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SUMMARY 

Equations and procedures are presented for carrying out the numerical 
operations involved in computing the aerodynamic characteristics of lifting 
rotors by means of modern high-speed automatic computers. The character­
istics considered herein include the thrust, profile drag, tota l power, 
flapping, rolling and pitching moments, direction of the resultant-force 
vector, and the harmonic contribution of the shear-force input to the 
hub. The equations are gener al and can account for stall and compressi­
bility effects, hinge offset, and other factors that are normally omitted 
from conventional analytical rotor treatments. 

INTRODUCTION 

The problem of determining the aer odynamic characteristics of a 
lifting rotor basically consists of calculating the forces and moments 
on a r ot ating three-dimensional lifting surface from statically measured 
two-dimensional airfoil-section data . Because of the large number of 
degrees of freedom involved and the complications introduced by the vari­
ation in section angles of attack and velocities over the rotor disk, an 
ana~ical approach to the problem necessarily contains v arious assumptions 
and simplifications. The largest number of such simplifying assumptions 
is found in the original efforts of Glauert and Lock, pUblished a lmost 
30 years ago . Since that time, the theory has been progressively improved 
in accuracy and convenience of application by a number of investigators, 
and has been extended to meet the needs of new designs and more severe 
flight conditions. 

These extensions and improvements in accuracy, however, have been 
realized at the expense of a very large increase in the length and com­
plexity of the resulting e~uations when closed-form solutions are desired. 
(See ref. 1, for example.) In order to make the application of these 
e~u~tions practical, it is usually necessary to evaluate the e~uations 
over a range of flight parameters and to present the results in chart 
form. (For example, see refs. 2 to 4.) Such solutions, in spite of their 
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complexity, still do not account for blade stall outside of the reversed­
velocity region, compressibility effects, and combinations of such design 
factors as hinge offset, blade twist and taper, and root cutout. 

Instead of trying to include such factors in the already complicated 
~quations by first integrating the general equations and then substituting 
'articular values, it would seem more practical to account for these fac ­
Jrs numerical~ ; that is, by substituting numerical values into the dif­
'rential rotor equations and integrating numerical~. This procedure is 
ie practicable only by the development in the last few years of high-

at 

B 

~ ed automatic computing machines, inasmuch as the numerical work involved 
evaluating a large number of cases by manual calculating methods is 
libitive. The availability of such computing machines to industry as 

as to research institutions, through ownership or rental, makes the 
~ical procedures appropriate for design as well as for research 
Les. 

I t is the purpose of this paper to present the equations and proce­
!s necessary for numerical~ computing the aerodynamic characteristics 
Lifting rotors . The characteristics considered herein include the 
ust , profile-drag power, total power, flapping, rolling and pitching 
.ents , direction of the resultant- force vector (necessary in stability 
_culations ), and the harmoni c contribution of each blade of the rotor 
the shear- force input to the hub . 

SYMBOLS 

coefficients of -cos * and -sin * , respective~, in expres­
sion for 8; therefore, lateral and longitudinal cyclic pitch, 
respective~, deg 

speed of sound, ft/sec 

projection of angle between rotor resultant-force vector and 
shaft axis in plane containing flight path and shaft axis, 

tan- l CH 
CT 

constant term in Fourier series that expresses ~,radians; 

hence) rotor coning angle 

coefficient of cos n* in expression for ~ 

tip - loss factor; blade elements outboard of radius BR are 
assumed to have profile drag but no lift 

.. 
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b 

b' 

c 

number of blades per rotor 

projection of angle between rotor resultant-force vector and 
shaft axis in plane perpendicular to plane containing flight 

path and shaft axis, tan-l Cy 
CT 

coefficient of sin n* in expression for ~ 

constant term in Fourier series that expresses ~/Ihn2 

rotor longitudinal-force coefficient, H 

rolling-moment coefficient, L' 

pitching-moment coefficient, M 

coefficient of cos n* in expression for ~/Ihn2 

rotor-shaft power coefficient, p 

rotor-shaft torque coefficient, 

rotor th~~st coefficient, T 

CT value at a given azimuth position *, expressed by series 

CT(*) = EO + El cos * + Fl sin * + E2 cos 2* + F2 sin 2* + 

shear-force coefficient at flapping hinge due to mass forces, 
Fm 

2 2 
1!R p(nR) 

rotor lateral-force coefficient, y 

blade-section chord at radial station x, ft 
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section pr ofile-drag coefficient 

equivalent blade chord (on thrust basis), 

cr3 d.r 

c e ' equivalent blade chord (on thrust-moment basis), 

[BR 
c 

lBR r3 dr 
rc 

c 2 section lift coefficient 

e 

blade chord at tip, ft 

coefficient of sin mlr in expression for MT/lhn2 

constant term in ser ies expression for CT(1jr); Eo CT 

coefficient of cos n1jr in expression for CT(1jr) 

offset of center line of flapping hinge from center line of 
rotor shaft, ft 

shear force at flapping hinge (perpendicular to blade-span 
axis ) due to mass forces, lb 

coefficient of sin n1jr in expression for CT(1jr) 

g gravitational acceleration, ft/sec2 

ft 

H component of rotor resultant force perpendicular to rotor shaft 
in longitudinal plane of symmetry, lb 

Ih mass moment of inertia of blade about flapping hinge, 

enItJ 
k = -­

Mm,s 
L' 

~ m(r - e)2 dr, slug-ft2 

e 

rotor rolling moment, lb - ft 

f 
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M rotor pitching moment, Ib-ft 

M mass moment of blade about center line of rotor shaft, slug-ft 
··~,s 

MT thrust moment of blade about flapping hinge, lb- ft 

Mx 

m 

1ll() 

p 

p 

Q 

Cl 

R 

r 

T 

u 

up 

u.r 

V 

v 

x 

y 

weight moment of blade about flapping hinge, 

JR mg(r - e)dr, -lb - ft 
e 

Mach number of blade section, unR/a 

mass of 'blade per foot of radiUS, slugs/ft 

mass of blade, slugs 

shaft power, ft-Ib/sec 

helicopter rolling velocity, radians/sec 

shaft torClue, lb - ft 

helicopter pitching velocity, radians/sec 

blade tip radius measured from center of rotation, ft 

distance measured along blade from axis of rotation to blade 
element, ft 

component of rotor resultant force acting along rotor shaft, lb 

nondimensional resultant velocity perpendicular to blade-span 
axis at blade element 

component at blade element of u parallel to shaft axis 

component at blade element of u perpendicular to blade-span 
axis and to shaft axis 

true airspeed of helicopter along flight path, ft/sec 

induced inflow velocity at rotor, ft/sec 

ratio of blade-element radius to rotor-blade radius, r/R 

lateral component of rotor resultant force perpendicular to 
both T and H, lb 

angle between shaft axis and plane perpendicular to flight 
path, positive when axi6 is pointing rearward, deg 

-~~.-- ---~ 
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blade-element angle of attack) measured from line of zero lift) 
deg 

blade flapping angle with respect to .shaft at a particular 
azimuth position) ao - al cos ~ - b l sin ~ - a2 cos 2~ • 

radians 

mass constant of blade, 

local value of blade mass constant, 

. , 

90 collective-pitch angle at blade root) average value of instanta-
neous blade- root pitch angle around azimuth, deg 

91 difference between blade- root and blade-tip pitch angles, posi-
tive when tip angle is larger) deg 

9.7~ blade - section pitch angle at 0.75 radius) deg 

e instantaneous blade- section pitch angle; angle between line of 

~ e/R 

zero lift of blade section and plane perpendicular to rotor 
shaft) 90 + 91x - Ai cos ~ - Bl sin ~) deg 

inflow ratio) V sin a, - v 
DR 

tip-speed ratio, v cos a, 

DR 

p mass density of air) slugs/cu ft 

rotor solidity, bCe/nR 

local solidity) bc/nR 

inflow angle at blade element in plane perpendicular to blade-

span axl"S tan- l up de' g ) , 
uT 
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blade azimuth angle measured from downwind position in direction 
of rotation, deg 

rotor angular velocity, radians/sec 

Subscripts: 

c radius of cutout; that is, radius at which lifting surface of 
blade begins 

a accelerating 

d decelerating 

0 profile 

i induced 

2 lift 

METHOD OF .ANALYSIS 

The process of numerical~ determining the aerodynamic character­
istics of a r otor operating at a particular flight condition consists of 
calculating the individual force (and moment, if desired) contributions 
of a specific number of blade sections at various points on the rotor 
disk, averaging the values around the disk at a particular radial station, 
and then radial~ integrating these averages along the blade to obtain 
the result. The equations required to evaluate the force contribution 
of a blade section and the procedure for utilizing the equations are 
written specifical~ for a hinged (i.e., free-to-cone) rotor, but can be 
applied with but little modification to Seesaw rotors. The modification 
of the equations to the seesaw-rotor configuration is discussed in refer­
ence 5. 

Reference-Axis System 

In the ana~sis developed herein, the flapping hinge may be offset 
radial~ from the center line of the shaft. For such a configuration, 
flapping and feathering motions are not direct~ equivalent and it is 
therefore most convenient to reference all angles and velocities to an 
axis coinciding with t he center line of the rotor shaft. The rotor shaft 
is therefore used as the reference axis in this paper instead of the no­
feathering axi s whi ch was used in references 1 to 4. 
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Equations 

Most of the equations listed in this section are based on, or can be 
readi~ derived from, standard blade-element equations. (See refs. 1 
and 6, fo r example . ) Because the equations are set up for numerical inte­
gration, most of the aerodynamic restrictions that are normal~ employed 
in rotor ana~ses are avoided. Thus, the equations can be used for blades 
of any airfoil section, mass distribution, twist, plan-form taper, root 
cutout, and flapping- hinge offset and can account for the effects of heli­
copter pitching and rolling velocities. Flapping-hinge configurations 
wherein blade flapping and l agging motions result in pitch-angle changes 
can be simp~ considered by the addition of the appropriate terms in the 
equati on for section angle of attack presented in this section. Stall 
and compressibility effects can be accounted for to the extent of using 
actual airfoil data that correspond to the range of angle of attack and 
Mach number encountered at all points of the disk, including the reversed­
velocity region. Although no small-angle limitations have been made 
regarding the section inflow angles or the treatment of the magnitude of 
the resultant velocities and the direction of the resultant-force vectors 
at the blade sections, the analysis does incorporate small-angle assump­
tions in regards to the blade flapping angles. In addition, it is assumed 
that the r otor blades are rigid in bending and torsion and that radial­
flow effects can be neglected . The equations can also be applied to any 
known or assumed radial or azimuth variation of induced velocity. 

Input quantities. - The input parameters fixing the flight condition 
are '" 8. 75, and 1-1. These parameters may be either assumed directly 

as independent variables or estimated from known parameters (such as 
thrust and shaft power) by means of published rotor-performance charts 
(such as those of refs. 2 and 3). In addition to the flight parameters, 
the following design and operating variables are assumed to be known: 
8lJ AlJ BlJ c(x), I h , e, MW' U, b, R, p, p, q, and m(x), as 
well as t wo-dimensional blade- section airfoil data. 

Eguations for the calculation of section velocities, angles of attack, 
and Mach number. - Equations that are necessary for the calculation of sec­
tion velocities , angles of attack, and Mach number are listed as follows: 

1-1 cos ", (ao - a1 cos'" - b l sin", - a2 cos 2",- b2 sin 2", -

a3 cos 3", - b3 sin 3",) 

(1) 

(2) 

, 
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CLr== 8 +¢ 

222 u == uT + up 

== 90 + 91x - Al cos * -Bl sin * + ¢ 

9 

(4 ) 

(6 ) 

Equations for the calculation of flapping coefficients.- The flapping 
coefficients may be calculated from the following relations : 

(8 ) 

(lOa) 

(fl > 1) (lOb) 

_________ ~_~J 
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(11) 

(12) 

(14 ) 

Equations for the calculation of performance parameters.- The per­
formance parameters may be determined from the following equations: 

1Jr:;n 
where ~ 

1Jr==1 

stations. 

(16) 

(18) 

== fl.O 1 ~ (dCT) d.x 
CT,o n L- d.x 

Xc 1Jr==1 0 

dC 
refers to the summation of ~ values computed at n a~imuth 

d.x 

(For ex amp le , --
n 

------ -----

, 
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Also 

(20) 

dC 
~ = 1 cr u~c sin ¢ 

dx 2 x I 
(21) 

(22) 

JB W=n dC 
C = l~~dx 

Q,a Xc n ~ dx 

(24 ) 

(26 ) 

1
1.0 . w=n d('-

Cpo= ~L~dx 
, Xc W=l dx 

Equations for the calculation of rotor forces and maments .- The fol­
lowing e~uations may be used to calculate certain rotor force and moment 
coefficients that may be useful in vibration and stability analyses: 

dCH . = 1 cr u2c (-sin ¢ sin W - cos ¢ sin ~ cos w)dx 
,1 2 X I 

dCH 0 = 1 cr u2c (cos ¢ sin W - sin ¢ sin ~ cos W)dx , 2 x d,o 

(28) 

(30 ) 
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dr-- 0 = 1 cr u2cd (-cos ¢ cos W - sin ¢ sin ~ sin W)dx (34) 
~Y , 2 x ,0 

l B r-n dr--
r__ = -nl ~ dx~y,i dx 
~ Y ,i L-

Xc w=l 

1
1. 0 t=P dr--

r__ = 1. L ~ dx 
-Y , O n dx 

Xc w=l 

Cy = ~,i + Cy,o 

a' = 

After CT(W) is evaluated at different azimuth stations, a harmonic 

analysis would express CT(W) as a function of W as follows: 

(41) 

,. 

I 

I 

, 
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Then 

Cr ~F 1 
cr - 2cr (42) 

em := 
~El 

cr -~ (43 ) 

Equations (42) and (43) represent aerodynamic rolling and pitching 
moments. Blades with offs et flapping hinges also produce hub moments 
due to centrifugal forces as given by the following equations: 

Cm ~ 1 + ~ 
6. -cr := a l ~ --­

I' 1 - ~ 

(44) 

The oscillating shear force at the flapping hinge (perpendicular to 
the blade-span axis) is composed of thrus t and mass forces. The thrqat­
force contribution, expressed in harmonic form, is given by equation (41). 
The nondimensional mass - force contribution, made up of centrifugal and 
inertia forces, is represented by 

bMm s ~ Cv := - ~ (ao - al cos * - b l sin * - a2 cos 2* - b2 sin 2* -
1ill4p 

a3 cos 3* - b5 sin 3*) + (1 - k )(al cos * + b l sin * + 

4a2 cos 2* + 4b 2 sin 2* + 9a3 cos 3* + 9b3 sin 3*)] (46 ) 

Inasmuch as equations (41) and (46 ) contain no aerodynamic damping due to 
bending or bending inertia terms, they apply only to inflexible blades. 

Calculation Procedure 

The procedure for calculating rotor characteristics is outlined as 
follows: 

(1) For the given input quantities, 
mate set of flapping coefficients. (The 
calculate these approximate coefficients 

be equal to zero.) 

assume 
charts 
if a3 

or calculate an approxi ­
of ref. 4 may be used to 

and b3 are assumed to 

I 

__ ._~ ___ J 
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( 2) With the given i nput quantit i es and the approximate flapping 
coefficients , calculate section ve l ocities and angles of attack by means 
of equations (1 ) to (5). 

(3) Calculate section Mach numbers by means of equation (6) . 

(4) By using the calculated angles of attack and Mach numbers, 
obtain the cor responding values of c~ and Cd 0 from appropriate two­, 
dimensional section data . 

(5) Cal culate MT/Ihn2 by means of equation (7), make a harmonic 

ana~sis of the r esult , and express the answer in the form of equation (8) . 

(6 ) Ca lcu l ate new values of flapping coefficients by means of equa­
tions (9) to (15 ) . (The incr emental first - harmonic coefficients given by 
eqs . ( 10 ) and ( 11 ) should be added as correction factors to the output 
values f r om the preceding i t erati on .) 

(7) Repeat steps ( 2 ) to (6) until the output values of flapping 
coefficients differ negligibly f r om t he input values . 

(8) Compute ~ for each va l ue of ~,using th~ final values of 
flapping coefficients . 

(9) With the use of the l i ft and drag coefficients and velocities 
corresponding t o the final s et of flapping coefficients, calculate the 
performance and stability parameters by means of equations (16) to (45 ) . 

I t will be noted that additional performance, stability, and loads 
parameter s can be calculated with little additional effort, inasmuch as 
the section velocities, angl es of attack, and lift and drag coefficients 
have already been computed . 

DISCUSSION OF METHOD 

Assumptions of Theory 

Although the numerical integration procedure eliminates many of the 
restrictive assumptions and simplifications of convent.ional rotor theory, 
a number of as sumptions still remain . The degree to which these suppo­
sitions can affect the validity of the results depends on the specific 
applications of the method. Per haps the most important assumption, and 
one which is inherent in all the theoretical rotor treatments developed 
thus far, is the use of steady, two-dimensional airfoil- section character­
istics in evaluating rotor forces and moments. Although such an approach 

, 

I 

, 
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has been proven successful in predicting rotor characteristics under 
normal operating conditions, a complete evaluation of its accuracy in 
conditions involving large amounts of stall and compressibility effects 
must await further experimental checks. Limited theory-data comparisons 
that have been made thus far for extreme operating condi ti'ons, however, 
do show good agreement. The a~plication of such theory to these condi­
tions is therefore felt to be the best step which can be taken for pre­
liminary estimates at the present time. As more experimental data become 
available, comparison with these predictions will serve to show whether 
or not empirical or other revised approaches are necessary. 

The assumption of blade inflexibility in bending and torsion would 
normally be unimportant except in aeroelastic problems. Bending flexi­
bility should be conSidered, for example, in the computation of coupled 
blade-fuselage vibrations, whereas torsion flexibility would enter into 
blade-fuselage clearance calculations or in stability or stress calcula­
tions wherein a large blade-section center-of-pressure shift associated 
with operation at high Mach numbers occurs. The neglect of radial-velocity 
components along the blade would probably be significant only at very high 
tip-speed ratios wherein they might influence the profile-drag power and 
the stall pattern of the rotor. 

An important limitation inherent in the analysis, and one whose 
effects can be readily evaluated, is the use of small-angle assumptions 
as applied to the rotor-blade flapping angle. The flapping analysis 
containing these assumptions yields erroneous answers if the amplitude 
of the flapping angle is in the neighborhood of 150 or above. For flight 
conditions involving larger amplitudes, the numerical method for calcu­
lating blade flapping presented in reference 5, which contains no small­
angle limitations, should be used . (The two methods yield identical 
anSWers for conditions wherein the flapping angles are below approxi ­
mately 150 .) The method of reference 5 can also be used for cases in 
which a knowledge of the transient blade-flapping behavior in maneuvers 
is desired. 

Application of Method 

Aside from the assumptions just discussed, the accuracy of the 
anSWers obtained from the method of this paper is dependent upon the 
number of radial and azimuth stations around the disk used in the inte­
gral force, moment, and power equations. The problem is to determine 
the point of diminishing returns at which further increases in accuracy 
obtained through the use of a greater number of stations are counter­
balanced by the additional time and cost required to compute the extra 
stations. The answer to this problem is a variable and is dependent upon 
the flight condition for which the answer is to be calculated (i.e., the 
extent of the regions on the disk undergoing stall, compressibility, &~d 



16 NACA TN 3747 

reversed-velocity effects), the type of answer to be calculated (for 
example, thrust loading for bending-moment calculations, stability deriv-
atives, or blade flapping ), and the type of automatic computing equipment t 
available for the calculations . 

For example, because the calculation of the flapping coefficients, 
which is necessariLy an iterative procedure, is quite lengthy, it is 
important to determine the initial estimate as closeLy as possible and 
t o require no more accuracy than i s necessary for the particular appli­
cation. Thus, for caseS in which the determination of the flapping coef­
fi cients is not in itself the objective but is mereLy the means for calcu­
l ating such items as rotor thrust or power, it is usualLy sufficientLy 
accurate to ignore the third, and perhaps even the second, harmonics of 
f lapping, and to keep the number of iterations at a minimum . Such con­
siderations become less important , of course, when the calculations are 
carried out on a modern high- speed automatic computer. Conversely, if the I 
flapping motion is desired in its own right, the number of iterations 
(and the number of harmonics ) can be carried out to any desired accuracy. 

In order to obtain an idea of the eff ect of the number of stations 
on the accuracy of the computations, rotor flapping coefficients (called 
p art I solutions ) and thrust, power , and direction of the resultant-force 
vectors (called part II solutions ) were evaluated for a sample flight 
condition by using different numbers of radial and azimuth stations. 
Angle-of- attack and Mach number contours corresponding to the sample case 
are plotted in figure 1 to illustrate the rate of change of these quan­
t i ties with radius and azimuth angle . As can be seen from the figure, 
the flight condit~on chosen was rather extreme and involved large amounts 
of stall and compressibility effects at a tip-speed ratio of 0.50 and a 
tip speed equal to 750 feet per second. The results of the calculations 
are presented in table I . 

The results shown in table I were obtained at thirty- six (~ = 100 ), 

eighteen (~W = 200 ), and eight (~W = 450 ) azimuth stations. In the radial 
direction, values were computed at x = 0.15 and at x = 1.0, with seven 
(Doc = 0.1063 ) and three (6x = 0 .2125) uniformLy spaced stations in between. 
(For those quantities, such as thrust and induced torque, which require 
the integrations to be carried out to x = 0.97 instead of x = 1.0, 
values were also computed at x = 0 . 97 . The value of the quantity between 
x = 0.97 and x = 1 . 0, computed by the trapezoidal rule, was subtracted 
from the total value of the quantity obtained by integrating from x = 0.15 
t o x = 1.0.) With the exception noted in the table, all the part II 
s olutions were computed with the same set of flapping coefficients (those 
corresponding ~o Doc = 0.2125, ~W = 450

) in order to isolate the effect 
of changes in the number of stations on the results. 

It can be seen that, even for the extreme flight condition considered, 
the differences in flapping angles resulting from the use of a different , 
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number of stations are small, being of the order of a few tenths of a 
degree for the coning angle and first harmonics, and even less for the 
second and third harmonics. (For these cases, the number of iterations 
was such that the values listed in the table differed from those of the 
preceding iteration by less than 0.060 for 80, al' and b l and less 

than 0.030 for ~, b2 , and b3 .) 

Table I shows that the part II solutions are somewhat more sensitive 
to the number of stations used than are the flapping coefficients, although 
not unduly so. By using the results for the case wherein ~ = 0.1063 
and ~~ = 100 as a base, it can be seen that approximate~ doubling the 
interval of radial and azimuth stations results in an error of only 1 per­
cent or less in the thrust and power values. When ~~ is increased from 
200 to 450 , the error jumps to the order of 5 percent, which, in many cases 
(such as those involving extensive stall and compressibility effects), is 
within the order of accuracy and use of the airfoil-section data. In cer­
tain calculations, however, such as comparative studies, the introduction 
of a 5-percent error might be undesirable and could be avoided by doubling 
the number of azimuth stations. In general, it appears that greater 
accuracy is achieved with a given increase in stations by increasing the 
number of azimuth, rather than radial, stations. 

In order to illustrate the effect of differences in flapping coeffi­
cients on the part II solutions, the case for ~ = 0.2125 and ~~ ~ 450 

was ~epeated, but with the second and third flapping coefficients assumed 
eQual to zero. As can be seen in table I, there is a slight increase 
(about 2 percent) in thrust, and less than one-half of 1 percent decrease 
in power. 

In summary, it appears that if accuracy is a prime conSideration, 
or if a very-high-speed computer (such as an IBM type 704 electronic data 
proceSSing machine or a Remington Rand UNIVAC) is available, then approx­
imately five radial and eighteen azimuth stations should be used for most 
part II solutions, whereas the part I (flapping) solutions can be deter­
mined with the same accuracy by using five radial and only eight azimuth 
stations. For slower speed computers, such as the IBM Card-Programmed 
Electronic Calculator, five radial and eight azimuth stations can be used 
for the part II solutions with a considerable saving in computing time 
at the expense of a small reduction in accuracy. 

For a given number of stations, the possibility exists that the 
accuracy of a set of calculations can be improved by nonuniform spacing 
of the radial and azimuth stations. The possibility is greatest in 
regards to the radial spacing, particularly when a small number of sta­
tions, such as five, is utilized. The effectiveness of a specific choice 
of the number and spacing of radial stations is also dependent on the 
manner in which the radial integrations are carried out . Simpson's rule 
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was used in the sample calculations presented in table I and was found 
to be satisfactory for the type of thrust and power loading curves 
encountered. 

The technical procedures involved in setting up calculations of the 
type presented in this paper are described in a number of references 
(see ref. 7, for example) and will not be discussed herein. It is con­
sidered worthwhile to point out , however, that approximate~ 160 hours 
and 120 hours of programming (i .e ., problem setup) time are required for 
the part I and II solutions, respective~. This part of the work is done 
on~ once, of course, and need not be repeated for each new set of input 
variables . Approximate~ 18,000 to 20 ,000 operations are involved in the 
part I solutions for the 48- station case when compressible section data 
are included, and approximate~ an equal number for the part II solutions. 
The corr esponding time required to run off a part I iteration or a part II 
case for each new set of variables would vary from approximate~ 100 minutes 
on an IBM CPC to approximate~ 20 seconds on an IBM type 704 calculator. 
The machine time required per case varies almost direct~ with the number 
of stations used . 

CONCilJDING REMARKS 

A numerical method suitable for application to automatic computing 
machines has been presented for calculating the aerodynamic character­
istics of rotors for flight and design conditions that are outside the 
range of conventional ana~ical rotor theory. By means of the equations 
presented, the effects of such items as stall, compressibility, flapping­
hinge offset, blade mass factor, twist, taper, and root cutout on such 
rotor characteristics as flapping, thrust, power, and hub moments, as well 
as on certain stability derivatives, can be investigated. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va ., J une 6, 1956. 
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TABLE I. - EFFECT OF NUMBER OF RADIAL AND AZIMUTH STATIONS ON CALCULATED RO'IOR 

CHARACTERISTICS FOR A SAMPLE FLIGHT CONDITION 

~ 0 . 50; A - 0 . 091 ; 80 == 15° ; 81 == _8° ; DR == 750 ft/sec;), ' 1.0; S 0; Xc == 0.15J 

( a ) Part I solutions 

tsx. 
D.'ir , ao, alJ blJ a2' b2, a3' b3' 
deg deg deg deg deg deg deg deg 

, 

10 2 . 23 11.34 2 . 67 1.022 0 . 114 - 0 . 001 0 . 186 
0 . 1063 20 2 . 22 11 . 32 2 · 70 1.017 .117 -. 001 . 184 

45 2 . 14 11.16 2 . 83 ·938 · 179 . 056 . 144 

10 2 . 18 10 ·91 2 .63 1.021 .121 .004 .188 
. 2125 20 2 . 18 10 .96 2.65 1. 017 .125 -. 001 . 186 

45 2 .18 11.21 2 ·79 ·959 .183 . 058 .153 
- -, -_._. _-

(b ) Part II solutionsa 

D.CT fa, D.cp,o/a, ' D.Cp / a, I 

tsx. D.'ir , CT/a CP, 0/ a, Cp/a a ' D.a ' b' till ' I ) ) , 
deg' deg percent percent percent deg deg deg 

I 

I 

10 0.0685 ---- 0.2151 ---- 0.1761 --- 13 · 75 ---- - 0 .47 ;~~; I 0.1063 20 . 0697 1.8 .2130 1.0 .1785 1.4 13 · 99 0.24 -·32 
45 .0654 -4·5 .2278 5 ·9 .1842 4.6 14.39 .64 -1. 08 -. 61 

.0673 . 2169 . 8 .1745 13 . 69 -. 06 
I 

10 - 1. 7 -· 9 -· 52 -. 07 I 

.2125 20 .0686 .1 .2151 0 .1775 .8 13.94 . 19 -. 36 .11 
45 .0660 -3·7 . 2289 6 .4 .1860 5 · 6 14.40 . 65 - 1 . 16 -.69 I 
45 . 0672 -1. 7 . 2158 .3 .1765 .2 14.11 . 36 . 02 .49 

-, --- -~- - - ~------ -------

aAll part II solutions (except the last one ) were calculated with flapping coefficients 
corresponding to tsx. == 0.2125 and D.'ir == 45° . The last solution was calculated with same 
values of ao, al' and b1, but with a2' b2, a3' and b3 assumed equal to zero. 
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Figure 1 .- Angle of attack and Mach number contours for sample flight 
condit i on . ~ = 0.50; A = -0.091 ; 80 = 15°; 81 = _8°; DR = 750 feet 

per second ; " = 1.0; ~ = 0; Xc = 0.15 . 
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