NAMIONAL ADVISORY COMNITMEA FOR AERONA UTICS

THCLATOA, 2021 NO. 1022

PROPERTIES OF LOH-ASPECT-RATIQ POINTED ITINAS
AT SPEEDS BELOM AM ABOVE THE BPEED OF SOUND
By Robert, To Jones

SUMMARY

W) Lowragect-rat 10 winge having pointed plan forms are treated on the assumption that the illow potentiale in planes at right amgles to the longsoxis of the airfoils. are similar to the corrosponding two-dimensional potentials. Por the limiting caise of amall anglés of attack and 1 ow appect ratioe the theory brines out the following significant mroportica:
(L) Mine L ret ot, a elender, painted alrfoil novins in the alvoation of the long axkt dependis on the increase in midh, of the efecions In a downstream direction. Sections behind the teattion of maximing tath develop no lift.
 petkention the plan form and epproachos the distribulion Et the a mintmpu induced arag.

 thent
sonic. At speeds above the speed of sound application of the seme assumptions leads to the Ackeret theory (referenco 4), according to which the wing sections generate plane sound waves of small anplitude. As is woll known, the Acherot theory prodicts a radical change in the propertios of such wings on transition to supersonic velocities ani these changes have been verified by experiments in supersonic wind tunnels (reference 5).

Both the Ackeret theory and the Munk theory apply to the case of a wine having a lare span and a small chord. The present discussion is based on assumptions similar to those used by Ackeret and lunk but covers the opposite extrene, namely, the wing of sijill span and large chora. In tho latter case the flow is expected to be twodimensional when viowed in planes perpendicular to the direction of motion.

A theory for the rectangular wing of small aspect ratio has boen given by Bollay (reforence 6). Bollay assumes a separated, or discontinuous, potential flow similar to the well-known Kirchoff flow and shows that under these circumstances the lift is proportional to the square of the angle of attack. Bollay does not consider the effoct of compressibility. The present treatment covers othor plan forms and, although based on different assumptions, is not inconsistent with Bollay's theory in the limiting case of small angles of attack.

Py limiting the plan forms to small vertox angles; the properties of the wings in compressible flow at high subsonic and at supersonic speeds are also covered. Tsien (reference 7) has pointod out that Munk's air ship theory (reference 8) appiles to a slender body of revolution at speeds greater than sonic. The 11 ft and moment of such a body are not expected to change eppreciably with Mach number. The present paper gives an enalyels of the low-aspect-ratio airfoll based on similar assumptions and show that littie change of the lift distribution of an airfoil of pointed plan form lyine near the center of the Mach cone is to be expected.

SYMBOLS
3. wing area

x distance along axis of symmetry of pointed air foll, measured downstream from nose

Y spanwise distance, measured rom axis of symmetry
2 . vertical distance from plane of wing
t. a time
m^{\prime}. additional apparent mass (spanwise section)
b local span
chord
م. density of air
q. dynamic pressure $\left(\frac{1}{2} p v^{2}\right)$

2 local lift force (bor unit length)
c_{q}, \quad local $11 f t$ coefficient $\left(\frac{\lambda}{a b} d x\right)$
$D_{1} \mathrm{C}$, Indue od drag
$C_{D_{1}}$, induced-avag, coefficient $\left(\frac{D_{1}}{q S}\right)$
I Ftretatal 1115

ϕ, surface potential


```
In lift at Mach number M
Lo IIft at zero Mach number
max maximum (used as subscript)
```


THECRY FOR NTNGS OF LON ASPECT RATIO

The flow ahout an airfoil of very low esnect ratio may be consicered two-dimensional when viewed in cross sections perpendicular to the loneitudinal axis. Nith this idealization, the treatment of the low-aspect-ratio airfoll hecomes exceedingly simple; formulas are obtained that are similar in some respects to those derived by Mun' (reference 8) and Tsien (efeference 7) for an elongated bod: of revolution.

Perhays the simplest casa from the analytical point of riew is that of the lone, flat, triangular airfoil travilling point-foromost at a small angle of attacic. Vioved from a reference systen at rest in the undisturbed fluid, the flow pattorn in a plane cutting the airfoil at a distance x from the nose is the familiar twodinusional flow caused hy a flat plate having the normal velocity Va. (See fig. l.) Observed in this plane, tho width of the plate and henco the scale of the flow pattern continually increase as the alrfoll progresses through the plane. This increase in the scule of the flow pattern requires a local lift force , oqual to the downward velocity va times the local rate of increase of the. additional apparent mass m^{\prime}, or

$$
\begin{aligned}
v & =v a \frac{d m^{\prime}}{d t} \\
& =v^{2} a \frac{d m^{\prime}}{d x}
\end{aligned}
$$

since

$$
v=\frac{d x}{d t}
$$

$$
\begin{aligned}
\frac{x p}{q P} \frac{q \rho}{\partial P} \Lambda^{d} z & = \\
\frac{x \rho}{\partial \rho} \Lambda^{d} z & = \\
\frac{7 \rho}{\partial Q} d z & =d \nabla
\end{aligned}
$$

'sf 7847
 -JIP oanssexd tbout equ - jo escouout ue of Butphodí

(2)

$$
2^{\kappa-}\left(\frac{2}{a}\right) \Lambda_{D A_{F}}=\varnothing
$$

'st quप7 'əsdttto ut J̧ sozbutpuo

$$
\frac{x n}{q i} p u=20
$$

$$
x p \frac{x p}{q p} c_{Z} L_{\bar{d}}^{V_{v N}}=?
$$

Lotssancio

$$
\frac{x p}{q p} x p \quad o \frac{2}{q} u=\frac{x p}{1 \operatorname{sp}}
$$

wese $\partial \not \equiv / \Delta b$ is a function of y. Differentiation of \neq yielis the ecuation

$$
\Delta v=2 \rho v^{2} \frac{b}{\sqrt{\left(\frac{b}{2}\right)^{2}-v^{2}}} \frac{d b}{d r} \frac{a}{4}
$$

or

$$
\begin{equation*}
\frac{d a}{q}=\frac{2 a}{\sin \theta} \frac{d b}{d x} \tag{4}
\end{equation*}
$$

Who pressure diatribution thus skows an infinite near Einncs tio slopine zicies of the ajwfoil similan to tize presure peat a the loading odee of a conventional airfoli. Tie distribution aiong radial lines passing through the vertox of the trianclo (Ines of constant $\frac{y}{h / 2}$) is winom, howevor (oi. 3), and tiee centor of prosure

Equations (1) anc (1) shon that tive devaloment of lift by the lonif sioncer airfoil devend on an oxpanston of the sections in a comatresm direction; neace a pat of the surtuce laving raruliul sides would develor no life. Funtherworo, a dacreasine aicith. would, accorcince to ecuation (l_{f}), require nearitive lift with infinito necative ressuro zowis ahone the odgas of the namrower sections. In the actial flo'l, however, the edge belind the ma: mum crose section yill lis in tho viscous or tiurbulont viaice forited over the sunface aleal; and for this reason it will bo asswed that the initnite oressure difioreaco indicatod by equation (3) cannot be develoved across these edges. It is this assumption, corresponding to the Kutta condition, which eives the glate the properties of an airfoil as distinct from another type of body, such as a body of revolution.

Wit: the aid of the kutta condition, it may easily be show that soctions of the airfoil behind the section of greatest wicith develop no lirt. A potential flovt satiofyine; boti: the boundary condition and the Kutta condition may be obtainod by the introduction of a free surface oi discontinuity behind the widest section. This suince or discontinuity (fi5. 4) would be corposed of paraliel vortices extending domstrean from tho widest section of the airfoil as prolongations of the vortices
representing the discontinuity of potential over the forwand part of the airfoil. This sheet, although possibly yider than the dovinstream sections of the airfoil, still aatisfles their boundary condition, since the lateral arranement of the vortices is such as to give uniform downard velccity equal to $v a$ over the entire width of the sieot including the rearward portion of the airfoil. Sinse the pressure difference across the airfoil is proportional to $\partial \phi / \partial x$ and since this gradient disappears as soun as the vortices become parallel to the stream, no lift is developed on the rearward sections.

Intecration of the pressures in a chordwise direction from the leading edge downstrean to the widest section will dive the span load distrioution and the induced drag. The span load distribution is

$$
\frac{\partial L_{1}}{\partial y}=\int \Delta p d x
$$

or, from oquation (3),

$$
\frac{\partial L}{\partial y}=2 o V \phi
$$

From oquation (2),

$$
\phi=v a \frac{b_{\max }}{2} \sin \theta
$$

Hence $\partial L / \lambda y$ is elliptioaj and independent of the plan form. Iith the olliptical span load the induced dras is a. ninimum and is equal to

$$
\begin{equation*}
D_{1}=\frac{L^{2}}{\pi q b_{\max }^{2}} \tag{5}
\end{equation*}
$$

A second integration of $\frac{\partial L}{\partial y} d y$ across the widest section eives the total lift, which is

$$
\begin{equation*}
L=\frac{\pi}{4} p v^{2} a b_{\max }{ }^{2} \tag{6}
\end{equation*}
$$

The lift of the slender airfoll therefore depends only on tia width and not on the aroa. If the lift is divided by $\frac{1}{2} \cap V^{2} s$ and if the assect ratio A is considered to be $\frac{b_{\max }{ }^{2}}{3}$, then

$$
\begin{equation*}
C_{\tau}=\frac{\pi}{2} A x \tag{7}
\end{equation*}
$$

and the induced-drag coefficient is

$$
\begin{align*}
c_{D_{I}} & =\frac{\sigma_{工}^{2}}{\pi A} \\
& =\sigma_{T_{S}} \frac{a}{2} \tag{8}
\end{align*}
$$

From equation (8) it appears that the resultant force lies halfway retween the normal to the surface and the normal to the alr stream.

It is seen that in the case of a rectangular plan form the simplified formula (equation (4)) Eives an infinite concentration of lift at tno leading edee and no ifft elscwhere, whereas a more accurate theory would show sume distribution of the lift rearward. If the rate of increase of the width becomes too creat, the flow cannot be exnected to remain two-dinensional. It can bo shown by examination of the known three-dimensional (nonlifting) potential flow around an elliptic disk (reference 9), however, that the two-dimensional theory gives a cood approximation in the case of an elliptical leading edge, which indicates that the theory is applicable over a large range of nose shapes. In figure 5 is shown a comparison of the iff calculated by the prosent theory for elliptical wings of low aspect ratio with the results of the more accurate three-dimensional potentialflow calculations of Krienes (reference 10). The results flow in goodations ofrement up to aspect ratios approaching 1 . ADplication of equation (4) gives a center of pressure on the elliptical plan form at one-sixth of the chord. Figure 6 also shows this value compared with values given by Trienesis theory. In this respect it appears that the agreement is not so good as for the lift.

EFFECT OF COIPRESSIBILITY

(See reference 3.) If the airfoil is sufficiently slender, $\partial^{2} \phi / \partial x^{2}$ can be neglected in comparison with $\partial \phi / \partial x$ exvept near the edge. Since the lift is proportional
to $\partial \phi / \partial x$, the increase of tiee lift with mach number can thercrone be nerlected in compurison witi: tie lift.

It is important to note that the thoory of small disturbances is not limited to suissonic velocities und that, so lons as the torri $\left(1-x^{2}\right) \frac{d^{2} \not \varnothing}{\partial x^{2}}$ in equation (9) ronains snall, tive solution in tine region oi the wing Will continue to be given by the potential (equation (2)). Bidently the fach number cinnot be increasod indefinitely, for tien the coeificiont of $\partial^{2} / \phi / \partial x^{2}$ will become so large that the firet term :ill no loriger be ne clifible. The required condition will be satisiled, however, by adoptinc a pointed plan form with the vertex anfle so shall that the entire surface lies near the center of tho haci: cono (fig. 7). The condition of a small vertex ante is also necessary in order that the poesential distribution of equation (2) may apoly. In the case of a wing with a blunt-leadig-edge pian Fom, abrupt chariges lin the flow arise on transition to supersonio velocities, and potential $\mathrm{i}^{\prime \prime} 10: \%$ or the subsonic tro no loneer exists.

The lift and lift distribution fone rectangular surfaces at slipersonic speods have beer calculated by Schlicinting (reference 11). Fizure 7 shows the variation of lift-curvs slope witis liach number as obtained from Schlichtincts resilits for rectangular wings of two diflersent aspect ratios and for the range of speeds in which the two Mach cones from the tips do not reach the center of the wins. In tice subsonic rance, values given by the Prandtl-Glauert rule are shown. These curves are compared with the values indicated by the present theory for a triangular wing lying near the conter of the Mach cone. Figure 8 sinov:s the travel of the centor of pressuve for these plan forms. It is to be noted that, with the blunt-leading-cdec pien forms, the center of pressure travels froin a point near the glarter chord to a point near the midchord when the velocity is increased above the speed of sound.

TRSTS OF A TRIANNTTLAR AIRFOIL AT STPERSONIC SPEED

1. The lift of a slender, pointed airfoil moving in the direction of its long axis dejends on the increase in width of the sections in a downstream direction. Sections bohind the section of maximum width develop no lift.
2. The spanwise loading of such an airfoil is independent of the plan form and approaches the distribution giving a minimum induced drag.
3. The ifft distribution of a pointed airfoil travolling point-foremost is relatively unafrected by the compressibility of the alr below or above the speed. of sound.
```
Lancley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics Langley field, Va., May 11, 1945
Lancley Memorial Aeronautical Laboratory
    Langley Field, Va., May 11, 1945
```

,

REFERENCES

1. Munk, Max M.: Elements of the Wing Section Theory and of the wing Theory. NACA Pep. No. 191, 1924.
2. Glauert, H.: The Effect of Compressibility on the Iift of an Aerofoil. R. \& in. No. 1135, British A.R.C., 1927.
3. Prandi, L.: General considerations on the flow of Compressible Fluids. NACA TM No. 805, 1936.
4. Ackeret, J.: Air Forces on Airfoils Koving Faster Tran Sound. NACA TM No. 317, 1925.
5. Taylor, r. I.: Applications to Aeronautics of Ackeret's Treory of Aerofoils Moving at Speeds Greater Than That of Sound. R. \& M. No. 1467, British A.R.C., 1932.
6. Bollay, william: A Theory for Rectangular wings of Smail Aspect Ratio. Jour. Aero. Sci., vol. 4, no. 7, May 1037, pp. 294-296.
7. Tsien, Hsue-Shen: Supersonic Flow over an Inclined Body of Pevolution. Jour. Aero. Sci., vol. 5, no. 12, oct. 1938, pp. 480-483.
8. Munk, Nax r.: The Aerodynamic Forces on Airship Hulls. NACA Rep. No. 184, 1924.
9. Lamb, Horace: Hydrodynamics. Sixth ed., Cambridge Univ. Press, 1932, pp. 146-153.
10. Krienes, Klaus: The Elliptic Wing Based on the Potential Theory. NACA TN No. $971,1941$.
11. Schlichting, H.: Airfoil Theory at Supersonic Speed. NACA TM NTO. 897, 1939.

Figure 1.- Flow pattern.

Figure 3.- Presaurs dintribution.

Figure 2.- Potential.

NATIONAL ADVISORY COMMITTEE FOA AERONAUTICS

Figare to Nake。

Figs. 5,6
NACA TN NO. 1032

T1gure 3.- Comparison of 118t onloulated by precent theory for olliptheal winge of

8

Fig. 9

Section A-A

NATIONAL ADVISORY COMMITTEE FO ALROMMUTICS

Figure 9.-A1rfoll tested in Langley model aupersonic tumel.

Figure 10.- Teat of triangular airfoil in Langley model mupereonse thanel. Maoh number, 1.75 ; Rosnolde maber. $1,600,000$.

$$
\begin{aligned}
& \text { END } \\
& \text { DATE } \\
& \text { FILMED } \\
& \text { /l- } 30-77 \mathrm{mO} \text {. } \mathrm{H} .
\end{aligned}
$$

