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An approximate method for
plate of varidble thickness is

ccmputlng thermal stresses in a thin
presented. The temperature and the thick-

ness can both vwg chordwi.seand spanwlse, and the-effect of the free
end is automatically included. The mthod makes use of polynomial ap-
prmimatlons for the stress function to reduce the partial differential
equation to a set of ordinary differential equations. This results in
satisfying the differential equation enrywhere spanwlse and at a finite
nuniberof stations ChOrdwise. The bounlhmy conditions are emrywhere
sati,sfied.

r.
Several exmples of the method me presented in detail, and curves

showing the effects of chodlwise and spanwlse temperature dlstmlhution
and chordwise and spamise thickness m=miation are shown for several
cases. It is Indicated from these few exmples that the d’fects of
relatively Uxrge thickness miation and spanwise temperature variation
are not of major importance for a plate with a free end.

Im?Rcmc!cIm

Jet engines, high-speed airplanes and missiles, and nuclear power-
plants me exsmples of modern detices in which large temperature gra-
dients ~st. Such temperature gradients can produce large thermal
stresses which, by themselves or in con$mction with stresses produced
by various external loada, can cause seriou8 ccmponent failures. Thus
~et-engine turbine blades possess large temperature gradients during
operation which cause Internal forces that superimposed upon the centri-
fugal and aero@amic loads can contribute to blade failure. During
acceleration, temperature gradients occur in wings & high-speed aircraft
because of aero@namic heating. Serious thermal stiesses may thus be

. . . . ..— .—-. —.— - . —- -— —-. --- —-



-. —... ---- —— -- —._

2

produced which must be & concern to the designer. mse
applicationshave caused a renewed and urgent interest In
old sub$ect of thermal stresses.

HA(ZATN 3778

=aotk~
the relatively

The geometries that exist in these wxrlous applications are usually
very complicated and dlfflcult to treat exactly. It is usual, there-
fore, to approximate the various configurationsby s~le bodies such
88 plates, cylinders, and spheres. Thus, the turbine blade snd the
supersonicwing are approximated in this Investigationby the thin plate
of variable thickness.

The thermal stresses in a thin plate me treatad In *tell in ref-
erence 1. Huuever, the plate is assumed to be of constant thlclmess,
the temperature is =s~a to vary chordwlse only, and the end effects
are neglected, use being made of Saint Venant1s principle. All these
assumptions are Invami In many practical cases. In a turbine blade,
for example, there 1s a large vwriation both in temperature and In
thickness in both chardwise and spanwise directions. In addition, the
bm-tO-ea ratio is aE%en less than 2, and the end effects ~
therefore be important over a large part of the blade. It is suggested
in reference 1 (p. 400) that the end effects can be calculated using
the strain energy n&hod.

In order to avoid sow of these assumptions, an ~oxlmate solution
to the equations of elasticity is @van in reference 2. A solution is
obtained for the bihermmi c equation for the stress function in terms
of an inflnlte series. However, * two terms of the Infinite series
m used, and the boundsry conditions are not exactly satisfied but ~
tn an average fashlon war the surface. The results at the free end of
the plate are compared with those obtained by the energy m?thod, and
it Is indicated that tbe method of reference 2, although mcme hborous,
has inherently higher accuracy. The calculationsmade in reference 2
are for a uniform-thicknessplate with chordwlse temperature varlatlcm
only. It is Indicated that, although this method, as well as the energy
mthd, could be adapted to a varldble-thicknessplate, the amount of
Mmr involved would becane prohibitive and should not be attempted
without the ald of a high-speed c~uting machine.

The equations for calculating thermal stresses In a supersonicwing
with chcmdwlse variations in thickness ma temperature are presented in
reference 3. 5 method of reference 1 (p. 399) is used in derlvlng
these equations, and again the results as stated therein m not ma
at a distance less than a chard len@h from the tip. .

—- ---- . -—- ----
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The ob~ect of the present paper is to present an approximatemethod
for calculating accurately the thermal stresses in a thin plate with
both chordwise and spanwise variations in t~erature and chordwlse but
restricted spanwlse variations In thickmess. Iwmerlcal examples of the
effects of the free end ~ of thickness variations will be presented.
The method used is essentlaldy a collocation procedure applied to a
partial differential equation and Is used successfully in reference 4
for calculating transient thermal stresses. In this procedure, the
differential equation is satisfied everywhere In x but at only a finite
umber d values of y. Use Is made M a poQuomial a~oxlmation for
the stress function to reduce the bihamoni c equation to a set of or-
dinary linear differential equations which can be readily solved. The
extension to other problems involving the biharmml c or Laplace equation
can be made.

AEAIYS12

Stress Fnnctlon

ConsMer a thin flat plate of varidble thickness, as shown in fig-
* ure 1. The origin of coordinates Is taken at the middle.of the free

edge, and the mldplane of the plate Is assumed to lle in the xy-plane.
Theuldth aE’theplaterunsfYa y= -1 to y=l; andthelength, ln

-. the x-direction, can be either flnlte or infinite. The vartable thick-
ness is a function of both x and y and is assumed to have the fol-
lowlng form:

The function ~(y) Is any continuous function of y hating a continu-

ous first derivative, and the function hi(x) is a function of x hav-

ing the form hi(x) = ~. (Synibolsare defined in a~endlx A). For

m equal to zero, the thickness is constant in the x-direction. At a~
Instant of time, the plate Is assumed to have a temperature distilbution
WLZWW tith x and y but independent of z. _

T = T(x,y) ‘

It Is assmed that the plate Is sufficiently thin so that a state
of plane stress exists, the mi& significant stresses being ax, ~~

@ ~ tich are independent of z. The assumptions that

UZ=T ~=~1=0 and that ux, uy, and ‘rW are independentof z

lead to an inconsistency In that all the compatibility conditions are
not necessari~ satisfied. It can be shown (see, e.g., ref. 1, p. 241),
however, that the error Is proportional to Z2 and Is thereftxe small

.—-. .—. - _____ . -—— - .-— — _ --——— .- - . -.
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for thin plates. It is further assumed
plane of the plate can be neglected.

Under these conditions it Is shuvn

that any curvature

in ~endlx B that

EM& TN 3778

of the tia-

the elastic
stresses ax, u=, and T= are derlveiblefrcm a stress function Q

satisfying the following differential equation:

subscripts Indicate differentiationwith respect to that varl-
@ is the Iaplacian operata

The stresses sxe given In terms of the stress function as l?olid.ows

(2)

The boundaryconditions are ones of no
the surface of the plate. These conMtions
tions that must be satisfied at the edges of the plate:

ncumal cm shear faces on
lead to the following equa-

at x=O

hux n ?%=O

e

m ●=- a%
X’Y -=0

1

a%
hu=~=O
Y&

a%=o
% “-e }

(3)

(4)

——. —.. —.— ------- —--—
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For an Infinite plate the stresses at infi~ty must be finite. For a
finite plate with both ends ties, the same boundary conditions ~st at
both ends.

co

%!
For a fixed edge the boundary conditions are @van in terms of

displacements. This necessitates setting up the differential equations
in terms of displacements rather thsm stresses.

po-al A~oxlmations

Equation (1) will be solved approxlmte~ by a collocation proced-
ure whereby the differential equation is satisfied everywhere in x
but at only a finite nuniberd? values al? y. Thus, as Indicated in
figure 1, n stations
stations sre ylj Y2j

to have the followlng

are taken along y. The y-coordinates of”thase
.*.. yn. The stress function q Is then assumed

form:

(5)

where P~(y) Is a po~anlal in y associated with the jth station

and satisfying the followlng condtttons:

(6)

Since qj will, in general, be a nonllnear function of x, the fol-

lowing conditions must be satisfied in order to ensure that equations
(4) hold for any @$:

\

(7)

Polynomials having these properties can readily be obtained. Thus

.— ——. —-. - -—— —- ———. -— ——. ---
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where II is theprdllct for aXL values ae i except 1= $. Equa-

qd
tion (8) satisfies equdions (6) since P = O at y= yl and Pj E 1

at y=y.
J tIt -o satisfies equations 7) since Pj - PJ =e

both zero at y= jL Equations (8) and (5) are now substituted into
equation (1), and the equation is then evaluated at each of the n
stations. This results In a set & simultaneous fourth-order adinary
difY!erentialequations form:

-h(x,Yi,v@r(xsYi]

2,. ... n (9)

where

(lo)

.

1

— —--- .— — .— —
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It Is to be noted that because of equations (6) all terms in equa-
tions (10) which are multiplied by Pj - zero except when J = L

. in which case Pj(yj) = 1.
.

Special Cases cd?Thickness Vsrlation

The coeff’lclentsdefined in equations (10) are, In general, func-
tions of x If the thickness vsries spanwise. The solution of equa-
tion (9) can become ~ laborious under these conditions. If, however,
~(x) Is chosen to be an ~onential ~-, then the cod’ficients are

au constant. Equation (9) can then be solved subject to the boundary
conditions (eqs. (3)) by any of the standard n&hods f= solting ordi-
nary linear differential equations with constant coefficients. The so-
lution will be given in terms of exponential. By the prcpsr choice of
m) hi(x) cm be made to give a reasonable approximation to the variation
cd?thickness along the span of a turMne blade, ~lcular~ in the
ticlnlty of the f’iee edgti. If there
wise, then m is taken as zero.

If the thickness varies only In
~ andalltermsln Cij - eij

-. (9\ then beccaaes

is no variaiion in thickmess, span-

the chordwlse direction, bij and

containing ~ vanish. Equation

(U.)
“—

If the thlclnless is constant tlmn@out
becomes

v4ql= -V’(lmm)

&l,2,...,n

the plate, equation (1)

(1’)

where

‘4= :4 a4 a4
-—+2=+P

iS the blharmnl c operator, @
define the stress function q.

h is deleted ficm equations (2), which
Equation (9) reduces to

..—. — — . ..-— —. —— . --— —— . - -. ,
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8pecial Cases of Temperature Distribution

H the thickness and the temperature are even functions In y (i.e.,
s~tric about y = O), then only that half of the plate be~en

Y“omay”l need be considered. This will reduce the number of
stations required for a given accuracy. The polynomials Pj can be
taken aS even po-ti j thus

Slmllarly, M the thickness is an even function of y and the tempera-
ture is an odd function al? y (antisymmtric), the polywdals are taken
as Oaa polyncauials;thus

Agaln~that half of the plate between y=O end y=l needbe
considered. Since any temperature distribution can be spilt up Into
the sum of an even and an U function, it is possible to solve the
problem of an arbitrary temperature distribution In two steps, namely,
solving for the stresses fcm an even distribution and for an odd dis-
tribution, and addl.ngthe two. This will generally result in sane re-
duction in ldbor, since the work involved in solting two problems each
with n/2 stations Is usually less then solving one problem with n
stations. It is to be noted, however, that this procedure cannot be
followed if h is not an even function of y.
polynomial (eq. (8)) must be used and statiohs
to y = -1.

EXMPLM

In that case
taken ranging

the general
frcml y=l

Uniform Thlclmess, Parabolic Chordwise Temperature Distribution

As a fIrst example, consider a semi-inflmltethin plate of constant
thickness with a temperature distribution independent of x and given
by

T.(# - :)TO

Since this temperature distribution has zero man
the x-axis, ths stress at a distance far frau the

and zero momnt about
free end is given by

.

.

a

. . — ——. .— --— -—-
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the method of

.

reference 1 (p. 401) as

ax = -~= I!kL&- Y2)T0

=%
‘Y XY

=0

Tbe only problem, therefore, is to obtain the stresses ne= the free
end. 8ince the thickness 3,s constant and the temperature distribution
is synmtric, equations (13) and (14)till be used. TWO stations are
chosen at yl = 1/4 and y2 = 3/4. The po-als then beccane

‘l=w”-%(’-1’2(’-&
‘2”iHH=-’’2&)-&)

Evaluating ‘1 and P2 and their derivatives at yl = 1/4 and
at Y2 = 3/4 gives

‘1(1/4) = 1.
,

‘;(1/4) = -5.564

‘y (1/4) = 88.75

P@/4] = o

p; (1/4)= 8.571

P? (1/4) = -282.1

SWstituting now into equation (13)

Qr - 11.13~ + 88.75% + 17.14% - 282.1% = -2EM0

16.18?: - 320.8P1 + Qy - =.~~ + 159~2 = ‘=(J

The partic- solutions are readily obtained

Qlp = -0.07324JW0

q@ = -o.o1595E@~

‘1(3/4) = o

‘:(3/4) = 8.089

P~ (5/4)= -320.8

P2(3/4)= 1

P;(3f4) = -22.78

P? (3/4) = 3.599

gives

as

. ..- —— ..— —.-. —-- -—— —— -- ---— —-
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The homogeneous solution is obtained by the usual exponential sub-.
stltution. The camupletesolution is then

t

*“
91 = %e

- o.073WWl!o

8

&

se+
%= - o.o15951Wo

where the terms ~ are the roats of the deterndnanteJ equation and eme
equal to

~ = -2.120+ 1.l17i X3 = -5.682 + 2.6813.

where the bar signifies the complex conjugate.

Theterm Bk lsglvenlntermsof~ as

&.-
f“ - 11.13# + 88.75

In order for the stresses
~, A6, ~, and A8 must

17.1% -282.1

to rematn finite as x approaches infinity,
vanish. This leaves for ‘al and Q2

t

~e+ - 0.073241?Mo

- 11.13~ + 88.75 ~
% 9 .-

L
a

%se
- 0.0159-o

-1 17.14g - 282.1

In order to determine the values of the ~ts, use is nuw made of

.

the bom conditions of equations (3). It i= to be noted that all
other boundsry conditions eme &Lready satisfied in the choice of the P
function. In cinderto satisfy equations (3), it is necessary that r

Q1(0) = Qi(0) = Q2(0) = Qd(0) = O

——- _ -.— .-
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since Q% is

e
result for the

11

not necessarily zero at x = 09 Thus, four equations

four Ak*s. The solution cd?these four equations gives

Al = (0.03625 - 0.071L4i)I!Wo A#l

= (0.0003671+ 0,.0W8261)I!W0 A4 = ~

After adding all the ccmplex con@gates, the I.megineryparts drop
out and the final solution is

2e-2.120x
[0.03625 cos(l.~7x) + 0.07114 sln(l.U7x) -o +

Ze-s.682x[0.0003671 &s(2.681x)” - 0.0001926 sin(2.681x)-0-

0.0732W0

2e-2●U=[0.CXN941 cos(1.ld.7x)+ 0.01249 sin(l.117x)lRdl!o-

2e-5”-[0.0009662 COS(2.681X)+ 0.0001790 sin(2.681x)]-0 -

o.01595Jkmo

h. The stress function is given by

~ “ ‘1% + ‘2Q2

and the stresses are

... —-. ..-— —— —— ..— ------ —--— —. —-— ---- —-—. .— -- .
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It is to be noted thet at x = =

~ = -O.073241Wl!o

~ = -o.o1595Eu!To

qi=q$=Q=O#=O

Therefore,
.

U=dl

%=0 .
u= = (+ + o.333)Eflmo

Ii

. .

which are the exact stresses at x = co. The
Mfferential equation glvea the stresses far
geneous solutla gives the correction due to
rapidly am frcauthis end.

PFmticular solution of the
frmn the end. The hcmo-
tha free end and dies out

.

The preceding stresses are plotted tn figures 2 and 3. These results .
will be discussed in ~S AHD D18CU8810H.

The values at the la, given previously, can be need for any .
constant-thickness two-station symmetricproblem, since the Ns are
independent ot the tenqerature distribution. For any other temperature
distribution new values for the particular solutlons to the dlffereutlal
equation must be obtaineds the homogeneous solution remaining the same.
Newvalues W the constants ~ and ~ can then be deterndned from
the boundary conditions.

(Fcm a three-station solution of the sane problem stations at

Yl=&Y2==;# )
- Y3 = ~ j the following values can be used:

PI(Y) = 7.141(y2 - 1)2 f - ~
( 4)(+ -~)

--—- —. -— ..— —
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r

Q

%

The equations for the q. functions in this caie ~e
d

6.

‘k==m %P
ts =e the particular solutions for the given trature

dlstributlone and the Kk and Ifk values are as follows:

0.5637 - 0.039471 %=%.

-1.236 - o.2541d K4=~

-2.968 - 1.061i
%=%

0.08273 - 0.o18021 Hz = El

-0.4420 + 0.0404M H4 = E3

2.019 + 4.4971 K6 = ~5

the ~’B can be obtained frcm the boundary conditions; that is,

9~=@j= Oat X-O.

Variable Chordwise !l?hlckness,Per*ollc

Chordwlse Temperature Distribution

As a second example, the plate is assumed ~o have a variable thick-
ness in the chmdwlse direction given by

h=~=(l-O.9#)~

.—— - .— . —.. -.. . .-— -—— -—— —— . ---
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The t-ature distribution Is %aken the sams

()T= #-~TO

Again two stations will be -n at Y1 = 1/4

HAM TN 3778

as before: -/

>

and at Y2 = 3/4. Since

conditions of synunetryexist, the same pomale as used In the first
exeqple will be used here. The derivatives of these polyncd.als evak
mea at the two stations hawemoue

7
been Ilsted. Since the thick-

ness is no longer constant, equation (M cannot be used. Instead,
equation (U.) is used In this case. The ctiicients ~dz cl~~ d

bi~ are evaluated using equations (10). Equation (n) then beccmes

nn
%

- 13.81Q: + 104.W1 + 21.52@~ - 366.5Q2 = -1.888h&Wo

12.61Q; - 226.4V1 + q? - 72.22Q~ + ~47q2 = -0.987!5b&Wo

These eqnatlone can be solved in the same w as for the unlform-
thlclmess plate. The final results for Q1 - % -

+
=

o

?2
%7=0 =

2e-2”56*[0.016M coe(l.158x) + 0.03761 sln(l.159x)]+

2e‘6=38ti[0.~m COS(l.741X) + 0.000002496 sin(l.741x)1- ,

0.03330

2e-2”56&[0.tX)2629 cos(l.159x) + 0.(X)3692sln(l.159x)] -

2e-6”58&[0.0MM389 cos(1.741x)+ 0.0001872 sin(l.741x)] -

0.oo4381

The stresses are then given by

~ P“@ + & pn
‘x=hll h2q2

.— - .—— . —- -.
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At X=m,

.

ax @~4 - 30.75@ + 4.25)
— = 0.07578
Eu!r(’) (1 - O.$lyq

- 0.04578 (* 4 - 24.7* + 2.25)

(1 - o.9#)

= 0.219 -

The exact solution for this case at x = = Is given by (r&. 3)

T.-%+ J lShdy
-1 TO

f
lh@

-1

Wbstituting the ~esslons fm T and h gives

&&=-#+*+
~ (~-?)(l-o=e)b

I
(1 - o.!3y2)ay

1

= 0.219 - ?

Thus the two-station solution again gives the same answer as the
exact solutlon at x equal inflnlty.

The stresses u ,
Ywadux

for this vaddble-thickness case are

plotted In ftgure 4. These results till be discussed in RESUIW.SMD
EESCUssIm.

. . .._ _ ——— .—— - ——+ ,. —.. . .
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!l!hiCkness,lbnsyme tric Ohordwise

Temperature Distribution

As a final exsmple, consider the case of a uniform-thichess plate
~th a ~~c chorduise tagysmature Wstributlon givxm by

.

Since this temperature
PO=- d equation
Y1 = -2/32 Y2 = 0s -

dlatribution is neither even nor odd, the genemil 8
(S) will be used with three stations taken at

a
m

y~ w 2/3. ~ m~ then me

When these poQnmials and their required derivatives are evaluated at
the three stations and the results stistituted into equation (15), the
following three equations are obtained:

Qim - 30.08P~ + 797.0~ - Z?Z8.0Q2- 9.90@~ + 213.8ip3= 2M!ro

14.58fp:- 175.0% + Q; - 17.(XJP3+ 132.~ + 14.5% - 175.0q3= -2Edro

These equations are solved giving 91, Q2, and 93 as functions of x.

The stresses are now ccxmputedas before frcm equaticms (2) with h
tileted.

The pretious problem could also have been solved by separating
the temperature distribution Into even and odd functtons. Thus the

()
stresses for the distribution T = # - ~ To have already been ca-

ptied in the first -le~ It remains only to obtain the stresses due
to the distribution T = -O.

only two stations at yl = 1/4

polyncmdals of equation (15).

This can be done accurately by using

and yz = 5[4

The tuo stress

with the antisynnetric

distributions can then be

.- — —. --- -
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added to give the ccmplete stress distribution. Thls has been done for
this problem and the results are caupared with the pevious solution in
figure 5. F+igme 5 also Includes a four-station solution of this same
problem using the MneymMzlcal temperature distribution.

In order to deterndne the relative accuracy of the nwthod presented
herein, a c-son is made in figure 2 between this nmthod using one,
two, and three stations and the energy and elastici~ methds presented
in reference 2. A uniform-thicknessplate with the pardbolic tempera-
ture distribution of the first example Is used for comparison. The
epanwlse stress u=, the shear stress ~ atthetip (x. O), and the

chor=se stress ay at 1/4 chord man the tip (x = 1/2) are plotted

for the three methods. It is seen that for all practical purposes the
method presented herein has converged using $zst two stations, giting a
far superior answer than the e~gy nthod and a slightly better answer
than the elasticity method at reference 2. Even the one-station solution
gives an approximate answer almost as good as the energy method and ~

P be useful for many practical engineering problems.

The effect al? the free end for this problem is briefly shownin
b figure 3(8), where ax and ay at the IKLdchord(y = 0) are pbttea

agalnet x. The chordwlse stress ay is large at the tip but has
dropped to practtcq zero after 1 chord length frau the tip. !che
spanwise stress ax starts at zero at the free end and rapidly rises
to a constant value after 1 chard length from the tip. The shearing
stress, although not shownhere, follows the samepattern as ay. It
is to be noted that an epprmlmate slntplecheck can be obtained for ~
frau the fact that the integral under the curve must vanish. It is
further seen from this curve that there is practically no difference
between the two- and three-station solutions for this problem. The ccm-
plete stress distributions fcm this case at vexlous distances frcauthe
free end are plotted in figures 3(b) to (d).

The effect of variation in chcmdulse thickness Is shown in figure
4. Again the temperature distribution is ~ollc and the thickness
varlatlon Is given by h = N(1 - MY% - ho is the thickness
at the midchord. The edges therefare are one-tenth as thick as the
middle. A comparisonis made between a two-station and a three-station
calculation, and it Is seen that the two-station calculation gives good
results except far the spanwlse stress ax near the thin edge, where

there is scme difference betwean the two- and three-statia solutions.
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A comparison between the Uniform-thkkness plate and the varldMe-
thickness plate in figure 4(d) indicates, as wouM be expected, that the
effect of thinning out the edges Is to raise the edge stress end lower
the stress at the midchord. Howe=, in spite of the large varlatlon
in thickness, the edge stress is raised by only dmut 15 percent fcw
this case. .

The case of a nonsymnetric chordwise temperature distribution

(
T= To#+#-$(the Wrd exmuple) lsshowninflgure5. Three

s
methods were used far this exan@e: a three-station solution; a four- Oa
station soluti~j and a solution obtained by spllttlng the temperature
into even and odd functions, using a two-station solution fom each tem-
perature distribution, and adding the results. It Is seen from the
figure that the sum of the two-station solutlons gives the same results
as that for the four-station solution. It is generaldy less work to
~cmm two two-station calculations than one four-station calculation.
Themf&e, if the chordwlse temperature distribution Is not symwtrlc,
It is best to divide it into even and odd parts and perform two separate
Calculations. This should be done If extrenw accuracy is desired.
Hauever, it is seen from figure 5 that even three staticms give suffi-
cient accuracy for most engineering purposesj therefore, using more 4
statiqns or dividing the problem into two parts would generaldy seem
unnecessary. *

d

The effect of variations in both chomlwtseand spamise temperatures
Is shownin figure 6. The thiCk3.leSB iS assumed OllStmt md the teln-

O(J
perature distribution is given by T = T # - ~ (1 + 0.3e-x). This

would correspond to the temperature decree.d.ngexponentiallyby about
30 percent fra the tip to the base of a turbine blade. This relatively
large veriation in spanwise temperature affects only the chorduise
stress u=, leaving the spanwlse stress ax unaltered. 8ince the max-

imum stress Is generalJy the spauwise stress ax, the effect of the

spanwlse variation in teiuperaturedoesn‘t seem to be of great importance
and can be neglected as a first approximation.

As a final calculation, the effect d? spanwise variation of thick-
ness was briefly investigated. The temperature distribution was taken
to be parabollc and the thickness was assumedto be given by
h = hl = ~“”a. This is a reasonable @pe of spanwise thickness _-
ation for turbine blades. The results are shownIn figure 7. A C~-

perison of figure 7 with figure 3 shuus that this variation In spanwise ~
thickness produces no Wge changes in the stress distribution.
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Although the effecte
great In these examples,
thickness variation.

M

of thickness variation are shownto be not very
this conclusion maynot be valld for extreme

It Is to be noted that, although the cases considered herein are
all for a plate with a free end, any other edge conditions can be
treated in the same ~, pruvided the boundary conditions are adequately
specified.

ccmcIaJacE?s

An a~oxlmate methodwas presented for calculating the elastic
thermal stresses in a thin plate at varldble thickness. Frcm the
exemples shown, it would seem‘that a two- or three-station solution
should suffice for most practical engineering problems.

Calculations on the effects of spanwlse variations in temperature
and spamlse and chomdwlse variations in thlclmess indicated that for
the examples chosen these relations dld not have my Umge &’fects on
the stresees.

IeulsI’llght Propulsion Laboratory
National Adtisory Ccntnnltteefor Aeronautics

Cleveland, Ohio, July 16, 1956
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APHXUIXA

constants of integration

EAcAm 5778

coefficients in differential equatim for stress function
(W= (9))

Youngss mdul.ua of elasticity

thickness C& plate,

referencethickness

function expressing

function exgmassing

constant

h = hl(x)~b)

spanwise thlcknass variation

chordwise thlckmess variation

coefficient in equation ~(x) = ~ex

constant

RoW~ associated

_atwe, function

reference temperature

with j‘h station, functicm of y

Ofxandy

spanwlse coordinate measured from free edge, half chord lengths

chmdwlse coordinate measured
ulth axis M mlnlmum mcment

thickness cmrdinate measured
with ~S of maximum mauent

fram centroid, y-axis coincident
of inertia

fran center, z-axis colnctdent
of tnertia

.

.

-.— --- --—-
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a

‘Y

v

‘x

‘Y

%

9

coefficient of llnear thermal ~i~

shearing strain

strain In x-direction

strain in y-direction

Podsson ratio

product forallvaluesd i except I=j

namal stress in x-direction

normal stress in y-direction

she= stress

stress ~tion, fuuction of x and y

stress function associated with jth station, function of x

particular solution to differential equation

a2Laplacianoperator, ~ + a2~

+ blharmonlc

Subscripts:

i, j summation or multiplication d- indices or refer to the
ith ~ jth statim

X,y parttal differentiationwith respect to that stiscript, except
where otherwise &fined

Superscripts:

1 Indicates

indicates

ordinary derivatives

ccmp~ conjugates

...—. . . . .—-— —- —. - —- -— - -— --- --—
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The stress-strainrelationa for the plane stress problem are

The Compatiblllty

E% = (YX -’%+=

%=”= -wx+m

~w=awl%
E }

equation 19

Slibstitutlngequatione

are

v%=+(JY)=

equations for the
(ref. 5, p. 297)

If a stress function

then
(B5)

I

(Bl) Into equatia (B2) gives

(Bl)

(B2)

-+(H) + (1+ v( )&ax w a%=
._._#+__#z+~=ti m

squillbrimu of fcmces in the plane of the plate

(B4)

(B5)

equatione (B4) are automatically satisfied. Substituting equations
into equation (B3) gives the equation to be solved for the stress m

.. - -—. ----— .



HACA TM 3778 23

. function:

,, ?(* ,’,) = -v’(EhW) + (1+ 0[: ~)= + (* %)w - {* *)J
L

or

1.

2.

~, 3.

4.

5.

tihenko, S.j and GOOdierJ J. ~. : _oZ’Y of ~tic~ty. *COUd
ed.~ McGraw-Hill Book Co.~ Inc.~ 1951.

Porits@J H.} JerrardJ R. P.j Jones$ N. H.> and Weidlem~ S. E.:
Thermal Stresses In Turbine Buckets. DF-5~E7, Tech. Information
*r., Gen. Hug. Ldb., General Electrlc Coo, Schenectady (lI.Y.),
Feb. 18, 1.952.

Artiberg,B. T., et al.: Thernto-ElasticStress Effects Due to Aero-
dynamic Heating in Supersonic Wings. Pt. 2 - Deterndnation of Tem-
peratures, Stresses and Ikflectione fcm Various Heat Flow Cases.
AF Tech. Rep. Ho. 6351, Wright Air Dev. Center, Air Res. and Dev.
Ccmmmnd, Wright-PattersonAlr Force Base, Aug. 1953. (AircraftMb.
Contract W33-038-ac-17240,RDO No. 451-344.)

Mendeleon, A., and Manson} S. S.: ApproximateSolution to Thermal-
Shock Problems in Plates, Hollow Spheres, and ~linders with Heat
Transfer at Two Surfaces. A.S.M.E. Zkne., vol. 78, no. 3, Apr.
1956, ~. 545-553.

W-, Chi-Teh: Applled Elasticity. McGrau-Hill.Book Co., Inc., 1853.
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whleh differential equation ts satisfied.
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severalmdbds of solution. Chordwisestress
~ plottedat free end,x . 0; spanulsestress
=x and shearstress ~m plottedat 1/4 chord
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(a)C-son & stressesat midchardfortwo-endthree-s~tionsolutions. “

m 3* - 6treesee in plateof uniform thichess f= pamibolic temperature -

6istriblltim.T= TO(F -$.
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Chordwise distance measured from centerline, y,
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(b) Chordwise stress; tuo-station solution.

Figure 5. - Continued. 8tres&es in plate of uniform
thickness foy parabolic temperature distribution.

T= TO(+ -~).
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thickneee rom pardbolic temperature distribution.
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(d) 8hear stress; two-station solution.

Figure3. - Concluded. 8trest3esin plate of uniform
thickness for psr*ollc temperature distribution.

T= To(# -&).
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Yuw’e 4. - Caltimmd. 6treeaesillplate & varl-

*le chordwise thickness. h - ~(1 - O.#);
T- To(~- #).

. . . ..- .-. __ ___ —— .— . —--- -



. . —.. . . . .. ..—. .- ___ —— _ _ ___

32 MACATMm8

.
.

.i

0

-. 1

--9.- 0 .2 .4 .6
Chordwlse di8tance msasured fran

Semlchard.s

(c) 8hear stress.

.8
centerllne~

.

Lao

-e 40 - Continued. 8tresses in plate of vari-

tiblechcmdwlse thickness. h=~(l- 0.$);

-.

T= To(@ -~).

.—.

.

.- —.. .—



HACATK3778 “33

.

Lj

.

.

(d)Cmperleon of mrid)le-tbiekmen platevlth .
unifom-thlckueee plate.

m 4. -CaAuded. 6treeeeein plate of*-
able ~ thiakwne. h . %(1 - O.#);
T= To&-&.
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