squared terms
in the pressure relation for slender configurations precludes the
posslbility of considering the longitudinal and lateral motions inde-
pendently, so all motions of the airplane are. treated simultaneously.

lWhile the present enalysis was belng carried out, Bryson (ref. 12)
published a paper treating essentially the same subject from a different
viewpoint based on the tacit assumption that all the forces, moments,
and stability derivatives can be obtained from the apparent mass analogue.
This assumption and some of Bryson's results are discussed in = later
sectlion., ' T -
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The mathematical restrictions on the generality of the sghapes that
can be rigorously handled have been discussed in detail by Ward (ref. 5)
and more recently for the unsteady case by Miles (ref. 11). Such dis-
cussion will not be repeated in this report.

LIST OF IMPORTANT SYMBOLS

an coefficient of é%- term iﬁ;series expansion of the mapping

function & = £(¢) = di-}j ;% N o
n=o0

Ay coefficient of L term in expansion of the complex potential
F(L) :

Ay g value of A; at a=B=p=g=r=0

B coefficient of In { in expansion of F({); B = g% %2

c1 distance from airplene nose to pivot -point

F complex potentisl ¢ + iV

1 length of airplane

L force in the 2z direction (approximately 1ift)

! rolling moment sbout the x axis

[2% reference length

M pitching moment about pivot point x = ¢y

N yawing moment about pivot point x = ¢q

P angulsr rolling velocity about the x exis

P1 pressure

a angular pitching velocity about the y ‘axis

4. fluid speed relative to axes fixed in the body

dn component of d,, normal to body contour in plane x = const.

(positive into the fluid)
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component of ¢, tangential to body contour in plane
x = const. (positive counterclockwise looking upstream)

V + 1W
angular yawing velocity about the =z~ axis

radius of transformed circle corresponding to airplane cross
section . _

cross-sectional area

reference area

time

component of flight velocity along negative x axis
component of flight velocity along positive y axis
Vo - r(x-ci)

gpeed of a point fixed in the xyz system of axes
components of q,. in the x,y,z directions
component of flight wveloecity along positive 2z axis
Wo = a(x=-cy)

force in the y direction (side force)

Cartesian coordinates fixed in the body (x rearward,
y to starboard, z upward)

angle of attack (angle between arbitrarily chosen xy plane
and flight direction)

angle of sideslip (angle between xz plane and flight
direction)

angle between the positive y axis and the tengent to the
body contour in a plane x = const.

fluid mess density
outward normal to the body contour Iin plane x = const.

¥y + iz
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5
Cc complex coordinate of centroid of cross-sectional area
(Yo + 1zc)
(o1 complex coordinate in transformed circle plane
? velocity potential
q)x} qu} N Cp
%, B, partial derivatives of with respect to x,y,z, and t

P_,Q veloclity potentials for unit veloecity of the cross section in
2’'s the y,z directions

Q' velocity potential associated Kith variations in shape and size
of cross section with x
¥ stream function
*s stream function along the contour of the cross section
Special Notations
j[‘ contour integral taken once round the body cross section in the
positive (counterclockwise) sense
Y
Porce coefficients: Cy = ———e————, eifc.
T (1/e)euRsy’
Moment coefficients: Cp = M s ete.
(1/2)pUs?Splr
Staebility derivatives:
ac ac cc .
@ Boc P a<Eﬁ'.> o da. 5<Plr>
Ug Uo

Cys = —p==;. Cys = ——=5—; Oy, = ———ip; ete.
& alr Yy B plr op Pz \2
Uo Uo

All derivatives are evaluated. at



6 NACA TN 3283

R real part:

I imaginary pert

(.) derivative of { ) with respect to time
(-) complex conjugate of ( )

GENERAL ANALYSIS -

The problem to be treated here ls the determination of the aero-
dynamic forces and moments (except drag) and the stability derivatives
for a smooth slender alrplane or missile of arbitrary crose section per-
forming slow maneuvers in a compressible fluid. The configuration will
be limited in that the base (if any) of the fuselage and all wing trail-
ing edges must lie 1n a plane essentially normel to the longitudinal body
axis. . - o -

Differential Equation and Pressure Relation

The linearized differential equeation for the velocity potential of
unsteady motion of & compressible fluld is the well-known wave equation

5 O = Oy - By - B = O (1)

Co

where the system of axes Mif is fixed relative to the undisturbed fluid,
co 1s the speed of sound in the undisturbed fluid, and T is time as
measured in the Mt system. Thus the velocity potential ¢ 18 express-
ible as & = ¥(A,pn,t,T).

In general, the pressure relation associated with the velocity
potential & is given by (ref. 13, p. 19)

P 1 1
Tl = =0, - 5 qlz + f Pld<a"> + const. (2)

where p, 1is pressure and a; is the magnitude of the fluid velocity
expresgible as”

%7 =02+072+072 ©(3)

2The subscripts on p and q¢ are used to.distinguish them from the
angular velocitles of rolling and pitching.
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It will be convenient for &
the present problem to introduce
a coordinate system x3yz which
is fixed in the airplane. The
axes chosen for this purpose are
shown in the sketch and comprise
a Cartesian coordinate system
endowed with the translational
velocities Uy, Vg, Wo and the
rotational velocities p, q, T
of the airplane. (Note that
this does not constitute a com-
pletely right-hand system.)

The x; axie passes through
the airplane nose, and the ori-
gin of the x;yz system is
fixed at an arbitrary distance
ey from the nose as shown in
the sketch.

Since it is the purpose of this paper to study only instantaneous
forces and moments (i.e., no time histories), it will be sufficient to
choose an instant of time such that the positions of the moving X1yz
system and the stationary AtE system are just coincident. Thus,
equations (1) end (2) will be expressed in the x;yz system only for
this instant, designated T = 0. For this purpose a new function @
is introduced such that

q’(xl;.V:Z:t) = °(7\;IJ-: EJT) ()‘")

Now, through the use of the transformations relating the moving and
stationery coordinates (see e.g., ref. 13, p. 12, and ref. 14, p. T9)
one finds at 7=t = O that .

e, e, Wy, Wk
9t T Odxy OT QJy oT Jz OT

= Py + UgPy, = (Vo + 2 - rx1)Py - (Wo = DY - ax1 )Pz
and
Qk = CPXJ.; QlJ- = ch; QE, L= q)z
Tt can be seen from the sketch that the quantities (Vo + pz - rxz) and
(Wo = py - gx1) are simply the velocity components in the y and z
directions of & point fixed in the x;yz system. Note that in the

corresponding x component (~Ug + ry + qz) the products ry and qz
are considered negligible compered with Ug.
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With the assumptions of slender bodies, small angles, and slow
maneuvers, the differential equation (1) reduces to Leplace's equation
in planes Xy = const. near the body; that is

Pyy + Pzz = O (5)

It follows alsc that the density p must be treated as a constant
in the pressure relation (2) which now becomes

b 1

== @ - UPx, + (Vo + D2 = rx1)% + (W - DY ~ gx1)Pp -

% (¢b? + ©,%) + const. (6)

Here, for the seke of convention, one cen transfer the origin of the
moving axes to the body nose by letting

X3 =X =-¢C31

go that pitching and yawing rotations are still made sbout an arbitrary
pivot point x = cy. Thus, introducing the notation

Vo = r(x = c1)

V=Vy=-rx;

W="Wy=-ax1 =W, = a(x = c1)

equation (6) can be written
%} == Py - Uo® + (V + pz)?y + (W - p1)9, - % (9,2 + 9,%) + const.

5
(7

This, then, is the pressure relation (referred to the moving body axes)
upon which the calculations of the forces and moments will be based. It
should be noted that a consistent application of the slenderness approx-
imation requires the retention of the squared terms ¢y? and 9,2, Thus
slender-body theory 1s not a strictly linear theory although the differ-
ential equation (5) is certainly linear. This means that solutions of
equation (5) for @ (and hence the velocities) can be obtained by super-
position, but the pressures cannot. Likewise, the forces and moments
cannot be calculated by superposition except for those speclal cases in
which the contribution of the squared terms to the loading vanishes.
Furthermore, when the airplane is performing combined maneuvers (e.g.,
gimulteneous rolling and pitching), the squared terms may contribute
additional forcesgs and momenta. Thege 1n fact give rlse to ‘the second-
order stability derivatives that will be included in the present analysils.
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Total Forces and Moments

The analysis to be presented here z
for calculating the total forces
(except drag) and moments on & slender
configuration will be the counterpart
of & method originally due to H. Blasius
(ref. 15) for obtaining the forces and
moments on a two-dimensional body of
arbitrary shape ilmmersed in a steady p,dz
incompressible stream.® This analysis,
although not suited to the calculstion ndy
of total drag, will nevertheless take
proper account of the local forces
agsociated with leading-edge suction.
Consider a lemina of the slender air-
plane, cut parallel to the yz plane,
of thickness dx as ghown in the sketch.
One can write immediastely the differ-
ential 1ift and sgide force on an ele=-
mental area in terms of the local
pressure Pi on the body:

4L = py dy dx
and (8)
d®Y = = p1 dz dx

Now, by introducing the complex variable € =y + iz, one can express
the differential complex force as

d2Y - 1 62T, = = py dz dx - 1 py dy dx = - 1 py dx af (9)

where E is the complex conjugate of §. In a similar feshion, the
differential rolling moment about the x axis can be expressed as

d2L' = - py zdz dx - py ¥y dy dx = - p1; dx R(taf) (10)

where IR denotes the real part. Further, the differential yawing and
piltching moments sbout the pivot point x = c3 are given by -

42N - 1 63 = - (a3Y - 1 @2L) (x - c3) = 1 palx - 1) ax af (11)

Integration of equations (9), (10}, and (11) gives for the total forces
and moments

SThe method of Blasius has been extended to two-dimensional unsteady
incompressible flows by L. M. Milne-Thomson (ref. 16) and recourse will
be had to many of his technigues throughout the present analysis.
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Y-1L=-1u[zaxfpl'df )
N-m=ifz(x-cl)dxfpldf > (12)
[}
" L'=-Rj;zdxfp1§d-§ J

where the contour integrals are taken round the boundary of the airplane
cross section in the positive (counterclockwise) sense. Before these
integrations can be effected, the pressure p; must, of course, be
expressed as a function of the complex variasble . Toward this end,

i1t will be convenient to Introduce two new definitions pertaining to
velocities in the Ffixed and moving coordinete systems., First, the square
of the speed of a point fixed in the xyz system can be written as

Va2 = U2 + (V + pz)° + (W - py)® (13)

Second, 1t i1s noted that the square of the fiuid speed relative to the
xyz system is given by

2 2 2
a® = w® + ¥+ = (O 4 Up)” + (9, =V - p2)° + (P, = W + py)
(1k)

so that, neglecting ®,° in comparison with ?yz and ©,2, one can write
equation (7) in the form

%& == - % qr2 + %-Vlz ¥ const. (15)

This expression will now be formed as a function of € through the
Introduction of the complex veriable R =V + iW and the complex
potential F =@ + iV,

The speed V. 1is immediately expressible as
U2 + [(V + pz) + i(W - py)] [(V + pz) - (W - py)}

Us® + (R = 1pt) (R + 1pf) (16)

V.2

while the components vy and wy of the relative fluid velocity are
related to F through the complex velocity by

vr-iwr=-§%-(v+pz)+i(w-py)=gF—§-§-ipE (17)
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Furthermore, at the body sur- z
face it will be seen from the
sketch that

]
&
4]
[N
(85}
+

Vo 4+ 1w

11

]
~~
&
]
[
g
St
m
&

so that : 3
L/
vy = v = (g  + 1q )e-16
(18)
where and g, are the

tangential and normal com=-
ponents of the transverse

relative veloclty and € 1s the angle defined .in the sketch.

parison of equations (17) and (18) gives
. arF - *
q @, ={ =—-R =1 1o
i <d§ P€’>e

from which

(& -T-nl) @10 -ang, (T 5 - ul) et -

It is now noted that (see sketch above)

Com=-

(19)

= (%Fg' -R - ipf)zezie - Eiqn<§% -R - ipE) el6  (20)
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Finally, the boundary condition
at the body surface requires that the
normael component of the fluid veloclty
relative to the moving xyz system be

equal to the normel component of the
forward flight velocity. Let C be
the contour of the alrplane cross
section in the plane x = const. and
d let C, represent the projection on
that plene of the contour at x + dx
(see sketch). If v is the outward
normel to C at any point, and dav
\ ’

1s the distance between C and Cj,
measured along the normal, then the
c above boundery condition 1s, to the
pregent order of accuracy,

dv
q-n = UO Ex- (21)

Thus the pressure relation of equation (15) can now be written (for
points on the airplane gurface) in the desired form

2 .
Pa - . - L (& R . oipl ) e2if 10 ¥ (O _F o ipt ) el®
s P - UoPy 5 (dg pt + °© 3% at pt ) el +

% (R - ipt) (R + ipl) + const. (22)

Reduction of the integrals.- Before making use of equation (22) in
writing the integrals for the forces and moments, 1t will be useful to
notice from the sketch on page 11 that the differential distances on the
body contour in planes x = const. are related by the angle 6 so that
dy = ds cos & and dz = ds sin 6 where ds 1is the differential arc
length, positive counterclockwlse. Hence,

al = ds e16; at = as e-16; at = at e-216 (23)

so that the first integral of equation (12) for the complex lateral force
can be written, after expanding the squared term in the pressure relation,
in the form
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15 fozaxf 9,af + ionfzde[@xdh
1§£ZMfP<%FE a sl faxf<3+1pc)2a;-
o [(Fax f Zatvon [Tox fTSats

onf fdvdFds-onf fdv(R+ipCds-

12 [Ta f - wl) v DT (21

Y - iL

Note that the constent term in the pressure relation contributes nothing
to the contour integrals of equation (12).

The nine contour integrals of equation (24) can be divided into
three types: (a) integrals that do not depend on the veloeity potential;
(b) integrals containing the real potential @; and (c) integrals con-
taining the complex potential F. The first type can be integrated at
once and these will be dealt with first. The second type will be reduced
to integrals of the third type by determining the stream function on the
boundary, and the third type will then be handled by the method of
residues.

It is first noted that ‘jp — ds 1s simply the rate of change of

crosg-sectional area S and that ,j[ g-—- ds is the complex conjugate

of the rate of change (in the x direction) of the moment of cross-
sectional area. Thus, one can write

+ ip 2. (8T,) (25)

f L & + 1D)as = L

?IE’:‘

where §c is the complex conjugate of the position of the centroid of
area of the cross section.

The other two integrals of equation (24) that do not depend on the
velocity potential can be conveniently evaluated by the use of Stokes'’
theorem which can be stated in complex form as (see ref. 16, p. 130)
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ff@,E)ag - 21 f -2._; as

or _ S :.Bf (26)
ff(c,g)aghaijs’ s

where S 1is the area enclosed by the contour. Thus, using the first
form of equation (26), one can write .

f (R + 1pD)%ag = 21 ff 2ip(R + ip-E-)dS = - bpS(R + 1pC,) (27)
o )

where § d1is the airplane cross~sectional area. Similarly, from the
second form of equation (26),

f (R - 1pt) (R + 1p0)dt = - 2pS(R + 1pf,) (28)

Thus, all the integrals of the first type discussed above have been
evaluated.

Before 1ntroducing the stream function for the evaluation of the
first two integrals of equation (24), it is well to note that the time
differentiation can be taken outside the integral sign with no diffi-
culty, but the =x differentiation cannot since the contour of inte=-
gration ig 1ltself a function of x. It is shown in Appendix A that

f@df afcpdf fz%l f‘Pyaa—Y;-dz
c

where C is the contour of integration round the airplane cross section
and the surface of the alrplane can be expressed elther as

2 Zl(x:Y)

or
Yl(X:Z)

y

Corresponding to these expressions for the surface are the expressions
for the slopes of the surface ’

37y _ _ dv/éx

ox cos 8
and
oYy _ dv/dx

dx sin 6
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80 that, recalling the relations
of equations (23), one can write ,

f¢xdf=§—xf¢di+
&
fd—;"c- (9, + 19 )ds
= jl-J{‘QdE + 1 QX_QE,dS
ox

ax at
(29)

Now, in order to express the

required integral ‘j[\¢dz. in terms

of the complex potential through

the relation @ =F + i¥, the stream
function on the boundary will be
obtained from the boundasry condition
of equation (21). That is, the
total outward normel of the fluid wvelocity in the plane x = const. 1s
given by the sum of q, and the normal velocity of & point on the
boundary considered fixed in the xyz system. Hence, (see sketch),

%g = (V + pz)ein 6 - (W - py)eos € + Ug %E (30)

end it 1s reczslled thet g8in 6 = dz/ds and cos 6 = dy/ds. The sense
of ds is indicated by the arrow along the contour. Thus, integrating
along the contour, one finds that the stresam function on the surface is
given by

1 > 1 av
Vo =Vz + 5 p2° - Wy + E-pyz + Uo‘/P o ds + G(x,t)

where G(x,t) is an arbitrary function of x end t. Now W¥g can also
be expressed as a function of the complex varisbles ¢ and R by noting
that

L(EY) = Vz - Wy = - 2 (K¢ - RD)

and

¥+ 22 = ¢
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whence . il

*S

- .Ei.I(EC__- RE) + %p@ + Ug f % ds + G(x,t) (31)

The integral j{‘ P3f is now expressible in terms of the complex poten-
tial since @ =TF + iV and the integral j{ ﬂrdz can be evaluated from

equation (31). That 1s, 'if one sets ¥ = ¥, + ¥; where ¥; represents
the integral term of equation (31), then

fﬂraE=fwan__+fﬂflaE=f vodgf m'c'qc -ffdwl (32)

Now, ¥;1 +teken once round the contour has the value Up ][ % ds or

simply Ug % and 1t is recalled thet J{ Z%x‘i ds = d%; (sta), so that

upon evaluating j[ Vo0 by the second form of Stokes' theorem (eq. (26))
and noting that f G(x,t)af = 0, one finds

f ¥al = -8(R + ipl,) + Uolo ':S—x - Uo fx- (s8e) (33)

where ‘50 is the complex conjugate of the point at which the integra-
tion was begun on the boundary. The final expression for fqnig

is therefore

FoT fRE s fO - T 0T s ) -

(34)
and the time derivative is

f¢tdf=%f¢df =§—tf__1?df- 18 %RE (35)
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Of the remasining integrals in equation (24) there is one which still
requires modification before the method of residues can be applied.
Specifically, since ¥ =F + 2i¥ one can write

fﬁ-dF=fZ(df+2idllf.)=f§df+21f§d¢

and the second integral can be integrated by perts using equation (33)

and noting that ¥ taken once round ‘the contour has the value Ug %ﬁ.

The resulting expression is
jf taF =f TaF + 218(R + 1pL.) + 21U & (st.) (36)

80 that equation (2&k) for the complex force caii finelly be written
(after collection and cancellation of terms) in the form

Y-iL=ip£dx-a—thd +p£ g_d.x-l_-ion_de-

x=1

ipUy f Fag - pUg [UOEO %Sx- - s(R + eipfc) - Uy % (SEC):I +

X=0 x=1

iQEJFdef <§% Cat -onf-Lﬁ%dx-ipfzI_{dxfﬂF+
ppfgd.xj[-g_df".+ 1pp 2'S(i-?- -:-3 ip-'f )ax (') (37)
o] | (e} ¢

It should be pointed out that severel terms have vanished by virtue of
the fact that the x axis passes through the airplane nose. In par-

ticular, note that 8 =(, =0 at x = 0.

The complex potential.- Although equation (37) appears quite
unwieldy, all of the contour integrals are now in a form which admits of
evaluation by the method of residues. For a body moving through still
air, as in the present problem, all velocities vanigh at infinity and the
complex potential F can be expanded in a Laurent series of the form

F = B(x)Int + A-a(gx_;ji). + D(x,t) (38)

n=1
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where B(x) is & source strength and the coefficients An(x,t) give the
intensities of all the higher order singularities representing the
desired body shape and motions. This expesnsion spplies only for large
values of ¢, but since there are no singularities outside the body, the
contour integrals can be evaluated around a contour sufficiently large
to ingure the validity of the expansion. The arbitrary function D(x,t)
is of no concern here since it can contribute nothing to the contour
integrations. For the determination of drag, on the other hand, this
function would be reqguired.

From equation .(38), the derlvative of F is
[- <}
E: n+1
n=1
[ 0
o8B nAn
E' (o n+:L

Now it is seen that the residue of (dF/dt)® is zero since there is no
1/¢ +term in the expension. Therefore,

i
u-v|b:|

so that

aF \2 aF \2
f <a§ at = oni Res<dc> 0 ) (39)
Also
de f—-—a; oni Res(f—g) = 2%iB (4o)
Similarly, if one writes the conjugate function
= B(x) a8 + Z Ba,t) , g, ) (41)
. = 4
1t follows that
f Fdt = - 21(1-:6-;-0 - 27ihy (k2)

and

P
M
1]
Sey
vl
s 1=
o
vl
n
B
=
1=

) = + 2nih, (43)
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The coefficient B (and, hence, E) can be evaluated by calculating the

integral ‘jf gg ds 1in two different ways. Thus
n

f%j-ds:f%%ds=w]c=Uofgx—vds=Uo

and, by virtue of Gauss' theoremn,

g6

21 2%
f E ds = f 'a£> r:d8 =f "E' ;48 = 2B
on o \Or Jr_p. o T1

where r; 1s the radius of a .circle enclosing the body cross section.
Hence, it is seen that

B=5=2038 )

The final expression for the complex lateral force is obitained by
using equations (39) to (44) in rewriting equation (37). That is,

Y - iL = 2npUohy__; + pUo [S(E + 21pb,) + Uo E%{_ (sfc)] +

x=1
1 — 1 - 1
2stpf iAAdxH:f s@d:ue:cippf Badx +
o Ot e ot A
1 _ -
ippk/n S(R + ipfelax (45)
(e}

For the case of steady straight flight ( a—aﬁ% = %‘- =p= o), the complex
force of equation (45) reduces to that given by Ward (ref. 5). Although
equation (45) spplies to slender airplanes having cross sections of
arbitrary shepe, it is of interest that in a large number of practical
cases, 1t is possible to choose the x axis so as to place the center

of cross-sectional aresa always along the axis and thus to make ¢§

egqual to zero. The simplest example would be an airplane having mirror
symmetry of area about both the y and z axes. If the wings have no
thickness, this places no restriction on the wings themselves with regard
to number of wings, arrangement, dihedral, camber, etc. Equation (U45)
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as it stands gives the totel side force and 1ift on & slender configura-
tion having a nose &t the forwsrd end. However, it can also be used to
give the contribution to these forces of a segment of the airplane lying
- between the planes X = 13 and x = Iz by simply evaluating Y - iL for -
= 1, and 1 = I and subtracting the results.

If one congiders the transformation of the arbitrary cross section
in the ¢ plane to & circle. in the o plane . s

t-fo) =ox ) B - (46)

it can be shown (see Appendix B) that the dependence of the residue 4A;
(and, hence, Al) on the rolling velocity p is determined by the form
of f(o) and therefore by the shape of the-airplane cross section. It
ig found that A; 1is independent of p if 8,5 vanishes and 1f £(o)
contains either only odd negative powers of o (n odd) or else only even
negative powers of & (n even). It can be seen that if n 1s odd then
f(-c) = - £(o) and, hence, the cross section has symmetry about two
orthogonal axes. The statement can therefore be made that for airplanes
having symmetry about both the y and z axes (no dihedral) one can
determine the total complex force if he knows only the complex potential
due to pure translation in the yz~ plane.

An expression for the pitching and yewing moments camn now be
obtained from equation (12) by & procedure exdctly parallel to that used
in obteining equation (45). Making use of the foregolng evaluations of
the regquired contour 1ntegrals, one finds that the resulting expression
is : .. . .

L 3 Lo v B3 s o
N - 1M = = 2:1onf (x - cp) =L ax - onf (x = e1) —[S(R + Qipgc) +
fo) aX fe) . B ax -

1 - 1 —
0 (Séc)] ax 2ﬂp£ (x - c1) = ax ‘pl; (x - c1) ¥ ax

21tippfz(x - oy )Eudx - ippf (x - o) (R + 1pL )s ax (u7)

(o] ~O - e . o . . . =

The evdluation of the integrals for the rélling moment L' is
somewhat different due to the additional € appearing in the expression
of equation (12), so that the integrand of some of the contour integrals
eppearing here will be nonenalytic in the variable of integration. This
precludes a direct appllcation of the method of residues. Such an

3 - R . - - . —
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integral, which does, in fact, arise is I ‘jf EtdF. However, in this

instance it can be shown with the aid of equations (26) and (31) that
I jf ¢Tar = f tTa¥ = 2sR(RL,) + U, jf (T as (48)

Eveluation of other required contour integrals by means of equations (26),

(31), and (38) yilelds
- _
Rf(%) €at =0 o)

f LaF = - 2riA,

and it can be shown in a manner parallel to that of Appendix A that

Rfcpr;d&]l(%fo;&) - I jfgx—"?z;as (50)

so that the final expression for the rolling moment can be written in
the form | .

— 1 _ 1
L =onijcpcac+pr axij[cp;a; -emf RArdx -
R 5 o

x=1

1 - - T _
orR [ 8(xT, - BRe)ax - pUoI [ £ (st )ax (51)
(o4 O

or, since R({af) = %d(@),
- 1 - 3
r= X 1 =3 - R -
L _é.onRj{;Fd(Cg) + S pr/oﬁ dx atJ[‘Fd(QC) 2np1fo RA;dx
K=

_ [ ’
DPszS(RQC - SRey)dx - pUQIf R 2 (sfo)ax - (%)
(o] (o
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In the case of configurations possesging mirror symmetry about both
the y and z axes (no dihedral), the general expression of equation (51)
can be greatly simplified. If one writes for such a case
P=VP, + WP, + pP, + @

where @2 and Pz represent pure translations along the y and z axes,
¢, is & pure rotation about the x axis, and @' is associated with
the variation of cross section with x, 1t can be shown from symmetry
considerations that ‘

ij¢2§df=nfcp3CdE=qu>'€dE=o

R {otal - pnf ?,tat

and, since @, 1is the potential due to pure rotation about the x axis,

1t follows that
R<§-j['®§a'§_> -0
ot

Therefore, recalling that Cc= 0 for configurations having symmetry
sbout the y and z axes, one finds that the general expression of eque-

tion (51) reduces to

Hence,

— [
L' =onpRji<P4§d§ - EﬁpI"'L/; RAidx (53)
K=

and it has already been pointed out that for these cases A; is inde-
pendent of the rolling velocity p. Thus, for symmetrical conflgura-
tions, the rolling moment hes now been expressed as the sum of two inde=-
pendent parts, one due to pure rolling and one due to pure translation.

STABILITY DERIVATIVES

The specific maneuvers to be considered here will now be defined
g0 that stability derivatives can be determined. Rotations are performed
about the .xyz (body) axes? at an attitude defined by the angles of

4Rolling about the wind axis can be treated as a special case by
the proper choice of the arbitrary body axes.
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attack and sideslip at t = 0, and
accelerations are permitted in the s
fixed vertical and horizontal
planes. In particular, 1f the
angles of attack and sideslip at

t = O are denoted by oy and B,
respectively, then the velocities
Vand W at any time t are given
by (see sketch)

UoBocos pt + ~_N? .
> #
/ \\/pf
i, T
Y

o~ o

&

v

Uoaosin pt = r(x = c3)

W = -« Ugapeos pt +
UoBosin Dt - a(x = c1)

From these expressions one finds that

R =V = 1W = (UgBg + iUgag)e™iPt - (r = 1q) (x = c3)
and
%% = - ip(UgBo + iUgag)e~1Pt + e-1Pt (U B, + iUgdg) -

(r - 1) (x - c1) - 1tp(UoBo + 1Ugao)e=1iPt

It will be noticed that in the above expressions, the velocity Uy (along
the x axis) is considered constant. This means that pure pitching and
yawing motions (q, r # 0) are performed at constant angles of attack and
sideslip, so that for such maneuvers the airplane follows a curved flight
path. Now, setting + = O in the above expressions, one finds

R = UpB + iUoax = (r - 1q) (x = cz)

and
oR

T UoB + 1Ugk - ip(UgB + iUom) - (r - 1a) (x = c1) (54)

and these relations can be substituted directly into equations (L45), (47),
and (51) for the forces and moments. It will be noted that the subscript
on & and é has been dropped. This means that for the rolling case

(p #0) &and § of equation (54) are not the time rates of change of the
actual angles of attack and sideslip since & and B are measured in the
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fixed vertical and horizontal planes. The alternative would have been
to define a and B as, the actual rates of change of o and B (i.e.,
=& - Bp and B = Bo+ ap &t t = 0) in which case the coupling of
p with o and B would be obscured by the definitlion. This would lead,
for example, to a nonzero value of acm& when the maneuver consists of

pure rolling at an initial angle of sideslip. This seems undesirable.

In seeking stability derivatives for the general problen under con-
sideration, it will be advantageous to employ the transformaetion of the
airplane cross sectlon to the circle (see Appendix B). In this way, it
will be possible to carry out differentiations of the forces and moments
explicitly with respect to the airplane motions and thus obtain the
stability derivatives in terms of the transformation without specifying
the complex potential. Thus, from Appendix B,

- _ - 3 _ = ry _
A’l = Ral - Rr02 - ip <aor02 + 8380 + S + g% + e .) =+ Alo

r02 1‘04
(55)
and therefore
Bam T or? S - ab(Ers” + Faso + - - ) (56)

where a3 1s the coefficient of the 1/0 term of the mepping function
and Ty 1is the radius of the transformed circle. It 1s recalled that,
as shown in Appendix B, Alo is gimply the value of A; at a=B=p =

g =r =0 and is therefore directly associated with the shape of the con-~
figuration and the cholce of axes.

The stability derivatives will be obtained by partial differentiation
of the forces and moments with respect to each of the ten independent
veriables o, By Py, d; T, Qy B, p, q, r and second derivatives will be
included; that is, there will be derivatives of the types

") (D)

where all derivatives are evaluated at a=pf=p=q =1 = o = é =

4 = = 0. The reason for this choice (which is not customary) will
become more evident later, but.it can be seen at once that all deriva-
tives defined in this menner are constent for a given configuration and
that there will be "cross derivatives" of the type Cugp vhich will

show the mutual influence of the longitudinal and leteral motions. Thus
the total rolling moment due to sideslip, for inetance, will be express=-
ible as

and C chp
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CIB* = CIB + GCZCI.Q + BCZBB 4+ PCZBP d e e e

For the sake of consistency, all coefficients and derivatives are based
on the same reference srea S, and reference length 1Ir.

If equations (45} and (47) are rewritten with the aid of equations
(54) to (56}, the necessary partial differentiations can be effected with
no difficulty and all the derivatives of the side force, 1lift, yawing
moment, and pitching moment are obtained. The derivation of the rolling-
moment derivatives is not qulte so straightforward as the others since
the expression of equation (51) for the rolling moment contains integrals

of the type ]l\j( Ptdf which cannot be handled directly by residues,

as mentioned previously. However, when this integral is differentiated
with respect to any motion except p or ﬁ, the resulting integral can be
related to one of the integrals already evaluated by residues. In partic=-
ular, if we write once more

P =VP, + WO, + PP, + O

it follows from the boundary condition of equation (30) that

or

R(tat) =y ay + z dz = X ds
on

Thus the integral eppearing in CZB’ for example, will be

f ;ai;—Uofcpza—q)‘ids

But, by virtue of Green's Theorem (see ref. 13, p. 46),

fcpgacp4 f¢4'a;q)2'ds

and again from equation (30) it can be seen that
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so that, finally, one can write

Rfé’i§d5=uof¢4dz=-uolf§$df
3p dp

This latter integral has already been evalusted with equations (3k4) and
(42) to calculate CYP. Similerly, the integrals appeering in the other

rolling-moment derivatives can also be evaluated and expressed in terms
of the mapping function of the cross section. The actual differentia-
tionsg to obtain the rolling-moment derivetives are simple enough 1f one
notes that the order of differentiation of the potential @ 1s important
in that the expression of equation (51) has been written for a specific
instant of time (t = 0). That is, ? must be differentiated with respect
to time first, then integrated to give the rolling moment, and finally
differentiated with respect to the desired motion. Thus, since ¢ 1s
linear in the angles o and B &as well as in the angular veloclties

P, 4, and r, one observes that

3% 3% 3% _ 3% _

= = = = 4 ¢« ¢« =0
dodt OOt Opdt dwdp
and further that
% 30 3% 3o
— i — ete.

33t 9 9t  dp

The resulting expressions for the stability derivatlves are given
in table I, which i1s arranged so that all the side-force derivatives
appear in the first column, all the lift derivetives in the second, and
so on. It is found that a number of derivetives vanish identically,
that is, regardless of the shape of the cross section. As a matter of
fact, all but 84 of the possible 325 first and second derivatives vanish
identically. For obvious reasons, the stability derivatives that are
identically zero are not listed, but a definite pattern can be seen in
table I .which shows, for instance, that all second derivatlves of Ci,
Cy, Cp, and C, venish except those involving p end that there are no

second derivatlves 1nvolving m, B, p, q, or r. It should be noted that
the order of differentiation is immaterial so that CLup = Cg._» ete.



NACA TN 3283 ‘ 27

(If this were not the case, the total number of possible derivatives
would be 550.) In the next section, a total of k9 relationships are
found asmong the stability derivatives, so that, at most, only 35 deri-
vatives need be calculated directly for any given configuration. It is
importent to note thet the mapping function must be expanded in exactly -
the form of equation (U46) before the proper coefficients can be obtained
for use in the formulas of table I. In particular, the coefficient of
the o term must be unity.

Relationships Among the Stability Derivatives

From the general results shown in table I, a number of interesting
reciprocal relationships which are independent of the configuration are
observed at once. For instance, the side force due to angle of attack
is equal to minus the 1ift due to angle of sideslip (CYm = - CLB).

Similar equalities among the various derivatives are found throughout

and are listed in table IT. It should be noted at this point that many
of the relationships of table IT would be obscured by evaluating the deri-
vatives et o # O, as is customerily done.

Beyond. these ‘simple equelities, there are some interesting relation-
ships which cen be brought out by an integration by parts. For example
(see table I),

2 [ ) —
Cmg, = = Srlrkz: (x = e1) S;-[en]l(al + rqa) - 8] ax

1
- srgz,r {(1 - cx)[2nR(z + r) - 81, _\/0. [22R(E; + r ) - S]d.x}

—-ch+CI|&
But from table I it is seen that
1 -c
C = —_—k C
Lq <' lr ) Lo,
Thus, one finds that

Crs = Cmg * <L;TC.L> Cr,,
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This is & particularly interesting relationship in that it enables one
to calculate from the static lift- and moment-curve slopes & quantity
which would require dynamic tests in the wind tunnel for a direct exper-
imental measurement. Another quantity of interest in this category can
be obtained by integrating by parts the expression for Cmq_ given in
table I. The resulting relation is _

2
c Coe == 1=\ ¢ 8
o (5

which states that the damping in pitch is proportional to the lift-curve
slope. This result, which is independent of configuration or choice of
axes, was obtained previously by Bryson. (ref. 12) whose analysis was
implicitly restricted to bodies having a straight-line axis (i.e., no
camber of the body or the wings). The apparent mass concept, which was
the bagis for the analysis of reference 12, will be discussed in a later
gection. Other relations obtained here in & manner similar to that for
equations (57) and (58) are given in table II. '

It is of some interest to look into
the damping in pitch of wing-body combi-
nations on the basis of equation (58).
Since the lift-curve slope is determined
entirely by the trailing-edge configura-
tion (see table I), it is evident that a
wide variety of airplanes can be treated
at once quite simply. If one considers,
for instence, a configuration whose
trailing-edge cross section consists of
a circle with symmetrically placed
straight lines, as shown in the sketch,
it is known from the transformetion (refs.

[
( %o ' 4 and 12) thet the 1lift-curve slope is
proportional to the guantity
2 4
(l_io_+§'2_' N
2 4
8o 8¢ -

Thus, from egquation (58), it follows that the ratio of the damping in
pitch of the wing-body c¢ombination to that of the horizontasl wing alone
is also given by this quantity. It is important to note that any changes
in shape ahead of the trailing edge (e.g., camber and thickness of the
wings, variation in fuselage shape, etc.) are immaterial. Thus, for such
configurations, the dsmping in pitch is plotted in figure 1 and it can

be seen that (1) the body is always destebilizing, and that (2) this
effect is a meximum for & body diameter to wing span ratio of 1AJET.

The damping in pitch i1s made & meximum, on the other hand, by bringing
the body to & point (or a line) at or ahead of the wing trailing edge.

]
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The relationships given in table II are all independent of the con-
figuration, at least to the order of the present analysis. It can be
seen from table I that for configurations involving any symmetries (for
example if S8, = 0), there will be additional relationships emong the
stability derivatives. Such a case will be considered in the section
titled "Applications of the Theory."

APPARENT MASS

Perhaps the most striking feature of the resulits presented in table
I is the frequent appearance of the quantities [2xR(E; - r ) + S),

[2xR(8y + ro®). - 5], and 27K(3;). In fact, since both r.2 and § are

real, the first two quantities are simply the real parts of

[on(ay - r2) + 8] and [2n(F; + ro®) - S], respectively, while the third
can be written as the imesginary part of either of these bracketed quan-
tities. It now becomes evident that a large number of the stability
derivatives depend only on these two bracketed quantities which, in turn,
depend only on the shape and size of the airplane cross section. As a
matter of fact, it can be shown (ref. 17) that the quentities

pRI[27(gy - ro®) + S] and pR[2n(Ty + ro2) - S] ere identical with the
integrals defined in incompressible flow theory as the additional appar-
ent mass of the cross section in the y and z directions, respectively.

These are given by J¥\p¢édz and h)éqp(@ady (refs. 13 and 17) where ?,

and @, are the velocity potentials for unit velocity of the cross sec-
tion in the ¥y and z directions.

The mathematical basis for the use of the appsrent mass to calculate
the transverse force derivatives of slender bodies in steady flow (as done
by Munk and Jones in refs. 1 and 2) was established with Werd's formula-
tion (ref. 5) of the general expression

Y - il = 1pUp 4 P&t (59)
2

since a differentiation with respect to angle of attack, for example,
yields '

ail%;i—l') = ipUg %:—; at =? -1 U2 f qud_Q'
x=1

x=1

Hence, taking the imaginary part of both sides, one finds
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Ly = PUGR f 0sdy = U (maa) a1 (60)
x=1

where mgg 1s the additional apparent mass of the cross section in the
z direction for pure translation in the 2z direction. It thus becomes
clear that the lift-curve slope is, in all cases, given by the apparent
mass ngg evaluated at the base of the body. If equation (59) were
differentiated with respect to angle of gideslip rather than angle of
attack, then the derivative Lg would be found to involve mgs rather
than mgg, where mgp 1s the apparent mass in the =z direction for pure
translation in the y direction.

There remains now the question of the relation between the apparent
nmasses and the total forces given by equation (59); thet is, under what
conditions can the total forces be calculated from the apparent masses?
This can perhsps best be clarified by setting .

(P = ch:)g + chps +q>'

where the first two terms represent rigid-body translations of the cross
section in the y end z directions and @' represents variations in the
ghape and size of the cross section with x. For the steady case, the
velocity components of the centrold of the cross section ere given by

Vc-Uo<F3+—

so that eguation (59) can be written in the form

Y - iL = 102 [(B + ﬂr3)(111:32 - impp) - <Ob - dﬁ)(mss - imzs)] +
dx dx x=1
ionqu‘dE

x=1
Note that the quantities < B+ — ) and (a, - represent the angles
that the line of centroids of the crose sections makes with the flight
direction (l.e., the local angles of attack and sideslip). It can now
be seen that the complex force of equation (59) is given by the apparent
masses and the angles of attack and sideslip of the base cross section,
provided that f(‘ prdt = 0.

x=1
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As an example, consiaer first a cambered body with no wings whose
cross sections near the base are all circulsr. In this case

Pz =k ZnN/?y - yc)2 + (2 - 20)® so that j(‘m'dﬁ = 0 and the
x=1

apparent mess gives the side force and 1ift as well as their derivatives.

On the other hand, consider a flet plate having deflected partial-span

flaps. Here (when the plate is alined with the flight direction), the

entire potential at the tralling edge is given by Q'x=l whose integral

Al

¢'d§ does not vanish. Hence, in this case, the lift-curve slope is

x=1
given by the apparent mass but the 1ift is not. This is also true for a

body of revolution having flat-plate wings at incidence to the body.

For the unsteady case, as a result of a recently published report
by Miles (ref. 11), one can show that the stability derivatives can also
be obtained from epparent masgs considerations. This 1s most easily seen
from the general expression of reference 11

- 12 —
Y-ﬂ=1puof¢d§+1p§%-f_dxf¢dc (61)
(o] .

x=1

since, for example,

(Y = iL) _ (% Mf¢d§>_- 1pUo" fzaxfﬂpsdf
(o]

() (“zr}

s0 that the imaginery part yields

U2 pt .
Lg = S f maadx (62)
L (o]

r

It should be noted here again that the totel forces themselves are not,
in general, given by the spparent masses. Miles also shows in reference
11 that the rolling moment about the wind axis is given by

L1 =1 d i Px
L -EonRj{; ra(td) + L pa_tnjo" axf Fa(tt) (63)
X=

Now, by reasoning exsctly parallel to that for the steady case, it can
be concluded from equations (12), (61), and (63) that in all cases all
of the stability derivatives (except drag) for rigid slender bodies can
be obtained from the espparent messes (or, more generally, the "inertia
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coefficients”). Also obtainable from the inertia coefficients of the
cross sections are (1) the total side fdrce and lift, provided that

‘jpm'df = 0, (2) the total yawing and pitching moments, provided that
x=1
1/ d -
U/\ (x = cyp)ax S_~j(\¢'d§ = 0, and (3) the total rolling moment, provided
o X .

that R J{‘¢'Cd§ = 0. It is interesting to note that conditions (1) and
x=1 ’

(3) involve symmetrlies of the cross sections only near the base, but that
condition (2) is more stringent and is satisfied, for example, by having
bilateral symmetry of the cross sections over the entire length of the
airplane. '

An alternative form for the integrals representing the apparent
massges or inertia coefficlents can be shown to be identical with the
integrals representing the kinetic energy of the fluld assoclated with
any desired unit velocity (linear or angular) of the cross section; for

o
example, j[)p¢bdy = = J{‘p¢% Efi da. However, it is essentlal to note
n

that 1t is only for rigid-body motions of the cross section (as repre-
sented, for example, by @a) that the two integrals are identical, since

only for such motions does %2 = - %Z at the boundary. Thus, 1t can be
n 8

’ t
seen that Jg‘pQ‘dy # - j{})@’ %;L-ds even if @' d1ig given proper
n
dimensions by dividing by a weloecity.

Inasmuch as relatively few lnertia coefflcients have previously been
calculated, there seems to be little advantage (other than brevity) in
expressing the stabllity derivatives in terms of these coefficlents. It
is felt that the formulas of table I involving the mepping function will,
in general, be found more useful, although one should certainly make use
of any of the coefficlents already celculated. In thls connection, the
reader is referred to a recent paper of Kuerti, McFadden, and Shanks
(ref. 17) in which the apparent masses of a number of interesting cross
gections are listed for simple transglation in the y and z directions.

The apparent mass integral ‘jf Pdy was also calculated for a few

shapes in connection with minimum drag problems in reference 18. How-
ever, the integrations there were (for the rectangle) carried over both
the exterior and the interior of the cross section since the configura-
tion treated there was indeed a hollow rectangle made up of four thin
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wings. It is necessary then, in order to obtaln the desired quantity

[2rR (=1 + rc2) - 8], to subtract the cross-sectional ares (as pointed

out in ref. 17). It should be pointed out in this regard that all the
results of the present paper are for solid bodies. Thus, if the body con~-
tains a Jet, one must add to the calculated 1ift the negative rate of
change of momentum (in the z direction) of the air passing through the
Jet. For a simple bent, circular, thin-walled pipe flying approximately
along its axis, a Jjet exit veloecity equal to the flight velocity Just
doubles the 1ift given for the g0lid eclrculer cross section.

The tebulated values of k%ﬁ Pzdy 1in reference 18 have been adjusted

for this Iinternal flow end additional values have been calculated here to
extend the range of the variable. The results are plotted in figure 2 to
show the increase in lift-curve slope and damping in pitch obtained by
use of a blunt trailing edge of rectangular cross section, of vertical
end plates near the trailing edge, and of a biplane with sharp trailing
edges. It will be recalled that both the lift-curve slope and the damp-
ing in pitch depend only on the trailing-edge cross section, so the
results of figure 2 are independent of wing thickness, camber, body shape,
etc., ahead of the tralling edge.

It might be mentioned

here that if the apparent -

masses of & given cross sec=- &r

tion in two orthogonal

directions are equal, then

the epparent mass of the

crosg section is independent A

of 1ts direction of trans-
lation. Thie follows from
the fact that the momentum
vectors and the velocity
vectors add in exactly the
same fashion. In reference
17 it was shown that the
cross gsections in the sketch
possess this importent property. It also follows, then, that &; = 0 so
that meny of the stability derivatives vanigh for such configurations
(see table I).

n fins n comers
ne3 regular polygon

APPLICATIONS OF THE THEORY

In this section, the results of the foregoing analysis will be
applied to the calculation of the stability derivatives for several more
or less special configurations. The first problems to be treated here
will be concerned with the introduction of wing thickness and camber as
parameters since the present analyslis is epplicaeble to unsymmetrical



3k - ' NACA TN 3283

configurations. Then, although the finned body of revolution has been
treated by many euthors (e.g., ref. 4, 9, 10, and 12), a plane wing-body
combination will be considered in order to investigete the effect of the
squared terms in the pressure relation. Finally, stablility derivatives
willl be calculated for a wing-body-vertical-~fin combination.

Wings with Thickness and Camber

The quantity "cember," as introduced here, may be complex, the
imaginery part corresponding to the conventional camber in the vertical
(xz) plane and the real part corresponding to a lateral camber or
"wiggles" in the horizontal (xy) plane. Perhaps the simplest configura-
tion of interest for the present problem can be made up of elliptic cross
sections whose eccentricity and position in the lateral planes are arbi-
trary functions of x. The required transformation for such a configura-
tion is (see sketch)

J-3]
w i VS .
Iy - a ////’—_\;:k\

A

e -
2 _ 2
(-te =0+ =2 (6n)
Lo
so that
2 2 )
ac =D
and the radius of the transformed clrcle is ry = E%E, These guantities

suffice for the calculation of many of the stabllity derivatives directly
from table I. However, for the rolling derlvatives, the complex potential
1s, in general, required. The complex potential in the transformed cir-
cle plane ean be derived from reference 16, page 239, and is given by
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H.a + b)(b co + ia si
.F1(6)=B?»n0-°( )(b cos 7 lsn7)+

20
2_2 b2 mk
ip( &’ :63§a + b) + ;% (65)
n=2

where H, and 7 define the lateral velocity of the centroid glven by
a
Heel” =R + U '&% - ip€e (66)

The logarithmic term of equation (65) permits a variation in size of the
ellipse with x. The series term represents the portion of the potential
required to meet the boundary condition of equation (21) when dv/dx is
arbitrary (warped body); this permits a variation of the eccentricity

b/a with x. If now the potential of equation (65) is trensformed to the
{ plene by means of equation (6L) and the coefficlent of the 1/{ term

ig evaluated at R = p = 0, it is found that

2 —
Uo db da> <a + b) ate (az -2\ 4t

A = - — — 4+ b — - U + U
o 2 \* /e = Vo\ 75 ax © ° n ax

(67)

With this result, one can obtain all of the stability derivatives except
CZF and Clﬁ directly from the formulas given in tables I and II, for

any given configuration in this category. Two examples will now be
considered.

The first example will consist of a cambered elliptic cone; that is,
an elliptic body with constant eccentricity whose span is a linear func-
tion of x. The body axis will be chosen to pass through the center of
the base and the camber line will be represented by a sine curve
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Ze = 0 8in ﬁx/c as shown in the
5=~ gketch. This body can be thought
of as a special case of & cam-
bered triangular wing having a
blunt treiling edge. The camber,
of course, mugst be sufficlently
small to insure the validity of
the slendernese approximations.
On the other hand, the thickness
ratio as indicated by b/a is
arbitrary. Thus the range of
b/a from the flat plate
(b/a. = 0) to the circular cone
(b/e. = 1) can be treated as one
problem. It should be mentioned
that the cholce of body axes is
arbitrary so that maneuvere about

— N

g ~— any other set of orthogonal axes
4 x fixed in the body could be
sec. 8-8 handled equally well. A few of

b a
< Zfi::é; the interesting stability deri-
’ 4

vatives have been calculated for
this configuration by the formu=-
sec. A-A lag of tables I and II and the
derlvatives Cnp and cﬂq@ are

plotted in figure 3. It 1s seen that Cp is always negative for posi-
P

tive camber, is linear in the camber, and increases with the thilckness.
On the other hand, Cnap’ which is negative in all cases, 1is independent

of the camber and decreases to zero as the thickness ratio increases to
one. .

As a second exsmple of a configuratlon having elliptic cross sec=-
tions, the "wing-like" shape developed by Squire (ref. 19) is chosen.
This shape hes a variation of eccentricity of the ellipse such that all
profile sections (except the midspan section) have a rounded leading edge
and a pointed trailing edge. In addition to this particular thickness
distribution, for the present problem the wing will be given a camber
identical with that teken for the elliptic cone; that is, ze = & sin ﬁx/c.
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Thus, the wing to be treated B—
here has the shape illustrated
in the sketch. TFor this wing,
the major and minor axes of
the ellipse are glven by

a=%x (68)

and c

b = %g-(c - X)X ' T

— N

where A ig agpect ratic and
t is the maximum thickness
(thickness of the midspan sec-
tion at x = ¢/2). Some of
the stability derivatives have

been calculated for this wing 5=,
by the formulas of tables I - b sec. -8

and IT end Cng and Cnyy ere C"_Qi

plotted in figure 4, It is 4
found that Cnp displays, 1in
general, the same variations

with cember and thickness es
did that for the elliptic cone. However, Cnap displays a trend opposite

to that for the elliptic cone. That is, Cnap is seen to increase with

thickness, so that the angle-of-attack contribution to the yawing moment
due to rolling 1s apparently heavily influenced by whether the trailing
edge 1s blunt or sharp. The derivative CYP was also calculated for

both wings and was found to be independent of the thickness. In fact,
for either wing, for the axes chosen,

sec. A-A

25
Crp =t =T

While this result appears to contradict the corresponding relation Ffound
in reference 12 (Cy-p = 015), it simply highlights the fact that the analy-

sis of reference 12 does not include camber although 1t could be extended
to do so. Clearly, if & = O the two results are in agreement. The
derlivative Czr was also calculated for both cambered wings and was

gimilarly found to be independent of the thickness. In fact, Ci, was
found to have a value equal to Cnp for zero thickness; that is,
C3, = = 0.4508 &/span.

It ie interesting to note that since the treiling-edge cross section

of the Squire wing is & straight line, any stebility derivatives that
depend only on the mepping function of the trailing-edge section (see
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table I) will be the same as for a flat-plate wing (e.g., CL@’ CYB, CLB,

ch’ ete.}o It is important also that for an elliptic cross section, the

quantity [2n(&; + ro®) - S] (epparent mass in the z direction) is inde-
pendent of the eccentricity, dependlng only on the semimajor asxis a,

while the quantity [2n(Z; - ro%) + S] (aepperent mass in the y direction)

depends only on b. Thus it can be geen from table I that all of the
purely longitudinal derivatives (CLo:’ CrLys CLgs CLgs Cmgy Cmgs Cmgy cmé)

are the same as for a flat-plate wing of local semispan a. Similarly,
all of the purely lateral derivatives (CYB’ CnB’ ete.) are the same as.

for a flat-plate wing of semispan b if we replace B by minus o, Y
by L, and N by M. One can see, therefore, that the ellipse is a very
gpecial cross section and tends to .obscure somé of the effects of thick-
ness. TFor instence, it was seen in figure 2 that [2xR (T + ro2) - Sl
for a rectangle increases with the height of the rectangle and that a
blunt tralling edge of rectangular cross section wilill therefore give an
increase in lift-curve slope over a flat plate and a corresponding
increase in the damping in pitch. -

FPor the evaluation of rolling moments it would appear from equations
(51) and (52) that some of the integrations might be quite difficult
because of the nonanalytic character of the integrands. In fact the
stability derivatives CZP and Clﬁ contain the same nonanalytic inte-

grands (see table I). However, the integrations can sometimes be adven-
tageously carried out in the transformed circle plane by the method of
regidues. For a configuration having an elliptical cross section at the
trailing edge, for exemple, the calculation of the demping in roll Clp

becomes quite simple with this technique. Specifically, from teble I,

F 4¢F OF a(tt)
Rjiapa@c) J[ =2 4 (69)

Ci, =
Pospl®
Now, since equations (64) and (65) for the required transformetion and
complex potentlal are already in the form of power series in o, and
since on the circle boundary oG = ro°, one can immediately write the
Integrand as a power series in ¢ and therefore use the method of resi-
dues. It is found for this case that the residue of this series is

simply i.(aoz - boz)? where the subscript refers to the trailing edge.
8

Thus the damping 1n roll is given by

2
1 1, 2 542 tagt ( b2
Cy, = RA 2ni| = -b = -—2(1-— o
Ip o ;{ 1[8 (g o) ]}' is, 1.2 o’ (70)

[
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It is seen from equation (70) that for the Squire wing (bg = 0) the demp-
ing in roll is independent of the wing thickness and cember, remaining
always at the flat-plate value as given by Ribner (ref. 3). For the
elliptic cone, on the other hand, Czp depends on the thlckness and the

effect of a blunt trailing edge becomes apparent. Values of CZp for

these cases are plotted in figure 5. It should be noted in general that
since BF/Bp ig independent of any translational velocity in the cross
plane, the damping in roll is not affected by camber.

The device used above to permit the use of the method of residues
can always be employed; that is, since OF/dp, §, and { are all express-
ible as power series in o and ¢ and since o and o are related by the
redius of the transformed circle, the integrand becomes an analytic func-
tion of the variable of integration in the transformed plane. However,
if the transformation itself is an infinite series (as is the case for
the finned body of revolution), then the residue and consequently the
damping in roll will emerge as an Infinite series involving combinations
of all the coefficients of the transformation. This series is, in gen-
eral, considerably more complicated than that entering into derivatives

Plane Wing-Body Combination

It will be of some interest to consider here certain aspects of the
plane wing-body problem in view of the fact that some stabillty deriva-
tives had been calculsted (see ref. 10) before it was generally realized
that the squared terms 1n the pressure relation must be retained. A
number of the simpler derivetives can be obtained quickly from table I
if the mapping function of the cross section is known, and one of these
will now be compared with the corresponding derivative obtained in ref-
erence 10 without the squared terms in the pressure relation. The
required mapping function is an Infinite series obtained by making two
successive Joukowsky transformations (see ref. 4), and it is found that

-

g = gc

1
8.1='E

(71)
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where s 1is the wing
gemigpan and & is
the body radius (see

b—- __4 sketch). Hence, many
of the stability deri-
a

vatives vanish by vir-
4 , i tue of the f?.ct that
N 81 is real {(see table
— KJ I). It is noted that
s, a, and e are here
all erbitrary func-
¢ o tions of x (within
the slenderness
epproximation) and
the body will have & straight axis (plane wing-body) only if §. is a
linear function of x. Also, if . is not a linear function of x
then the evaluation of Ay (which 1s required for some derivatives)

becomes a problem which amounts to determining A; of the complex poten~
tial for simple translation. Thie will be done shortly.

N

For the pur-
pose of illustrat-
ing the influence
of the squared
terms in the pres-
sure relation, the
rolling moment due
to sldeslip will be
calculated for the
special case of a
flat triangular
wing mounted sym=-
metrically on &
cone-cylinder as
shown in the
sketch. For this
case, with the axes chosen as shown, it is clear that Cc = 0,

a = const. = ag, and 8 = so(x/c). It is further noted that (due to
symmetry) there is no rolling moment provided by the portion of the body
ahead of x = x5 and that the rolling moment due to sidesglip at zero
angle of attack is zero (C7,f3 = 0). Therefore, the only pertinent deri-

vativeS to be calculated is Clap which 18 given by (see table I)

SFor this configuration all of the coupled (second) derivatives of
the rolling moment vanish except CZaB and Cqu’ and it is assumed here

(for purposes of comparison with ref. 10) that g = O.

| 4
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SR TN G R R IGE MR

e (72)

where Sy and 1y have been tsken as the gross wing area and the maximum
wing span, respectively. The ratio of this Cz «p to that for the wing

alone (ao/sg = 0) is plotted in figure 6 and is compared with the corre-
sponding curve of reference 10. It can be geen that the error incurred
by the omission of the squared terms in the pressure relstion is in excess
of 100 percent for ratios of body diameter to wing span greater than 0.5.
Now since CYap = - Czaﬁ according to table II, the side force due to

rolling can also be compared with that obtained from a linear pressure
relation by means of equation (72). This comparison is presented in
figure 7 and it is seen that the difference is even more pronounced than
that for the rolling moment due to sideslip. It should be mentioned that
if the wing-body combination is cambered, the contribution of rolling
moment by the nose will not, in general, vanish, nor will the rolling
moment at zero angle of attack.

It has been
mentioned that for
a general wing-
body combination A
of the cross sec-

tion discussed 7
above (i.e., &, e <5

not & linear func=- q

tion of x), the -d d e

coefficient of the by I's F—— 5"‘4
1/t term in the
complex potential
must be determined
if all of the stability derivatives are to be calculated. The coeffi-
cient 4A; for simple translation (p = O) can perhaps most resdily be
obtained from the complex potentiel for a flat plate in a uniform stream
by use of the transformation . :

= (C-t) + =2
( )+ T L

(see sketch). The complex potential in the w plane is given by (see
e.g., ref. 16, p. 161)

Fi(w) = = Ho(w cos 7 = 1 sin ¥ q/mE - d2) (73)
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so that; by using the sbove transformation and adding a term HcCe'i7 to
remove the free ptream in the § plane and a term B Zn(C - Cc) to allow
a8 variation of the radius &a with x, one finds after expansion in series
that the coefficient of 1/ 1s (for p = O)

A = - Hg l:azcos Y - % (282 -.32)sin 7':| - B, (7h)

where 4 = s + 82/s and it is recalled that Hgel? =R + Ug(df,/dx) for
pure transletion. Now, by noting that for R = 0

cos‘y:U—O. dﬂ
He \ dx

gin ¥ .[& <ﬂ
He \ dx

one can write finally for this type of configuration

P dye i o 2 dze da’
= - | 4L . = - - =
A]O = Uo | & 3 (2& a ) + a (yc + izc) (r5)

With Alo determined, all of the stability derivatives except CZP and
Clﬁ can be obtained directly from tables I and II. The difficulties in
determining CZP and Czﬁ have been discussed in the preceding section.

Wing-Body=-Vertical-Fin Combination

In reference 12, the mapping
function was developed for a body
of revolution having four flat-
plate fins mounted 90° apart (see
gketch). Therefore, one can use
the formulas of table I directly
for such a configuration by first
determining the proper coefficients
in the expansion of the mapping
function. It is important to note
o thet for this purpose, the expan-

gion of the mapping function must
be exactly of the form of equation (46). The mapping function given in
reference. 12 is not of this form (as can be verified by carrying out the
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expansion), but it can be modified to give the proper form. The resulting
transformation is

C-Ez. 2.<12=-i-(h-f)+cr-§———h+f)22 (76)
¢ 2 160
and
ro=h+f
L
where
d =g

(%)
oGBS fEE

and it is found after a somewhat laborious expansion that the first six
coefficients are

(=2
|

o =% (b - %) A

2
a,l=a2 -(%)

2
a2=-.52l-(h-f) a2+d?)

ag= - <a2 + Q:— l:(h—;-—i-‘-)a - <h—1£->2j! - %‘- (6@ + 282)% -
oo (U e

)

o
1
1

(2+2a) g-a‘*

RCORCOICHICO!
[

(9 - Tp e oo 5],

Ié-(d2+2a)3+§-d2a4+-3-a6+ <h'f>(d2+2a J
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In general,
the integrations
indicated in
table I would
have to be per~
formed numexri-
cally for a given
configuration of
the type consid-
ered above. How=-
ever, for a con-
ical configura-~
tion, great
simplification is
achieved and the

So X integrations
become trivial.
Therefore, a two=-

parameter conical
configuration ig chosen to illustrate the effect of a vertical fin on a
number of the stability derivatives; that is, the lower fin is removed by
setting t, =a, and t; (or t), a, and s are taken to be proportional
to x (see sketch). Thus, the coefficients given above and the radius
of the transformed clrcle become proporticnal to x or x® and most of
the stability derivatives can be readily calculated. It 1s noted that
for this configuration, with the axes chosen, A3, = ., = 0. Also, due to

the conical property, CnB = Cma =0 1if e¢3 is chosen as 2/3 c.

The stebllity derivatives obtainable from the coefficient a3 (which
in this case 1s real) and from the radius of the transformed circle rg
have been calculated for a range of the parameters a/s and t/s and are
plotted in figure 8. The purely longitudine) derivatives are of course
unaffected by the vertical fin as seen in figure 8(b) (which is inci-
dentally the same curve ag given in figure 1 for a different purpose with
regard to a more general configuration). '

Some interesting and important
effects of the vertical fin can be
p seen in figures 8(a) and 8(c) which
show & number of the lateral and
"coupled" derivatives. TFirst it
should be noted that the two ends
-s s of the -a/s scale correspond to
a/s=0 the extreme configurations shown
in the sketch. It is clear that
a/s=10 the solid curves of figures 8(=a)
and 8(c) have no meening for
a/s >-t/s ‘8ince this would correspond to & vertical fin inside the body.
Therefore, for values of t/s less than 1, the envelope curves (the
dashed curves) corresponding to a/s = t/s have been plotted to fill in
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the rest of the range of a/s from O to 1. It is seen that even at

a/s = 0 a vertical fin of small span is quite ineffective on both stabil-
ity derivatives I and ITI (see figs. 8(a) and 8(c)). Hence, the ineffec-
tiveness of small fins is not entirely caused by the body absorbing the
fin, but is partly due to & blanketing effect of the horizontal wing.

The significance of the effect of the vertical fin can perhaps best
be apprecisted by considering a relatively familiar derivative cﬂap

(fig. 8(a)) which can be thought of as the angle-of-attack contribution
to the yawing moment due to rolling. It appears that for fin heights
such that t/s > 1.0 this derivative becomes positive over some portion
of the a/s range (almost the entire range if t/s > 1.5). Thus, for
this configuration, the angle~of~-attack contribution to the yawing moment
due to rolling can be changed from adverse (negative) to favorable
(positive) by increasing the height of the vertical fin above about 1.5
times the wing semispan, depending on the body radius.

From the coefficlents given in equation (TT), it is difficult to
make any statement regarding the convergence of the series reguired for
derivatives such as CnP (see table I). Therefore, one 1s at a loss to

say how many terms of the expanslon must be retained for satisfactory
calculations. In order to get some idea of the convergence, the deri-
vatives involving the series were calculated using 2, 3, 4, 5, and 6

terms in the series and the results are presented in figure 9. It aprears
that for some cases four terms would be sufficient. The results of fig-
ure 9 indicate a strong blanketing effect of the wing on the vertical fin
for t/s < 1. It can be seen that for a/t = 1 (plane wing-body)

Cnp=CnI',=- .« =0,

In reference 20, one of the configurations treated corresponds to
the present conical wing-body-vertical=-fin combination for a = 0 (no
body). As this furnishes an interesting check on the present calcula-
tions, the appropriate values of CYP, CYB’ and CZB have been taken from

that report® and are plotted on figures 8 and 9. It can be seen that the
agreement is excellent, even for those derivatives calculated with only
a few terms of the infinite series (fig. 9). It should be noted in fig-
ure 9 that wherever the best approximation curve (representing 6 terms

in the series) cannot be seen, it is because the results were essentially
identical with the previous approximation.

It is interesting to note that for a cruciform wing-body combination
(ty = to = 8), according to equations (76) and (77) and succeeding terms,
one finds that ag=8; =8 =8, =8g=. . . = 0 so that many of the
stability derivatives of table I vanish due to the symmetry of such a
configuration if the axis of symmetry is chosen as the x axis; for
example, here again CnP = Cnﬁ =, « « =0,

®The values of Cv,.s Cyns, and Cy3, were taken from figures 11, 23,
and 24 of reference 20 Since there appear to be some typographical errors
in equation (58) of that report.
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CONCLUDING REMARKS

A general analysis has been presented for determining the forces
(except drag) and moments and the stability derivatives of a slowly
maneuvering slender wing-body combination of arbitrary cross section.

The results of the general analysis appear as (1) formulas for the forces
and moments in terms of the airplane shape and motions and {2) formulas
for the nonzero stability derivatives in terms of the mapping functions
of the cross sections.

Stability derivatives of the first and second order have been con-
sldered so that the interdependence of the longitudinal and lateral
motions 1ls included. A number of relatlionships among the various stabil-
ity derivatives were found which are independent of the shape of the ailr-
plane, so that, at most, only 35 of a total of 325 flrst and second
derivatives need be calculated directly.

In order to bring out these relationships, the stability derivatives
have been defined gomewhet differently from the ususl derivatives. For
example, the usual derivative of rolling moment due to sideslip would,
in the present analysis, be given by

Czﬁ* = CzB + “Clms + BCZBB + PCIBP + quBq + rCZBr

All derivatives as defined in this paper, then, are constant for a gliven
airplane. Time rates of change of the angles and angular velocilties have
also been included, although these effects vanish for the particular
derivetive ebove,

The use of the apparent mass concept for problems in slender-body
theory has been discussed in the light of the present analysis and on the
basis of previous treatments of slender-~body problems by momentum methods.
It is demonstrated that all of the stability derivetives can be calculated
from the apparent masses (or inertia coefficients), but that the general
expressions for the total forces and moments involve additional terms.

From the results of the general analysis, some of the stability
derivatives have been calculated for (1) two trisngular wings having
thickness and camber, (2) a plane wing-body combination, and (3) a wing-
body=vertical-fin combination. These three cases have been used to show, .
respectively, (1) the effects of camber, thickness, and blunt trailing
edge, (2) the influence of the squared terms in the pressure relstion,
and, (3) the effect of & vertical fin on the various stability
derivatives.

Tt wag found that the effect of thickness on the angle-of-attack
contribution to the yawing moment due to rolling .was essentlally opposite
for blunt and sharp trailing edges, but the effect at zero angle of attack
was similar in both cases. In both cases, the angle-~of-attack
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contribution was independent of the camber while the zero-angle-of-attack
contribution was llnear in the camber.

The damping in pitch was shown to be proportional to the lift-curve
slope and therefore to depend only on the base cross section. On this
basis, the lift-curve slopes and demping in pitch were calculated for
(1) a wing=body-vertical-fin combination, (2) a blunt trailing edge of
rectangular cross section, (3) a sharp trailing edge with end plates,
and (4) a biplane with sharp tralling edges. Sizable increases over the
flat-plate values are ghown in the lasgt three cases.

The derivatives usually called CYP and CZB were calculated to be

more than 100 percent in error 1f the squared terms in the pressure
relation are neglected in the case of a plane wing-body combination of
body diameter to wing spen ratio of 0.5 or greater.

A number of stability derivatives were calculated for a conical wing-
body=vertical-tail combination and the variations with body diameter to
wing span ratio were plotted for various veriical tail spans. The influ-
ence of the vertical fin was found to be markedly altered by the blanket-
ing effect of the wing for small vertical tail spans.

Ames Aeronzutical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 10, 1954
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APPENDIX A
DIFFERENTIATION OF A CONTOUR INTEGRAL

Consider a differentiation of the

contour integral J[\ng with respect

to x, wheré the contour is a smooth
closed path that depends on x, as shown
in the sketch. The four points on the
curve, designated a, b, ¢, and 4,
represent the maximum positive and
negative values of y and z, so that
the function ® on the contour between
a and ¢ can be designated Pgyer (or
Y aimply ®,), that between c and a,
Pupper (or Py), end those between b

and & and between d and b, ¢, and @,
regpectively. Thus one can write

atx)

- : c(x)
if@d§=if¢dy-i—§—f¢dz=—§—f ?,dy +
ox ox Jp Ox Jg ox a(x)

a(x) d d(x) d b(x)
Qdy -« 1 — P, dz - 1 = P_dz
f(x) T fb(x) * % j;(x)

c

o

so that there are now four line integrals to be differentisted. This can
be done directly by means of the formula _

3 pe(x) G 3
$f1~<x) f(x,y)ay_fr(x) Ly + 2 2e,x) - 2(r)

which gives
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a (x) acpl[x)y,zl(x;y')] d d
J{‘¢d§ J[C Sn dy + Si ?y(e,x) - S% ?,(a,x) +

u/qa(x) a¢u[x,y,Z1(X,Y)}
(X) BX

u(,)-— a(e,x) -
X

d(x) 3 ,2,Y:(x,
i{f NEXRACI) g‘% 9,(d,%) - _cp+(b x)}

b(x) ox
b(x) acp_[x,z,Yl(x,z)l Lo
{ a(x) = ta e -y q)'(d’X)}

where z = Z3(x,y) end y = ¥1(x,z) are alternative expressions for the
contour C and must be single~-valued between the prescribed limits of
integration.

Now, if the velocity potential @ is single-valued on the contour,
then

Pu= 97 at a(x) and c(x)
and
P = P_ at b(x) and d(x)

so that all four of the additional terms above cancel and one finds, after
combining like integrals, that

i v acp[x’y,zl(x;y')] _ OP[x,z2,¥1(x,2)]
o 9 /(; 0t L —

But the partial derivatives can be rewritten in the form

BCP[X;Y:ZI(X)Y)] - l:@ + o0 aﬂ]

ox ox 0dz Ox 2274 (%, )

and

OP[x,2z,Y1(x%,2)] l:_a_C_P_ o9 BYJ_]

ox ox ay ox y=Y1(x,2)
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Therefore, since QCE] = —:l » the final result is
z=Z7 y=Yy

ox

ijfcpd'g:f@d“f.aﬁ%dy-ifé?dz_1fa_<v_az;dz
ox o ox o dz Ox c ox c dy Ox
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APPENDIX B
THE RESIDUE A, OF THE COMPLEX POTENTIAL
From equetion (31) it follows that
21¥, = RL - RE + 1ptl + 21U, fg_}‘: ds + 21G6(x,t)

Now, 1f one maps the body contour in the £ plane onto a cirecle of
redius 1y, center the origin, in the o plane by the transformation
= &

n
£ =f(c) =0+ =
n=0
(where & is in general complex) then the "boundery function" of
Milne-Thomson (ref. 16, p. 237) is obtained., Noting that on the circle
boundery oo = ro° 8o that

o2 >
- - &,;
t =7) =_°.+z Snon
o To
n=o0

i o2 v &
ip(o + Y 24 gn o ) + T(o) + 2iG(x,t)
ol o) ro
n=o n=o

where T(o) is simply 2iUof % ds expressed ag a function of o,

It has been demonstrated in reference 16 that this boundary function
can be satisfied by setting the complex potential equal to the part of
Eiifs containing only the negative powers of g. Thue one casn set

=R Rziroz“‘ani emBn Tl o)
Z—' —"' P—c_zo—n"' P zz I.ozncm-n"' o
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where TN(G) represents the portion of T containing negative powers of
6. The residue A; of F can then be expressed as

g

- _ 8.8 a
A1=Ra.3_-Rr02+ip<a.or02+alao+ ;+862+...>+A10
e ret

where A, 1s the residue of Ty(o) and it is noted that Ay, can depend

only on the shape of the cross section and not on any of the airplane
motions; that 1s, Ay, _must be a function of x alone and is simply the
value of A; at R =R = p = 0. Therefore Ay, 1is zero for any con-
figuration possessing an axis of symmetry if that axis is chosen as the
x axis. . : )

It can be seen that A; 318 Iindependent of the rolling velocity P
provided that ag vanishes and that either all the odd n or all the
even n are absent in the expansion of f(o). This leads to the con-
siderations of symmetry given in the text. It ghould be noted that for
symmetrical shapes agy 1s the centroild of the cross section.
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TABLE II.- RELATTONSHIPS AMONG THE STABILITY DERIVATIVES
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Figure 3 .- Effect of camber and thickness for blunt -
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