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SUMMARY

A rapid method for estimating the downwash behind swept-wing air-
planes is presented. The basic assumption is that of a flat horizontal
sheet of vortices trailing behind the wing. The integrations for the
downwash are handled in a manner similar to both Multhopp's and
Weissinger's approximate integrations in their span-loading calculations.
The principal effects of rolling-up of the wake are treated as correc-
tions to the flat-sheet wake. A simple approximate correction for the
effect of the fuselage is applied. The agreement with available experi-
mental data taken behind airplane models is good. Computing forms are
included together with charts of pertinent functions, so as to enable
simple direct application.

INTRODUCTION

The downwash induced by a lifting wing has, in the past, been pre-
dicted by considering the wing as a lifting line with a vortex sheet
trailing aft of the wing in a horizontal plane. It was assumed that
spanwise distribution of vorticity did not change with downstream posi-
tion and that the sheet did not roll up behind the wing. With these
assumptions, a procedure for determining downwash is given in refer-
ences 1 and 2. In references 1 and 2, the wing span loading is approxi-
mated by several horseshoe vortices. The total downwash is the sum of
the downwashes of the horseshoe vortices. It is apparent that such a
procedure can be extended to swept wings by using swept horseshoe vor-
tices. The arithmetic of this procedure is, however, rather tedious
and laborious. In reference 3, a more rapid method in the form of an
influence-coefficient approach is presented for the downwash at the
center of the wake. References 1 and 2 also investigated the limitations
of representing the lifting surface by a lifting line, and of the effects
of the rolling-up of the trailing sheet. It was concluded that both

effects were negligible for the then conventional airplane configurations.

At the present time, the use of low-aspect-ratio plan forms and
occasionally of further rearward positions of the tail has made neces-
sary a re-examination of the assumption that the trailing vortex sheet
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can be considered nonrolling-up. An analysis of the rolling-up process
is given in reference L which reveals that the trailing sheet becomes
rolled-up at shorter distances behind the wing as (1) aspect ratio
decreases, (2) lift coefficient increases, and (3) span loading increases
outboard and decreases inboard. It is apparent that the downwash fields
determined on the assumption of the flat trailing vortex sheet or a com-
pletely rolled-up sheet (the simplified cases) omit wings of aspect
ratio of about two to four at moderate or high Cj's.

The purposes of this report are, (1) to make available an influence-
coefficient type of method of computing the downwash behind swept wings
having arbitrary spanwise loading, a procedure that will be quicker and
simpler to use than methods summing up the downwash due to elemental
horseshoe vortices, (2) to estimate the principal changes in the down-
wash field due to the rolling-up process, and (3) to suggest a simple
first approximation to the downwash at the tail due to a fuselage. The
effect upon the downwash field due to substituting a 1lifting line for
surface loading will also be investigated and an approximate method for
taking this effect into account will be presented for wings of low aspect
ratio.

PRINCIPAL NOTATION

2
A aspect ratio, 5
agn influence coefficients for a swept load line plus a swept trail-

ing vortex sheet
(These coefficients act as integration factors of the wing load-
ing at station n to obtain downwash at position (7,m,9).)

a influence coefficients, similar to agp, but for only an unswept
Tn
trailing vortex sheet (no bound vortex)

b wing span measured perpendicular to the plane of symmetry, ft
c local wing chord measured parallel to the plane of symmetry, it
Cav average wing chord, %u ft
lczdn
¢ mean aerodynamic chord, ;l
a

[he an

¢,  local 1ift coefficient, ~2S2= 11Tt

gc
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Cy, wing 1lift coefficient, l%gi

CLa lift-curve slope, per radian or per deg

Dn integration factor for interpolating downwash in the vertical
direction

i empirical relation giving the effect of sweep upon the rolling-up,

IR eloon i e)

1%
Fo strength factor of the tip vortices, S
I'(n =0)
P strength factor denoting loss of vorticity of the trailing sheet

at span station n

G(n) spanwise loading coefficient or dimensionless circulation along

: : e b
wing quarter-chord line, cy b (e7%; e
Gp G(n) at span station 1 = cos %g
ClC
Kn spanwise loading coefficient for unit 1ift, ——————:> (61%
oA L Cav/n
o Gn where n refers to the span station n = cos g
L
Mo free-stream Mach number
q free-stream dynamic pressure, 1b/sq £t
Re radius of fuselage, ft
S wing area, sq ft
v free-stream velocity, ft/sec
W downwash, positive downward, ft/sec

X,¥,z right-hand Cartesian coordinate system with x positive down-
stream and y positive to the starboard with the origin at
the apex of the wing quarter-chord line (See fig. 1.)

Z vertical distance in wing semispans measured from extended chord
plane, positive upward

a inclination of wing from zero-lift attitude, deg
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slope of camber line at trailing edge relative to free stream, deg
v 1- Mo2 .

circulation, ftz/sec
angle of downwash, positive downward, radians or deg

sweep angle of the wing quarter-chord line, positive for sweep-
back, deg

tan~?t <}§%%£{>, deg

1
taper ratio, _jﬂiiifffl

root chord

2 N . : X y z
dimensionless Cartesian coordinates
?v/2’ v/2’ v/2

longitudinal position at which sheet is essentially rolled-up
into wing tip vortices

lateral position of center of wing-tip vortex, s%i A
c

dimensionless longitudinal coordinate, measured from the lifting
line (& - n tan A)

trigonometric spanwise coordinate (cos™' 1), radians

height above trailing sheet, { - (g

height above wing tip vortices, § - {,

Subscripts

average
tip vortices
fuselage

integers corresponding to span stations given by mn = cos %fj
or m = cos %? (Por,; n. o' ¥, =rl, By 3, or.lis R 0.9239,
0. TOTly 05627y or 0)

pertaining to downwash at the sheet or displacement of the sheet !

wing trailing edge
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PHYSICAL PROBLEM AND BASIC ASSUMPTIONS

The physical picture is one of a lifting surface shedding a trail-
ing sheet of vortices. As the trailing vortices are left farther behind
the wing, the sheet of vortices is displaced downward in varying amounts
depending upon the span station considered, that is, it assumes a curved
shape. While this displacement is going on, the vorticity in the sheet
is continually shifting from the sheet toward the tips or edges of the
sheet. The lifting surface and the trailing vortex sheet are inclined
with respect to the free-stream direction.

Z

-

Sketch (a)

The first assumption for the analysis will be that all of the chord-
wise 1ift is concentrated at the chordwise center of pressure which will
be taken as the wing quarter-chord line. Second, it will be assumed that
the flow on the wing is not separated.  Third, it will be assumed that the
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downwash due to a symmetrical sheet can be approximated by a horizontal
flat sheet passing through the symmetrical sheet at the lateral station

where the downwash is to be computed. It should be noted that at
Arbitrary shaped sheet

[ ﬁsﬁtu?e flat sheet

)

Sketch (b)

each 1 station, the horizontal flat sheet is given a different vertical
location and thus some allowance is made for the shape of the sheet.
Fourth, it will be assumed that the vertical-longitudinal inclination of
the system has no effect upon the downwash. Hence, the real system will
be approximated by a horizontal flat system passing through the real
system at the downstream station, x, at which downwash is to be computed,
as is shown below. The coordinates of the real and substitute systems

Approximate
10 pp system
Kot %) Real system
e _“\\

\\\
—

—

B s _y T TR
| —

Sketch (c)

are shown in figure 1. It should be noted that these four assumptions
are identical with those made by Silverstein and Katzoff in references 1
and 2. The first two assumptions are common in aerodynamics and the
limitations are fairly well known for the higher aspect ratios. The
first assumption will now be further investigated for wings of fairly
low aspect ratio.

Two wings having taper ratios of O and 1.0, aspect ratio equal to
2.0, and sweep angle of 56° were investigated. FEach wing was assigned
both cotangent-type chord loading and uniform chord loading. The span-
wise loadings were obtained from reference 5. For each wing and chord-
wise loading, the downwash in the wake, €5, was computed with each of
three alternative approximations; namely, the chordwise loading was
replaced, respectively, by a single lifting line, by three lifting lines,
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and by five lifting lines. The strength and chordwise positions of the
lifting lines were set by dividing the chord into equal segments and
finding the 1ift and center of lift of each segment. Each lifting line
was treated as a flat, horizontal vortex system in the @ = O plane.
The downwash angles of the lifting-line systems were added and the sums
are plotted in figure 2 for four spanwise stations.

Figure 2 indicates that the single lifting line does not give
accurate downwash predictions just aft of the trailing edge of the wing.
The downwash fields for the wings of equal A are essentially the same
one mean chord (one semispan) aft of the wing trailing edge. This con-
currence at one mean wing chord aft agrees with the two-dimensional
example of reference 1. For cotangent chord loading, the five-lifting-
line method very nearly predicts e/a equal to unity at the wing trail-
ing edge. This can be considered as a check to the approximation since
the flat-plate downwash must be equal to a at the trailing edge.
Examination of figure 2 shows that the curve of downwash obtained by
using one lifting line is translated forward a nearly constant longitu-
dinal distance from the curve of downwash obtained by using five lifting
lines. In figure 2(a), this distance is one eighth the mean wing chord.

In reference (l), contours of downwash angles due to a two-
dimensional Clark Y airfoil section are compared to contours of down-
wash angles computed for a lifting line at the c/h pointG. “Ef dthe 1ift-
ing line is shifted back to the (3/8)c point, the shifted field agrees
well with that of the airfoil section even very near the trailing edge.
From this, it would appear that the downwash field due to surface loading
might be well approximated for all wings by using a single lifting line
with all longitudinal distances reduced by (l/8)cav, or replacing T Dby
T - (1/4)(c/b)gy. It should be noted that this correction is of signifi-
cance only in vicinity of the trailing edge.

The third assumption has been considered by comparing the results
obtained by using the assumption against results calculated for an ellip-
tically shaped sheet whose ratio of minor to major axes was O.L. At
N =0, 0.383, and 0.707, the difference of the results was less than the
differences found in the examination of the first assumption. At
n = 0.924, use of the above third assumption did not compare well with
the results for the elliptically shaped sheet. However, at low angles
of attack, since the distortion of the sheet is small the downwash can
still be computed at n = 0.924. The fourth assumption has been checked
by numerical computation for a 60° sweptback wing of aspect ratio equal
to 3.5. It was found that provided that € of the noninclined system
is taken as 1I/V rather than tan'l(w/V), the difference between the
downwashes was less than the differences noted in examination of the
first assumption. This appears to hold true up to about a = 20°.

Thus, throughout this report, € will be taken as w/V and the subject
is thus treated as if only small angles were involved.
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It should also be noted that these four assumptions are commonly
used in the calculation of wing span loading. As a result, the "non-
rolling—up"l system can be treated in a manner analogous to Multhopp's
(ref. 5) or Weissinger's (given in ref. 6) approximate integrations in
their calculations of span loading. However, a principal problem not
encountered in span-loading work is the downwash at arbitrary vertical
locations.

Generally, the amount of rolling-up present is so small that the
foregoing assumptions are sufficient for good answers. However, as
CL/A increases, an increasing amount of rolling-up appears and a cor-
rection must be made for this effect. The principal features of a
trailing-vortex system where the rolling-up is conspicuous are, (1) the
vorticity becomes vertically displaced and shifts outboard from the
plane of symmetry, and (2) the wing tip vortices trail back approximately
in a horizontal plane which is parallel to the free stream. The center
of the sheet, however, is still displaced downward. As the vortex sheet
is left farther behind the wing, the tips of the sheet roll up and form
concentrated tip vortices. An outward motion of the vorticity in the
sheet between the tip vortices results in less vorticity in the mid-
semispan regions. These two changes in vorticity configuration can (in
the main) be taken into account by making a fifth assumption, (1) a
vertically displaced trailing flat sheet having a reduced amount of
vorticity, and (2) a pair of tip vortices which -lie in a horizontal plane
and whose strength is drawn from the sheet. With this arrangement, the
sheet can be handled in much the same fashion as the flat sheet, that
is, by using the first four assumptions. The tip vortices can then be
handled as a separate computation.

Tip vortex

Substitute system

sheet

Z—— Real vortex sheet Weakened inlaf

Sketch (d)

At various distances behind the wing, the rolling-up is in various
| stages of development. To obtain an accurate approximation, one should

lNonrolling—up system assumes that the trailing vortex sheet has
the same lateral distribution of vorticity at all distances behind the
wing as at the wing trailing edge. However, it need not be flat although
for determining downwash it is assumed flat.
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consider the trailing system in longitudinal segments, each segment
having a different amount of rolling-up. The downwash would then be the
sum of the downwashes of all the segments. However, this involves an
exorbitant amount of work and to obtain a practical solution, a sixth
assumption will be made. It will be assumed that the entire trailing
system behind the wing is of one form, namely, the form which the real
system has at the selected downstream location £. The substitute
rolling-up system is then pictured as shown in sketch (e).

¢
) 7

.;x

&2/

oy

9,/“./

Sketch (e)

This sixth assumption was examined by numerical computations for a 60°
sweptback wing of A = 3.5 using the segment approximation. It was found
that the results of the use of this assumption were within the accuracy
of the theory for this case.

While the foregoing assumptions aid in simplifying the physical
picture, additional information is necessary in order to calculate the
effect of the rolling-up process. The relative strengths of the vortex
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sheet as well as the tip vortex and also the position of the tip vortex
for various distances behind the wing must be obtained. From an analysis
of the downwash behind a series of swept-wing plan forms obtained from
large-scale wind-tunnel data, an empirical relationship was developed
giving the approximate lateral position of the tip vortex. From this, a
method is developed for obtaining the relative strengths of the tip vortex
and flat sheet.

As will be shown in the text, the use of such a simplified substi-
tute system enables one to express the downwash due to a rolling-up
system as being the flat-sheet results plus an additive correction
(generally, fairly small) which, for the case checked, predicted the
downwash well and goes to the right limit as the rolling-up becomes
complete.

ANATYSIS AND DEVELOPMENT OF METHOD

The first part of the analysis is concerned with the flat-sheet
procedure, that is, evaluating the downwash using the first four assump-
tions. The location of the wake relative to the tail will be considered
and some assessment of the effects of the fuselage upon the downwash is
to be made. In the second part of the analysis, the rolling-up of the
trailing vortex sheet is considered.

Flat-Sheet Procedure

General calculation of downwash.- The downwash at a point (x,y,z)
due to a swept-vortex system (assumed for the present at zg = 0) is
equal to the sum of that due to the swept-load vortex (or bound vortex)
and that due to the trailing vortex sheet.
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X,Y,0
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Sketch (f)

The induced velocity due to an arbitrary elemental trailing vortex
extending to infinity downstream (see sketch (f)) is given by Glauert
(ref. 7).

dw = ﬁ%% (cos 6; + cos 63) cos Vg (1)

where 6,—>0. The vertical induced velocity at (x,y,z) due to the
small element ds of the load vortex (see sketch (g)) is given by

_Th ds cos Wb

Lygr3

dw

(2)
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Sketch (g)

The total downwash due to the entire vortex system is equal to the
integration over the wing span of the sum of equations (1) and (2) (which
are converted to rectangular coordinates by the relations indicated in
the respective sketches). Further, the integral of equation (2) is inte-
grated by parts such that the new integrand contains the factor dF/dﬁ.
Then in terms of dimensionless relations, the total downwash can be

written as:

<=

Lmia (n-M)er(A)anl 1 2 ; .
F ﬂu{l Q2 + (7-7)2 T ox J(; Lsp G'(n) df (3)




where for 7 > 0,

(n-f) [v + ([n]-]7])tan A] [T + (|n] -n)tan A]<co;]2A -n-|n|tan®A -7 tanA>

g% + (n-9)° [T + (n]-n)tan A]° + 0°/(cos?A) n -
LSIJ. = -

JI+ (In]-[i)tan A1 + (n -7)2 + Q2 Q2 + (n-7)2

and for 1 <0,

(n=7) [+ (Inl-17l)tan A1 [7+ (|n]+n)tan A ] < T12 =N+ |n|tan®A + T tan A>
cosSA
2%+ (n-7)° [T+ (|n]+n)tan A]® + @2/(cos2A)
Lsp = +

S+ ([n]-[i])ten a1 + (1 - )2 + 02

[7+ (Inl-n)tan A)(T tan A + |n|tan®A + 1)  [r+ (|n] + n)tan A](7 tan A + | 0| tan®A - 1)
+

[T + ([n] -n)tan A)® + 9@2/(cos2A) [T + (|n] +n)tan A1+ @2/ (cos2A)

J(T + |n|tan A)Z 4+ 52 4 g2

(5)

oHEE NI VOVN

€T
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Both integrals of equation (3) are, in general, difficult to inte-
grate by analytical means. The numerical integration method used herein
is that employed by both Multhopp and Weissinger. In fact, equation (3)
appears in reference 6 for the case of O = 0. As was done in refer-
ence 6, the downwash integrals can be written as a summation of products
of mathematical coefficients, agn (ayn in refs. 3 and 6), and the span-
wise loading, Kn_=(clc/CL cav)n. As is shown in Appendix A, the numeri-
cal integration of equation (3) can be put into the form (using a four-
term expression)

€

- asnkn (6)
n=1

wheretEor Snl =Sl 20 and: 4, the Kp's correspond to values of
CZC/CLCav at m = 0.924, 0.707,.0,383, and O, respectively. The 8sn'8,
like the Lgy in equation (3), are solely dependent, for a given sweep
angle, upon the location of a point (T,n,0). Thus, after the agp's
have been evaluated, one may compute the downwash using any desired span
loading. To facilitate computations, the asn's (from general equations
of Appendix A) have been computed for points at n =0, 0.383, 0.707; =nd
0.92L iying behind the quarter-chord line and for two vertical locations
relative to the vortex sheet, @ = O and Q@ = £0.5, that is, at the sheet
and one-half semispan above or below the sheet. The computed values have
been plotted in figures 3 and . Thus, given a plan form, span loading,
and the desired longitudinal position, one obtains values of agn from
figures 3 and U4 and applies equation (6) to obtain the downwash.

It is obvious that the accuracy of a summation depends upon how many
terms are considered. For the four-term summation used herein, accept-
ably accurate answers are obtained in most cases without an unreasonable
expenditure of labor. However, for cases in which the spanwise loading
differs from that expressible by a four-term sine series, the four-term
summation may not be acceptably accurate as it would tend to gloss over
such changes in span loading. The derivation of the agp's 1in Appen-
dix A has been left in a fairly general form so as to allow the reader
to compute the agp's for summations involving more points across the
span.

Choice of vertical coordinates.- Three possible vertical coordinates
are the parameters Q, {, and Z. The vertical position of the downwash
point for these three is measured respectively from (1) the trailing
sheet, (2) a horizontal plane (parallel to free stream) through the apex
of the load line, and (3) the extended chord plane. Each has some advan-
tages. With @, the downwash field is symmetric about the value Q = 0O
(for-a f£lat sheet), or about the trailing sheet. Also, computations are
simplified with this parameter and the downwash varies linearly with Cg,.
On the other hand, with €, the downwash field is referred to a fixed
coordinate system, independent of angle of attack and sheet position.
With Z, the downwash field is referred to the coordinate system (extended
chord plane) of the airplane but is dependent on angle of attaek.  Thuss;
with Z, the downwash field is described relative to the tail plane.
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The relations between Q, {, and Z are:

€s(n)
£,(n) + & tan a f (7)
+ & tan «

(T + n tan A)tan « J

N

Il
e O e

+

d

When the downwash has been computed for various Q's and the dis-
placements, Cs(n), have been evaluated, the field can be plotted against

B ehpiece of 0, £, or Z.

+

Lateral interpolation of downwash.- The agp values of figures 3
and 4 allow a direct evaluation of downwash at four span stations. Some-
times it is of value to know the downwash at other span positions or to
plot a more accurate lateral variation of downwash. For these purposes
a lateral interpolation formula is convenient.

The product €(®) sin @ can be expanded in a Fourier series, the
coefficients of which can be numerically evaluated in terms of the four
known values of €,. Then (for symmetric distribution of downwash)

.

€, sin

e(P)sin @ = }Z sin B, @ }: g Sl sin M,Q, (8)
pl=1,odd =

where @ = cos™ n. Then the downwash at a given 1 position can be
expressed as the sum of products of tabulated numbers and values of the
known downwash. Thus

€ =Hyey + Hye, + Hgey + Hye, (9)

where the H's are tabulated in table I for n = 0.098, 0.195, 0.290,
0.556, 0.831, and 0.981, and €, are the known values of downwash at

=092k 0.707, 0.383, and 0.
Examination of table I shows that in the range of 1 from O through
0.556, H, is very small, less than 4.5 percent of the sum of H,, Hg,

and H,. For this range of 7, one can simplify the calculations by
4
letting €, = €5, then equation (9) reduces to, for 0 < n < 0.556,

€ = (Hy + Hy)e, +Hgeg + Hye, (10)
This method of interpolation, in effect, puts a curve of the form

€(n) =eg + eon® + e n* + egn°
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(vhere the e's are constants) through the known values of € at the
four regular span stations. Of course, equation (10) goes through only
three of the four known values.

The lateral interpolation formula applies for a given Q along an
arbitrary E&(n) curve (e.g., at constant £ or at a constant T).

Vertical interpolation of downwash.- The agp values of figures 3
and bt allow a direct evaluation of downwash at @ = 0 and *0.5. To
present agp charts for many @ values is too cumbersome. However,
with only two values of Q@ available, an interpolation procedure is a
prime necessity.

Reference 8 presents a simple method in which downwash, for small Q,
is expressed as a Taylor series of |Q|. Reference 7 contains a simple
equation of downwash as a function of Q for large  values. With
these functions of @ and the computed value of downwash at @ = 0.5,
a fitted function of Q is developed in Appendix B that approaches the
correct functions at low and high values of Q and fairs through the
computed value at Q = £0.D.

The vertical interpolation function is given as
4

1 ‘L
€ = C,€(T,n,0) +C2€<T:T1; §>+ o z DnKn (1)
i

where C,, C5, and Dp are tabulated in table II for several =*Q values;
e(t,n,0) and e(T,n,+¥1/2) are the values of downwash computed by equa-
tion (6) at Q = 0, and *1/2, respectively.

Vertical displacement of the sheet.- The vertical displacement of
the sheet is given by the integration in the longitudinal direction (for
constant 1) of the downwash in the sheet from the wing trailing edge to
the T and n position of the downwash point. Thus, for a given 71,

.
Es(T) = & - u/\ €S[TT:§5(TT)] dTm (123
TIE

where Cs is the vertical displacement of the sheet, Tnp is a dummy
variable of integration, and cTE is the vertical displacement of the
wing trailing edge. Now Q 1s defined as Sl QS, then CS(TT) in the
integrand corresponds to the value @ = 0. With the flat-sheet assump-
tions, €g (the downwash angle at the sheet, i.e., Q = 0) is independent
of any vertical parameter and can be integrated to evaluate Ee ()0
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The integration in equation (12) can be simplified considerably by
approximating €g with an integrable function of Tp. An analytical
study of figure 2 indicates that the downwash behind the surface-loaded
wing varies closely as l/T2, also that the single-load-line method
underestimates the downwash near the wing. The simplicity of the 1/72
behavior suggests a very convenient curve-fitting function for downwash
that can in addition be made to correspond with the downwash near the
wing as predicted by surface-loading methods. Thus it will be assumed
that the downwash is given by the following function (Q = 0, and using
the dummy variable Tnp)

Ex

€ = E S T
P ¢ (Tp - 3)°

(13)

where E,, Es, and J are undetermined coefficients. For the determina-
tion of E; and E,, two conditions are given by

at a

Tp = Tqg» es(p) TE

1l
=

at T . GS(TT) = €, known downvash at the f (1)
position at which dis-
placement is to be
computed J

With E; and Epx determined it remains to evaluate Jj. Comparison of
the results of several values of |j with the downwash fields given in
Tigure 2 shows that for J = c/?b very good agreement is obtained even
with eg taken at a distance of two semispans aft of the wing trailing
edge.

With the value J = c/2b and the determined values of E; and E,,
equation (13) becomes

e

2 2
) = i € = B - _C_ a +
SRl b S TE b TE

5 G
G i) 2 ) il

Inserting equation (15) into equation (12) evaluates the vertical
displacement.

(15)

A,
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(16)

where €4 1s computed at any T, n position but with @ = O.

For a wing having an airfoil section such that the load line is at
the one-quarter chord and with A = A, equation (16) simplifies to

< 3C>< c
T - = T
2b 2b
(
< c
T e
2b

<§_; + 7 tan A> (tan a—a> (17)

t; = -] (7 + n tan A)a - @ eg)

It should be noted that the last term of equation (17) is negligibly small

for many practical cases.

Equation (16) expressed as vertical displacement of the trailing
sheet or wake from the extended-chord plane is given by (see eq. (7))
| A =

T=-T
s IE [(T-—C—> <tana—es>+
| 2b
' chs _i + e _i
2b TE 2b

(72s - =) (ton s - “TE)J (28)

For a wing having an airfoil section such that the lifting line is
at the one-quarter chord and for Ao = % equation (18) simplifies to

1
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3e

ZS=T—2} [(T_§> (Pamdes= es)+<%> (tan a - a) J (19)

T+ —
2b

For many practical cases, the last term of equation (19) can be
neglected.

Correction for the Effect of the Rolling-Up of the Sheet

General analysis.- If the vorticity shed from the wing is now con-
sidered to make up a weakened sheet and two tip vortices, as discussed
earlier, then the correction, Ae, to be added to the downwash calculated
in the foregoing sections can be written as

where €yg is the downwash due to a weakened vortex sheet; €, 1is the
downwash due to a pair of tip vortices. The weakened sheet and the tip
vortices extend from a longitudinal position corresponding to the
quarter-chord point of wing tip, downstream to infinity. The quantity,
€pgs 1s the downwash due to the portion of the flat sheet aft of the
quarter chord of the tip. Letting

GT = GTS = GWS

A€ Dbecomes

i e (20)

which gives Ae equal to the downwash due to the tip vortices minus the
downwash due to the loss of vortex strength in the trailing vortex sheet.

The downwash due to only a trailing sheet extending from the quarter
chord of the rearmost wing section can be deduced from equation (1) by
considering an unswept wing. Replacing & by (& - tan A) then refers
the coordinates to the quarter chord of the wing tip. Following the
same mathematical procedures as in Appendix A, it is shown in Appendix C
that the downwash due to such a trailing sheet can be reduced to
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4

(1)

CL
oA amnn

<=

n=1

The difference between €15t sheet 804 €yegkened sheet? €T2 CaR be con-
sidered as the loss of downwash due to the weakening of the sheet. This
weakening can be taken into account by multiplying Kp in equation (21)
by a term called a strength factor.

Thus, €m reduces to

4
Cr
€p Fix = aTnanKn (22)
n=1
where Fgp will be called the strength factors of the sheet and denotes

a loss of strength in the trailing vortex sheet. Thus, L =T is the
proportion of vorticity left in the sheet. The aTn's are plotted as
a function of (& - tan A)/8 in figure (5).

The downwash due to a pair of tip vortices is equivalent to the
downwash due to a trailing sheet behind a uniformly loaded wing of span
Neb. Thus, €, can be derived from the preceding work. The circulation
of the tip vortices is FCCL/nCA where F, denotes the proportion of
wing vorticity in the tip vortices. Expressions for €.,7m A/FCCL are
derived in Appendix C and values are presented alial 2Eallgbiss g. This param-
eter is plotted as a function of (1/pn.) (& - tan A) for various values
of n/n. and Q,/n,. The quantity, Q %vertical height relative to the
tip vortices), is equal to £ - o tanAor Q+ CS - a tan A, where
- tan A is the vertical location of the tip vortex which will be pre-
sented shortly.

As yet, Fgn and F, have not been determined and, as was stated
earlier, one must determine the locations of the tip vortices before
proceeding to find the strength factors.

Iocation of tip vortices.- Reference 4 presents an approximate
(curve-fittingjrequation for the lateral position of the tip vortices.
This equation is given by

g~k 2/3
Mo =2 = (1 - ncw) tanh<§ — ) (23)

e - go
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where

5.05 (l 3 ncm)3/2
- £ = (2k4)

lim G(@)

% C M1l - cos @

where Moo = l/K4 and represents the asymptotic position of 1., and EO

indicates the start of the rolling-up process. In the last part of
Appendix C, éc is reduced to the more convenient form

(1 - ncoo)S/z (.CA )
£ - £, - - (25)
0.7315 K3 - 0.3959 K + 0.3030 K5 - 0.1400 K,

It should be noted that equations (23) and (24) were derived for a wing
having an unswept trailing edge.

It has been found from experiment that, for a swept wing, the inward
movement of the tip vortices is much slower than is indicated by equa-
tion (23). The reasons for this slowness are not clear. However, the
lateral positions of the tip vortices appear to be strongly dependent
upon the sweep of the wing trailing edge.

The following two considered opinions of the actions of the air flow
behind such a wing are given here. First, in the region between the two
swept wing panels, the vortex sheet (principally near the plane of sym-
metry) is above both the load vortex of the wing and the wing tip vor-
tices and thus is subjected to an inward velocity component. This inward
velocity tends to keep the vorticity in the midspan region out of the tip
vortices and thereby increases the roll-up distance. A second action
concerns the wing tip. For a sweptback wing, an outward velocity over
the wing tips is generated due to the lateral pressure gradient resulting
from the staggering of wing sections. This flow over the wing tip is here
assumed the primary action that results in a further outboard location of
the tip vortex relative to that of an unswept wing. Similar reasoning
leads to converse effects for sweptforward wings. The velocities involved
in the above phenomena are difficult to determine. A problem remains,
however, in that an expression for Ne (compatible with experiment) must
be found.

The problem of theoretically determining 1, for a wing with swept
trailing edges is even more difficult than for an unswept wing. There-
fore, an empirical equation will be used herein. One approximate method
that takes into account the effect of the initial outward lateral
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location of the tip vortices (due to the sweep) is to multiply (1 - ncm)
of equation (23) b

£+ (1/10)(& - tan A)

1+ (1/10) (& - tan A)

where f 1is a function of the sweep of the wing trailing edge. At

large values of € - tan A, this factor approaches unity and 74
approaches l/K4. In the midspan region as mentioned previously, there

is an inward velocity imposed upon the trailing vortex sheet which results
in a longer roll-up distance. It is found that this can be taken into
account by multiplying the argument of +tanh in equation (23) by e
where f here is the same as the previous f for convenience of empiri-
cal evaluation. The effect of this multiplication is to increase the
roll-up distance by a factor of (l/f)s Then, assuming the tip vortex

to start at the quarter chord of the wing tip“ (¢, = tan A), equation (23)
becomes

i £+ (1/10)(& - tan A) £ - tan A\2/3
v ; e ¢

1
T WS f2<

Ky

+ (1/10) (¢ - tan A) E, - tan A

(26)

where £, - tan A is given by equation (25) for £, = tan A.

Equation (26) can be solved for f, since, for small values of the
argument in tanh, the argument itself can be taken. A cubic equation
results from which f can be determined from experimental measurements
of Ne Five wings with sweep angles of the trailing edge ranging from
—Lae 30 to 51.9° were used in determining f. To the precision of the
experiments, £ 1s given by,

£l=d 100075 ke + T2 (27)

It has been assumed that f 1s independent of aspect ratlo il
should be noted that f does not quite reach unity at e TE = 0. Thus
equation (26) does not quite reduce to equation (23) for wings with
unswept trailing edges. The difference, however, is small and is not
considered important.

2This is in contradistinction from reference L4 which assumes the tip
vortex to start at the wing trailing edge.

L
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It should be realized that other expressions for mn, can be
obtained. Since only the numerical value of 17, 1is important, the use
of other expressions of 1. will not affect the material following.
Later in the discussion section, it is shown that values of 17, from
equation (26) compare well with the limited available experimental
results.

The vertical position of the tip vortices can be determined by using
the fifth assumption in the previous section. Then, since the tip vor-
tices are assumed to start at the quarter chord of the wing tip, the
vertical displacement of the two tip vortices is approximately given by
the vertical position of the quarter chord of the wing tip, or

(o = - a tan A (28)

It should be noted that far behind the wing, after the rolling-up
process is essentially completed, the influence of one tip vortex on the
other causes a displacement that varies linearly with £. The use of
equation (28) therefore is restricted to locations near the wing.

Strength factors of the trailing sheet and wing tip vortices.- The
rolling-up trailing-vortex system is greatly simplified with the vortex
system divided into two parts, (1) a pair of rolled-up wing tip vortices,
and (2) a vortex sheet stretching laterally between the two wing tip vor-
tices (see sketeh (d)). The problem is to determine what proportion of
the total vortex strength each should have. A method attributed to Lotz
and Fabricius in reference L (given originally in ref. 9) is readily
applicable for unswept wings. A modified and somewhat simplified pro-
cedure of this method is developed here for swept wings.

The basis of the method depends on two vortex laws applied to the
rolling-up trailing-vortex system extending downstream from each half of
the wing. These laws will apply aft of the quarter-chord point of the
rearmost wing section where the trailing system may be considered free
and two-dimensional. These laws are:

(1) The total vortex strength shed from each half of the wing 1is
invariant with distance downstream.

(2) The total lateral moment of the trailing vortices shed from each
half of the wing (or the total 1ift impulse) is invariant with distance
downstream.

Let Fs(n) denote a proportional loss of strength in the trailing
vortex sheet, then 1 - Fs(n) is the proportion of strength remaining in
the sheet. Also let F, denote the proportion of strength in the trail-
ing tip vortex.




2L NACA TN 3346

The vortex laws yield two results. First, since the total vorticity
is constant, the amount of vorticity in the tip vortices equals the total

amount lost by the sheet, or

o K(n) 5
Fe —‘{? an [ Fs(n) e ] dn = FS(O) (29)

Second, the moment gained by the tip vortices equals that lost by the

sheet, or
Fcﬂc=\jpl ﬁ% [ Fg(n) g%g% } ndn = J/\ Fs(n) —%ﬂ% i (30)

(e}

Equations (29) and (30) are not sufficient to determine F, and
Fs(n). However, the form of Fg(n) can be selected so as to represent
the physical actions of the rolling-up sheet to a reasonable approxima-
tion. In any rolling-up problem involving two main vortices, the vortex
sheet in the outer span regions is acted on by the tip vortices more than
by those in the inner regions. The outer vortex sheet rolls up at a
faster rate than the inner. For these reasons the decrease of vorticity
in the sheet, denoted by Fg(n) should become larger as 0 becomes
larger. A simple expression for Fs(n) which approximates these phenomena
is

Fs(n) = Fg(o) + An® (31)
Fs(n) at 1 = cos ¢, can be written as Fgp, thus
Fap = ey + X eos”0y (32)

where Fg, 1s evaluated by equation (29). The parameter, A, can be
evaluated by using equation (30). Thus

Fse = Fe
nc'nc

i S 7 ;” Fe (33)
e BTN

2 K(o)

L3
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The integral can be evaluated numerically by use of equation (C23) and
has the value

1
J/‘ n2 K(n) dn = 0.1283 E& + 0.1388 §§-+-0.053l §§ (34)
4

(o) K(O) K4 4

Combining equations (32), (33), and (34) results in

{Npky = 1)cos® <%>

0.1283 K; + 0.1388 K, + 0.0531 Kg

(35)

Hene= Eai| i+

The strength factor of the wing tip vortices is assumed to be
dependent upon the wing loading distribution and the lateral position of
the tip vortices, ne. The latter gives a measure of the extent the sheet
is rolled-up. Near the wing, the tip vortex would (at least) equal the
wing circulation at n = 1., the center of the tip vortex. At most, the
tip vortex would equal the wing circulation at the span station corre-
sponding to the inner edge of the tip vortex. The inner edge, here, is
roughly estimated as twice the distance from the tip to 1., thus located
at n =27, - 1.

Now, in the derivation of the sheet strength factors, some sheet
strength is left in these outer regions. Therefore, the strength of the
tip vortices will not be taken as the larger of the above two values,
but will be taken as the sum of the vortices inboard to n==(3qc-l)/2
which is midway between Ne and 27, - 1. Thus (again, near the wing),

- G Rt e

Fo = - —_—dn = — 6
f o n 3 (36)

Far downstream, when the rolling-up is completed

Fc o (37)

Between the above asymptotic values, assume F. to vary as the
product of wing loading at (3nc—l)/2 and a linear function of 17,.
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Then

(k, + kone)

NACA TN 3346

(38)

The two constants, k; and k,, are evaluated by the two conditions given

by equations (36) and (37).
K(o)

(75) (2D

3ne-1
K K <._l%__>
Fc = 1+ =

K(o) ik
where il
=) c.C
K<3nc > is the value of e,
E CL Cav
L P c.c
K<——C()i°——> is the value of — L
= CL Cav
and
: . i
= L Eo)

fi i
at 1
at 1

The resulting equation for F. 1is

-

Ne) (39)

]

It should be recognized that other procedures that
the strength factors more accurately can be used in the

Lienss

However, it should be borne in mind that a fair

might determine
present calcula-
amount of approxi-

mation in the strength factors can be tolerated since a small percentage
change in the factors results in an even smaller percentage change in the

computed downwash.

In a later discussion, it is shown for an example

wing that experiment and the above theory compare well with regard to the

vortex strength in the tip region.
the merit of being computationally simple.

The expressions presented also have

Vertical location of the sheet during the rolling-up process.- When

the sheet is rolling up, both the downwash induced at the sheet (@ = 0)
and the location of the sheet, CS, will be different from the flat-sheet

results.

As an approximation for the rolling-up sheet, the downwash due
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to the rolling-up sheet is computed at @ = O wusing the §s value given
by the flat-sheet method. Substitution of this value of downwash in the
displacement equation evaluates the CS for the rolling-up sheet. This
value of Qs is used throughout the balance of the rolling-up computa-
tion, replacing also the §S in the flat-sheet downwash; that is, Q

for the flat sheet is then.the same as Q@ for the rolling-up sheet.

The rolling-up correction procedure, including the recomputation of
gs, is illustrated in a computing form to be presented shortly. The
change in location of the vortex sheet is generally quite small in the
inboard region, becoming larger in the outboard region.

Special loadings.- Span loadings which have maximum values at span
stations other than at the plane of symmetry cause the equations for the
strength factors to break down and in some cases to predict the lateral
tip vortex location as being outboard of the wing tips. Such span load-
ings would have complicated rolling-up characteristics since each change
in sign of the slope of a loading distribution indicates the possibility
of a rolled-up vortex eventually appearing. At the wing-tip region the
loading gradient is very large, approaching infinity at the wing tip;
hence, the rolling-up is more pronounced at the tips. The loading gradi-
ent in the wing region between two maximum values of loading in general
never becomes comparable to that at the tips, or even large. Hence, the
rolling-up in this region will be very slow as compared to that at the
wing tips. Thus it can be assumed for these special loadings that only
the vortex sheet outboard of the maximum loading positions will roll up.

Then, when determining a rolling-up correction, the loading distri-
bution to be used will be that with a straight faired line connecting
the two maximum values of loading. The ordinates of the entire curve
are then proportionately reduced so that the area under the curve is
equal to the original unit area, as is illustrated below.

w-Ane
A~

K /(b701' e

e Kf?ou

\ 4
0 7 10 0 7 70

Sketch (h)

The area under the new faired loading is made a unit area by divid-

A
ing the loading distribution by 1 + f nzﬁK dne  The di¥E coefficient
0]
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used for the rolling-up method increases to the value

An

AKX dn> @1, (ko)
o]

where the subscript, roll, indicates the value of 1lift coefficient and
loading used to compute the rolling-up correction.

Effect of Fuselage

While a large part of the downwash at the tail is due to the wing,
the presence of a fuselage will alter the downwash to a sufficient degree
so that downwash due to the fuselage should be considered. For computa-
tional purposes, downwash due to a fuselage at the tail of an alrplane
can be separated into two parts: that due to the fuselage at an angle
of attack and that due to the fuselage at zero angle of attack. Two
effects are present for the fuselage at an angle of attack. The span
loading for the wing-body combination will be somewhat different than
for the wing alone. This altered loading, together with the correspond-
ing distribution of "image" vortices will affect the downwash in the
region of the tail. If the fuselage diameter is not too large, the load-
ing can often be approximated by the wing-alone span loading. However,
in view of the pronounced effect of span loading upon the downwash, it
would be preferable to use the span loading corresponding to a wing-plus-
fuselage combination. The other effect of the fuselage at angle of
attack is that resulting from the "crossflow" component normal to the
axis of the fuselage in the region of the tail. The importance of these
effects depends largely on the ratio of fuselage diameter to wing span.

A further discussion is given in reference 10. At zero angle of attack,
there is a disturbance of the flow field due to tapering of the fuselage.
The influence of the fuselage on the downwash is further complicated by
flow separation on the after portion of the fuselage, but this effect
will not be considered.

The relative importance of the above effects depends largely on the
particular configuration being investigated and the spanwise region of
interest. For the experimental data available for the present investiga-
tion, a calculation of the influence of the fuselage at zero angle of
attack appeared adequate.

Since the fuselage diameters of most airplanes are small compared
to the length, slender-body theory will be used to approximate the flow
near the fuselage. Equation (10) of reference 11 gives the complex
potential in the cross plane (normal to the longitudinal axis of the
fuselage) of a slender body at an angle of attack. For a body of
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revolution at zero angle of attack, the real part of this equation
reduces to

P =85 lnr

where ag = Rp(dRp/dx). The radial velocity is then given by

The downward vertical component gives the downwash.

wg _ -zRp(dRp/dx) _ -zRp(dRyp/dx)

v P yz -

(41)

where y and z are measured from the center line of the body. It should
be noted that at the after part of the body de/dx is negative for a
tapering body and that the equations are for bodies of revolution.

Effects of Compressibility

The effect of compressibility on downwash is taken into account by
use of the Prandtl-Glauert rule. That is, the longitudinal coordinates
are simply stretched by a factor l/B and cy is replaced by PBcjy.

The compressible and incompressible parameters are listed below.

Incompressible Compressible )
(replace the incompressible values by:)

cy, Cp, or CLa Bcy, BCy, or BCLOL

A BA

A Ag = tan-1[(tan A) /Bl

B o T £/ or T/p P(AE)

n n

¢ o

¢ (chord) c/p J




30 NACA TN 3346

The displacement values, §S or Zg, .are not affected by B except i
insofar as €5 1is affected by compressibility. This €g can be calcu-
lated by making the above substitutions. The T values in the CS oy Zg
equations are then not replaced by T/B. The downwash for the case of %
sonic speeds is calculated by taking the limit as p—=>0. The resulting
simplified downwash equations are given in the rear portion of Appendix A.
The values of downwash when B = O are not here represented as the true
downwash but rather as a simple limit point that aids in fairing a Mach
number curve of downwash.

Computation Forms

It is expedient to summarize the present calculations in a simple
computation form. The forms for the computation of downwash angle due
to a flat sheet, and the correction due to a rolling-up sheet, are pre-
sented as follows:

Flat-sheet procedure.-

Flat -sheet downwash Vertical displacement

lr) = T = ;

Column no. | 2 3 4 5 6 1 8 9 10
Column definition | () | Qg | Osp | Oe3 | Osq | € /C, A | Az |A2gt|Zs/c, Céc._

Operation to From figures 3 8 4 for 4 NINES

b:.performed given A, T, n. Q ;'-A’?:"o,,.xn beslgw belc:w ©® @0(1(';;;00:‘1\)

L/ tana
0
*05

pee: << I D R O

K, ¥ Ky K

For a=a;e and T measured from % i A| and Az are:

-28)(r_ <) tana
" (r %5)(7' £;) ton Ay=—C, A

C £ —
L (t*ab tan a
For a# @, see equation (I8)

A
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Vertical interpolation of flat-sheet downwash
I 120115 14 | 15 16 17 18 19 20 21 22
{le:€). D, Dy | D3 Dg o] Ce e/('_‘,|_ Z/CL g/cL
£
From .TableII Z_I'AiIDnK" Co.nstant . *fg]““’t(s)* @i& :&
for given 7 n: with 7 @Lﬁ]ﬂ-‘i C, C,
Fr 5
9. x X X X et = X X X x (from Q)—=
30.1
+0.2
303
205 x x x X x x x x x (from®)—=
$08] | 1 T
G Kp Ky Ke
Rolling-up correction procedure.-
Required information Trailing—sheet loss
= 7 -
7] ™ emm————
Te
CLa= Equation (39) F¢ = 23 |24 | 25 26 v
CL= § |ay | Gra| Or3 | Ggq €y
a (radians)= Fs/® F.'O'“ f'QWCtS for _% ilamanKn
- ne
E: " 5 i F52= given ™ f anAt Q
E-tan A= MR i Fs3= 82
equation(26) 7= Fsq” 6
77_,(:(6- tan A) = -02 |xxxxx (same as 0.2)-
-0.5 [xx x x x (same as 0.5)—~

[ [

| 1 J

FaiKi

FspKe FesKs FsaKse

For span loadings with maximums not at 7)=0, see “Special Loadings"

Corrected vertical displacement

28 | 29 30 | 3 32 33 34 | 35
21 8, e/ Te l:c't%: € €s | €A Cs
®c+| gy . g @+ A,:@
afond [ 7 e A @.@F)@ §tana
o |

% Interpolated from figure 6 for given

B il g 2
7 7h(e tan4), .
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Tip-vortex contribution Total downwash

36 37 1,3§ 39 40 4| 42 43

€ € T
- églc ﬂc/’lc CGLF?: € || 8€r | figr dm::::uh z
+
36 CyFe @ -

tnt| | w (@YD) D .| @D e
0.5
0.2
0
-0.2)
-05

DISCUSSION

This section evaluates the prediction of downwash due to wings
alone, due to wing-fuselage combinations, and due to rolling-up of the
vortex sheet by comparison with experiment. Also, for a pair of plan
forms, downwash contours predicted by flat-sheet theory are compared
with the flat-sheet theory corrected for rolling-up effects.

Comparison With Experiment

Wing alone.- Comparison of estimations from flat-sheet theory with
some measured values of downwash from reference 12 for a swept-wing plan
form is given in figure 7. For this wing, the computed rolling-up cor-
rection was very small; hence, only the flat-sheet results are presented.
The computed values make use of the calculated wing loading distribution
obtained from reference € and also of the experimental loading distribu-
tion,® which was somewhat different. The computed downwash distributions
due to both loadings are presented and the two span loadings are shown
in figure 8. The general conclusion is that the downwash prediction at
the plane of symmetry is critically dependent upon the local loading
distribution. This is because the downwash contributions of the vor-
ticity on either side of the plane of symmetry are additive for a sym-
metrical span loading. At outboard stations, the downwash is not so
dependent on the local loading since the vorticity to the inboard side
results in an upwash which tends to cancel the downwash from the out-
board side. It is noted that at the outboard stations the experimental
and theoretical vorticity (or loading) distributions are more nearly
similar. The effects of loading distribution are most prominent at the
sheet. Figure 7 shows the experimental downwash from contour plots and
the downwash computed using the experimental span loading to be in good
agreement. The experimental and computed locations of the wake center
are also shown to be in good agreement.

8This "experimental"” span loading was estimated from consideration
of experimental results of numerous wings.
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Wing plus fuselage.- In figure 9 a comparison of the computed down-
wash (wing-alone flat-sheet results plus the fuselage "taper” correction)
and of experimental downwash is presented for a particular configuration.
The wing is characterized by an aspect ratio of 2.88, taper ratio of
0.625, and the quarter-chord line was swept back 50°., The wing was set
at 2° incidence relative to the fuselage which had a length of 3.02 wing
semispans and a maximum diameter of 0.297 wing semispans. The downwash
is given at 1.239 wing semispans behind the quarter chord of the G .

The fuselage taper (dRp/dx) was about -0.2. In figure 9, it is shown

that the downwash due to this wing-fuselage combination is predicted with
reasonable accuracy by the results of the flat-sheet method plus the down-
wash due to the fuselage taper. At mn = O, the computed and measured
downwash above the fuselage are in good agreement at the lower angles of
attack. Below the fuselage, the maximum difference is of the order of e
The poorer agreement at o = 13° may be due (in part) to a change in span
loading from that which existed at the lower angles of attack.

At 1 = 0.383, the computed and measured downwash is in similar
agreement. At a = 130, the possible change in span loading results in
some discrepancy. However, as was pointed out in the comparisons of
wing-alone downwash, this change in span loading does not result in as
large a change in downwash at n = 0.383 as occurs at 7 = 0. At
n = O.383,the fuselage correction is quite small.

In summary, in figure 9 it is shown that good predictions can be
made by adding the downwash due to fuselage taper with the downwash due
to wing alone.

Rolling-up correction.- In figure 10 are presented measured values
of downwash from reference 13 together with three methods of prediction
for a wing with A= 60°, A = 3.5, A = 0.25, and Cy, 2 0.5. The three
methods are: flat-sheet theory, rolling-up corrected flat-sheet theory,
and a completely rolled-up theory. The latter is simply the downwash
due to the swept bound portion plus two concentrated tip vortices located
at e, = 0.864. It is seen that the rolling-up method agrees well with
experiment and that the agreement is best at the more outboard and at
the more rearward positions. It is interesting to note that only the
rolling-up correction method agrees well with experiment. For £ -equal
fBar2 e and 3.&3, neither the flat-sheet results nor the results for the
completely rolled-up vortex yield maximum downwash angles within 10 per-
cent of the experimental values. At & = 2.02 and n = 0.383, the experi-
mental downwash angles appear questionable because the rolling-up method
gave virtually exact agreement with experiment at Cp = 0.25.

In applying the rolling-up correction, it is important that the
lateral position of the tip vortices be closely approximated. In fig-
ure 11 is presented a comparison of measured (refs. 12, 13, and 14) and
computed locations of the tip vortices. The computed locations of the
tip vortices are based on empirical equation (26). Figure 11 shows good
agreement for a number of downstream positions for several swept wings.
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The agreement is within the precision of the experiments. It should be
noted that these are the same wings which were used in determining the
empirical constant, f, at one-half semispan behind the quarter chord of
the wing tip.

It is also important that the method yield a reasonable estimate of
the strength factor of the tip vortices. It is difficult to determine
the precise strength of the tip vortex from experiment because the vortex
sheet is connected to the tip vortex. An approximate check can be
obtained by determining the total vorticity in the region of the tip vor-
tex. The experimental total can then be compared to the theoretical
total. To check the totals for the 60° swept wing, the downwash contour
plots of reference 13 were used.

Very near the tip vortex (Jjust outside of the maximum € values
where the sheet contributes little), the downwash due to the tip vortex
is approximately given by

Gvortgg
t(ne = 1)

112

<=

Let

Gvortex
(C1./2A)

Values of p ranging from 0.57 to 0.63 were obtained from the experi-
mental downwash contour plots for & = 3.43 and o = 12° by using various
nts.

The theoretical total is taken as the theoretical F. plus the
theoretical amount of vorticity left in the weakened flat sheetoin the
region between 1 = (3nc-l)/2 and 1.0. At & = 343 and a = 127, The
computed Fe is 0.48 and the computed total in the weakened sheet from
1 =(3n¢ -1)/2 to 1.0 is 0.136. This theoretical total of 0.616 is com-
patible with the experimental total and is considered a reasonably good
check on this phase of the method.

Comparison of the Downwash Due to a Flat Sheet
and That Due to a Rolling-Up Vortex Sheet

The foregoing has indicated that the rolling-up correction method
gives an accurate picture of the downwash fields behind swept wings. As
is shown in reference 4, C1, and A are important parameters in the
rolling-up. Hence, it would be of interest to compare the flat-sheet
results and the rolling-up results for a few combinations of Cp and A.




NACA TN 3346 39

For this comparison the following wing-tail combinations were
selected.

2
Tail
location

b __.._.____i_ SN T e R T .
A=20 A= 40

.A. = 40° A: 40°

A= 05 A=05

Sketch (i)

Contoured downwash fields at the tail location as predicted by flat-sheet
theory and by the rolling-up corrected flat-sheet theory are shown in
figure 12 for two values of Cp, O.4 and 0.6.

In figure 12(a) (A = 2.0), the rolling-up is prominent and three
principal effects are noteworthy: (1) in general, there is an upward
shift of the downwash field in the more outboard areas; (2) the magni-
tude of the downwash around n = O is reduced; (3) in the mid-semispan
region (around 1 = 0.5), the vertical distribution of downwash is more
uniform than for the flat sheet. In general, the maximum values of the
downwash for the two systems are not greatly different, but their loca-
tions do differ appreciably.

In figure 12(b) (A = 4.0), it is apparent that the amount of rolling-
up present is quite small and the three effects mentioned above are
scarcely discernible. In fact, these two cases, Cr, = 0.4 and 0.6, could
be considered as borderline cases. It is realized, of course, that near
the tips (viz, n = 0.9), the rolling-up may have a sizable effect. The
discussion here is limited to the more inboard locations as shown in the
figure.
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For other wings with the same Cp,, sweep, tail position, and taper
ratio, calculations indicate that for aspect ratios about one (or less),
the trailing-vortex system is, in effect, rolled-up into two tip vortices.
For aspect ratios larger than four, the rolling-up present i1s even less
than that present in figure 12(Db).

Thus, the general range of aspect ratios for which the rolling-up
correction should be computed is roughly bounded by A = 1.0 and A = 4.0
at Cp, = 0.6; toat ie; (3/2)<(A/Cp) <6.

CONCLUDING REMARKS

An influence-coefficient-type method is presented for the rapid
estimation of the nonrolling-up downwash fields behind swept-wing air-
planes. Using similar techniques, an additive correction for the effects
of rolling-up is also presented. For the cases compared, the downwashes
predicted by the above procedures agreed well with experiment.

To facilitate computations, charts and graphs of pertinent functions
are presented together with tested computing forms. It is believed that
the procedures set forth will require less time than procedures employ-
ing horseshoe vortices or discrete vortices. To obtain a simple and
rapid method, a number of approximations and assumptions were made. Each
approximation and assumption was investigated by various means and the
range of applicability is discussed. Some findings of the present
research are as follows.

By approximating the longitudinal variation of downwash behind
surface-loaded wings by a simple function, a very simple expression has
been derived for the vertical location of the wake center. It is shown
that the location of the wake can then be written as a linear function
of the downwash at the center of the wake. This downwash is easy to
determine and thus the wake location can be determined very rapidly. A
comparison of experimental wake locations and computed locations indi-
cates that satisfactory predictions are made.

In the mid-wing region (around n = 0), it is found that the com-
puted downwash near the wake is critically dependent upon the span load-
ing used in the calculations. Thus, one should obtain the best available
span loading before computing the downwash at the tail.

The experimentally determined paths of the tip vortices trailing
behind several wings have been considered. It has been found that wing
sweep had an appreciable effect upon the mechanics of the rolling-up
and slowed the inward motion of the tip vortices to a considerable
extent. An empirical correction has been developed which allows one to
determine the tip vortex locations with due allowance for the effect of
wing sweep.
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Aside from an effect of the fuselage upon the wing span loading, it
appears that an important effect of the fuselage upon the downwash at
the tail can be considered as an additive correction to the wing-alone
downwash for wing-fuselage combinations. This effect (due to the taper-
ing of the rear portion of the fuselage) appears to be valid for combina-
tions wherein the diameter of the fuselage is fairly small compared to
both the length of the fuselage and the span of the wing. The correction
(obtained by slender-body theory) is expressed in a simple form and has
been shown to be in good agreement with experimental results on one air-
plane model.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 16, 1954
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APPENDIX A
INTEGRATION OF EQUATION (3) TO OBTAIN DOWNWASH

A general equation for the flat-sheet downwash is presented in the
section MANALYSIS AND DEVELOPMENT OF METHOD." The purpose of the present
section is to reduce the downwash integrals of equation (3) to the form
of equation (6). It will be shown in the later part of this section that
in the special case of sonic speeds, the downwash integrals simplify con-
siderably. The downwash due to a completely rolled-up vortex system can
be considered as a special case of the flat sheet; namely, that of a
wing with rectangular span loading. Thus, the first portion of Appendix A
is concerned with the general flat-sheet system, whereas the second por-
tion considers specific cases.

General Solution

Representing the arbitrary loading distribution by a series and
replacing the lateral integration variable by a trigonometric variable
allows the first integral of equation (3) to be evaluated analytically.
However, the second integral of equation (3) can only be evaluated numeri-
cally and may be evaluated in the same manner as that of reference 6.

The first portion of the following will be concerned with the analytical
integration of the first integral of equation (3).

It can be shown that G'(®) can be represented as

m m
G (P) = Iﬁ z Gn z My Sin WPy COS K3 P (A1)
n=1 My=1

Then, the first integral becomes

7 2 My
5 Q2 + (cos @ - 1) -

5 f" (cos @ - 1)G'(Q)dp & i e e

Where

it ¢ sin W, 1 " (cos @ -n)cos P dg
bsn=mz My Ki®Pn | T [ e, (A3)

*2
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Equation (A2) gives the integration to the same degree of accuracy as
the vorticity distribution is given by the series of equation (Al). It
remains to evaluate the integral of equation (A3). Define

I, - o U/“ﬂ (cos @ - n)cos p,Pdg (44)
Sl 2 02 + (coe Pp=m)=
With the relation for odd 3
“’l_l
T T 2 !
cos P =2 > cos T O - Z $—— cos(pl—EZ)CP
T, =1) ¢
=1
equation (A4) can be written as a recursion formula. Thus
My-1
Hq-1 = byt
- o1 5 3 e
i <?“1+1 ani) E: 18 (p, -1)1 Tu, -2 (25)
1=1 j
where
M
L cos' 1@ 4@
5 - (coBig=qI=A 0%

Now J“l can be expressed in a recursion formula, by dividing the denomi-
nator of the integrand into the numerator, then

(6

Lok £
<ul-2>’ il
2

X = D=5
Ty, = -+2n%ﬁ_l {1°%§ )%5—2 (AT)
0 - TOr  Hy odd

—

even

— —

where nCr are binomial coefficients where

n

1l

Hy-2

and
Mq=2

2
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The integrations represented by dJg and J; are found as follows:

o @ _ 1% sk : ! :
ILet u = tan — then cos @ = =y 2= =+ With these substitutions,
e 1+u 1+u

equation (A6) for p; = O takes the form

i f‘” a(u) +f°° V(@) a(u?)
T Y Ipe(@) @)+ (@) (@21 % pr(a) (u3)+(r) (u2)°

These definite integrals are tabulated in reference 15 and give the value
for J, as

i (1/VP)+@//T)
° Jaedr

where

p =0% + (1-1)%

g =205 + 1¥-1)

1l

=292 P 1en)E

A similar procedure gives

;2 GWD) - a/VT)
VT el e

where the ©p's and q's and r's are the same as those in equation (A8).

With tabulated values of Jy, (from egs. (A7) through (A9)), the
application of the recursion formula of equation (A5) evaluates the
desired integral of equation (A4). For symmetric loading, values of
Iy, for odd u, are given in the following equations:




o
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I, = 1-(a%+n3)J, + nJy -
Ig =-(1-Z+L0%) - (0 +0Q3)(-3+Ln%-40%)J5 + n(-3+14n% -1203)7,
Is = [1-12n2+160* + (12 -9612)q2 + 160%] -
(1% +0%) [5-20n% + 16n*+ (20 - 9612)Q2 + 16Q%] J, +
n[5-2002 + 16n* + (60 - 16072)22 + 80Q%] J;
I = [-1 + 242 - 8on% + 64n® - (24 - 480N + 960n2)Q2 + (410)

(-80 + 960n%)a% - 640a°%] - (n2+Q3) [-T+56n2 - 112n% +
64n® - (56 - 6720 + 9601%)Q% + (-112 + 96072)Q* - 6408 g, +
n[-7+56n% - 112n% + 64nS - (168 - 112072 + 134hn4)Q2 +

(-560 + 2240n2)Q* - L4480°) JJ;

g

For numerically evaluating I“l for high Hqs it may be simpler to

use equation (A5) directly; that is, to tabulate numerical values of Ju
from equation (AT), then with a numerical value of I, to tabulate suc-
cessive Tyq-

With I, ~ defined, equation (A3) becomes

m
_ 1 ;
bsn = m——+l z 'J.l Sin “lq)nlul (All)
Hp=1

The coefficients bgp can be found for arbitrary Q and n. The value
of the integrals of equation (A2) is the summation of the arbitrary
loading, Gp, and the bgp values. The integral of equation (A2) gives
the downwash due to a continuous trailing vortex sheet at an infinite
distance aft of any wing and also twice the downwash at the load line
for unswept wings. For the case of elliptic loading, the downwash is
given directly by I, alone, a result derived by other procedures in
the past (e.g., see ref. 7). For symmetric loading (Gpy,.n = Gn, and
only odd u,), equation (A2) becomes

m1
7 " '1(0)d 2
A f (cos @ -n)G' (@) _ Z S A Gk
g Q2+ (cos cp-n)2

n=1

(¢}
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where with p3; odd

+
Bsn 2bsn» n % ol

(A13)

2
m+1
= Dbsn» L= =

The numerical integration of the second integral of equation (3) is
obtained from the appendix of reference 6 by substituting Lgu given by
equations (4) and (5) for L(n,f) in reference 6.

In summary, for symmetric loading, the downwash integral of equa-
tion (3) becomes

m+1
2
e =2 = G
=7 = asnGn (A1L)
n=1
where
M-1
E
agsn = 2Bsn + £aALs
2 (M+1) ke
W=0
m
2 m+1
Bgn = o B, sin pl(PnI“l, n %T
M,=1,0dd
B
B = _EE for n = Eil
5,1 2 )
2

and Iy, 1is given by equations (A10) and (AD)

fnu = 2fnu, for n ¥ m;l, p >0
m+l
fap s n = 5 >0
= fop s ni‘m;l: p=0
fn
V) m+1
= n = =O
2 ) 2’ M




2 :
fn“ = m My sin .9, cos ulcpu

My=1,0dd

where Op = —ri, and cpH =

Table III lists values of f for several values of M and m.
m+1 ny

m+1’

(TI'T-I“)[T + (n'ﬁp)tan/\] T(T]—T_]u + T sin A cos A)
-+

Q2+ (n-7,)% Q2+ 72 cos? A
ALSH = n T]u =
T+ (n-iigan A2+ (n-7)% + @2
(n +T_]u)['r+(n-ﬁ“)tan Al (T +2n tan A)(q - iy+TsinA cos A - 2 cos®A)
92+(ﬂ+ﬁ“)2 Q% + (T+2n tan A)2 cos2A
A/["r + (n—ﬁ“)tan Al= % (n+ﬁ“)2 + Q%
T(n+7T sin A cos A) y (T+2n tan A)(n +7 sin A cos A -2q cos®A)
22 + 12cos2A e (T+2n tan A)Zcos®A n -y - n+ Ay
) = -
,/(T + 1 tan A)% 4 0%+ 0% %+ (-0)=  a% + (nefy)®
where

9HEE NI VOVN

€
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A convenient closed form of fnu is given by:

n
-2(-1 sin
£, = (=1) n [sin @, sin (m+1) (2 + cos 20p +cos 20,) -

o=
(m+1) (cos 2¢, - cos 2CPH.)2

(m+1) cos P, cos (m+1) ¢, (cos 2% - cos 29,)]

for

REr
M=m

n+
2(-1) " sin @, cos @,
L=

cos 29, - cos 2Q,
Special Cases

Compressibility considerations and downwash at sonic speeds.- The
effects of compressibility, subject to the limitations of the linearized
compressible flow equation, can be included in the previous work by the

substitution of the parameters % and AB= tan'l<iggééi> , for & and A,

respectively. It can be seen that since the Bgp coefficients are inde-
pendent of & and A, they are unaffected by compressibility and that only
the Lg, function is affected by compressibility.

The 1limit value of the downwash at sonic speeds can be found by sub-
stituting into equations (3), (4), and (5) the parameters T/p and Ag
which replace T and A, respectively, then determining the limit as B—>0.

With the limit

1im
B—>0 — S tan A (A15)

cosAAB




equation (3) at sonic speeds becomes

i b
- 15 A -
S NRE ST LY S
LR |t + (In]-[7D)tan A] | Q% + (2-7)
[T + (|ﬂ| -n)tan A]tan A 1 T+~|nl tan A T+ (|n]-|7])tan A
J/‘ - G'(7) an +
[T+ (In] ~n)tan A)2+ 0% tan®A Yo | |7+ [n| tan A[ |7 + (|n]|-|7])tan A
[t (ln|-+n)tanﬂA]tan A d/&> T+»|n| tan A L (Inl-lﬁl)tan.A o1 (7) ar (A16)
[T+ (|n|+n)tan AJ2+Q% tan®A - |7+ |n| tan A [T + (|n]-|7])tan A |
L

The form of equation (Al6) can be simplified by considering three longitudinal regions of
downwash. These regions can be pictured as follows:

{F i3
Region I
// \L
/
// \\ A
/2 A~ RegionI
49 // \\\ NQ
‘%‘c - == ~\'—"'
[ 1| (I Regrion I
‘-":"QL =l ~ Lt A
g ”
Sweptback Sweptforward
wing wing

Sketeh (J)

9hEE NI VOVN

a9
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For the three regions, equation (Al6) gives

Region I:

Region II (for sweepback):

<=

Voo
A\
T+|n|tan A
- = i e N TR
< a2 + (n-7)
T+ |tan A
tan A

2[T+ (|n|-n)tan Altan A G <'T+’|czzlutin = D

[T+ (|n] -n)tan A)? + @2 tan®a

2 t At A G(-
[T+ (ln|+n) an A Jtan <‘ o

T+ lnltanAD

(ALT)
[7+(|n] +n)tan A)® + @2 tan®A
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Region II (for sweepforward):

i 'r+|n tan A
tan A -
SE J/\ e
i -1 Q= + (n-7)
al
N = S
f —————— G'(7)df +
o + (n-7)%

l'r+ ! Itan A
tan A

o[t + (|n] -n)tan Altan A G<'T—+Ml>
+

tan A

[t + (|n]| -n)tan A)Z + @ tan® A

2T + (ITI| +17)tan Altan A G<-'1LMM|>

tan A

[T+ (|n] +n)tan A)2 + @2 tan®A

Region III:

- ;11_ fl 1 o N Sy (A18)

w
¥ a2 + (n-7)2

T+|M|tan A

|> denotes the value of G at that
tan A

The symbol G<i~
span station.




L8 NACA TN 3346

For symmetric loading, Region II given by equation (A16) simplifies
(since G(-m) =G(n)) to:

Region IT (for sweepback):

T+7 tanA|
tan A -7
T.z Jf _ NN gr(A)ad +
¥ t+ntanA| @° + (n-7)%
tan A

T T+ 2n tan A
tan A +
12 + 92 tan®A (7T + 27 tan A)® + Q2 tan®A

o(

Region II (for sweepforward):

T+ntanA‘> (A19)
tan A

T+7n tan A
tan A

B s T ST O
?Z + (n-9)2

L

=k

<=

n= 1 =\ a7
1 =W er(n)dy +
f T+7 tan Al g= % (n-1)"

tan A
tanAl: T N T+ 2n tan A :l
2 + 02 tan®A (7 + 2 tan A)2 + Q% tan®A
T+ n tan A
@ |> (A20)
tan A
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For the Region II for the case of sweptback wings, the downwash can be
written as (symmetric loading)

_| TN _tan A

W J—_ tan A l n - ﬁ s PEA A=
<V>III n f e T (7)dn

Al

<|s

n -1

1 ARl
= e
: T+7n tan A Q% + (n-1)2
tan A ‘
tan A T Be Snptan A
T ™ + Q2 tan®A (T 4 2y tan A)JF + Q= tan A
G T+ n tan A tan A
" tan A (A21)

The two integrals can be approximated by replacing the loading distribu-
tion near the wing tip by a single vortex having strength given by

tan A

tan A
due to elliptic loading at the wing tip equals that of a single vortex.
Then the lateral location of a single vortex is at

<'r+n tan A>
tan A <
1+

iG A
cos-l<m_an_>
tan A

G

> and laterally located so that the downwash at n1=Q=0

tan A

112
M\H

T+n tan A () (a22)
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Then the downwash becomes

T+ tan A |>
" tan A

v/EL<1 +
W o_ <}E> ol 2 .
\' \ T
III Qz+ﬁ<l T+ tanAl> ]
= tan A
1 . T+1 tan AI
2 tan A <’-r+n tanA|>
+
+n tan A tan A
Qz+[/;<l+7n an DT”J
2 tan A

T+n tan A..)
tan A

(A23)

tanAl: T + T +2n tan A JG<
¢ T2 + Q2 tan®A (7 + 21 tan A)® + Q% tan®A

The downwash in Region III can be evaluated from equation (A12),
then

m
< > z 254 (a2h)
R
For symmetric loading
< > }; 2BsnGn (A25)
TEL

where the value of 2Bgp 1s the value of agp at T = o given by
equation (Allk).

Downwash due to rectangular span loading.- For rectangular span load-
ing the equations for determining downwash simplify considerably. Since
the loading is constant across the wing span, then in equations (3), (4),

and (5) one can substitute —flG'(ﬁ)dﬁ = G(o), and plus and minus values
o




Oof unity for f. The downwash equation becomes

! ‘Tl:T tan A - M ]
(1-n)[7-(1-n)tan A] cos®A
W/V = LJ 2 -9 - 1+ i Q% + (l'ﬂ)g ) T2 & QZ/COSZA 2
2G(o) k@24 (1-m)® @2+ (149)2 W [T - (1-n)tan A]Z + (1-7)2+ 02
L
(14+n)[T-(1-1)tan A) . (T+2n tan A)[T tan A - 2 - (1-1)/cos2A]
Qe 4 (1+7)2 (t + 21 tan A)? + Q2/cos® A .
v [T - (1-n)tan A)® + (1+7)2+ 02
X
T(T tan A + n/cos®A) . (T + 21 tan A)(T tan A -27 + n/cos®A)
T2+ Q2 /cosZA (T + 21 tan A)2 + 92/cos3A
J(t + 1 tan A)2 + 1= £0° > biga
For Q@ =0 equation (A26) simplifies to _J
/LS T 5 T 4 el e T e e , /LT - (-n)tan A)Z ¥ (14m)2
2G(o) M |l-m  14q T(1-7) (T + 27 tan A)(1 + 7)
2 tan AN (T+n tan AN 45
T(T + 21 tan A) AT

OHEE NI VOUN

16
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Compressibility is taken into account in the same manner as in the
previous section. At sonic speeds for the same regions as before, equa-

tion (A26) reduces to

Region I:
W/V -0
2G (o)
Region II (for sweepback):
w/V _tm1A[ T .\ T+27M tan A }
2G(0) ox L7+ actan=A (T + 21 tan A)Z + 0%tan®A
(A28)
Region II (for sweepforward):
L/X_=_l_{ Lo + - Sa ! + tan A s +
2G(0) 2on @2 + (1-1)2 a2 + (1+n)® 2 + Q2tan®A
T + 21 tan A }}
(T + 21 tan A)2 + Q2tan®A (A29)
Region III:
w/V 1L 1 - 1 +
—/—=—{2 L+ — ' 2} (A30)
2G(o) 2n LQZ + (1-7) Q= + (1+1)

If the trailing vortices due to rectangular loading are not at the
wing tip (n = 1) but laterally located at mn,, then the dovmwash 1s
obtained by substituting ginj e and £ for G(o), T, n, and Q,

Ne Me Te Ne
respectively, in the previous equations.
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APPENDIX B
VERTICAL INTERPOLATION OF DOWNWASH

An approximate vertical interpolation of downwash can be found by
using the method of reference 8 for small values of Q. In the present
report, the interpolation formula for other values of Q will be based
on a fitted function of Q that fairs through the two known values of
downwash (Q = O and +0.5), approaches the function given by reference 8
for small values of Q, and approaches the correct function for high

values of @ (e.g., ref. 7).

In reference 8 the downwash function is expanded in a Taylor series
starting from the vortex sheet:

d 3%
e(Q) = e(0) + sz‘) la| + %a—ﬂ‘;-> AF i (B1)
(@]

(e}

where the subscript, o, indicates evaluation at Q = O. Assuming the
trailing sheet extends fore and aft to infinity, the following relations
are derived in reference 8:

de \ _ d% d% aZ%e o
= )T e N (32)
o dn o0~ /4, dn

Now, for large values of §, if T 1is small relative to &, the
downwash for any loading distribution is given by

(@) = —— (B3)
2(92 + 12)2 TA
As Q becomes very large (compared to mn), equation (B3) becomes
ler
€(Q) = — — B4
20% 1A fB4)
The derivative of equation (BL4) gives
de __1°L

It is desired to curve-fit a function of § that approaches equa-
tion (Bl) for small §, gives the known value of € at Q = +0.5, and



5k NACA TN 3346

approaches equations (B3), (B4), and (B5) for large Q. Assume the
following function:

2 3
1+92 1+ 1+Q

is chosen since downwash can be shown (by

(B6)

Where the variable

l
using eq. (AlO)) to be proportional to this parameter for elliptic load-
ing at 1 = 0.

The coefficients Cl* and C2* are evaluated by taking the first
and second derivatives with respect to @ of equation (B6), which, at
Q = 0, give the values of equation (B2), that is,

c

4l

jol)

¥ a6 *
Cl = =9
dn

(BT)

Q
N
Il
1
|+
o
|

The four remaining coefficients of equation (B6) can be found by
using four conditions which the equation must satisfy. One condition is
that it pass through the known value of € at Q = 1/2. Another is_that
it pass through the value of € at Q = 2.0 given by equation (B3). A
third condition is that at very large values of Q, the downwash must be
the value given by equation (B4). A fourth condition is that the slope
of the curve at very large Q ©be that given by equation (B5). The four
coefficients (A;, Az, Ag, and A,) so determined will be in terms of e,

d%z 4% Cr, : :
and —. The next step is to evaluate the two deriva-

dnz’ dnz’ A
tives and ——.
2
To find Q—g:
dn
Now

acc (o) :dG(CP) d“CP d=a CP)< > (B8)

dn® ap  dn®

1Tt should be noted that at two semispans from the sheet the down-
wvash 1s essentially independent of span loading (e.g., ref. 7, p. 165);

however, the downwash still has enough magnitude to make it useful in the
curve fitting.
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where
® = cos~1 q
a 1 4=
2t o ) LT LR (39)
dn sin @ dn® sin3@
Then
) 2
a=c () _ _ cos® 4a(9) PR - a=g (o) (210)
an® sin®@  qo sin®p 492
The derivatives of G(9) are obtained from equation (Al). Then equa-
tion (B8) becomes
m
where
sin p
1 Z <cos M1 Py + py sin p,Q, Lot T S
m+l tan @, sinZva
n-v i
(-1)" "sin @ [2 sin® Py+ (cos @, -cos @, )cos %] y
,n#w
J sin%Q, (cos 9, - cos CPV)Z
= f (B12)
m(m+2)sin® Py -3 cos® @, i
J
‘4
L 3 sin cpv J
For symmetric loading,
m+1
() %
a2 (o 4
F el Z Ly, Cn (B13)

n=1
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where

The downwash of the two-dimensional trailing vortex sheet is given by

equation (A2). Q =0, equations (A2) and (A3) simplify and become

NACA TN 3346

1
Wy + Whta-n’ n # E%_
7 =
Vo m+1
Wy ’ =
For m = T, the Zvn values are given as follows:
Ly,
) 0 0.383 | 0.707 | 0.92k
1 | -1.7934| 3.5149|-26.5029[100.7692
2 5.6568|-16.5757| 40.0000|-19.1087
3 |-25.2346| 27.2308(-19.6374|-20.4839
L | 21.0000{-13.5139| 2.8284} 11.7199
With 4d2G/dn® evaluated, the next step is to evaluate

For

(e.g., ref. 6, eq. (A19))

e(P)

w, sin p @) sin p @

Then similar to equation (B10O)

m m
2
= G
}: 0l }:
n=1 [.,Ll=1
ase cos @ de
an®

sin O

1

dge

" Sind%0 a9 & sine ag?

(B14)

d2e/an3.

(B15)

(B16)

The derivatives occurring in equation (B16) are obtained by differ-
entiating equation (B15); then after summing up several resulting
summations, equation (B16) becomes

(B17)
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where
Ey, = o+t [15 - (m® + 2m + 12) sinchv] K
n=v 4 sin®g,
-3 sin @ (m+l)2(-l)n-v cos Qy
Evn = +
n#v (m+l)sin2q5(cos ®,-cos Py). sin®qy,

(m+l)2(—l)n—v 2[1—(—1)1’1_"]sin2q>v
+

cos @ -cos Q, (cos @, - cos CPV)S

For symmetric loading

m+1

2 2

d<e,, - S
n=1

where
m+1
LV Evn41-n2 n # >
Ey_ =
= m+1
Ey, . n o= —

For m = 7, the Evn values are given as follows

ﬁvn
n n 0 0.383 0.707 0.92k4
1 19.945 | -48.262| 241.673 [ 1174.T43
2 | -67.883] 128.450 |-237.586 |-1791.706
3 | 173.641 |-174.776| 81.739 | 1890.134
4 |]-120.000| 89.112 0 -929.163

The 1ift coefficient can also be given as a summation of Gp.

57

P (B18)

(B19)

(B20)
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Thus

m+1 /2% Sin @, n 4 ml
B ? 2
oy m+1
- Gn (B21)
n:l __T[ ) n = In_+1_'_
m+1 2

For m = T, the factors of Gp in equation (B21) are as follows:

n 1 2 3 L
actor|0.3006|0.5554 0.7256f 0.392T]

As mentioned before, the coefficients of equation (B6) (A;, Ap, Agy
and A,) are in terms of €(0), e(1/2), a%e/an2, a%e/an®, and Cr/mA. It
has just been seen that d2G/dn2, dze/dnz, and CL/HA can be expressed
in terms of summations with Gp. Thus, equation (B6) can be written in

terms of &/ Q2/1+0%, €(0), €(1/2), and summations of Gp. The equation
can now be algebraically rewritten into the form

m+1
P2

e(Q) =C, €(0) + C, e<%> +2 DnGn (B22)
n=1

where the constants C;, C,, and Dp contain the Qz/l+02 terms and
the integration coefficients of dZG/dnz, dze/dnz, and CL/A. Letting

X = ./ Q2/1+9°, the constants are:

C, =1-

172411145 3 4 5394282 4/5 5 610+2314/5 5 4 235+60 /5 &
8 8 8 8

(B23)

2
Cs = T5 (5+3/5)x>+ %2 (354 LTa/[B)E 525 (5+2ﬁ)X5—%2 (15 + 5/ 5)x°

(B2k)
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Dn:-@-&ﬁl}«/jmg@:ﬁi@xa@Xs+%ﬁxs>zvn+

<_ 142, 4+3,\/_5_X3 7+6»./—5X4 7 lO+S~/—5_X5 y %X(s) Evn X
{[7+32~/§ L 59+i7ﬁ 5 i (oro W 35+1f~/3 Xe] N

[f 25 (20+94/5) X2 + £2 (85+384/5) X* - 22 (110+494/5) X +
16 16 16

2 sin @ m+1
125 (ll- 2) mt+1 n’ EL % —2—
= (9+4W/5) XS:}———lﬂ——— (825)
16 | (b+n?)®
it m+1
— 2 n = —
m+1 2

For m = 7, values of C,, Cy, and D, are presented in table IT for
various values of .
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APPENDIX C

DEVELOPMENT OF EQUATIONS PERTATINING TO

THE ROLLING-UP CORRECTION

This appendix includes the downwash due to a flat trailing sheet
alone, downwash due to a pair of trailing wing-tip vortices, and a
reduction to more convenient form of the "rolling-up distance"” of refer-
ence U4,

Downwash Due to a Flat Trailing Vortex Sheet Extending
From the Quarter Chord of the Wing Tip to Infinity

The downwash can be obtained from equation (1) by setting

x - (b/2) tan A

J/<X - g ‘tanA)2 + (y-¥)° + (z-25)°

cos 6, = (c1)

In dimensionless coordinates, the downwash becomes

<|=

1 fl (n-7)G' (7)df
TJda a4 (n-9)2

1 1 n - § 1 £ -tan A
o J Q% + (n-7)% J (E-tan A)Z + (n-7)2 + @2

G'(q)an  (c2)

The first integral is integrated analytically in Appendix A, and is given
by equation (Al2).

The numerical integration of the second integral can be performed
by following the procedure of Appendix A. Let

7 -1 £ -tan A
IT = e 1- (03)
> Q% + (n-7)% ~/(§-tan A)® + (n-0)° + 8=
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then the second integral of equation (C2) becomes (ﬁ = cos @, = cos

m+1
1 % 3
- — 1 — =
2x f R (RIRES Z &7nCn
O n=1
where i
>
= l -
= e i 1l - L A
&rn 2(M+1) ;z nu(Lpy, T,M+1-p)
H=0

where fnp values are given under equation (Allk).
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m+1

(ck)

(c5)

For the case of 71 = @ = 0, the second integral of equation (C2)
can be handled in much the same fashion as equation (A2) and with the
same limitations. The vorticity distribution is given by equation (Al)

which for symmetrical loadings becomes

m <“1'1

ac(e) 2 2

ae m+1 G(yi) Ha
2 /u,=1,0dd

m-1
= m

2 }: Gn }; M, sin p,P, cos p @
n=1 pl=l,0dd

With equation (C6), the second integral can be written as

n
g g; d/‘ Ly, G' (®)dP =
o

m <E%§%) T

2 e}

m
m 7

B

=1 Mq=1,0dd o

(-1) cos u,@ +

- Qﬂ) ﬁ Z My (-1) f Lp, cos ¢ a9 | +

2k
B
:: 2
Un (m+1) ;: Hy Se g f Hm BRe 1,0 8T | (o)
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Now, for @ =1 =20

7
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7

1 € - tan A
J[‘LTp_cos uo@ Ao =u/\ - = cos W, ¢ 4o
o , cos @ V (E-tan A)Z + cosZ@
s cos d
= 5 sin pl<%>_(g_tanA)f M,P dP
o cos Quf(E-tan A)Z + cosZQ
(c8)
The integral remaining in equation (C8) can be written ast
T o dm /2 o Ao
cos W cos M
f : = 2k f = (c9)
5 cos o (E-tan A)2 + cos®P - cos @a/1-kZsinQ
where
k = 1
v[l + (E-tan A)Z
This integral is evaluated by a recursion method.
For odd values of W,
Hl-l
cos K. P - ! (n-22)0
1 My -1 g -1 u,t cos (uq-
MRS LR T cp-z = = (c10)
cos @ 11 (Myp-1)! cos©Q
=
Hence,
Hl'l
My® Duy-21
Dy, = oHiy R o1 z (c11)
=) B S T

1The integration of equation (C9) was obtained with the aid of

reference 16.
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where

/2 cos M ae
DlJ_ = 2k f lw

1
o cos @ 1-k®sin®9

= i
/ S“-]_ Tk

co ®4do

7

R 2 n
Pa=1iy —
(-%;—) JQ o 1-kZsin?Q

For K, =1 and B, = 3, equation (C13) integrates directly to

Dl
Ry = — =K
° " o
R, = = [E - (1-k3)K]
3l k2
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(c12)

(c13)

(C1k)

where K and E are complete elliptic integrals of the first and second
kind, respectively. Higher terms of Rcﬁjl can now be obtained from the

recursion formula: >

1
= -4) (1-k2 = 2_
R<“12_1> S (kg -4) (1-k )RM2_5>+ (n1-3) (2k l)R<u;_s

(c15)

With values of EZMI_> determined, the values of Dul are obtained
2

from the recursion formula of equation (Cll). Then

f(c16)

Db = 2kK )
. E[(h - ¥2)K-LE]

Dy = 5%5[(32 - 20k2 + 3k*)K - 4(8 - k2)E]

D, = - —=_[(512 - 608k® + 216k* - 15k®)K - (512 - 352k + T2k *)E],

15>

where k follows equation (C9).
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Thus the second integral is evaluated exactly for @ = n = 0 and,
in summary, is given by

T
1L
S = ' P =
> [ LpuG' (@)d

3 D]

Criiay { —=— by (-1) n(-1)\ 2/ - (E-tan A)D, +

—é_) (m+l)n +
|J.1=l,odd

m-1

2 5 m

E: Gn S }: uysin p@p | © sin plg-—(g—tan A)Dul (c1T)

(m+1)m
n=1 H1=1,0dd

where the Dy  values are given by equation (C16) and for higher values
of p; by the recursion formula of equation {{@areys

Similar to the work of Appendix A the downwash, given by equa-
tion (C3), can be expressed as the sum of the products of influence
coefficients and values of the loading distribution, or

m+1
W
o= i aqpnGy (c18)
n=1
where
=
>
= =
apy = 2Bgn + ——— np AT
2(M+1) :
n=0

The coefficient, Bgp, follows equation (Al4k). Similarly, fnu also

t
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follows equation (AllL)

-1 3 E - tan A
ALy = 3 S E
q (n-ﬁu)z B ~/(§Ftan AT+ (n—ﬁu)z +ige
_ [
n+ iy, A £ - tan A
Q% + (ﬂ+ﬁp)2 ind N/(E—tan AIT+ (n+ﬁ“)2 Tl
U
T]“- COSm

For n = Q = 0, the analytical integration which evaluates ap, 1s

[ n
2(§—tan A) L m+1
e wDy sin w9 n #—=
J (m+1) n o <
apy, = Bsn + H1 (C19)
E-tan A -
-tan
(m+1) 7w 1 2
< M, =0dd

where D, values are given in equation (c16).
Downwash Due to Two Trailing Vortices

Let the lateral position of the two vortices be at 1 = xn, where
Ne 1s the fraction of wing semispan from mid-wing to the center of the
wing tip vortex. The downwash equation is obtained by substituting

Ne
f G (7)af = G(0)

plus and minus values of 17, for 7, and Neb for b in equation CE3).
Then

g G(0) Be =1 - £ - tan A 3

2n | @2 + (n,-n)2 J (E-tan A)2 + (n,-n)2 + 02

<<

Tlc+'rl ; E - tapn A

4
Q= + (T]C+T])2 J (E-tan A)2 + (ne+n)® + Q%

(c20)
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Now, m, can be absorbed into coordinate parameters, then

<é-tan A>

1.

i - e 1+ -

5 G(0) lkx 2 2+ L. 2 /é-tan A>2+ <l- _Tl_>2+<£>2
Ne Ne Me e e s

1 <_5___‘°_A>
&6 e G

(co1)

Roll-Up Distance, &, - &4

The longitudinal distance at which the vortex sheet is essentially
rolled-up is a function of wing loading, 1lift coefficient, aspect ratio,
and sweep. The roll-up distance given in reference 4 is given by (when
the coordinates are changed to the present notation),

g Lo o)
c o 1im ¢ (0) (ce2)
$=>0 Fii-cos [0)

where 50 represents the start of the rolling-up process.

A simple numerical method for evaluating the denominator of equa-
tion (C22) is as follows. The loading distribution is given by the
series

m m
G = i & . .
T om+l n SLUN G R @ (c23)

n=1
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With equation (C23), the denominator of equation (C22) becomes

1lim G(CP) Z sin p.g lim sin M.
P—>0 -/l cos @ m+l g cP__>O«/l—coscp
n=1

m

m
Z = Z My sin p,Q@p (c2k)

Hi=1

For symmetric loading for which Gy = Gp4,., @nd p,; 1s only odd,
equation (C24) becomes

lim
o G(P «/‘ ot
:\/ N=lcas odd <m+1>

z m+1 Z My sin W@y ) Gy (e25)

uq=0dd

m
The summation,z: iy sin p1Pp, in equation (C25) can be evaluated as

Felliowss: et
let
iCPn
Z = e =cosCPn+isinCPn
then,
R
d gt
m Il
; . . pp0dd -(m+1) (-1)
p, sin p, P, = imaginary | Z = (c26)
part of dz 2 sin @,
M =0dd __J
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With equation (C26), equation (C25) becomes

mel
2 n
1im G(P) _ S - o) z (-1) Gy
O V) (—2—l> ) sin @,
n=

Equation (C27) inserted into equation (c22) gives

5.05(1 - 1 )%/
e - &0 =

m-1
>

(-1)"on

"V2G<m+1‘2‘vgz e
= n

2 nop oo

For m = 7 equation (C28) simplifies to the following:
3/2

(=)

E. = £ =
¢ . 1.4630 G; - 0.7917 G, + 0.6060 G5 - 0.2799 G4

(- ncm)s/‘g(%)

© 0.7315 Ky - 0.3959 K + 0.3030 Kg - 0.1400 K4

(g2

(ce8)

where the subscripts pertain to span stationss n =1, 2, 3, and 4; or

n = cos %§»= 0.9239, 0.707L, 0.3827, and O, respectively.
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o TABLE I.- LATERAL INTERPOLATION FACTORS
Hp 1 0.09810.195 [ 0.290 { 0.556 | 0.831{ 0.981
H, [0.0030/0.0089|0.0102 |-0.0449(0.3378| 1.6982
Ho. |-.01781-.0538|-.0645] ..%365) .977T |=1.360%
Hg | .1086( .3916| .736%| .8790|-.5861| 1.3155
Hy | .9061| .6533| .3182| -.2706| .2706| -.6533
Hy+Hs |-.0148|-.0449|-.0543 | .3916] --- p—
“‘!nii!"
TABLE ITI.- VERTICAL INTERPOLATION FACTORS
i Q Q
(@)l =02 $053 +0.8 +0.1 +0.2 +0.3 +0.8
a For all n n Bryuns =T el
Ci| 0.9611| 0.7819| 0.5005|-0.1947 (1| 1.5928| 1.7007| 1.1502(-0.4075
Co| .0522 2784 .5986| .9978 |2 | -2.7584 | -3.2636| -2.3921| 1.0580
” Bt o 3114500 17688 . 1i3khTi . -.6115
L} - 2506 -.32361 -.8866] @.1384
i 0973|0932, .0559| -.0029 |l s = elpek
SNl =.2957 -.2788] =.1699] .0591
3] 1.6725] 1.9224] 1.3752| -.5490 [ 1 {-11.8776 |-17.881k |-15.0373]| 8..4886
b |-1.4618|-1.7412]-1.2816| .5816 2| 6.6138| 11.9406| 10.8359|-6.7796
1 ¥ i 3| -3.5043 | -7.9690 | -7.7815| 5.3097
n, N = 0.393 4| 1.5814| 3.7283| 3.6751|-2.5254
B -.1667| -.1392] -.0734| .0125
ERRL050T] 1.18461 .8303 | -.3137
3 |-1.8L423|-2.1540(-1.5653 .6952
Y s90601 1.0512] | JT570 | -.8976
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TABLE III.- fp,, FOR SEVERAL VALUES OF m AND M
u( for m="7)
M=7 |M=15|{M=31| n=1 | n=2 =13 n =L
0 0 0 2.6131 |-1.43ke | 1.082% |-0.5000
N e 1 }.5889 [-2.1053 | 1.5663 | -.7193
=2 1 2 2.88L44 | -.2363| .0751| -.0253
s _ 3 .6573 | 2.0046 [-1.5402| .7109
1 2 4 -1.h1ko | 3.6955(-2.4142 | 1.0824
e et 5 -2.7625 | 4.1506 |-2.0037.| .8553
.} 3 6 -3.1207 | 3.1958| -.3621| .1005
. B 7 -2.5843 | 1.2224| 1.8601| -.8209
2 L 8 -1.5307 [-1.0000| 3.6955 |[-1.4142
TR . 9 -.4383 [-2.6609| 4.2950 |-1.28Lk
— 5 10 311kle3 alEs | R a6 - 3367
-—- === 1t .5651 |-2.7288| 1.1207 | 1.1k92
3 6 12 Jiko |-1.5307 |-1.4142 | 2.6131
—_— o= 13 L1016 —.2939-3.2260 | 3.4397
-—- T 14 -.1258| .4372[-3.5579| 3.2212
-——- -——- 5 -.1Lk4h | J4635(-2.2904 | 1.9416
m=M-=15
ld.rl‘-:-'l n=2 1’1=3 1’1:).]. 1’1=5 n__—:_6 n=7 n:8
0| 5.1258(-2.6131| 1.800 |-1.41k2| 1.2027 |-1.082k4 | 1.0196|-0.5000
1 [-2.6131| 6.9258|-4.0273 | 3.0027 |-2.4966| 2.2223 [-2.0824| 1.0196
2 |-3.3258|-1.41k2| 6.3285 |-3.6955 | 2.8196 |-2.41k2 | 2,2223|-1.082k
3| 1.1989|-3.9231|-1.082k4 | 6.1454 |-3.6131| 2.8196 [-2.4966| 1.2027
L| -.5973| 1.5307|-4.1062 |-1.0000 | 6.1454|-3.6955 | 3.0027 |-1.41k2
5| .3318] -.7804| 1.6131 |-L4.1062 |-1.082k| 6.3285 |-4.0273| 1.8000
6| -.1831| .hik2| -.780k4 | 1.5307 |-3.9231|-1.k1k2| 6.9258|-2.6131
7| .0824| -.1831| .3318| -.5973| 1.1989|-3.3258|-2.6131| 5.1258
~q‘n‘;'rf
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Figure 1.- Illustration of coordinates.
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Figure 2.- Comparison of the downwash field due to a 1lifting line with
that due to a lifting surface composed of several lifting lines.

(A = 2.0, A =56° Q=0)
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Figure 2.- Concluded.
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