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NATIONAL ADVISORY COMMITTEE FOR ~ONAUTICS

TECHNICAL NOTE 3283

AERODYNAMIC!FORCES, MOMENTS, AND STABILITY

DERIVATIVES FOR SiilZNDmBODIES OF

GENERAL CROSS SECTION

By Alvin H. Sacks

SUMMARY

The problem of determining the total forces, moments, and stability
derivatives for a slender body performing slow maneuvers in a ctipressible
fluid is treated within the assumptions of slender-body theory. General
expressions for the total forces (except drag) md moment= =e developed.

. in terms of the geometry and motions of the airplane, and formulas for
the stability derivatives are derived in terms of the mapping functions
of the cross sections.

d

All components of the motion are treated simultaneously and second
derivatives as well as first are obtained, with respect to both the
motion components and their the rates of chmge. Coupling of the longi-
tudinal and lateral motions is thus automatically included. A number of
general relationships among the various stability derivatives are found
which are independent of the configuration, so that, at most, only 35
of a total of 325 first and second derivatives need be calculated.
directly. Calculations of stability derivatives are carried out for two
triangular wings with camber and thickness, one with a blunt trailing
edge, and for two wing-bcdy combinations, one having a plane wing and
vertical -fin.

The influence on the stability derivatives of the squared terms in
the pressure relation is demonstrated, and the apparent mass concept as
applied to slender-body theory is discussed at some length in the light
of the present analysis. It is shown that the stability derivatives can
be calculated by apparent mass although the general expressions for the
total forces and mments involve additional terms.

. Ever since
Munk’s apparent

INTRODUCTION

R. T. Jones (ref. 1) in 1946 demonstrated the use of
mass concept of 1924 (ref. 2) for solving problems of

slender wings.
investigators

in a
have

compressible flow, sm ever-increasing number of
entered the field of analysis now commonly known as
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slender-body theory. The stability derivatives of slender triangular
wings were treated by Ribner (ref. 3) in 1947 following the pattern of
Jones, and in 1948 Spreiter (ref. 4) extended the latter’s result by
means of conformal mapping to include certain wing-body combinations.
Shortly thereafter, in 1949, Ward’s general analysis for slender pointed
bodies in steady supersonic flow (ref. 5) was published.

After.the appearance of Ward’s analysis, a number of papers were
written on various aspects of slender-body theory including extensions
to subsonic flow and to “not-so-slender” bodies (e.g., refs. 6 and 7),
and in 1952 Phythian (ref. 8) develo~ed an analysis which included time
variations in forward velocity and angles of incidence. Although many
papers (e.g., refs. 9 snd 10) have been devoted to the calculation of
various stability derivatives for specific configurations, it is only in
the past few months that a report by Miles (ref. 11) has given the com-
plete counterpart of Ward’s analysis for unsteady flow.

The determination of stability derivatives has long been of concern
to the engineer in connection with the dyns.micbehaviar of airplanes,
but the problem has assumed even greater proportions in the more recent
slender configurations of missile design. The stability derivatives them-
selves correspond to the coefficients of a Taylor expsnsion representing
a particular component of force (say lift) or.moment as a function of
the airplane motions. The coefficient of any particular motion (say q)
in the expansion is equal to the partial derivative of the force or
moment component with respect to that motion. Ordinarily, stability
derivatives are defined as these partial derivatives evaluated with all
of the independent variables except a set to zero, so that the usual
stability derivatives depend upon the initial angle of attack as well as
on the configuration. In the present paper, however, all derivatives
~eoev+uated with all of the independent variables (a, p, p, q, r, &, ~,
P> % r) set to zero. The advantages of this choice will become apparent
in the course of the analysis.

The present paper employs an approach believed to be novel in
slender-body theory and is concerned with developing formulas for the
forces and moments as well as the stability derivatives for general

1 The significance of the squaed termsslender wing-body combinations.
in the pressure relation for slender configurations precludes the
possibility of considering the longitudinal and lateral motions inde-
pendently, so all motions of the airplane are.treated simultaneously.

.

a-

.“

v

%hile the present snalysis was being carried out, Bryson (ref. 12)
published a paper treating essentially the ssme subject from a different
viewpoint based on the tacit assumption that all the forces, moments,
smd stability derivatives can be obtained from the apparent mass analogue.
This assumption and some of Bryson’s results are discussed in a later
section.

.

.
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The mathematical restrictions on the generality of the shapes that
can be rigorously hsmdled have been discussed in detail by Ward (ref. 5)
and more recently for the unsteady case by Miles (ref. 11). Such dis-
cussion will not be repeated in this report.
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LIST OF IMPORTANT S~OLS

coefficient of ~ term in series expansion of the mappingan

function g. f(.) = a+y ~

coefficient of ~ term

F(K)
K

value of Al at a=~

u-
n=o

in expansion of the complex potential

= p=q=r=o

coefficient of h ~ in expansion of F(c); R = ~~

distance from airplane nose to pivot-point

complex potential q + iv

length of airplane

force in the z direction (approximately

rolling moment about the x axis

referegce length

pitching moment about pivot point x = c1

yaw- moment about pivot point x = c=

lift)

angular rolling velocity about the x axis

pressure

angulsr pitching velocity about the y ‘axis

fluid speed relative to axes fixed in the bdy

component of qr normal to body contour in plane x = const.
(positive into the fluid)

.
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component of qr tangential to body contour in plane

x = const. (positive countercloc~ise looking upstream)

V+iw

angulsx yawfng velocity about the z-”axis

radius of transformed circle corresponding to airplane cross
section

cross-sectional

reference area

time

area

component of flight velocity along negative x axis

component of flight velocity along positive y axis

V. - r(x-cl)

speed of a point.fixed in

components of qr in the

the xyz system of

x,y,z directions

axes

component of flight velocity along poBitive z al s

Wo- q(x-c~)

force in the y direction (side force)

Cartesian coordinates fixed in the body (x rearward,
y to starbosxd, Z upward)

angle of attack (angle between arbitrarily chosen xy plane
and flight direction)

angle of sideslip
direction)

angle between the
body contour in

(angle between xz plane and flight

positive y axis and the tangent to the
a plane x = const.

fluid mass density

outward normal to the body contour in plane x = const.

y+iz

. —

19

—

—

.

k

.

.

—

—
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complex coordinate of centroid of cross-sectional area
(Yc + @

complex coordinate in transformed circle plane

velocity potential

partial derivatives of 9 with respect to x,y,z, and t

velocity potentials for unit velocity of the cross section in
the y,z directions

velocity potential associated ~ith variations in shape snd size
of cross section with x

stream function

stream function along the contour of the cross section

Special Notations

contour integral taken once round the
positive

Force coefficients:

Moment coefficients:

(&unterclockwise) sense

Stability derivatives:

a%y
Cym =

()
=;etc.

pz~ay-
0

Cy =
Y

, etc.
(1/2)pUo2Sr

C!m= M , etc.
(1/2)pUo2SrZr

acy
Cya

= K;
acy .

Cyp =

()pZr ‘
237

0

acy .
Cye =

()+lr2 ‘
i3—

Uo2

“’~L
All derivatives sxe evaluated at

body cross section in the

SC.
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I

(“)

(‘)

real pxrt

imaginary Tart

derivative of ( ) with respect to time

complex conjugate of ( )

*

GENERAL ANALYSIS: -.

The problem to be treated here is the determination of the aero-
dynamic forces and moments (except drag) and the stability derivatives
for a smooth slender airplane or missile of arbitrary cross section per-
forming slow maneuvers in a compressible fluid. The configuration will

.-

be limited in that the base (if any) of the fuselage and all wing trail-
ing edges must lie in a plane essentially normal to the longitudinal body
axis.

.

Differential Equation and Fres%ure Relation R

The linearized differential equation for the velocity potential of
unsteady motion of a compressible fluid is the well-known wave equation

-+TT-QAh -alp@)
co EE=O (1)

where the sYs*em of axes ~g is fixed relative to the undisturbed fluid,
co is the speed of sound in the undisturbed fluid, and T is time as
measured in the m~ system. Thus the velocity potential O is express-
ible as ~= @(~,~,~,T).

In general, the pressure relation associated with the velocity
potential O is given by (ref. 13, p. 19)

1?=—=
P

- @T - ;,/ + f N($)
where pl is pressure and q= is the magnitude
expressible as2

+ corm-b. (2)

of the fluid velocity

(3)

‘The subscripts on p and q are used to.distinguish them from the
angular velocities of rolling and pitching.



.

u

NACA ~ 3283

It will.be convenient for [
the present problem to introduce
a coordinate system Xlyz which
is fixed in the airplane. The 4

axes chosen for this purpose.are
shown in the sketch and ccmprise
a Cartesian coordinate system
endowed with the translational
velocities Uo, Vo, W. snd the
rotational velocities p, q, r
of the airplane. (Note that
this does not constitute a com-
pletely right-hand system.)
The xl axis passes through
the airplane nose, and the ori-

XI

gin of the Xlyz system is
fixed at an arbitrary distance
c1 from the nose as shown in
the sketch.

7

Since it is the purpose of this paper to study only instxmtaneous
forces and moments (i.e., no time histories), it will be sufficient to
choose an instant of time such that the positions of the moving Xlyz
system and the stationary lv~ system are just coincident. Thus,
equations (1) smd (2) will be expressed in the Xlyz system only for
this instant, desimated r= O. For this purpose a new function g
is introduced such that

T(x=,y,z,t) = d)(~,~,~,T) (4)

Now, through the use of the transformations relating the moving and
stationary coordinates (see e.g., ref. 13, p. 12, and ref. 14, p. 79)
one finds at -r= t = O that

and

It can be seen from the sketch that the quantities (V. + pz - rxl) and
(Wo - py - qxl) are simply the velocity components in the y and z
directions of a point fixed in the XIYZ system. Note that in the
corresponding x component (-U. + ry + qz) the products ry and qz
are considered negligible compared with Uo.
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With the assumptions of slender bodies, small angles, and slow
maneuvers, the differential equation (1) reduces to Laplace’s equation
in planes xl = const. near the body; that is

%Y+~zz=Q” (5)

It follows also that the density P must be treated as a constant
in the pressure relation (2) which now becomes

a=+
P T - * (@V2 + Q~2) + consto —-

=- Pt - uo~xl + (Vo + pz - rxl)~y + (W. - py - qxl)~z -

* (qy2 + qz2) + const. (6)

Here, for the sake of convention, one can transfer the origin of the
moving axes to the body nose by letting

xl =x- C1

so that pitching amd yawing rotations are still made about em arbitrary
pivot point x = cl. Thus, introducing the notation

v = V. - rxl

w = W. - qxl

equation (6) can be written

~= .cpt-
P

UOPX + (v + pz)~! +

= V. - r(x - c=)

=wo- q(x - c=)

(W - PY)qz - * (qy2 + Tz=) + const.

(7)

This, then, is the pressure relation (referred to the moving body axes)
upon which the calculations of the forces and moments will be based. It
should be noted that a consistent application of the slenderness approx-
imation requires the retention of the squared terms ~y2 and qz2. ~US
slender-body theory is not a strictly linear theory although the differ-
ential equation (5) is certainly linear. This means that solutions of
equation (5) for T (and hence the velocities) can be obtained by super-
position, but the pressures cannot. Likewise, the forces and moments
cannot be calculated by superposition except for those special cases in
which the contribution of the squared terms to the loading vanishes.
Furthermore, when the airplane is performing combined msmeuvers (e.g.,

.

simultaneous rolling and pitching), the squared terms may contribute
additional forces and moments. These in fact give rise to the second- .

order stability derivatives that will be included in the present snalysis.
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Total Forces and Moments

9

The analysis to be presented here
for calculating the total forces
(except drag) and moments on a slender
configuration will be the counterpart
of a methcd originally due to H. Blasius
(ref. 15) for obtaining the forces and
moments on a two-dimensional bdy of
arbitrary shape immersed in a steady
incompressible stream.3 This smlysis,
although not suited to the calculation
of total drag, till.nevertheless tak-e
proper account of the local forces
associated with leading-edge suction.
Consider a lamina of the slender air-
plane, cut parallel to the yz plane,
of thickness dx as shown in the sketch.
One can write immediately the differ-
ential lift smd side force on an ele-
mental area in terms of the local
pressure pl on the body:

z

p, dz

Y

~

d2y . -p=dzdx

Now, by introducing the complex variable ~ = y + iz, one
the differential ccmplex force as

d2Y - i d2L = -pldzdx -ipldydx=-ipl

1 (8)

can express

dx d~ (9)

where ~ is the complex conjugate of ~. In a similar fashion, the
differential rolling moment about the x axis can be expressed as

dzLl = -plzdzdx-plydydx =- PI dxR(cdg) (lo)

where R denotes the real part. Further, the differential yawing and .
pitching moments about the pivot point x = c1 are given by

d2N - id2M=- (d2Y - i d2L) (X - cl) = i Pl(x - Cl) dx d? (11)

Integration of equations (9), (10), and (11) gives for the total forces
and moments

.

‘The method of Blasius has been extended to two-dimensional unsteady

. incompressible flows by L. M. Milne-Thomson (ref. 16) amd recomse will
be had to many of his techniques throughout the present analysis.
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Y -’L=-’JW””E ]
(w)

and
f

1
N -iM=i (x - ah+’ P1.d

L’ =
-~lz~$’”d~ 1

where the contour integrals are taken round the boundary of the airplane
cross section in the positive (counterclockwise) sense. Before these
integrations csn be effected, the pressure pl must, of course, be
expressed as a function of the complex variable ~. Toward this end,
it will be convenient to introduce two new definitions pertaining to
velocities in the fixed and moving coordinate systems. First, the square
of the speed of a point fixed in the xyz system can be written as

V12 =U02 + (v +pz)2 + (w - py)= (13)

Second, it is noted that the square of the fluid speed relative to the “
xyz system is given by

qr2 2+Vr2+Wr2== Ur

so that, neglecting ~x2
equation (7) in the form

E&=.

(QJX+UO)2+ (9Y-V-’Z)2+(9Z -W+ py)=
(14)

in comparison with gy2 and VZ2, one can write

1
‘t 2+‘~qr *V12 + const. (15)

This expression will now be formed as a function of C through the
introduction of the complex variable R = V + iW and the complex
potential F = T + i~.

The speed V1 is immediately expressible as

v~z
[

=U02+ (V+pz)+i(w-py)
1[”

(v’+ ‘Z) - i(w -’Y)
1

= U02 + (R - ipg) (E + ip~) (16)

while the components vr ~d wr of the relative fluid velocity are
related to F through the complex velocity by

Vr - iWr=~-(V +~Z)+i(W-py). ~-E. i& (17)

.

w

.

.



11

Furthermore, at the body sur-
face it will be seen from the
sketch that

~ne-i(s-e)

SO that

Vr - ‘Wr = (qs + i~)e-ie

(18)

where ~ and ~ are the
tangential and normal com-
ponents of the transverse
relative velocity and ~ is the angle defined.in the sketch. Com-
parison of equations (17) amd (18) gives

from which

It is now noted that (see sketch above)

Vr2 + Wr2= %2 + qnz = %2 - U02 - 2UOQX

(19)

(m’ -2i7- ipE
)

~ ie

(

m= - 2iqn
z-

:-
)

ip~ eie (20)
z-
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z

Y

Finally, the boundary condition
?

at the body surface requires that the
normal component of the fluid velocity v
relative to the moving xyz system be
equal to the normal component of the
forward flight velocity. Let C be
the contour of the airplane cross
section in.the plane x = const. and
let Cl represent the projection on
that plsne of the contour at x + dx

.—

(see sketch). If V is the outward
normal to C at any point, and dv
is the distance between C and Cl
measured along the normal, then the
above boundary condition is, to the
present order of accuracy,

(21)

Thus the pressure relation of equation (15) can now
points on the airplane surface) in the desired form

,$(R - ip~) (~ + ip~) + const=

be written (for

.

(

dF i-
)

ip~ eie +
z-

(22)

Reduction of the integrals.- Before making use of equation (22) in
writing the integrals for the forces and moments, it will be useful to
notice from the sketch on page 11 that the differential distances on the
body contour in planes x = const. are related by the angle e so that
dy = ds cos G and dz = ds sin 6 where ds is the differential arc
length, positive counterclockwise. Hence,

d[ = ds eie; d~=ds e-ie;

so that the first integral of equation (12)
can be written, after expanding the squai?ed
in the form

for the complex lateral force
term in the pressure relation,

.
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Note that the constant term in the pressure relation contributes nothing
to the contour integrals of equation (l$?).

!llhenine contour integrals of equation (24) can be divided into
three t~es: (a) integrals that do not depend on the velocity potential;
(b) integrals containing the real Fotential ~; and (c) integrals con-
taining the complex potential F. The first type can be integrated at
once and these will be dealt with first. The second type will be reduced
to integals of the third t~e by determining the stream function on the
boundary, and the third type will then be hsmdled by the method of
residues.

It is first noted that
f

~ ds is simply the rate of change of

! -dv
cross-sectional area S and that K ~ds is the complex conjugate

of the rate of change (in the x direction) of the moment of cross-
sectional area. Thus, one csn write

(25)

where ~ is the complex conjugate of the position of the centroid of
area of the cross section.

The other two integrals of equation (24) that do not depend on the
velocity potential can be conveniently evaluated by the use of Stokes’
theorem which can be stated in complex form as (see ref. 16, p. 130)
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.

or

where S is the
form of equation

(26)

area enclosed by the contour. Thus, using the first
(26), one can mite

J (~+ ip~’d~ = 2i
ff

2ip(~ + ip~)dS = - 4pS(~ + ip~c) (27) .-

S

where S is the airplane cross-sectional area. Similarly, from the
second form of equation (26),

Thus, all the integrals of the first type discussed above have been
evaluated.

.

K-

Before introducing the stresm function for the evaluation of the
first two integrals of equation (24), it is well.to note that the time
differentiation can be taken outside the integral sign with no diffi-
culty, but the x differentiation cannot since the contour of inte-
gration is itself a function of x. It is shown in Appendix A that

where C is the contour of integration round the airplane cross section
and the”sm$face of the airplane can be expressed either as

z = z~(x,y)

or

Y = Yl(x,z)

Corresponding to these expressions for the surface me the expressions
for the slopes of the surface

&J= dv/dx . --
ax Cos e —

and
dV/dx~_

ax sin .9
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so that, recalling the relations
of equaticms (23), one can write z

f
qxd~= &

J
qd~ +

f
‘v qz + igy)ds#

‘$~’~+if:zti

(29)

Now, in order to express the

required integral
J

9d~ in terms

of the complex potsntial through
. the relation q = F + iv, the stream

function on the boundary will be
obtained from the boundary condition

. of equation (21). That is, the
total outward normal of the fluid velocity in the ylane x = const. is
given by the sum of ~ and the normal velocity of a point on the
boundary considered fixed in the xyz system. Hence, (see sketch),

~= (V + pz)sin 13- (W - py)cos e + U. & (30)

and it is recalled that sin 6 = dz/ds and cos G = dy/ds. The sense
of da is indicated by the arrm along the contour. Thus, integrating
along the contour, one finds that the stresm function on the suface is
given by

where G(x,t~ is an arbitrary function of x and t. Now *S can also
be expressed as a function of the complex variables ~ smd R by noting
that

. and

.
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whence

The integral
J-

gd~ is now expressible

tial since g = ~ + i$ and the integral

liACATN 3283

-.

U.
J

&ds + G(x,t) (31)

in _t_ermsof the complex poten-

fhwi–
d

equation (31). That is,if one sets 4’=*0 +*1
the inte~al term of equation

f,a=f,oz~j

Now, $1 taken once round the

can be evaluated from

where $1 represents
(31), then -

yldr =J’I@+ h$l”lc - ! ~d$l (32)
.- .

contour has the value Uo
i

~ ds or

simply Uo ~ and it is recalled that

upon evaluating
J

~od~ b.ythe second

n —

f

.

~~ds=: (Src), so that

,

form~=~fStokes’ theorem (eq. (26)) _

and noting that ~“ G(x,t)& = 0, one finds

J
~d~ = -ds.S(1 + ip%c) + Uo~o~ - Uo & (S~c) (33)

where ~. is the

tion was begun on

is therefore

complex conjugate of the

the boundary. The final

point at which the integra-

expression for {cT d-

(34)

and the time derivative is

J

a
qtd~ = ~

J i
qd~ =& ‘~d~ ~

at __ - ‘sat (35) ‘ ““

.
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Of the remaining integrals in equation (24) there is one which still
requires modification bef~re the method of residues can be applied.
Specifically, since F = F + 2i~ one can write

and

and

The

0==J-
the second integral can be

noting that V taken once

resulting expression is

+ 2idV) =
J

@ + 21
J

Td$

integrated by parts using equation (33)

round the contour has the value dsUo —.
dx

2is(s + iprc) + 2iuo S& (Src) (36)

so that equation (24) for the com@lex forck csiifinally be written
(after collection and cancellation of terms) in the form

Y
- “= i“lz+$=+~~’s%+‘“”d’Fd~-

X=‘

ipuo
J

~d~
[

–ds- puo Uo!lo— - S(E.+ WFTC) - Uo g (Src)
dx 1

+

X=o x=’

t%.+ iPp ps(ii +-iprc)dx (37)

It should be pointed
the fact that the x
titular, note that S = Q =0. at x=O.

00

out that several terms have vanished by virtue of
ax~s passes through the airplane nose. In par-

The complex potential.- Although equation (37) a~ears quite
unwieldy, all of the contour integrals are now in a form which admits of
evaluation by the method of residues. For a body moving through still
air, as in the present problem, all velocities vanish at infinity and the
complex potential F can be exp~ded in a Laurent series of the form

(38)
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c

where B(x) is a source strength and the coefficients An(xjt) give the
intensities of all the higher order singularities representing the
desired body shape and motions. This expansion applies only for large &-

values of ~, but since there are no singularities outside the body, the
contour integrals can be evaluated around a contour sufficiently large
to insure the validity of the expansion. The arbitrary function D(x,t)
is of no concern here since it can contribute nothing to the contour
integrations. For the determination of drag, on the other hand, this
function would be required.

From equation., the derivative of F is

so that

() =F-+’-+(tj+%2 IF 2B

dc

Now it is seen that the residue of (dY/d~)2 is zero since there is no
l/L term in the expansion. Therefore,

.

Also

Similarlyj if one writes the conjugate function

it follows that

and

= o

= 2Sm

(41)

*

.

* (39)

(40)

(42)

(43)
.



.

NACA TN 3283 19

The coefficient B (and, hence, ~) cam be evaluated by calculating the

integral
f

ap
— ds in two different
Zln

ways. Thus

and, by virtue of Gauss’ theorem,

JG?lds=r($or=ry‘r
where rl is the radius of a.circle enclosing

9 Hence, it is seen that

% B
Uo a= E=——
2113X

~ ride = 27cB
rl

the body cross section.

(44)

The final expression for the complex lateral force is obtained by
using equations (39) to (44) in rewriting equation (37). That is,

Y- iL ==2@J#-lx=z + PUO
[
S(R+ 2ipg)

ipp + iprc)dxJ
z
s (ii

o

For the case of steady straight flight
(

X&=

at

1+uo& (s<) +
x=L

J’

z
2fiipp Zldx +

o

(45)

aF_p=o

)
, the complex

at

force of equation (45) reduces to that given by Ward (ref. 5). Although
equation (45) a~lies to slender airplanes having cross sections of
arbitrary shape, it is of interest that in a large number of practical
cases, it is possible to choose the x axis so as to place the ~enter

. of cross-sectional area always along the axis and thus to make cc
equal to zero. The simplest exsmple would be sm airplane having mirror
symmetry of srea about both the y and z axes. If the wings have no

. thickness, this places no restriction on the wings themselves with regsrd
to number of wings, arrangement, dihedral, camber, etc. Equation (45)

—
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as it stands gives
tion having a nose

the total Bide
at the forward

force and lift on a slender configura-
end. However, it can also be used to

Rive the contribution to these forces of a segment of the airplane lying
~etween the planes x = 21 and x = 12 by simply emluattig y - fi”for
z =t~andz=z~ and subtracting the results.

If one considers the transformation of the arbitrary cross section
in the ~ plane to a circle in the cs pl~e: “:

m

IK=f(a) =cf+ ~ (46)

n=o

it can be sh~ (see Appendix B) that the dependence of the residue Al
(and, hence, Al) on the rolling yel.ocity p is determined by the form
of f(a) and therefore by-the shape of the-airplane cross section. It
is found that Al iS independent of p if a. vanishes and if f(a)
contains either only odd negative powers of a (n odd) or else only even
negative powers of “d (n even). It can be seen that if n is odd then
f(-a) = - f(a) and, hence, the cross section & symmetry about two “
orthogonal axes. The statement can therefore be made that for airplanes
having symmetry about both the y and z axes (no dihedral) one can
determine the total complex forceif he knows-only the complex potential
due to pure translation in the yz” plane.

An expression for the pitching and yawing moments can now be
obtained-from equation (12) by a procedure ew+ctly parallel to that used
in obtaining equation (45). Mking use of thq”foregoing evaluations Of .
the required contour-integrals, one finds that the resulting expression
is .-

—

—

—
i!

.

.-

1
z

N -iM= - 2Yrpuo (x - c,) Z& J’z.(x:::C,)$ [S(F + 2iPTc) +- puo
o 0

Uo ~
dx

(Srcqdx -M3J’2,X - c., ~dx -,PJ2(X - Cl)s:dx -

1
7

2Ycipp (x - cL)l.dx - ipp
.f

‘(x - ~J (~+ iprcjs h (47)-

0 0. -.—-----

The evaluation of the integrals for the rolling moment L’ is
somewhat different due to the additional K appearing in the expression
of equation (X2), so that the integrand of some of the contour integrals
appearinghere will be nonanal@ic in the variable of integration. This

.

precludes a direct application of the me~hod.bf residues’. Such fi. ..:

, . .
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.

. Jintegral, which does, in fact, arise is I ~~d?. However, in this

instance it can be shown with the aid of equations (26) and (31) that

1J’zm‘J g~dv = 2SR(1~c) +

Evaluation of other required contour integrals
(31), and (38) yields

R
J( )

$cdc. o

J
tdF = - 23’CU=

JU. KF ~ ds (48)

by means of equations (26),

)

(49)

and it can be shown in a manner parallel to that of Appendix.A that

(50)

so that the final expression for the rolling moment can be written in
the form

J
7/

J
-L

ppR S(R~c - fi<c)ti -puoI i.& (s&)dx
o 0

.
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In the case of configurations possessing mirror symmetry about both
.

the y and z axes (no dihedral), the general expression of equation (51)
can be greatly simplified. If one writes for such a case k““”

~=vq2+wq3+p94+9’

where %. and 93 represent pure translations along the y and z axes,
VA is a pure rotation about the x axis, and ~’ is associated with
the variation of cross section with x, it can be shown from symmetry

-.

considerations that

n

and, since ~~ is the
it follows that

to pure rotation about the x axis, .

‘Ww=o
d

Therefore, recalling that ~~ = O for configurations having symmetry
about the y and z axes, one finds that the general expression of equa-

—

tion (51)reduces to
—

f f

L_
L’ = pu@Jl q~~d~- 2TcpI RA=dx (53)

o
x=2

and it has already been pointed out that for these cases Al is inde-
pendent of the rolling velocity p. Thus, for symmetrical configura-
tions, the rolling moment has now been expressed as the sum of two inde-
pendent parts, one due to pure rolling and one due to pure translation.

—
<

STABIIJ?IYDIKKCVATIVES

The specific
so that stability
about the .xyz (body) axes4 at an attitude de-finedby the angles of

maneuvers to be considered here
derivatives can be determined.

will now be defined
Rotations sre performed

*“Rollingabout the wind axis can be treated as a special case by

the proper choice of the arbitrary body axes.

.

.
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attack and sideslip at t = 0, and
accelerations are permitted in the
fixed vertical end horizontal
planes. = particular, if the
angles of attack and sideslip at
t . 0 are denoted by ~ and ~o,
respectively, then the velocities
V and W at any time t exe given
by (see sketch)

v= Uopocos pt +

Uo~sin pt - r(x - cl)

w= - Uoaocos pt +

Uo90sin pt - q(x - c~)

From these expressions one finds that

E=v-iw= (Uoj30+ iU~)e-ipt - (r - iq) (x - c.)

and

s
iP(Uopo + iUo~)e -ipt + e-iPt (Uo;o + iUo~) -

z=-

(; - ii) (x - c=) - it~(Uo~o + iU*)e-iPt

It will be noticed that in the above e~ressions, the velocity U. (along
the x axis) is considered constant. This mess that pure pitching and
yawing motions (q, r # O) are performed at constant agles of attack and
sideslip, so that for such maneuvers the airplane follows a curved flight
path. Now, sett~ t = O in the above expressions, one finds

23

t-

= UCJI+ iUoa - (r - iq) (x - c=)

.
iUoa - ip(uop + iuoa) - (; - i;) (x - c=) (54)

and these relations can be substituted directly into equations (45), (47),
and (51)for the forces and moments. It will be noted that the subscript
on & snd ~ h~s been dropped. This means that for the rolling case
(P + 0) ~ ~d @ of equation (54) ~e not the time●rates of change of the
actual angles of attack and sideslip since &and~ are measured in the
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fixed vertical an! horizontal planes. The alter~ative would have been
to define & and 13.ascthe actual rates of change of a and f3(i.e.,
. .

-ppandp=~o+apatt= 0) in which case the coupling of
~ ‘w~h a and ~ would be obscured by the definition. This would lead,
for example, to a nonzero value af &C~ when the maneuver consists of
pure rolling at an initial angle of sideslip. This seems undesirable.

.
—

—

In seeking stability derivatives for the general problem under con-
sideration, it will be advantageous to employ the l$ansformation of the
airplane cross section to the circle (see Appendix B). In this way, it
will be possible to carry out differentiations of the forces and moments
explicitly with respect to the airplane motions and thus obtain the
stability derivatives in terms of the transformationwithout specifying
the complex potential. Thus, from Appendix B,

(55) .
and therefore

b& a 2 aF=Zl — - r. — -
at

i~(Eoro2
at

+ ~lao + . .
at

●) (56) u

where al is the coefficient of the l/u term of the mapping function-
and r. is the radius o~ the transformed circle. It_is recalled that,
as shown in Appendix BJ Al. is simply the value of Al at a = @ = p =

qr= = O and is therefore directly associated with the shape of the con-
figuration and the choice of axes.

—

The stability derivatives will be obtained by partial differentiation
of the forces and moments wit! r~sp~ctoto each of the ten independent
variables a, ~, p, q, r, &, ~, p, q, r and second derivatives will be
included; that is, there will be derivatives of the types

acy a=cy
Cy = and Cy =

()

ap
‘a+

()

p2r
ha~

o 0

where all derivatives are evaluated at a = B = p = q = r = & = k=+=
4=$=0’ The reason for this choice (which is not customary) will
become more evident later, but it can be seen at once that all deriva-
tives defined in this manner are constant for a given configuration and
that there will be “cross derivatives” of the type ~Q which will

show the mutual influence of the longitudinal and lateral motions. Thus
the total rolling moment due to sideslip, for instance, will be e~ress-
ible as

.

._
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C2B* = cl + Cfcz
$

+ K2ap $$
+ pczm +.. .

For the sake of consistency, all coefficients and derivatives are based
on the sane reference area ~ snd reference len@h lr.

If equations (45) ad (47) sre rewritten with the aid of equations
(54) to (56), the necessary partial differentiations can be effected with
no difficulty and all the derivatives of the side force, lift, yawing
moment, and pitching moment are obtained. The derivation of the rolling-
moment derivatives is not quite so straightforward as the others since
the expression of equation (51) for the rolling mcanentcontains integrals

of the type R $q~d~ which cannot be handled directly by residues,

as mentioned pre”tiously. However, when
with respect to any motion except p or
related to one of the integrals already
ular, if we write once more

this integral is differentiated
5, the resulting integral can be
evaluated by residues. In partic-

p~4 + q’

it follows from the boundary condition of equation (30) that

8T4—= yA?L+z!E

h ds ds

or

*4
R(~d~)=ydy+zdz=xds

Thus the integral a_&rpesringin CZP, for example, will be

But, by virtue of Green’s Theorem (see ref. 13, p. 46),

and again from equation (30) it

J~iYP2d6
ds =

4-xi-

cam be seen that
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so that, finally, one can write

This latter integral has already been evaluated with equations (34) smd
(42) to calculate Cyp. Similarly, the integrals appearing in the other .4

rolling-moment derivatives can also be evaluated and e~ressed in terms
of the mapping function of the cross section. The actual differentia-
tions to obtain the rolling-mcment derivatives are sfiPle enou@ if one
notes that the order of differentiation of the potential q is important
in that the expression of equation (51) has been written for a specific

—
●

instant of time (t = O). That is, T must be differentiated with respect
to time first, then integrated to give the rolling moment, and finally
differentiated with respect to the desired motion. Thus, since V is .

linear in the angles a and ~ as well as in the angular velocities

P~ q~ and r, one observes that

and further that

The resulting expressions for the stability derivatives are given
in table 1, which is arranged so that all the side-force derivatives
a~esr in the first column, all the lift derivatives in the second, and
so on. It is found that a number of derivatives vanish identically,
that is, regardless of the shape of the cross section. As a matter of
fact, all but 84 of the possible 325 first and second derivatives vanish
identically. For obvious reasons, the stability derivatives that are
identically zero me not listed, but a definite pattern can be seen in
table I.which shows, for instance, that all second derivatives of CL,
C!Y1cm) and Cn vanish except those inv~lving p and that there are no.0 .
second derivatives involting ;> Bj PY q) or r. It should be noted that
the order of differentiation is immaterial so that c~p = C%, etc.

.

.
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(If this were not the case, the total nunber of possible derivatives
would be 750.) In the next section, a total of 49 relationships are
found among the stability derivatives, so that, at most, only 35 deri-
vatives need be calculated directly for any given configuration. It iS
important to note that the mapping function must be expanded in exactly
the form of equation (n-6)before the proper coefficients cam be obtained
for use in the formulas of table I. In particular, the coefficient of
the a term must be unity.

From the

Relationships Amo~g the Stability Derivatives

general results shown in table I, a number of interesting
reciprocal relationships which are independent of the configuration are
observed at once. For instsmce, the side force due to angle of attack
is equal to minus the lift due to angle of sideslip (Cya = - CLP).

Similar equalities among the various derivatives are found throughout
and are listed ti table II. It should be noted at this point that many
of the relationships of table II would be obscured by evaluating the deri-
vatives at a # O, as is customarily done.

Beyond these-simple equalities, there are some interesting relation-
ships which cau be brought out by an integration by parts. For exmple
(see table I),

2
c% =

-—

f
l(X - c=) & [2YCR(E=+ ro2) - S] dx

Srlr o

2

{ f

2
= - — (z - C=)[2SCR(751 + ro2) - Slx=~ -

}
12fiR(~l + ro2) - S]dx

Sr~ o

=- cLq + C%

But from table I it is seen that

c~=(’ i:’) Ck

Thus, one finds that

—

cL& = C% + (=9 c%



28

This is a particularly interesting relationship in that it
to calculate from the static lift-and moment-curve slopes
which would require dynamic tests in the wind tunnel for a
imental measurement. Another quantity of interest in this

NACA TN 3283

enables one
a quantity
direct exper-
category can

be obtained by integrating by parts the expression for Cmq gfven in
table I. The resulting relation is

(58)

which states that the dsmping in pitch is proportional to the lift-curve
slope. This result, which is independent of configuration or choice of
axes, was obtained previously by Bryson (ref.“12)whose snalysis was
implicitly restricted to bodies having a straight-line axis (i.e., no
csmber of the body or the wings). The apparent mass concept, whfch was
the basis for the analysis of reference 12, will be discussed in a later
section. Other relations obtained here ti a manner similar to that for.
equations (57) and (58) me given in table II.

It is of some interest to look into .

the damping in pitch of’wing-body combi-
nations on the basis of equation (%).
Since the lift-curve slope is determined
entirely by the trailing-edge configura-
tion (see table 1), it is evident that a
wide variety of airplanes can be treated
at once quite simply. If one considers)
for instance, a configurationwhose
trailing-edge cross section consists of
a circle with symmetrically placed
straight lines, as shown in the sketch,
it is known from the transformation (refs.

so 4 4 and 12) that the lift-curve slope is
proportional to the quantity

( ao4)l-@.+— .
s02 S04

Thus, from equation (58), it follows that the ratio of the damping in
pitch of the wing-body hnbination to that of the horizontal wing alone
is also given by this quantity. It is important to note that any changes
in shape ahead of the trailing edge (e.g., camber and thickness of the
wings, variation in fuselage shape, etc.) are immaterial. Thus, for such

configurations, the damping in pitch is plotted in figure 1 and it can
be seen that (1) the body is always.destabilizing, &d that (2) this
effect is a maximum for a body diameter to wing span ratio of Iln.
The damping in pitch is made a maximum, on the other hand, by bringing
the body to a point (or a line) at or ahead of the wing trailing edge.

.

.

G —-

+“

.—

—

—

—

—

.—

—

.

.
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.
The relationships given in table 11 are all independent of the con-

figuration, at least to the order of the present amlysis. It can be
seen from table I that for configurations involving any symmetries (for
example if S!c = O), there will be additional relationships among the
stability derivatives. Such a case will be considered in the section
titled “Applications of the Theory.”

Perhaps the most striking feature of the results presented in table
I is the frequent appearance of the quantities [2stll(~l- ro=) + s],

[zfiR(51 + ro=). - S], and 2JcI(==). In fact, since both ro2 and S are

real, the first two quantities sre simply the real parts of
[21-@~ - ro=) + S] and [2Tt(=1+ ro=) - S], respectively, while the third
can be written as the imaginary part of either of these bracketed quan-
tities. It now becomes evident that a large number of the stability
derivatives depend only on these two bracketed quantities which, in turn,
depend only on the shape and size of the airplane cross section. As a
matter of fact it csm be shown (ref. 17) that the quantities
pR[2?r(a~ - .4”r. ) + S] and pn[2JC(E1 + ro=) - S] are identical with the
integrals defined in incompressible flow theory as the additional appar-
ent mass of the cross section in the y and z directions, respectively.

n n

These are given by
J

p~=dz and
}

and q~ are the velocity potentials
tion in the y and z directions.

The mathematical basis for the
the transverse force derivatives of
by Munk and Jones in refs. 1
tion (ref. 7) of the general

Y

since a differentiation with
yields

Hence, taking

and 2)

p~~dy (refs. 13 and 17) where ~z

for unit veloci~ of the cross sec-

use of the apparent mass to calculate
slender bodies in steady flow (as done
was established with Ward’s formula-

expression

-iII= ipuo
J

QdE (59)

X=-L

respect to singleof attack, for example,

X=z x=-t

the imaginary part of both sides, one finds
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L“ = pu~z
J

T&y

X=2

where m~~ is the additional apparent

= U02 (m33)x=2 (60)

mass of the cross section in the
z direction for pure translation in the z direction. It thus becomes
clear that the lift-curve slope is, in all cases, given by the apparent
mass m~~ evaluated at the base of the body. If equation (59)were
differentiated with respect to angle of sideslip rather than angle of
attack, then the derivative LB would be found to involve m32 rather
than m33, where m32 is the apparent mass in the z direction for pure
translation in the y direction.

There remains now the question of the relation between the apparent
masses and the total forces given by equation; that is, under what
conditions can the total forces be calculated from the apparent masses?
This can perhaps best be clarified by setting

.

—

—L

.

where the first two terms represent rigid-body translations of the cross
section in the y and z directions and V’ represents ,variationsin the
shape and size of the cross section with x. For the steady case, the
velocity components of the centroid of the cross section are given by

‘C=UO(’+3
and

‘c= -“0(”-%)

so that equation (59) can be written in the form

Y
- m‘ ‘UF[(’+%)(m”-‘m22)- (a-%9(m33-““)lX=;

ipuo
J

q’d~

X=2

Note that the quantities
(’ ‘%) ‘d (a -%)re~esent ‘he ‘“es

that the line of centroids of the cross sections makes with the flight
direction (i.e., the local angles of attack and sideslip). It can now
be seen that the complex force of equation (59) is given by the apparent
masses and the angles of attack and sideslip of the base cross section,

yrovided that
J

T’dr= O.

x=2

.

.-

.—

a
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.
As an example, consider first a cambered body with no wings whose

cross sections nesr the base are all circular. In this case
.

y - yc)2 + (z - ZC)2 so that
J

*

9’X=Z QSdr = O and the

X=1
apparent mass gives the side force sad lift as well as their derivatives.
On the other hand, consider a flat plate having deflected Partial-spsm
flaps. Here (when the plate is alined with the flight direction), the
entire potential at the trailing edge is given by ql~z whose integral

J-
q’d~ does not vsmish. Hence, in this case, the lift-curve slope is

x=2
given by the apparent mass but the lift is not. This is also true for a
body of revolution having flat-plate wings at incidence to the body.

For the unsteady case, as a result of a recently published report
by Miles (ref. 11), one cm show that the stability derivatives cm also
be obtained from apparent mass considerations. This is most easily seen

. from the general expression of reference 11

. (61)

since, for example,

so

It

in
11

\ Uo) \uo/

that the imaginary part yields

-1La=cJ’m33dxZr o
(62)

should be noted here again that the total forces themseIves are not,
general, given by the apparent masses. Miles also shows in reference
that the rolling moment about the wind axis is given by

(63)

Now, by reasoning exactly parallel to that for the steady case, it can
be concluded from equations (12), (61), snd (63) that in all cases all.
of the stability de~ivatives (except &ag) for
be obtained from the apparent masses (or, more

rigid slender bodies can
generally, the “inertia
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coefficients*’). Also obtainable from
cross sections are (1) the total side

!
g’d~ = O, (2) the total yawing and

x=1

NACA TN 3283

the inertia coefficients of the
fdrce and lift, provided that

pitching moments, provided that

.

.

z
r( x - Cl)dx & [cp’d~. O, and (3) the total rolling moment, provided
Jo dx d

that R
J

q’~d~= O. It is interesting to note

x=z

(3) involve symmetries of the cross sections only
condition (2) is more stringent and is satisfied,
bilateral symmetry of the cross sections over the
airplane.

that conditions (1) and

near the base, but that
for example, by having
entire length of the

An alternative form for the integrals representing the apparent
masses or inertia coefficients can be shown to be identical with the
integrals representing the kinetic energy of the fluid associated with .

any desired unit velocity (linear or sngular) of the cross section; for

J J

aq~ ~s.
example, p~ady = - p~a — However, it is essential to note .

an

that it is only for rigid-body motions of the cross section (as repre-
sented, for example, by 93) that the two integrals are identical, since

?y=- ~ at the boundary. Thus, it canonly for such motions does
an ds

be

J J aq~
seen that p~’dy+ - p~’ — ds even if P’

art
is given proper

dimensions by dividing by a velocity.

Inasmuch as relatively few inertia coefficients have previously been
calculated, there seems tobe little advantage (other than brevity) in
expressing the stability derivatives in terms of these coefficients. It
is felt that the formulas of table I involving the mapping function will,
in general, be found more useful, although one should certainly make use
of any of the coefficients already calculated. In this connection, the
reader is referred to a recent paper of Kuerti, McFadden, and Shanks
(ref. 17j in which the apparent masses of anumber of interesting cross
sections are listed for simple translation in the y and z directions.

The apparent mass integral
J

%dy was also calculated for a few

shapes In connection with minimum drag problems in reference 18.
.

How-
ever, the integrations there were (for the rectangle) carried over both
the exterior and the interior of the cross section since the configura- .

tion treated there was indeed a hollow rectangle made up of four thin
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wings. It is necess=y then, in order to obtain the desired quantity
[2fill(=z+ ro2) - s], to subtract the cross-sectional srea (as pointed
out in ref. 17). It should be pointed out in this regard that all the
results of the present paper sre for solid bodies. ~us, if the body con- ___
tains a jet, one must add to the calculated lift the negative rate of
change of momentum (in the z direction) of the air passing through the
Jet. For a simple bent, circular, thin-walled pipe flying approximately
along its axis, a Jet exit velocity equal to the flight velocity just
doubles the lift given for the solid circular cross section.

The tabulated values of
J

‘?~dy in reference 18 have been adjusted

for this internal flow and additional values have been calculated here to
extend the range of the vwiable. The results are plotted in figure 2 to
show the increase in lift-curve slope and damping in pitch obtained by
use of a blunt trailing edge of rectan~lar cross section, of vertical
end plates near the trailing edge, and of a biplane with sharp trailing
edges. It will be recalled that both the lift-curve slope and the dsmp-
ing in pitch depend only on the trailing-edge cross section, so the.
results of figure 2 are independent of wing thickness, camber, body shape,
etc., ahead of the trailing edge.

.
It might be mentioned

here that if the apparent be
masses of a given cross sec-
tion in two orthogonal ‘\
directions are equal, then
the apparent mass of the
cross section is independent
of its direction of trans-
lation. This follows from
the fact that the momentum
vectors and the velocity
vectors add in exactly the
same fashion. In reference
17 it was shown that the

7%
L

a
/

n fins
n*3

n comers
regularpo/ygon

cross sections in the sketch
possess this important property. It also follows, then, that a= = O so
that many of the stability derivatives vsmish for such configurations
(see table 1).

APPLICATIONS OF THE THEORY

. In this section, the results of the foregoing analysis will be
applied to the calculation of the stability derivatives for several more
or less special configurations. The first problems to be treated here

. will be concerned with the introduction of wing thickness and camber as
parameters since the present analysis is applicable to unsymmetrical
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configurations.
treated by many

NACA TN 3283

Then, although the finned bcd.yof revolution has been
authors (e.g., ref. h, 9, 10, and X2), a plane wi.ng-bcdy

combination will be considered in order to investigate the effect of the
squared terms in the pressure relation. Finally, stability derivatives
will be calculated for a wing-body-vertical-fin combination.

Wings with Thickness and Camber

The quantity “csmber,” as introduced here, may be complex, the
imaginary part corresponding to the conventional camber in the vertical
(XZ) plane and the real part corresponding to a lateral camber or
“wiggles” in the horizontal (xy) plane. Perhaps the simplest configura-
tion of interest for the present problem can be made up of elliptic cross
sections whose eccentricity and position in the lateral planes are arbi-
trary functions of x. The required transformation for such a configura-
tion is (see sketch)

SO that

—

.

.

(64)

~
~2 _ b2

a. = c; al = —.
4 ‘ a2=a3 =”””=

o

a+band the radius of the transformed circle is r. = —.
2

These quantities
.

suffice for the calculation of many of the stability derivatives directly
from table I. However, for the rolling derivatives, the complex pdential
is, in general, required. The complex potential in the transformed cir- .

cle plane ean be derived from reference 16, page 239, and is given by
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F=(u) =BZm S-
Hc(a + b)(b cos y + ia sin y) +

213

2 m
ip(az - bz)(a + b) +

I

kn

lW ~

rt=2

(65)

where ~ smd y define the lateral velocity of the’centroid given by

d~cHceiy =R+Uo —- ipcc
dx

(66)

The logarithmic term of equation (65) permits a variation in size of the
ellipse with x. The series term represents the portion of the potential
required to meet the boundary condition of equation (21) when dV/dx is
arbitrary (warped body); this permits a variation of the eccentricity
b/a with x. If now the potential of equation (65) is transformed to the

plane by means of equation (64)and the coefficient of the 1/!. term
evaluated at R = p = 0, it is found that

U()
Ale=-y

( ag+bg)cc-.o(yy~ +.o(a’;”)$ ‘

(67)

With this result, one can obtain all of the stability derivatives except
Czp and Czfi directly from the formulas given in tables I and 11, for

any given configuration in this category. Two examples will now be
considered.

The first example will consist of a cambered elliptic cone; that is,
an elliptic body with constant eccentricity whose span is a linear func-
tion of x. The body axis will be chosen to pass through the center of
the base and the csmber line will be represented by a sine curve
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B---l I

B-
2 x

*Y ‘“””-”
sec. .4- A

plotted in figure 3. It is seen that

Zc = b sin mc/c as shown in the
sketch. This body can be thought
of as a special case of a csm-
bered triangular wing having a
blunt trailing edge. The csmber,
of course, must be sufficiently
small to insure the validity of
the slenderness approximations.
On the other hand, the thickness
ratio as indicated by b/a is
arbitrary. Thus the range of
b/a from the flat plate
(b/a = O) to the cticular cone .-

(b/a = 1) can be treated as one
problem. It should be mentioned
that the choice of body axes is
arbitrary so that maneuvers about
any other set of orthogonal axes
fixed in the body could be
handled equally well. A few of -—

the interesting stability deri-
vatives have been calculated for
this configuration by the formu- .

las of tables I and 11 and the
derivatives Cnp and C% are

Cnp is always negative for posi-

tive camber, is linear in the csmber, and increases with the thickness.
On the other hand, C~~ which is negative in all cases, is independent

of the camber smd decreases to zero as the thickness ratio increases to
one.

As a second example of a configuration having elliptic cross sec-
tions, the “wing-like” shape developed by Squire (ref. 19) is chosen.
This shape has a variation of eccentricity of the ellipse such that all
profile sections (except the midspan section) have a rounded leading edge
and a pointed trailing edge. In addition to this particular thickness .—

distribution, for the present problem the wing will be given a camber
identical with that taken for the elliptic cone; that is, Zc = 5 sin fix/c.
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Thus, the wing to be treated
here has the shape illustrated
in the sketch. For this wing,
the major and minor axes of’
the ellipse are given by

a A=-
4X

(68)

and

b=~(c-x)x

where A is aspect ratio and
t is the maximum thickness
(thickness ofcfi mids~an sec-
tion at x = . Some of
the stability derivatives have
been calculated for this wing
by the formulas of tables I
ad 11 ad Cnp ad C!% are

plotted in figure 4. It is
found that Cnp displays, in

general, the same variations
with camber and thickness as
did that for the elliptic cone.

to that for the elliptic cone.

B
-1 I

I
z x

+

b.
sec. B-B

Y

sec. A -A

However, C%p displays a trend o~site

That is, C% is seen to increase with

thickness, so that the angle-of-attack contribution to the yawing moment
due to rolling is apparently heavily influenced by whether the trailing
edge is blunt or sharp. The derivative cYp was also calculated for

both wings and was found to be independent of the thickness. In fact,
for either wing, for the axes chosen,

CYP=-CZB=9

While this result appears to contradict the corresponding relation found
in reference 12 (Cyp = CZB), it simply highlights the fact that the analy-
sis of reference X2 does not include camber although it could be extended
to do so. Clesrly, if 8 = O the two results are in agreement. The
derivative Clr was also calculated for both csmbered wings and was

similarly found to be independent of the thickness. In fact, Czr was

found to have a value equal to Cnp for zero thiclmess; that is,

Czr = - 0.4508 5/spin

It is interesting to note that since the trailing-edge cross section
of the Squire wing is a straight line, any stability derivatives that
depend only on the mapping function of the trailing-edge section (see
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table I) will be the same as

(!La,etc.). It is important
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.
for a flat-plate wing (e..g.j CLa~ CyPj CLPj

algo that for an elliptic cross section, the ,k
qu&ti~y[2fi(a~ + r~2) - S] (apparent mass in the z direction) is inde-b pendent of the eccentricity, depending only on the semimajor axis a,
while the quantity [2ST(~1- ro2) + S] (apparent mass in the y direction]
depends only on b. Thus it can be seen from table I that all of the
purely longitudinal derivatives (CLaZ CLq~ CL&~ C~y c%) c%> Cm&S Cm~)

are the same as for a flat-plate wing of local semispan a. Similarly,
all of the purely lateral derivatives (Cy , Cn , etc.) are the sane as.

PP
for a flat-plate wing of semispan b if we replace J3 by minus a, Y .
by L, and N byM. One can see, therefore, that the ellipse is a very
special cross section and tends to.obscure some of the effects of thick-
ness. For instance, it was seen in figure 2 that [2fiR(El + ro2) - S]
for a rectangle increases with the height of the rectangle and that a
blunt trailing edge of rectangular cross section will therefore give an
increase in lift-curve slope over a flat plate and a corresponding
increase in the dsmping in pitch. -— .—

.

For the evaluation of rolling moments it would appesr from equations
(51) ~d (2) fiat some of the integrations might be quite difficult
because of the nonanalytic character of the integrsmds. In fact the

.-.

stability derivatives Czp SJldcz~ contain the same nonanalfiic inte-

grands (see table I). However, the integrations can sometimes be advan-
tageously carried out in the transformed circle plane by the method of

.-

residues. For a configuration having an elliptical cross section at the
trailing edge, for example, the calculation ofithe dsmping in roll C7P

becomes quite simple with this technique. Specifically, from table I,

1
R

J

~F d(~~) daE d(~~) = & ‘~ ~ doCzp = — (69)
S~tr2 ap

x=z x=-t

Now, since equations (64)and (65) for the required transformation and
complex potential are already in the form of power series in a, and
since on the circle boundary U5 = ro2, one c5rIimmediately mite the
integrand as a power series in u and therefore use the methcxlof resi-
dues. It is found for this case that the residue of this series is

simply ~ (ao= - bo2)2 where the subscript refers to the trailing edge.
8

Thus the damping in roll is given by

c~p
{[

. J--.x Pfii
1}

~ (ao2 - bo2~ =
Sr2r2 -$5 (’ -9 ’70)

.

—

.

●
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.
It is seen from equation (70) that for the Squire wing (b. = O) the dsmp-
ing in roll is independent of the wing thiclmess and csmber, remaining\d always at the flat-plate value as given by Ribner (ref. 3). For the
elliptic cone, on the other hand, Clp depends on the thickness and the

effect of a blunt trailing edge becomes apparent. Values of Ctp for

these cases are plotted in figure 5. It should be noted in general that
since ~F/ap is independent of any translational velocity in the cross
plane, the damping in roll is not affected by camber.

The device used above to permit the use of the me~hod of residues
can always be employed; that is, since aF/ap, !, and C are all express-
ible as power series in a and ~ and since a and ~ are related by the
radius of the transformed circle, the integrand becomes an analytic func-
tion of the variable of integration in the transformed plane. However,
if the transformation itself is an infinite series (as is the case for
the finned body of revolution), then the residue and consequently the
damping in roll will emerge as an infinite series involving combinations
of all the coefficients of the transformation. This series is, in gen-

. eral, considerably more complicated than that entering into derivatives
like Cyp.

.

Plane Wing-Body Combir~tion

.

.

It will be of some interest to consider here certain aspects of the
plane wing-body problem in view of the fact that some stability deriva-
tives had been calculated (see ref. 10) before it was generally realized
that the squsred terms in the pressure relation must be retained. A
number of the simpler derivatives can be obtained quickly from table I
if the mapping function of the cross section is known, and one of these
will now be compared with the corresponding derivative obtained in ref-
erence 10 without the squsred terms in the pressure relation. The
required mapping function is an infinite series obtained by making two
successive Joukows@ transformations (see ref. 4), and it is found that

‘O=KS+:)
(70

—

/

az = a4 = ae= . . . =“0 J
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z where s is the wing
semispan and a is
the body radius (see

t-’-i

\

3+

sketch). Hence, many
of the stability deri-

$/
vatives vanish by vir-

~ tue of the fact that
Y al is real (see table

I). It is noted that
s, a, and cc are here
all arbitrary func-

[ o- tions of x (within
the slenderness
a~roximation) and

the body will have a straight axis (plane wing-bdy) only if !C is a
linear function of x. Also, if ~c is not a linear function of x
then the evaluation of AIO (which is required for some derivatives)

becomes a problem which amounts to determining Al of the complex poten-
tial for simple translation. This will be done shortly.

-%

case, with the axes chosen as shown,“itis clear that
a= const. =~, ands= so(x/c). It is further noted

-.

.

.
For the pur-

pose of illustrat-
ing the influence
of the squared
terms in the pres-
sure relation, the
rolling moment due
to sideslip will be
calculated for the
special case of a
flat triangular
wing mounted sym-
metrically on a
cone-cylinder as
shown in the
sketch. For this
Lc =0,
that (due to

.-

symmetry) there is no rolling moment provided by the portion of the body
ahead of x = X. and that the rolling moment due to sideslip at zero
angle of attack is zero (CzP = O). Therefore, the only pertinent deri-

—
—

vatives to be calculated is CZap which is given by (see table I) ——

5For this conf@uration all of the coupled (second) derivatives of
the rolling moment vanish except ~zap and Czlx’

and it is assumed here

(for purposes of comparison with ref. 10) that q = O.

.

._
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where Sr ~d 2r have been taken as the gross wing wea and the maximum
wing s-, res~ectively. The ratio of this ClaB to that for the ting”

alone (../sO = O) is plotted in figure 6 and is compared with the corre-
sponding curve of reference 10. It can be seen that the error incurred
by the omission of the squared terms in the pressure relation is in excess
of 100 percent for ratios of body diameter to wing span greater than 0.5.
Now since Cyap = - Czq according to table II, the side force due to

rolling can also be compared with that obtained from a linear pressure
relation by means of equation (72). This comparison is presented in
figure 7 and it is seen that the difference is even more pronounced than
that for the rolling moment due to sideslip. It should be mentioned that
if the wing-body combination is cambered, the contribution of rolling
moment by the nose will not, in general, vanish, nor will the rolling
moment at zero angle of attack.

It has been
mentioned that for
a general wing-
body combination
of the cross sec-
tion discussed
above (i.e., EC
not a linear func-
tion of x), the
coefficient of the
l/C term in the
complex potential
must be determined

H=

-d 0’

u

z

H=

\ Y

t t--’-i

I
if all of the stability derivatives are to be calculated. The coeffi-
cient A= for simple translation (p = O) can perhaps most retiily be
obtained from the complex potential for a flat plate in a uniform stream
by use of the transformation

●

(see sketch).
e.g., ref. 16,

Ld=(Lcc)+-Jt-
C-KC

The complex potential in the u plane is given by (see
p. 161)

(73)
.
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.

.

so that; by using the above transformation and adding a term Hc!.e-iy to
remove the free stream in the ~ plane and a term B tn(~ - cc) to allow
a variation of the radius a with x, one finds after expansion in series
that the coefficient of l/~ is (for p = 0)

[ 1
Al = - Hc a=cos 7 - $(2a2 -d=)sin 7 -B~c (74)

where d = s + a2/s and it is recalled that Hcei~ = R + Uo(d~c/dx) for

pure translation. Now, by noting that for R = O .-

Uo

()

dyc
cos7=—

H= ~

and

Uo

()

dzc
siny=——

Hc dx .

one can write finally for this type of configuration .

Alo = - U.
[

a= dyc
—-~(2a2- d2)~+a~(yc+izc)
dx 2 1

(75)

With AIO determined, all of the stability derivatives except Czp and

cz~ can be obtained directly from tables I and II. The difficulties in

determining Czp md Cz~ have been discussed in the preceding section. —

Wing-Body-Vertical-Fin Combination

t) In reference 12j the mapping
function was developed for a body
of revolution having four flat-

8

0

plate fins mounted 90° apart (see
sketch). Therefore, one can tise

/G the formulas of table I directly
-s for such a configuration by first

determining the proper coefficients ——
in the expansion of the mapping - -
function. It is important to note
that for this purpose, the expan-

.

c o-
sion of the mapping function must

be exactly of the form of equation (46). The mawing function given in
reference.12 is not of this form (as can be verified by carrying out the

“—
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.
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expansion), but it can be modified to give the proper form. The resulting
transformation is

[~-;)2-d2=[~ (h-i’)

and

h+f
ro=—

4

where

‘=s(’ -$)

+d (h+f)22
16a 1

(76)

.
and it is found after a somewhat laborious expansion that the fir”stsix
coefficients =e

a. =~(h-f) 7

al’a’-(~)2+$

az =
-:(h-f)@ +$)

‘3= - (a’‘9[(%9’-(WYI-* (’2 ‘2a2)2 -$

a4 = -~(h -f){[2(~)2-(~)’](~+a 2)-

~(d2+2a2)2-~a4 1
“=[(+’- 3(wXYJl(:+a2)+

F(w)’- 3(*)’l[*(d2 ‘2:2)2+:1+

1(d2+2a2)a +~d2a4+~a6+~
z (~)’(d’ + 2a2)

}
(77)
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.
In general,

the integrations
indicated in 4“
table I would

—

\l/-” \’ have to be per-

configuration
number of the
setting t~ =

formed numeri-
cally for a given
configuration of
the type consid-
ered above. How-
ever, for a con-
ical configura-
tion, great
simplification is
achieved and the
integrations
become trivial.
Thereforej a two-
parameter conical

is chosen to illustrate the effect of a vertical fin on a .

stability derivatives; that is, the lower fin is removed by
a, and tl (or t), a, and s are taken to be proportional

to x (see sketch). ThuEs,the coefficients given above and the radius
of the transformed circle beccme proportional to x or @ and most of
the stability derivatives can be readily calculated. It is noted that
for this configuration,with the axes chosen,-A1o = & = O. Also, due to

the conical property, CnP = C% = O if c1 .i.schosen as 2/3 c. -.

The stability derivatives obtainable from the coefficient al (which
in this case is real) and from the radius of the transformed circle r.
have been calculated for a range of the par~eters a/s and t/s ~d are
plotted in figure 8. The purely longitudinal derivatives are of course
unaffected by the vertical fin as seen in fi@e 8(b) (which is inci-
dentally the same curve as given in figure 1 for a different purpose with
regard to a more general configuration).

effects of the vertical fin can be
seen in figures 8(a) and 8(c) which

.4 &:;;g:g”t should be noted that the two ends

0/s=o the extreme configurations shown
in the sketch. It is clear that

0/s=/.0 the solid curves of figures 8(a)
and 8(c) have no meaning for

a/s >t/s since this would correspond to a vertical fin inside the body.
Therefore, for values of t/s less than 1, the envelope curves (the
dashed curves) corresponding to a/s = t/s have been plotted to fill in.

.

.“:

—
-.
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the rest of the range of a/8 from o to 1. It is seen that even at
a/s = O a vertical fin of small syan is quite ineffective on both stabil-

. ity derivatives I and ITI (see figs. 8(a) and 8(c)). Hence, the ineffec-
tiveness of small fins is not entirely caused by the body absorbing the
fin, but is partly due to a blanketing effect of the horizontal wing.

The significance of the effect of the vertical fin can perhaps best
be appreciated by considering a“relatively familiar derivative Ckp
(fig. 8(a)) which can be thought of as the single-of-attackcontribution
to the yawing moment due to rolling. It appears that for fin heights
such that t/s > 1.0 this derivative becomes positive over some portion
of the a/s range (almost the entire range if t/s > 1.5]. Thus, for
this configuration, the angle-of-attack contribution to the yawing moment
due to rolling can be changed from adverse (negative) to favorable
(positive) by increasing the height of the vertical fin above about 1.5
times the wing semispan, depending on the body radius.

From the coefficients given in equation (77”),it is difficult to
make smy statement regarding the convergence of the series required for
derivatives such as Cw (see table I). Thereforej one is at a loss to

say how many terms of the expansion must be retained for satisfactory
. calculations. In order to get some idea of the convergence, the deri-

vatives involving the series were calculated using 2, 3,‘4,5, and 6
terms in the series and the results are presented in figure 9. It appears
that for some cases four terms would be sufficient. The results of f@-
ure
for
Cnp

the

9 indicate a strong blanketing effect of the wing on the vertical ~in
t/s <1. It can be seen that for a/t = 1 (plane wing-body)

scn~=. ..=o.

In reference 20, one of the configurations treated corresponds to
present conical wing-body-vertical-fin combination for a = O (no

body). As this furnishes an interesting check on the present calcula-
tions, the appropriate values of CYP9 CY$9 ~d CXB have been taken from

that report6 and are plotted on figures 8 and 9. It can be seen that the
agreement is excellent, even for those derivatives calculated with only
a few terms of the infinite series (fig. 9). It should be noted in fig-
ure 9 that wherever the best approximation curve (representing 6 terms
in the series) cannot be seen, it is because the results were essentially
identical with the previous approximation.

It is interesting to note that for a cruciform wing-body combination
(tl = % = s), accordingto equations (76)smd (77)and succeeding terms,
onefindsthat ao=a1=a2=a4=a6 =. .. =C?sothatmany of the
stability derivatives of table I vanish due to the symmetry of such a

. configuration if the axis of symnetry is chosen as the x axis; for
example, here again C~=Cnfi=. ..=O.

6~e values Of’ ~yg~
● ~Yp9 and CZ

L

were taken from figures 11, 23,
and 24 of reference 20 since there ap ar to be some typographical errors
in equation (%) Orthat report.
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CONCLUDING RRvMRKS
.

.
A general analysis has been presented for determining the forces

(except drag) and moments and the stability derivatives of a slowly
maneuvering slender wing-bcdy combination of arbitrary cross section.
The results of the general analysis appear as (1) formulas for the forces
and moments in terms of the airplane shape and motions and <2) formulas
for the nonzero stability derivatives in terms of the mapping functions
of the cross sections.

Stability derivatives of the first and second order have been con-
sidered so that the interdependence of the longitudinal and lateral
motions is included. A number of relationships among the various stabil-
ity derivatives were found which are independent of the shape of the air-
plane, so that, at most, only 35 of a total of 325 first and second
derivatives need be calculated directly.

In order to bring out these relationships,
have been defined somewhat differently from the
example, the usual derivative of rolling moment
in the present analysis, be given by

the stability derivatives
usual derivatives. For --

due to sideslfp would,

.

CZ*=
P hp + ~2@ + WZPP + WZPP + CNZpq + rc2@

All derivatives as defined in this paper, then, are constant for a given
airplane. Time rates of change of the angles and angulsr velocities have
also been included, although
derivative above.

The use of the apparent
theory has been discussed in
basis of previous treatments

these effects vanish for the particular .

mass concept for problems in slender-body
the light of the present analysis and on the
of slender-body problems by momentum methods.

It is demonstrated that all of the stability derivatives can be calculated
from the apparent masses (or inertia coefficients), but that the general
expressions for the total forces and moments involve additional terms.

From the results of the general analysis, some of the stability
derivatives have been calculated for (1) two triangular wings having
thickness and camber, (2) a plane wing-body combination, and (3) a wing-
body-vertical-fin combination. These three cases have been used to show,.
respectively, (1] the effects of camber, thickness, and blunt trailing
edge, (2) the influence of the squmed terms in the pressure relation,
and, (3) the effect of a vertical fin on the vsrious stability
derivatives.

It was found that the effect of thickness on the angle-of-attack
contribution to the yawing moment due to rolling.was essentially opposite
for blunt and sharp trailing edges, but the effect at zero angle of attack
was similar in both cases. In both cases, the angle-of-attack

.

.
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contribution was independent of the csmber while the zero-angle-of-attack
contribution was linesr in the camber.

The damping in pitch was shown to be proportional to the lift-curve
slope and therefore to depend only on the base cross section. On this
basis, the lift-curve slopes and damping in pitch were calculated for
(1) a wing-body-vertical-fin combination, (2) a blunt trailing edge of
rectangular cross section, (3) a sharp trailing edge with end plates,
snd (4) a biplane with sharp trailing edges. Sizable increases over the
flat-plate values are shown in the last three cases.

The derivatives usually called C!yp and Ctp were calculated to be

more than 100 percent in error if the squared terms in the pressure
relation are neglected in the case of a plane wing-body combination of
body dismeter to wing span ratio of O.~ or greater.

A number of stability derivatives were calculated for a conical wing-
body-vertical-tail combination and the variations with body dismeter to
wing span ratio were plotted for various vertical tail spans.. The influ-
ence of the vertical fin was found to be markedly altered by the blanket-
ing effect of the wing for small vertical tail spans.

.

Ames Aeronautical Laboratory
National Advisory C!cmmitteefor Aeronautics

Moffett Field, Calif., June 10, 1954
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APPENDIX A

DDTTRXNTINTION OF A CONTOUR ImGRAL

Consider a differentiation of the

.

.

contour integral
J-

gd~ with respect

to x, where the contour is a smooth .-
closed path that depends on x, as shown
in the sketch. The four points on the
curve, designated a, b, c, and d,
represent the maximum positive and
negative values of y and z, so that
the function T on the contour between
aandc can be designated ~lmer (or

simply ~z)j that between c and a,
9upper (or ‘?U),~d those between b
and d and between d and b, 9+ and Q.,
respectively. Thus one can write .

r c(x)
qdz=$ ~ %dy -I-

a 1
a(x) a J

d(x) b(x)
q?dy -i—

z
g+dz - i ~

J
T-dz

c(x) ax b(x) ax d(x)

so that
be done

there =e now four line integrals
directly by means of the formula

a
J

s(x)

J

s(x) af

z
f(x,y)dy = ~ti

r(x) r(x)

to be differentiated. This can

& f(s,x) -~
‘ax

f(r,x)
ax

which gives
.

.
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wd~=g:; “z[x’’:(x”)] ‘“k ‘,(’l’)-?w’af” +

49

f

‘(x) a~[xjy, zl(x,y)l ‘y + aa
ax ~ !PU(a,x)- $ Pu(c,x) -

c(x)

-u’
d(x) ~+[x, z,y=(x~z)] ‘2 +

i
ax : g+(d,x)

}
- ~P+(b,x) -

b(x)

b(x) acp-[x,z,Y~(XjZ)] ‘z +’bq (b,’) -~q (’,x)
i
{f d(x) ax ax - ax - }

where z = Zl(x,y) and y = Yl(x,z) are alternative expressions for the
contour C and must be single-valued between the prescribed limits of
integration.

Now, if the velocity potential ~ is single-valued on the contour,
then

and
~+ = 9- at b(x) andd(x)

so that all four of the additional terms above cancel and one finds, after
combining like integrals, that

aqx, y,zl(x, y)] ~ - 1$Lf’dr=( ax Jaq[x’z’Yx’z)] ‘z

But the partial derivatives can be rewritten in the form

awx,y,zl(x, y)] = y + w m.
ax [

——
1ax az ax Z=zl(x,y)

amd

aq[x,z,yl(x,z)l = y + ag ayl
[

——
ax 1ax by & py=(x,z)

——



50

‘1 = ~ly=y; “‘herefore’ ‘ince ax Z=Z=
the final result is

NACATN 3283

.

.
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APPENDIX B

THE RE51DUX Al OF TKE COMPLEX P-IAL

From equation (31)it follows that

Now, if one
radius r.?

(where an

maps the body contour in the
center the origin, in the a

!) = f(a)

is in general complex}
Milne-Thomson (ref. 16, p. 237) is
boundary a~ = ro2 so that

=a+

f

‘v ds + zi~(x,t)
G

L plane
plane by

onto a circle of
the transformation

n=o

then the ~*boundaryfunction” of
obtained. Noting that on the circle

J ‘v ds expressed as a fun&iOn Of a.where T(a) is simply 2iUo
E

It has been demonstrated in reference 16 that this boundary function
can be satisfied by setting the complex potential equal to the part of
2i#~ containing o~y the

m

I

2
F =E

an
R
ro

~- —+
c

n=1

negative power8 of g. ~-us one can 8et

m>n
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where ~(a) represents the portion of T containing negative powers of
U. The residue Al of F can then be expressed as

#

Al = Kal -

where Alo is

(
a$l

Rro2 + ip ~ro2 + al~o + —
+ Q&
—+...

)
-f-Alo

ro2 ro4

the residue of TN(u) amd it is noted that Alo can depend

only on the shape of the cross section and not on any of the airplane
motions; that is, Alo _must be a function of x alone and is simply the
value of Al at R =R =p = O. Therefore Alo is zero for any con-
figuration possessing an axis of symmetry if that axis is chosen as the
x axis.

It can be seen that Al is independent of the rolling velocity p
provided that a. vanishes and that either all the odd n or all the
even n are absent in the expansion of f(u). This leads to the con-
siderations of symmetry given in the text. It should be noted that for
symmetrical shapes a. is the centroid of the cross section.

●

—
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.
TABLE II.- RJ?LATIONSHIPSAMONG TEE STABILITY DERIVATIVES

.

Cypr = lC
- C%?q = z ‘BP

=$ C%P=-$CZ s-c%=-;czpr=cmp=c~= cY&
aq

Cy =C
PP Lap

=c~m=-c~
PB

= 2CLB = 2~&

c~p = - %lm = - c2m = c2$q

Cnpr =
- %1

.~czqq=-$
c1~~ = Cna = c%

cyq.cb=- (2) CL,= (~)%

()2-C= ()2-C=Ch= ~ c~; Cyr = - CypT,

@&= %; Cna = - ~fj; Cnq =
c%; Cypp = - 2c?~

C%P
= 2c2m;

C%P =
- 2CZpr;

C9P =
- 2czpq;

%
= Cnpq

.

Cya = Cna + ()2-CL Cya = - CL~; Cy” = Cnp + ()z-q
y $

Cyp
. ~

=!5=
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