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TECHNICAL NOTE 3911 

A METHOD FOR PREDICTING LIFT INCREMENTS DUE TO FLAP 

DEFLECTION AT LOW ANGLES OF ATTACK IN 

INCOMPRESSIBLE FLOW 

By John G. Lawry and Edward C. PoThamus 

SUMMARY 

A method is presented for estimating the lift due to flap deflection 
a t low angles of attack in incompressible flow. In this method provision 
is made for the use of incremental section-lift data for estimating the 
effectiveness of high-lift flaps. The method is applicable to swept wings 
of any aspect ratio or taper r atio. The present method differs from 
other current methods mainly in its ease of application and its more 
general application. Also included is a simplified met hod of estimating 
the lift-curve slope throughout the subsonic speed range. 

INTRODUCTION 

Although several methods are currently available for estimating the 
effectiveness of flaps on wings of various plan forms (for example 
refs. 1 to 4), they are generally restricted to small flap deflections; 
and furthermore each method has certain reservations in its application. 
For example reference 1, which is a semiempirical approach, is limited 
to specific wing plan forms and flap-chord ratios within the range of 
experimental data used as well as to small flap deflections. In addition, 
both references 1 and 2 may require considerable manipulation to obtain 
values for a particular plan form. 

The present method attempts to combine the various existing methods 
into a simple procedure that has more general applications than anyone 
of them alone. Section lift data are used as a basis of the calculations, 
and this approach provides a means of estimating the increments of lift 
due to high-lift flaps at large deflections. 
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SYMBOLS 

A aspect ratio 

ao section lift-curve slope, per radian 

b wing span 

bf flap span 

CL three-dimensional lift coefficient 

~CL increment of three-dimensional lift coefficient due to flap 
deflection 

C~ three-dimensional lift-curve slope, per deg 

dCL dB (constant a) 

c wing chord 

cf flap chord 

cl two-dimensional section-lift coefficient 

~cl increment of section-lift coefficient due to flap deflection 

cIa section lift-curve slope, per deg 

Kb flap-span factor (ratio of partial-span-flap lift coefficient 

M 

a 

to full-span-flap lift coefficient), 
(~CL) partial span 

(6CL) full span 

flap-chord factor (ratio of three-dimensional flap-effectiveness 
parameter to two-dimensional flap-effectiveness parameter), 

(aB) CL! (ae) c I 

Mach number 

angle of attack, deg 

three-dimensional flap-effectiveness parameter at constant lift 
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(~5)C~ two-dimensional flap-effectiveness parameter at constant lift 

5 flap deflection normal to hinge line, deg 

51 flap deflection streamwise, tan 51 = tan 5 cos ~, deg 

A angle of sweep, deg 

Ah " sweep of hinge line, deg 

Ac/2 sweep of half-chord line, deg 

Ac/4 sweep of quarter-chord line, deg 

A taper ratio 

Subscript: 

eff effective 

DEVELOPMENT OF METHOD 

One reason for developing the present method is to provide a means 
of estimating the lift increment of high-lift flaps. The method is there
fore based on the use of a section lift increment 6cI' either theoreti
calor experimental. The basic concept used in the method is 

(1) 

Since it is desired to use either a theoretical or an experimental value 
of 6cI in the method and since 

multiplying the right-hand side of equation (1) by 

gives 

(2) 
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where ~ is the aerodynamic induction f a ctor, 
(o.O)CL 

is the flap-
c 20. (o.O)C1. 

chord factor Kc, and Kb is the flap-span factor, 
(6CL) partial span 

(6CL) full span 

Section-Lift-Coefficient Increments 

The values of 6cr used may be either two- dimensional experimental 

or theoretical values. For the purpose of this paper the section values 
are obtained in a streamwise direction; and flap deflection in the stream 
direction 0' is used, since this plane is used for measuring the angle of 
attack. Several investigators have proposed that the section data should 
be referred normal to some sweep line since this concept would be in 
agreement with that used in the simple sweep theory. For airfoils in the 
range where the profile has a negligible effect on section characteristics 
(thin with small trailing- edge angle), the two methods give identical 
results for constant-percent-chord flaps on relatively untapered wings. 
For highly tapered wings the present method somewhat simplifies the 
difficulties, with regard to flap - chord ratios in the vicinity of the 
root and tip, that are encountered in the simple sweep theory. In view 
of this s implification and the fact that wings of current interest are 
relatively thin, the use of section dat a relative to the airplane center 
line is believed to be warranted. Since the values of 6cr are the basis 
of the method, the final results will be only as accurate as the section 
data; therefore use of experimental data is advisable when such are 
available. 

Aerodynamic Induction Factor 

The aerodynamic induction f actor C~/cro. depends upon the three

dimensiona l lift-curve slope C~ . A simplified method is presented in 

the appendix for estimating C~ which includes the effects of sweep, 

aspect r atio, and taper ratio . The appendix gives the following simple 
expression for the incompressible lift-curve slope (eq . (A6)): 

1 

A .)2 57·3 
A c/2 
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Dividing both sides of this equation by c2~ gives the following expres

sion for the aerodynamic-induction factor: 

If both sides of equation (3) are divided by A, the 

A is a unique function of for a given value 
cos AC / 2 

relationship is 
mations of .6.CL 

shown in figure 1 for the case where 
normally required, this curve should 

expression l(CLro~ 
A Cl~) 

oi' a, and the 
o 

ao = 2~. For esti
provide the value 

of CIa.. if a
o , differs appreciably from 2~, the term should be com-

c~ 

puted from equation (3) by using the most appropriate value of ao 
available. The choice of Ac/2 rather than the more commonly used 

Ac/4 as the sweep angle for use in equation (3) is discussed in detail 

in the appendix . A nomograph for converting quarter-chord sweep angles 
t o half-chord sweep angles is given in figure 2 for wings of various 
aspect ratio and taper ratio. An extension of the expression for C~ 

to account for compressibility is given in the appendix. 

Flap-Span Effect 

In order to apply the method to flaps other than full-span flaps, 
it is necessary to obtain a span-effectiveness factor Kb where 

(.6.CL)partial span 

(6CL) full span 

An expression for the span-effectiveness factor for inboard flaps has 
been developed in reference 4 for wings having unswept trailing edges 
and streamwise tips (rectangular in the vicinity of the trailing edge). 
Equation (37) of reference 4 can be written as 

(4) 
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Examination of the results of references 5 and 6 and results obtained 
by using the 10-step method of reference 7 indicated that more accurate 
values can be obtained by using the empirical variations of Kb with 

b f

l 
for the three taper ratios 0, 0.5, and 1.0 given in figure 3 than 

b 2 
can be obtained from the single curve of equation (4). The following 
table gives the variation that can be expected when the curves of fig
ure 3 are used. 

Taper ratio 

1.0 
.5 
o 

Aspect ratio 

1.5<A<12 
1.5 < A < 12 
1.5<A< 6 

Variation in Kb 

±0.02 
±0.03 
±0.05 

If greater accuracy is required than is indicated by the table the span 
factor should be obtained by the methods of references 5 and 6. 

For flaps other than inboard, the values are obtained by superposi
tion of the flaps. This procedure is shown schematically in figure 4 
for a midspan flap, and a similar method is used for outboard flaps. 

Three-Dimensional Flap-Effectiveness Parameter 

According to the assumptions of lifting-line theory, the section 
values of the flap-effectiveness parameter (a5) are independent of 

C7. 
aspect-ratio effects. Because 

and because, according to reference 8, the lifting-surface-theory correc
tion to the lifting-line value is greater for CLu that for CLo' a 

lifting-surface-theory correction to (ao)CL is necessary. The results 

of calculations for wings with a taper ratio of 1.0 and with flaps of 
constant cflc (ref. 4) were also used to obtain values of the factor 
Kc for wings of small aspect ratio. When the values from reference 4 
and the limiting value for zero aspect ratio from reference 3 ((a5)CL = 1 

for all values of cf/c) were used, curves were established to provide 
the va lues of Kc as a function of a spect ratio for a range of values 
of (aO) Cl. These curves are presented in figure 5, together with a plot 

showing the variation of (a5)Cl with cf/c. Because Kc is dependent 
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upon the type of chordwise loading, it might be expected to be more depend
ent upon cflc or upon the center of pressure than upon (no) . How-

. c I 
ever, the data available at the present time indicate a better correlation 
with (ao) . 

cI 

Figure 6 presents a correlation of (ao)CL with values obtained 

from experimental CLa and CLo data from reference 9 for wings having 

a constant-percent-chord flap with a value of (aO)CI 0.60. The agree-

ment between the estimated and the experimental variation with aspect 
ratio is very good. 

When experimental values of 6cI are used in order to estimate 
~CL for small deflections, the value of (aO)Cl used in determining 

Kc can be obtained from experimental values or from the inset chart in 
figure 5. When large flap deflections are used and separation occurs 
over the flap, the values of (ao)CI can be obtained from 

If theoretical flap effectiveness is obtained by the use of boundary
layer control, the values of (aO)CI from the inset chart in figure 5 

are used regardless of the value of O. 

The effectiveness of flaps that have variable values of (aO)Cl 

across the span is found by mechanical integration across the flap span 
of the following equation: 

~ao) l = 1 
I~ c 1Jeff Kb,outboard - Kb,inboard 

(6) 

where the values of Kb are obtained from figure 3. When the values of 

(ao)CI are plotted against the values of Kb for all points along the 

f'lap span, then the area under the curve is equal to Kb K ao) c Jeff' 

For most configurations, however, an average value of' (ao)CI will 

provide sufficient accuracy in the estimation of' ~L' 

--- - -~.~--- -----
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For convenience, an experimental correlation of (ao)C2 for various 

flap chords is given in figure 7 for deflections of ±lOo. The experimen
tal data were obtained from airfoils having trailing-edge angles of 
approximately 100 and includes both gap open and gap sealed conditions. 

Experimental Verification 

Since the usefulness of any method of estimating lift increments 
depends on the agreement obtained with actual results, the values of 
~CL obtained by the present method are compared with some experimental 

results in figure 8. The results of ~CL are for the conditions of low 

speed (M <0.4) at ~ = 00 • The results at low flap deflections were 
obtained on unswept wings varying in aspect r atios from 1 to 6 and having 
flap-chord ratios varying from 0.10 to 0.40. The values of (ao)C2 used 

for the estimation were obtained from figure 7. A few comparisons are 
shown for double-slotted flaps deflected approximately 600 on both a 
swept wing and a delta wing. The section lift increments ~c2 were 
obtained from experimental two-dimensional data. It is apparent that 
t he method, at least for the configuration shown in figure 8, is accurate 
for predicting the lift increment due to flap deflection. 

CONCLUDING REMARKS 

A simplified method is presented to provide for the estimation of 
the lift due to flap deflection on swept wings in incompressible flow 
from section data. A comparison of the experimental finite-span lift 
increments with those estimated by this method provides a satisfactory 
verification of the method. 

La.ngley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., October 10, 1956. 
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APPENDIX 

SIMPLIFIED METHOD OF ESTIMATING C~ THROUGHOUT 

THE SUBSONIC SPEED RANGE 

The purpose of this appendix is to describe simple but accurate 
methods of estimating the effects of aspect ratio, sweep, taper ratio, 
and Mach number on the subsonic lift-curve slope. 

Effect of Sweep, Aspect Ratio, and Mach Number 

A very simple but accurate equation for the subsonic lift-curve 
slope is (for ao = 2n) 

9 

(Al) 

This equation, which is a modification of the Helmbold equation (ref. 10) 
to account for sweep and Mach number, was derived by the junior author, 
who originally presented it at a seminar (Ohio State University - Wright 
Patterson Air Force Base Graduate Center) in 1950. This expression is 
somewhat more accurate at low aspect ratios than the method presented in 
reference 11. An expression which gives identical results is derived in 
reference 12. 

Equation (Al) can be derived simply by correcting the section lift
curve slope in Helmbold's equation (ref. 10) for the effect of sweep 
(ao cos A) and applying the well-known three-dimensional Prandtl-Glauert 
transformation. Correcting Helmbold's expression for the effect of sweep 
gives 

ao 
n 

(A2) 

J 
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Applying the three -dimensional Prandtl-Glauert transformation to account 
for compressiblity gives 

where AM is defined as 

tan A 

By trigonometric substitution it can be shown that 

A2 (1 - tvt2) = A 2 (1 _ M2) (1 + 1 _ 1 )= ( A ) _ (AM) 2 
cos2 AM cos2 A(l - M2) 1 - tvt2 cos A 

(A4) 

and by substitution of equation (A4) in equation (A3) 

(A5) 

This equation differs from that for the incompressible case (eq. (A2» 

by only the term (AM) 2. The same result can be obtained by correcting 
the section lift-curve slope ao in equation (A2) for compressibility 
by using the Mach number normal to the leading edge. Substituting 

V 1 - tvt2 cos2 A 

for a o in equation (A2) and rearranging results in 

(Cru)M = _____ A ____ (5~.3) 
A2 Cl - ~ cos2 A) + 1-

:rc2 
1 
1( + 

which reduces to equation (A5). 
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Effect of Taper Ratio 

It will be noted that no term for wing-taper-ratio effects appears 
in equation (AI). The effects of taper ratio, however, can be essentially 
eliminated if the half-chord line is used for the sweep reference line. 
This fact is illustrated in figure 9 where the incompressible lift-curve 
slope, as determined by the Weissinger l5-point method (refs. 5 and 6), 
is plotted as a function of the sweep of the quarter-chord line and the 
sweep of the half-chord line for various taper ratios. The results for 
an aspect ratio of 1.5 are presented in figure 9(a), and those for an 
aspect ratio of 3.0 are presented in figure 9(b). The results indicate 
that, when the usual procedure of referencing the sweep angle to the 
quarter-chord line is used, the effects of taper ratio on the lift-
curve slope are rather large. However, when the half-chord line is used, 
the effect of taper is eliminated to a large extent. The fact that 
rather large effects of taper ratio occur for wings having the same sweep 
of the quarter-chord line (see left part of figs. 9(a) and 9(b)) can be 
explained to some extent at least by the reversibility theorem (ref. 13), 
which states that the lift-curve slope of a wing is the same in forward 
as in reversed flow. This theorem implies that if the sweep is referenced 
to a line other than the half-chord line, only the lift-curve slopes of 
the untapered wings ( A = 1.0) will be symmetrical about zero sweep. It 
therefore is impossible f or the lift-curve slopes of tapered wings to 
coincide with those of untapered wings throughout the sweep range, and 
at least an apparent taper-ratio effect must exist. The reversibility 
theorem itself, of course, does not exclude an actual taper-ratio effect; 
however, figure 9 shows t hat when the curves are made symmetrical by use 
of the half-chord line for the sweep reference, relatively little dis
placement due to taper r atio occurs. Also, in the modified lifting-line 
methods such a s the Weissinger method, taper effects are dependent upon 
the sweep and the relative position of both the quarter-chord line 
(bound-vortex location) and the three-quarter-chord line (boundary
condition location). Thi s fact suggests the possibility that wings 
having the same sweep of the intermediate or half-chord line might be 
less affected by taper than those having some other common sweep line. 

Accuracy of Method 

The preceding results indicate that equation (A2) may be applicable 
to all plan forms, providing the sweep of the half-chord line is used. 
Use of Ac/2 results in the following expression for the lift-curve 

slope: 

(A6) 
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Dividing both sides by A 
following expression: 

(~)M=O 
A 

= 
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and letting ao equal 2~ gives the 

2 + 

___ 2_~ _____ 2 (5~. 3) 
4 + (cos Aile /2) 

which indicates that Cia, is a unique function of A . In order 
A cos 1le/2 

that the accuracy of the method may be evaluated, equation (A7) is com
pared with available lifting-surface solutions (refs. 14 to 18) in fig
ure 10. The Swanson method used for the 600 sweptback elliptical wing 
is described in reference 8. The lifting-surface solutions presented 
are probably the most accurate solutions available, and it will be noted 
that they cover a wide range of plan forms. The fact, therefore, that 
the lifting-surface solutions are in excellent agreement with equa-

CIa, 
tion (A7) appears to indicate both that -X- is, for all practical pur-

poses, a unique function of A and that equation (A7) is suffi-
cos 1le/2 

ciently accurate. 

Design Charts 

For the convenient determination of the lift-curve slope, some 
design charts are presented. Figure 11 presents the variation of 

C~ with A for incompressible flow. For the convenient cor-
A cos Ac/2 

rection of these results for the effect of Mach number, correction fac
tors are presented in figure 12 as a function of the half-chord sweep 
for various aspect ratios at Mach numbers of 0.40, 0.60, 0.80, 0.90, and 
0.95. Since sweep angles are quite often referred to the quarter-chord 
line, a nomograph for converting from quarter-chord sweeps to half-chord 
sweeps is presented in figure 2. 



r-

NACA TN 3911 13 

REFERENCES 

1. Lowry, John G., and Schneiter, Leslie E.: Estimation of Effective
ness of Flap-T,ype Controls on Sweptback Wings. NACA TN 1674, 1948. 

2. DeYoung, John: Theoretical Symmetric Span Loading Due to Flap Deflec
tion for Wings of Arbitrary Plan Form at Subsonic Speeds. NACA 
Rep. 1071, 1952. (Supersedes NACA TN 2278.) 

3. DeYoung, John: Spanwise Loading for Wings and Control Surfaces of 
Low Aspect Ratio. NACA TN 2011, 1950. 

4. Stone, H. N.: Aerodynamic Characteristics of Low-Aspect-Ratio Wings 
With Various Flaps at Subsonic Speeds. Rep. No. AF-743-A-2 (Con
tract No. AF 33(038)-17397), Cornell Aero. Lab., Inc., Jan. 1952. 

5. Diederich, Franklin W., and Zlotnick, Martin: Calculated Spanwise 
Lift Distrib'J.tions, Influence Functions, and Influence Coefficients 
for Unswept Wings in Subsonic Flow. NACA Rep. 1228, 1955. (Super
sedes NACA TN 3014.) 

6. Diederich, Franklin W., and .Zlotnick, Martin: Calculated Spanwise 
Lift Distributions and Aerodynamic Influence Coefficients for 
Swept Wings in Subsonic Flow. NACA TN 3476, 1955. 

7. Campbell, George S.: A Finite-Step Method for the Calculation of 
Span Loadings of Unusual Plan Forms. NACA RM L50Ll3, 1951. 

8. Swanson, Robert S., and Crandall, Stewart M.: Lifting-Surface-Theory 
Aspect-Ratio Corrections to the Lift and Hinge-MOment Parameters for 
Full-Span Elevators on Horizontal Tail Surfaces. NACA Rep. 911, 
1948. (Supersedes NACA TN 1175.) 

9. Dods, Jules B., Jr., and Tinling, Bruce E.: Summary of Results of a 
Wind-Tunnel Investigation of Nine Related Horizontal Tails. NACA 
TN 3497, 1955. 

10. Re 1mb old , H. B.: Der unverwundene Ellipsenflugel als tragende Flache. 
Jahrb. 1942 der Deutschen Luftfahrtforschung, R. Oldenbourg (Munich), 
pp. I III - I 113. 

11. Polhamus, Edward C.: A Simple Method of Estimating the Subsonic Lift 
and Damping in Roll of Sweptback Wings. NACA TN 1862, 1949. 

12. Diederich, Franklin W.: A Plan-Form Parameter for Correlating Certain 
Aerodynamic Characteristics of Swept Wings. NACA TN 2335, 1951. 



14 NACA TN 3911 

13. Brown, Clinton E.: The Reversibility Theorem for Thin Airfoils in 
Subsonic and Supersonic Flow. NACA Rep. 986, 1950. (Supersedes 
NACA TN 1944.) 

14. Krienes, Klaus: The Elliptic Wing Based on the Potential Theory. 
NACA TM 971, 1941. 

15. Falkner, V. M. (With Appendix by Doris Lehrian): Calculated Loadings 
Due to Incidence of a Number of Straight and Swept-Back Wings. 
R. & M. No. 2596, British A.R.C., June 1948. 

16. Dickson, R.: Comparison of Two Methods of Calculating Aerodynamic 
Loading on an Aerofoil With Large Sweepback and Small Aspect Ratio. 
R. & M. No. 2353, British A.R.C., June 1946. 

17. Schneider, William C.: A Comparison of the Spanwise Loading Calcu
lated by Various Methods With Experimental Loadings Obtained on a 
450 Sweptback Wing of Aspect Ratio 8 .02 at a Reynolds Number of 
4 .0 X 106 . NACA Rep. 1208, 1954. (Supersedes NACA RM L51G30.) 

18. Jones, Robert T.: Properties of Low-Aspect-Ratio Pointed Wings at 
Speeds Below and Above the Speed of Sound. NACA Rep. 835, 1946. 
(Supersedes NACA TN 1032.) 



1-

.281 1111 1111 !IIIII IIIII III! I11111 11111 11111 1111 I11111 11111 111 1111111 11 111 1 tlll llll! IIIII IIIII IIIII IIII O 

.241 ! I Ef ?Lltl , ! 11 11 111 1 to 1IIII II : ! Il lllll lllill ll [JAn II I Hill Illnlill Hilli ll : I III I II LUIIIII IIlJ II I 

I : 1 ! I I : : : II ! I ! I !tHatllll l : 111 1 1111 1 1 ! I1 11 ! I : 11111 1 ! 111 1 1111 11111 1 1111 1 1111 1111 ! 1 1I11 11111 1 1111 11111 1 
.20 

/ leLa) 
A( eta .12 

.08 

.04 

o 
o / 2 

Figure 1. - Variation of aerodynamic 

3 4 5 6 

A/cos AC/2 

(CL ) induction factor .! \~ 
A \c1a, 

1 

with 

8 

A 

cos Ac/2 

9 /0 

ao :::: 2lt; M :::: O. 

~ 
0 
~ 

f-3 
!21 
VJ 
\D 
t-' 
t-' 

~ 



- ---

±±'II:!:r: 

v 
/0. 

'I-t-
20m'!.! '\ 

'30. 

40, 

5Q 
+i+ 

I± AC/4 = 60 

60 50 40 30 20 10 o -10 
Sweep of half-chord line,deg 

:mf. 
1 2 

.6 
+!+J:! 

4 

.2 

o 

'1.w++++-l-1 

3 4 5 6 7 8 

A spect ratio, A 

Figure 2.- Nomograph for converting quarter-chord s~e(~p_~)gles to half-chord sweep angles. 

tan Ac/2 = tan Ac/4 - - -- . 
A 1 + A 

~ 

~ 
~ 
\.)J 
\0 
I-' 
I-' 



NACA TN 3911 17 

.8 

.6 

4 

.2 

.2 4 .6 .8 /.0 

Figure 3.- Variation of span factor Kb with flap span for inboard flaps. 



18 NAeA TN 3911 

lO~----~------------~ 

o o 
bf 

b/2 

T 
Va/lie of Kb 

1 

1.0 

Figure 4.- Span factor for flaps other than inboard flaps. 



NAeA TN 3911 19 

20 10 

/.9 .8 

/.8 .6 

/,7 4 

1.6 .2 

15 0 
0 .2 4 .6 .8 10 

Kc 
14 

13 

12 

/./ 

10
0 / 2 3 4 5 6 7 8 9 /0 

A 

Figure 5.- Vari ation of f l ap- chord factor with (Clf»Cl and aspect ratio. 



20 

.80 

.70 

.60 
o 

NACA TN 39ll 

~From fig 5 (l-rti::L = Kc (aqb) 

\ 
""~ 
~ 

--0---- -

I 2 3 

A 

4 

? 
5 6 7 

Figure 6.- Comparison of estimated values of (UO)CL with experimental 

values of reference 9· (~5)CI = 0.60. 



L _ 

Gop sealed ~ 

c, 
.3 

.2 

.I 

o 
o .04 .08 .12 .16 

Gop open 

.20 c, 
c 

.24 .28 .32 .36 40 

Figure 7. - Variation of flap-effectiveness parameter with control-chord ratio. Average trailing
edge angle approximately 100; M ~ 0.2; flap deflection, ±100 . 

r\) 
t-" 



22 NACA TN 391L 

0 

[J 

A 

0, A '/2 A A 

Plain flop 10 0 0 I I 106 

Double - slo t ted flop 60° 400 .41 3 .7 

Double- slotted flop 60 0 41 0 0 2 .3 1 

10 ~----~------r------r------~----~ 

.8 

~ 
~ .6 
........ 

~ 
~ 
<lJ 
~ 4 " 

'-.. 
<lJ 

~ 
t...J 

.2 

o 
o .2 4 .6 .8 1.0 

Es timoted Ll CL 

Figure 8.- Correlation of experimental and estimated values of teL ' 

a, = 0° ; M < 0.4. 

J 



CLa 

.05 

.04 

--- ),=1.5 
).= /.0 

- - ).=0 

.03 -----~ ---~ 
" 

"~----I---~ 

.02 

.01 

O~! --~--~--~--~--~--~ 
-60 -40 -20 o 20 40 60 -60 -40 -20 o 20 40 60 

Sweep of quarter - chord line, deg Sweep of half -chord line,deg 

(a) A= 1.5. 

Figure 9.- Variation of CLa with sweep; Weissinger 15-point method. 

~ 
~ 
I..N 
\0 
I-' 
I-' 

f\) 
I..N 



.06 

.05 

.04 

/ 
/' -- ~'" -............ , 

" '\ '" \ \ 
CLa .03 

.02 

.01 

o L-' _--I-_--L.._---L_---J~_.l...____J 

-60 -40 -20 o 20 40 60 

Sweep of qtJorter-chord line , deg 

).=15 
).= 10 
A =0 

(b) A == 3.0. 

- y-- - -I =--~"" .,.,..., ~ 

~ ~ 
y , 

/ 

- 60 -40 -20 o 20 40 60 

Sweep of holf -chord line, deg 

Figure 9.- Concluded. 

~ 

~ 
):> 

~ 
'VI 
\0 
r-' 
r-' 



.0281 
_ rJones (A--O)Ref. 18 A9'2 Method Ref. A 

Elllptkal {Go Krienes /4 0 

.024 

.020 

.016 
CLa 

A .012 

.008 

.C04 

0 
0 / 

Figure 10.- Vari ation of 

(!J 

2 

CL a. 

A 

Swanson Unpub- 0 60° Iished 
{27° Falkner 15 Ll 

0 
~IIQ Falkner 15 0 

.3/ 55° Falkner 16 ~ 

45 43° Multhopp 11 0 

{O° Falkner 15 'V 

100 
45° Falkner 15 0 

Ll 

Eq(A1)~ 

3 4 5 6 7 8 9 /0 II 12 

A/cos A~ 

A 
with as determined by s everal met hods . 

cos AC / 2 
ao = 211:; M = O. 

~ 
~ 

~ 
VI 
\0 
t--' 
t--' 

f\) 
\Jl 



L 

.028 

024 

.020 

CLa .016 
A 

.012 

.008 

.004 

o 
o I 2 3 

Figure 11.- Variation of 

4 

CLa, 

A 

5 

with 

6 ? 8 9 10 

A/Cos .A~2 

A 
in incompressible flow. 

cos Ac/2 

I 
I 
I 

II 12 

f\) 
0\ 

~ 
~ 

~ 
\..N 
\0 
t-' 
t-' 



NACA TN 3911 

(CLa)M 

(CLa)M: O 

13 

12 

1./ 

10 

17 

16 

15 

1.4 

13 

12 

10 o 

eX) 

1 

co 

~ 
6 

f-L 
5 
II: 

" 4 
Iff 
3 
Ff 

27 

M-060 

M =0 .80 

10 20 30 40 50 60 70 80 90 
Sweep of holf-chord l ine I deg 

Figure 12 .- Ratio of compressible to incompressible lift-curve slopes 
for subsonic speeds . 
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Figure 12 .- Cont i nued . 
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Fi gure 12.- Concl uded . 
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