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By Alexander Mendelson gnd Marvin Hirschberg

SIMMARY

An approximate method for computing thermal stresses in a thin
plate of varieble thickness is presented. The temperature and the thick-
ness can both vary chordwise and spanwise, and the effect of the free
end 1s automatically included. The method makes use of polynomial ap-
proximations for the stress funetlion to reduce the partial differential
equation to a set of ordinary differential equations. This results in
satlsfying the differentlal equation everywhere spanwlse and at a finite
number of stations chordwise. The boundary conditions are everywhere
satisfied.

Several examples of the method are presented in detall, and curves
showlng the effects of chordwise and spanwlse temperature distribution
and chordwise and spanwise thickness variation are shown for several
cases. It is Indicated from these few examples that the effects of
relatively large thickness varlation and spanwise temperature varlation
are not of major importance for & plate with a free end.

INTRODUCTION

Jet engines, high-speed alrplanes and missiles, and nuclear power-
plants are examples of modern devices in which large temperature gra-
dients exist. B8Such temperature gradients can produce large thermal
stresses which, by themselves or in conjunction with stresses produced
by various external loads, can cause serious component failures. Thus
Jet-engine turbine blades possess large temperature gradients during
operation which cause internal forces that superimposed upon the centri-
fugel end aerodynamic loads can contribute to blade fallure. During
acceleration, temperature gradients occur in wings of high-speed alrcraft
because of aerodynamic heating. Serious thermal stresses may thus be
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2 NACA TN 3778

produced which must be of concern to the designer. .These and other new
applications have caused a renewed and urgent interest in the relatively
old subject of thermal stresses.

The geometries that exist in these various applications are usually
very complicated and difficult Lo treat exactly. It 1s usual, there-
fore, to approximate the various configurations by simple bodies such
as plates, cylinders, and spheres. Thus, the turbine blade and the
supersonic wing are approximated in this investigation by the thin plate
of variable thickness.

The thermal stresses in a thin plate are treated in detall in ref-
erence 1. However, the plate 1s assumed to be of constant thickness,
the temperature is assumed to vary chordwise only, and the end effects
are neglected, use being made of Saint Venant's principle. All these
assumptions are invalld in many practical cases. In a turbine blade,
for example, there is a large variation both in temperature and in
thickness in both chordwise and spanwise directions. In addition, the
length-to-chord ratio is often less than 2, and the end effects mey
therefore be important over a large part of the blade. It is suggested
in reference 1 (p. 400) that the end effects can be calculated using
the strain energy method.

In order to avold some of these assumptions, an approximate solution
to the equations of elasticity is given in reference 2. A solution is
obtained for the biharmonic equation For the stress function in terms
of an Infinite series. However, only two terms of the infinite series
are used, and the boundery conditions are not exactly satisfied but only
in an average fashlon over the surface. The results at the free end of
the plate are compared with those cobtained by the energy method, and
it 1s indicated that the method of reference 2, although more laborous,
has inherently higher accuracy. The calculations made in reference 2
are for a uniform-thickness plate with chordwise temperature variation
only. It is indicated that, although this method, as well as the energy
method, could be adapted to a variable-thickness plate, the amount of
labor involved would become prohibitive and should not be attempted
without the ald of a high-speed computing machine.

The equations for calculating thermal stresses in a supersonic wing
with chordwise varlations in thickness and temperature are presented in
reference 3. The method of reference 1 (p. 399) is used in deriving
these equations, and again the results as stated therein are not valid
at a disteance less than a chord length from the tip.
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The object of the present paper is to present an approximate method
for calculating accurately the thermal stresses in a thin plate with
both chordwise and spanwise variations in temperature and chordwise but
restricted spanwise variations in thickness. Numerical examples of the
effects of the free end and of thickness variations will be presented.
The method used 1s essentially e collocation procedure applied to a
partial differential equation and 1s used successfully in reference 4
for calculating transient thermal stresses. In this procedure, the
differential equation 1s satisfied everywhere in x bDut at only a finite
number of values of y. Use 1s made of a polynomial approximation for
the stress function to reduce the biharmonic equation to a set of or-
dinary linear differential equations which can be readily solved. The
extension to other problems involving the biharmonic or Laplace equation
can be made.

ANALYSIS
8tress Function

Consider a thin flat plate of varlable thickness, as shown in fig-
ure 1. The origin of coordinates is taken at the middle of the free
edge, and the mldplane of the plate 1s assumed to lie 1In the xy-plane.
The width of the plate runs from y = -1 to y = 1l; and the length, in
the x-direction, can be either finite or infinite. The variaeble thick-
ness 1s a function of both x and y and is assumed to have the fol-
lowing form:

h = b, (x)h,(y)

The function hz(y) 1s any continuous function of y having a continu-
ous first derivative, and the function h,(x) is a function of x hav-
ing the form hy(x) = hoe"™. (Symbols are defined in appendix A). For

m equal to zero, the thickness is constant in the x-direction. At any
instant of time, the plate 1s assumed to have a temperature distribution
varying with x and y bDut independent of z. Thus

T = P(x,y)

It 1s assumed that the plate 1s sufficiently thin so that a state
of plane stress exlsts, the only significant stresses being oy, Oy

and ""xy’ which are independent of z. The assumptions that
Oy = Tyg = Tyy = O and that a,, uy, and ‘I:xy are independent of =z

lead to an inconsistency in that all the compatibility conditions are
not necessarily satisfied. It can be shown (see, e.g., ref. 1, p. 241),
however, that the error is proportional to z2 and is therefore small
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for thin plates. It 1s further assumed that any curvature of the mid-
plane of the plate can be neglected.

Under these conditions it is shown in appendix B that the elastic

stresses 0, oy, and Txy are derivaeble from a stress function @

satisfying the following differential equation:

(1)
VZ(% o + Eu.T) = (L+Vv) K%:)n¢w + (—i-)wwxx - 2(%):::”] (B:(%

where the subscripts indicate differentiation with respect to that vari-
able, and ¥ 1is the Laplacian operator

32 2
= + —
aF oy
The stresses are given in terms of the stress function as follows
19
weily )
1% (2)
YURZ } 01).
BS
Xy~ hox oy J
The boundary conditlions are ones of no normal or shear forces on

the surface of the plate. These conditions lead to the following equa-~
tions that must be satlsfied at the edges of the plate:

at x=0 N
hux=-a—21=0
0 .
mﬂ'.a-g—%go
at y=411 J

(4)
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For en infinite plate the stresses at infinlty must be finite. For a
finite plate with both ends free, the same boundary conditions exist at
both ends. '

For a fixed edge the boundary conditions are given in terms of
displacements. This necesslitates setting up the differential equations
in terms of displacements rather than stresses.

Polynomial Approximations

Equation (1) will be solved approximately by a collocation proce-
dure whereby the differential equation 1s satisfied everywhere 1n x
but at only a finite number of values of y. Thus, as indicated in
figure 1, n stations are taken along y. The y-coordinates of these
ptations are Yis Y29 ceee Vpe The stress function ¢ 1s then assumed

to have the followlng form:
0= );_‘1 2, (y)o; (x) (5)

where 1"1 (y) 18 & polynomial in y associated with the JPB station
and satisfying the following conditions:

Pylrg) = 1

Py(yy) =0 341

SBince QJ will, in general, be a nonlinear function of x, the fol-

lowlng conditions must be satisfled in order to ensure that equations
(4) hold for any 9,

(s)

P, (1) = 0
P 5 (1) = 0
Polynomials having these properties can readily be obtained. Thus

(7)

2
rd(y)=!(§:—-i))-§§d (y-yi/;;” Gy-v) v e (@
J
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where Il 1s the product for all values of i except 1= j. Eque-

J
tion (8) satisfies equations (6) since P; =0 at y=y, and Py= 1
at y= ¥y- It also satisfies equations %7) since P; and Pj are

both zero at y = +1. Equations (8) and (5) are now substituted into
equation (1), and the equation is then evaluated at each of the n
stations. This results in a set of simultaneous fourth-order ordinary
differential equations in @y (x) of the following form:

; (2 4@3" + Dy @J" + cg40F + 45405 + e 303) = -h(x,yi)vzﬁhm(x,yiil

i=1,2, ...,n (9)
where
8y = By (5;) )
Py = ‘Z—P%Wi‘ - & biPy(y,)
e e 1-30 1),

.{ap; - 2P} ;2;+ sz(hqi)z M - Zv(%)z + v .;::.?I puy }(10)

wm Z3"3n . .2 forY? 13%m 2w fan)2 . v 3%
°1a'{1’a"f‘5§”’a[;2 %) 'Ey';f(&') *'ﬁg;f},_,i

860¥%
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It is to be noted that because of equations (6) all terms in equa-
tions (10) which are multiplied by Py s&re zero except vhen J = i,

in which case P, (yd) = 1.

Speclal Cases of Thickness Variation

The coefficients defined in equations (10) are, in general, func-
tions of x 1f the thickness varies spanwise. The solution of equa-
tion (9) can become very laborious under these conditions. If, however,
hl(x) 18 chosen to be an exponential hqe™, then the coefficients are

all constant. Equation (9) can then be solved subject to the boundary
conditions (egs. (3)) by any of the standard methods for solving ordi-
nary linear differential equations with constant coefficients. The so-
lution will be given In terms of exponentials. By the proper cholece of
m, hl(x) can be made to give a reasonable approximation to the variation

of thickness along the span of a turbine blade, particularly in the
vicinity of the free edge. If there is no variation in thickness, span-
wise, then m 1is taken as zero.

If the thickness varies only in the chordwlse direction, 'b._‘_.,j and
d.lg and all terms in iy and e:l.:j contalning hl vanish. Equation
(9) then becomes

; (a'i.‘)q’.!lm + ey 405 + e”%) = -h(yi)vaErm(x,yiﬂ (11)
1=1,2,...,n0

If the thickness is constant throughout the plate, equation (1)
becomes

Vip = -v2(mor) (12)
where

U TR

+
it af oyt oyt

is the biharmonic operator, and h is deleted from equations (2), which
define the stress function ¢. Eguation (9) reduces to

; [Pa(yi)‘Psn + ZPS(yi)‘Ps + P:"m(yi)g = -vaEum(x,yizl (15)
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Bpeclal Cases of Temperature Distribution

If the thickness and the temperature are even functions in y (i.e.,
symmetric ebout y = O), then only that half of the plate between
y=0 and y= 1 npeed be considered. This will reduce the number of
stations required for a glven accuracy. The polynomials P 3 can be
taken as even polynomials; thus

r;,(y)d(zﬁ—l}ém -yi)/igj(yg-yﬁ yyFe ()

Similarly, 1f the thickness 1s an even function of y and the tempera-
ture is an odd function of y (antisymmetric), the polynomials are taken
as odd polynomials; thus

_ 112
r;,(y)=1(ﬁ——1§§#dy(s2 )/#373 -7 3 fa (15)

Again only that half of the plate between y = 0 and y = 1 need be
considered. 8ince any temperature distribution can be split up into
the sum of an even and an odd function, it is possible to solve the
problem of an arbitrary temperature distribution in two steps, namely,
solving for the stresses for an even distribution and for an odd dis-
tribution, and adding the two. This will generally result in some re-
duetion In lebor, since the work involved in solving two problems each
wlth n/2 stations 18 usuelly less then solving one problem with n
stations. It 1s to be noted, however, that this procedure cannot be
followed if h 18 not an even function of y. In that case the general
polynomial (eq. (8)) mmst be used and stations teken ranging from y = 1
to y= -1.

EXAMPLES

Uniform Thickness, Parabolic Chordwise Temperature Distribution

As & first example, consider & seml-infinite thin plate of constant
thickness with a temperature distribution independent of x and glven

by
1l
T= (yz-'g)'l'o

S8ince this temperature distribution has zero mean and gero moment about
the x-axis, the stress at e distance far from the free end is given by
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the method of reference 1 (p. 401) as
- 1
oy = -Baf = Bofd yZ)To

O'y= TWBO

The only problem, therefore, is to cobtain the stresses near the free
end. Blnce the thickness 1s constant and the temperature distribution
is symmetric, equations (13) and (14) will be used. Two stations are
chosen at y; = 1/4 end yp = 3/4. The polynomials then become

_n2fe2 . S

- 1)%(y2 - L1
e S B (- 3)

16 - 16 -~ 16

Evaluating P, and P, and their derivatives at y. = 1/4 and
1 2 1
at y, = 5/4 gives

21(1/4) =1 rl(s/q = 0
P7(1/4) = -5.564  P}(3/4) = 8.089
Py (1/4) = 88.75 2 (3/4) = -320.8
Pa(1/a) = 0 Po(3/4) = 1
P§(1/4) = 8.571 P3(3/4) = -22.78
3" (1/4) = -282.1 P3"(3/4) = 1599
Bubstituting now into equation (13) glves
®5" - 11.13¢7 + 88.75¢; + 17.1493 - 262.1¢, = -2EaT,
16.1897 - 320.89, + ®3" - 45.5503 -+ 15999, = -2EaT,
The particular solutions are reedily obtained as
®1p
®pp = -0.01595EAT,

= -0.07324Eall,
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The homogeneous solution is cobtalined by the usual exponential sub-
stitution. The complete solution is then

9 = Z Akeka - o.07524.n;mo

8
o = ; Bkelkx - 0.01595EaT,

where the terms )‘k are the roots of the determinental equation and are
equal to .

x]- = -2-120 + 1.].]-71 15 = -5.682 + 2-68].1.

o= My = Ay
15=-Xl x,,=-k5
16=i5 18=lx7

where the bar signifies the complex conjugate.

The term B, 1is given in terms of Ak as follows:
Xi - ]_'Llslz + 88.75

17.14.){ - 282.1

In order for the stresses to remein finlte as x approaches infinity,
A.s, As, A7, and A must vanish. This leaves for tpl end s

g Ake - 0.07324Eal,

11.13\,_ + 88.75
N

Ae " - 0.01595ET,
=1 17-19‘1: - 282.1

In order to determine the values of the A, 's, use is now made of

the boundary conditions of equations (3). It is to be noted that all
other boundary conditions are already satisfled in the cholce of the P
function. In order to satisfy equations (3), 1t is necessary that

wl(o)av(o)=¢(o)=¢(o).o

RAOY
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since é_zi is not necessarily zero at x = 0. Thus, four equations
result for the four Ay's. The solution of these four equations gives

A, = (0.03625 - 0.071141)Eal, A, = A
Ag = (0.0003671 + 0.00019261)EaT, A, = A,

After adding all the complex conjugates, the imaginary perts drop

out and the final solution is

? = 2e~2-120%14 03625 cos(1.117x) + 0.07114 sin(l.117x) Ieaz, +

2e”>+882X[0, 0008671 cos (2.681x) - 0.0001926 sin(2.681x) IEaT, -
0.0732480,,

¢y = 2e72-120X[0_008941 cos(1.117x) + 0.01249 sin(1.117x)]EaT, -

2e~2-582X[0_ 0009662 cos(2.681x) + 0.0001790 sin(2.681x) JEaT, -
0.015958aT,
The stress function 1s given by
¢= P10 + Py0p
and the stresses are
Oy = PY® + PPy
= 225(5°Y4‘1255'2"'17) 2;2(30’4’24?"2"%)"’2
Oy = P10] + Pe®3
- - 0% - (7 - et BB 7 - 07 - B
Ty = “F1%1 - B3P

225( -G T ) . %2‘(6’5 -G %7)"’2'

e e == —_— ——— et e ——— - - - - - - - -— .
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It is to be noted that at x = =
@} = -0.07324&:.']!0

@ = -0.01595EaT,

@in ﬂa@é:@é:(}
Therefore,

g =
y0

‘I.'xy:-O

og = (-y° + 0.333)Eall,
which are the exact stresses at x =w. The particular solution of the
differential equation gives the stresses far from the end. The homo-

geneous solution gives the correction due to the free end and dles out
rapidly away from this end.

The preceding stresses are plotted in figures 2 and 3. These results
will be discussed in RESULTS AND DISCUSSION.

The values of the Ns, given previously, can be used for any
constant-thickness two-station symmetric problem, since the Ns are
independent of the temperature distribution. For any other temperature
distribution new values for the particular solutions to the differential
equation must be obtalned, the homogeneous solution remaining the same.
New values of the constants Ak and Bk can then be determined from
the boundary conditions.

For a three-station solution of the same problem (sta.t:l.ons at
Yl'-%, T =%, and Y:s’%" the following values can be used:

P, (y) = 7.141(y2 - 1)2(y2 - Zl_)(yz ) %56)
Pa(r) = -18.00(2% - 1F(s% - L)(3% - Z)
P4(y) = 36.15(3% - 1)2’(y2 - .3%) 2 - %;)
A, = -2.10568 - 1.125094 A, = X;

A = -5.42265 - 1.278261 A, = Ay

As

'hs = -9,.23538 ~ 3.371451 Ag =

8607
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The equations for the ¢PJ functlions in this cas.e are
6

Ql-z:-Akelkx"' q’lp

k=

P = K]gA'kelkx"'q,Zp

6

Pz = Z NKAkelkx + °3P

k=l

where the lpJ P's are the particular solutions for the given temperature
distributions and the Ky and Nk values are as follows:

K, = 0.5637 - 0.039471 K, = K;
Ky = -1.236 - 0.25411 K, = Ky
K. = -2.968 - 1.0611 Ky = Kg
N, = 0.08273 - 0.018021 N, = §;
Ng = -0.4420 + 0.040441 N, = H,
N5 = 2.019 + 4.4971 Ng = §

the A.k's can be obtalned from the boundary conditions; that is,

Variable Chordwise Thickness, Parsbolic
Chordwise Temperature Distribution

As a second example, the plate is assumed to have a varisble thick-
ness in the chordwise direction given by

h=h,= (1-0.97%)h,
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The temperature distribution 1ls /ta.ken the same as before: +
1
T= (Yz - S)To .

Again two stations will be taken at ¥y, = 1/4 and at Yo = 3/4. Bince

conditions of symmetry exist, the same polynomials as used in the first
exemple will be used here. The derivatives of these polynomials eval-
uated at the two stations have previocusly been listed. Since the thick-
ness is no longer constant, equation (15) cannot be used. Instead,
equation (ZL'I.) is used in this case. The coefficients 8435 €132 and

by, ere evaluated using equations (10). Equation (11) then becomes

8607

12.619] - 226.49; + 93" - 72.220; + 19470, = -0.9875hokaT,

These equations can be solved in the same way as for the uniform-
thickness plate. The final results for ®; and 9, are

L . 272-569X[0 01684 cos(1.158x) + 0.05761 sin(1.159x)] +
0

2e~6-388X[ 4 0002130 cos(1.741x) + 0.000002496 sin(l.741x)] -

0.03330

P2
hEal

= 2e~2-569X[0, 002629 cos(1.159x) + 0.003692 sin(1.159x)] -

2e6-386X[ 0, 0004389 cos(1.741x) + 0.0001872 sin(1.741x)] -
0.004381

The stresses are then glven by

= l 1" l 13,
Op = 5 7191 + | Fa%
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oy = § P10 + & Ppef
_s12 (32 - 1)2( 1§) , 512 (v2 - )3y - 16)
)

225 (1-09y2) t1s (1 - o.
'rxvs-—P'(pl
§1_2(5’5 ) (6’5 —’2"")
T (g 09y) (1—0-9y)42
At x= w, |

°y="":cy"°

0. 4 _ 4 _
ﬁf—a ~ 0.07578 (307" - 30.75y% + 4.25) _ . oo (30y% - 24.757% + 2.25)

(1 - 0.95%) ) (1 - 0.9y%)

= 0.219 - y2

The exact solution for this case at x = » 18 given by (ref. 3)

1
T yay
Ox T \[I: To

- + ———

BT, " T, fl h ay
-1

Substituting the expressions for T and h glves

f (- Ha - ooPiey

.
X 1+ 1

B~ Vi t3 Al
f(l-O-sya)aw
1

= 0.219 - y2

Thus the two-station solution esgaln gives the same answer as the
exact solution at x equal infinity.

The stresses ay, 1xy’ and o, for this variable-thickness case are

plotted in figure 4. These results will be discussed in RESULTS AND
DISCUSSION.
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Uniform Thickness, Nonsymmetric Chordwise
Temperature Distribution

As a final example, consider the case of a uniform-thickness plate
with a nonsymmetric chordwlse temperature distribution given by

. T"(YS““YZ'%)TO

Bince this temperature distribution is neither even nor odd, the general
polynomial of equation (8) will be used with three stations taken at
Ty = -2/3, Yo = 0, and ¥z = 2/5. The polynomials then are

y - %)(yz - 1)2

the -8 o1

2
2\y+3)y
(y2 - 1) 3)7 729 2\, 2 2
Ps= "% |2\ ~ 200 Y*s)(’ 1)

¥When these polynomials and thelr required derivatives are evaluated at
the three stations and the results substituted into equation (13), the

following three equations are obtained:
m
®)" - 30.06p] + 797.0¢; - 228.0p, - 9.900»; + 213.80; = 2Bal,

14.58p] - 175.09; + @z - 17.0093 + 152.0¢; + 14.58¢F - 175.0p; = -2Eal
-9.9009) + 408.2¢ + 15.009; - 228.09, + ¢F' - 30.060; + 602.60y = -6Bal,

These equations are solved giving ®,5 4’2, and ¢5 as functions of x.

The stresses are now computed as before from equations (2) with h
deleted.

The previous problem could also have been solved by separating
the temperature distribution into even and odd functions. Thus the

stresses for the distribution T = yz - % To have already been com-

puted in the first exsmple. It remains only to obtain the stresses due
to the distribution T = y5T0. This can be done accurately by using
only two stations at y; = 1/4 end y, = 3/4 with the entisymmetric
polynomials of equation (15). The two stress distributions can then be

8607
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added to give the complete stress distribution. This has been done for
this problem and the results are compared wlth the previous solution in
figure 5. Figure 5 also includes a four-station solution of this same
problem using the nonsymmetrical temperature distribution.

RESULTS AND DISCUSSION

In order to determine the relative accuracy of the method presented
herein, a camparison is made in figure 2 between this method using one,
two, and three stetions and the energy and elasticlity methods presented
in reference 2. A uniform-thickness plate with the parabolic tempera-
ture distribution of the first example is used for camparison. The
spanvise stress Oy, the shear stress T,y at the tip (x = 0), and the

chordwise stress o at 1/4 chord from the tip (x = 1/2) are plotted

for the three methods. It is seen that for all practical purposes the
method presented herein has converged using Just two stations, glving a
far superlor answer than the energy method and a slightly better answer
than the elasticlty method of reference 2. Even the one-station solution
glves an spproximate answer almost as good as the energy method and may
be useful for many practical englineering problems.

The effect of the free end for this problem is briefly shown in
figure 3(a), wvhere o, and oy &t the midchord (v = 0) are plotted

agaelnst x. The chordwlse stress oy is large at the tip but has

dropped to practically zero after 1 chord length from the tip. The

spanwise stress oy, starts at zero at the free end and rapidly rises
to a constant value after 1 chord length from the tip. The shearing
stress, although not shown here, follows the same pattern as ay. It

1s to be noted that an approximate simple check can be obtained for Oy
from the fact that the integral under the curve must vanish. It is
further seen from this curve that there is practically no difference
between the two- and three-station solutions for this problem. The com-
plete stress distributions for this case at various distances from the
free end are plotted in figures 3(b) to (d).

The effect of variation in chordwise thickness is shown in figure
4. Again the temperature distribution is parabolic and the thickness
variation is given by h = hy(1 - 0.9y2), where hy, is the thickness

at the midchord. The edges therefore are one-tenth as thick as the
middle. A comparison is made between a two-station and a three-station
calculation, and it is seen that the two-station calculation gives good
results except for the spanwise stress o, near the thin edge, where

there 1s some difference between the two- and three-station solutions.
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A comparison between the uniform-thickness plate and the variable-
thickness plate in figure 4(d) indicates, as would be expected, that the
effect of thinning out the edges 1s to ralse the edge stress and lower
the stress at the midchord. However, in splite of the large varliation
in thickness, the edge stress is raised by only ebout 15 percent for
this case. .

The case of a nonsymmetric chordwise temperature distribution
T = To(ys + y2 - % (the third exemple) 1s shown in figure 5. Three

methods were used for this example: a three-station solution; a four-
station solution; and a solutlion obtained by splitting the temperature
into even and odd functions, using a two-station solution for each tem-
perature distribution, and adding the results. It is seen from the
figure that the sum of the two-station solutions gives the same results
as that for the four-station solution. It is generally less work to
perform two two-station calculations than one four-station calculation.
Therefore, 1f the chordwlse temperature distribution is not symmetric,
i1t is best to divide it into even and odd parts and perform two separate
calculations. This should be done 1f extreme eccuracy is desired.
However, 1t is seen from figure 5 that even three stations give suffi-
clent accuracy for most engineering purposes; therefore, using more
stations or dividing the problem into two parts would generally seem
unnecessary. °

The effect of veriations in both chordwise and spanwise temperatures
18 showm in figure 6. The thickness is agssumed constant and the tem-

perature distribution is given by T = T.fy® - %‘ (L + 0.3e™X). This

would correspond to the temperature decreasing exponentially by about
30 percent from the tip to the base of a turbine blade. This relatively
large variation in spanwise temperature affects only the chordwlse
stress Ogs leaving the spanwise stress o, unaltered. Since the max-

imum stress is generally the spanwise stress o,, the effect of the

spanwise varlation in temperature doesn't seem to be of great importance
and can be neglected as a first approximation.

As a final calculation, the effect of spanwise variation of thick-
ness was brlefly investigated. The temperature distribution was taken
to be parabolic and the thickness was assumed to be glven by

h=h = hoeo'sx. This is a reasonsble type of spanwise thickness vari-
ation for turbine blades. The results are shown in figure 7. A com-
parison of figure 7 with figure 3 shows that this variation in spenwise
thickness produces no large changes in the stress distribution.
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Although the effects of thickness veriation are shown to be not very
great in these examples, this conclusion may not be valid for extreme
thickness varlation.

It 1s to be noted that, although the cases consldered herein are
all for a plate with a free end, any other edge conditions can be
treated in the same way, provided the boundary conditlons are adequately
specified.

CONCLUSIONS

An approximate method was presented for calculeting the elastic
thermal stresses in a thin plate of varleble thickness. From the
examples shown, 1t would seem that a two- or three-station solution
should suffice for most practical englineering problems.

Calculations on the effects of spanwise variations in temperature
and spanwise and chordwlse variations in thickness indicated that for

the examples chosen these variations did not have any large effects on
the stresses.

Lewls Flight Propulsion lLsboratory
National Advisory Coomittee for Aeronautics
Cleveland, Ohlo, July 16, 1956
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APPERDIX A

SIMBOLS

constants of integration

coc(efficj(.el;t):s in differential equation for stress function
eq. (9

Young's modulus of elasticity

thickness of plate, h = h, (x)hy(y)

reference thickness

function expressing spanwise thickness variation
function expressing chordwise thickness varlation
constant

coefficient in equation h,(x) = 11oemx

constant

polynomial associated with JB station, function of y
temperature, function of x and ¥y

reference temperature

spanwise coordinate measured from free edge, half chord lengths

chordwise coordinate meesured from centroid, y-axis coincident
with axis of minimum moment of inertia

thickness coordinate measured from center, z-axis coincident
with axis of maximum moment of inertia
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o coefficlent of linear thermal expansion
Txy shearing strailn
Ex strain in x-direction
ey strain in y-direction
v Polsson ratio
:I.:!I product for all values of 1 except 1 = J
J
Oy normel stress in x-direction
ay normal stress in y-direction
""xy shear stress
] stress function, function of x and y
(pd stress function assocliated with Jth station, function of x
°Jp particular solution to differential equation
2 22 | 38

v Laplacian operator, — + —

u®  ¥f

4 4
v"' biharmonic operator, B__+ r’] B 73
sz ayf 3y

Subscripts:
i, J summation or multiplication dummy lndices or refer to the

1th or jtB gtation

X,y partial differentiation with respect to that subscript, except
where otherwise defined

Superscripts:
! indicates ordinary derivatives

indicates complex conjugates

B L —
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APPENDIX B

DIFFERENTTAT. EQUATION FOR STRESS FURCTION
The stress-straln relations for the plane stress problem are

Eexnux-vay+m

Eey = 0y - Vo + Eaf (B1)
2(1L + v
Txy = "LE—)‘ Txy
The compatibllity equation is
2q, , %y
a + = B2
Substituting equations (Bl) into equation (B2) gives
azo'x d2g Yo )
= - —L 24
V(o_+ o) V(BaT) + (L + v Zter 2o (B3)

The equatlions for the equilibrium of forces in the plane of the plate

are (ref. 5, p. 297)
o o
(hag) | (gqg’ .
2ey) 205

follows:

(Be)

If a stress function ¢ 1s defined

it (85)

then equations (B4) are automatically satisfied. Substituting equations

(B5) into equation (B3) glves the equation to be solved for the stress
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function:

i Vz(':f vz(p) = 'Vz(Eu.T) + (1 + v)K% q:”)xx + % tpxx)yy - 2(% m)%

or
vz[% vzq] -(1+ V)K%)nq’w + (%)W‘Pxx - 2(%)xy¢x£| = - (EaT) (B6)
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Figure 1. - Thin plate of variable thickness showing stations at
which differential equation 1s satisfied.
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Figure 2. - Comparison of dimensionless stress for

several methods of solution.
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plotted at free end, x = O; spanwise stress
plotted at 1/4 chord

from free end, x = 1/2; plate thickness, con-
stant; T = To(y? - 3).

Oy @and shear stress T,
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(a) Comparison of stresses at midchord for two- end three-station solutions.

Figure 5. - Stresses in plate o:l.’ uniform thickness for paresbolic temperature
distribution. T = To(y2 - 3).
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(b) Chordwise stress; two-station solution.

Figure 3. - Continued. Stresses in plate of uniform
thickness for parabolic temperature distribution.

T = 2o(y2 - 3).
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Figure 5. - Continued. B8Stresses in plate of uniform

thickness for parabolic temperature distribution.
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(d) Shear stress; two-station solution.

Figure 3. - Concluded. Stresses in plate of uniform
thickness for parabolic temperature distribution.

T= To(yz = %—)-
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(a) Chordwise stress.

Figure 4. - Stresses in plate of variable chordwise
thickness. h = hg(l ~ 0.9y2)5 T = To(y? - %).
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(b) Spanwise stress.

Figure 4. - Continued. Stresses in plate of veri-
sble chordwise thickness. h = hy(l - 0.8y%)s
T = To(yz - %)-
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Figure 4. - Continued. S8tresses ln plate of vari-
able chordwise thickness. h = hy(l - 0.9y2)3

T= To(yz - %‘)-
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for paraebolic temperature distribution.
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Figure 6. - Continued. B8tresses in plate of uniform
thickness for parabolic temperature distribution.

T = To(y? - %) (1 + 0.3e7%),
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Figure 6. - Continued. Stresses in plate of uniform
thickness for perabolic temperature distribution.

T = To(y2 - %) (1 + 0.3¢7%).
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(d) Shear stress.

Figure 6. - Concluded. Stresses in plate of uniform
thickness for parabolic temperature distribution.

T = Toy2 - %) (1 + 0.3e7X).
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