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TECHNICAL MEMORANDUM NO.

EFFEOi’OF CHANGIITGTHE MEAN CAMBER OF AN AIRFOIL SECTION.*

.’

By A. Toussaint.

Methodical experiments with the series of airfoil sections

of the same relative thickness and of vatiable relative cambers

can be utilized for determining the effect of the camber on the

aerod-ynamicproperties of airfoil sections.

Technical Bulletin No. 12, of the S. T. Ad. (Service Technique

de l’A~~onautique) contains the results obtained at the Aerotech-

nical institute with a series of Royer airfoils derived frOm an

initial

21A (OT

in Fig.

1?.4%.

biconvex section. These airfoils are numbered from 13A to

SC96 to SC104) a--dthe 9 sections tested are represented

1. The mean maximum thickness, of all these sections, iS

As shown in Fig. 1, all these sections have a common for-

lrrardportion, the shape of which is practically semi-elliptical.

The “meancamber of each section was first determined from an accu-

rate drawing; then its corresponding chord was drawn (as defined

by the lJNormalizati6nCommissionll) and the following measurements

were made:

1. The angle i! between the chord bitangent to the lower

csmbsr and the corres~onding chord of the mean camber.

2. The ordinate Q/c of the mean camber with reference to

its corres~onding chord.

* From La Technique A&rona.utique, 1923, Oct. 15 pp. 780-788, and
NOV. 15, pp. 807-818.

Note- The Cz, Cx and associated symbols have been retained.
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The results of these measurements are given in the following

21 A

9.25

2.20

Then taking for refe~ence, the angles i formed by the cor-

responding chord of

unitary curves Cz

i = ac + ii Figs.

the mean camber with the relative wind, the

and Cx were plotted against the angles

2 and.3 give these unitary curves, i being

the angle of incidence with reference to the chord bitangent to

the lower camber.

1. Effect of o/c on Cz.- The unitary curves in Fig. 3 are

regularly staggered with respect to one another. There is no

overlapping, except for the curve relative to airfoil 21 A, for

which O/C = 9.25$.

Let us first consider the unitary curve relative to the bi-

convex airfoil No. 13 A. According to the theory of Joukowski,

the theoretical lift of an airfoil section is given by the for-

mula

CZO=2TT
.:. [J-+q--n(~+iJ ‘

in which o/c is the maximm ordinate of the mean camber of the

section with respect to its corresponding chord and &/c is a

ratio which depends essentially o-nthe maximum relative thickness

(m/c) of the section.

1111
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In the Joukowski sections we have

m–=2.2 @2-6;
c

Let us suppose this formula can be applied to the Royer air-

foils. For the biconvex airfoil the formula becomes

On making
m–=2.4;
c

me have

~ . (,)*174
1.2

= 0.145
c

The value 2.4 was chosen by compari.son ~IithJoukoqski sec-

tions of simil~.rrelative thickness to th?.t of 13A. The theoret-

ical lift for airfoil No. 13A (for infinite aspect ratio) is
/’

Czo = 7.2 sin io

For a limited aspect ratio A, we must add to the angle

i. the corresponding value of the induced angle

Czo
: x 57.3.ii. ~XA

~ For the Royer airfoil, A = 6 and the induced angle isL

Ii = Czo = 3.05

~,

We can therefore calculate the unitary curve of the theoret-

ical lifts for the aspect ratio 6. Fig. 2 gives these theoreti-

cal lifts. It is evident that the theoretical lifts for the aspect

ratio 6 can be represented by

L — .-
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Czo -m = 5.22 sin i~

Lastly the experimental lifts for airfoil NG. 13A were repre-

sented in the same figure. They can SISO be represented by the

expression

CZO m = 4.22 sin i~

In short, it is obvious that the experimental lifts, in the

domain of the angles of attack for which the from takes place

without much discontinuity (say up to i. = 14 to 150), are equal

tO 4.22/5.22 = 0.8 of the theoretical lifts.

The value of this re].ationhas already been demonstrated for

other airfoils and it would seem.very admissible for the charac-

teristic value for tests in which VZ = 5 m2 sec.

Let us now consider the other Royer airfoil. The identifica-

tion of the experimental lifts vith the theoretical can be made.

The mean camber of the section and the corresponding relative

ordinate are obtained, however, from measurements which only take

account of the geometrical shape of the sections. From the aero-

dynamic standpoint, it may happen that the flo~Taround these sec-

tions corresponds to a mean camber and relative camber different

from those measured. It seems that this is indeed the case,

since, if we consider the angles Y (airfoil-section angles) cor-

responding to zero lift, we find that these angles differ from

those corresponding to the geometric relative camber. In other

terms, we have

tany =/= ~



I

It is thezefore important to find an empirical relation be-

tween tan Y and 2 o/c which will.take account of the experi-

mental result, i.e. of the actual flow around the ajrfoil sec-

tion unde~ consideration,

Airfoil Nc 13At 14A 15A
—

o 2.8 6.6

0 t 1.6° 3.80°

0 _~,6° –f

o 2.8 5.24

We thus obtain the following table:

16A

I
“~

i&8Jf~3
};O ::A, ;&-9.2 . . . .

5.30° 7.30° 8,& 9.lCP ‘10.05° 10.50°

–4° i-5.50° -6.20° -6.55°~-7.1° -6.2G”

7.0 9.63 , 10.85 11.4 12.3 10.85

The variations y ii~terms of arc tan 2 o/c are shown in

Fig. 2. We may closely approximate these variations by such an

expression as

Y = 0.75 arc tan 2 o/c
or,

tan~ = 0.75 y-~= 1.50 o/c

In short, the theoretical lift of Royer airfoils for infinite

asoect ratio is expressed by the formula

c% [(/=2Tr- 11+(tan l’)2 + :5 sin (7’+ io)

tan?’ (20)= 0.75 x ~

The maximum value of tany is about 0.12, or (tan?’)’=0.0144.

The coefficient 2R ~2 ~diffc
ers but little, there–

fore, from 21-r(1 + =) but the value of 6/c is connectedc’

with m/c by a relation to be determined by experience.
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For this purpose we have calculated the values of the ratio
,,.
cz~: sin(’Y+ io) fo~ airfoils NO.17A (0/c = 6=4%) and No.29A

(o/c = 8.85$). We obtained a mean value of about 4.2. The same

coefficient can therefore be adopted as for the biconvex airfoil.

Tt is then readiiy shown that the experimental lifts

C~e = 4.2 sin(’1’+ io) = 4.2 sins are still equal ‘to0.8 of the

theoretical lifts for the aspect ratio 6. The effect of o/c on

the lift will then be given by the difference

c~ - CZO = 4.20 [sin(?’+ iG) - sin io]

~~ithin the limits of the angles of attack employed in avie.-

tion ard for ;,laximurncatibersof less than 10%, CZ - Czo is prac-

tically equal to

Cz - Czo = 4.20 x tanv = 6.3 O/C

Fig. 1 gives the experimental mriations of Cz - Czo in

terms of o/c and it is evident that the straight line represent-

ing the above relation passes through the mean of the experimental

points for all values of o/c below 8.5? and for the ‘a angles

between -5° and 12C. It may be noted tkat the accuracy of

Cz - Czo is much less tkan that of the total

i

j
and Czo. The accidental deviations from the

~ therefore perfectly justified.

coefficients Cz

mean straight are

This ratio is not accurate above O/C = 8.5$. We have found

this anomaly to be due to the particular drawing of the S.T-A~.

airfoils 20A and 21A. .

D - .
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Verification of the above Rati~,- It is extremely interesting.—— —. ——— ——

to ve~ify the above ratio for another series of airfoils of varia-

ble camber with a different relative thickness. The tests recent-

ly made in the Eiffel Iabora.tory,with a,series of airfoils proposed

by Mr. Lachassaowej have provided us the data for this verifica-

tion. This series comprises five airfoil sections, the character-

istics o/c and i’ of nhjch are given in the following table.

Airfoil No. E 429 E 430 E 431 E 432 E 43a
_.—

O/c max. % 2.67 4.73 5.9 7.67 9.0

i~ o +1 ● 45° 1.33° 1.20° 1 ● 00°

Fig. 4 gives the unitary curves Cz in terms of the angle of

attack i=il
‘% of the different airfoil sections, ac being

the an~le of attack with respect to the chord bitangent to the “

lower camber. It is seen that these unitary curves are regUlarlY

staggered and that the ratio between the zero angle of lift (or

a~.rfoi~-~ection angle) and the angle corresponding to the maximum

camber can be determined as before. Thus we find

y = 0.72 arc tad! 2 o/c
\.

1 or tany = 0.72 x 2 o/c = 1.44 o/c

We can then c?lcul.atethe coefficient of the formula for the
m, /

theoretical lifts. The maximum thickness of the Lachassagne a}r’

[i

foil sections being about 9.6?o,me obtain (as for the Royer -

foils) \

25 _ 0.096 = 0.08—-
C 1.2 /
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and consequently

2b~= 6.772n(l +y,

For theoretical lifts relative to the aspect ratio 6, the

same reduction can be admitted as before.

6.77 X ~= 4-.9.

Lastly, we find that the experimental lifts are still eql~.al

to 79 Or 80$ of the theoretical lifts and me have

C~e = 3.93 sin (Y + i)

The diffei-ences in lift for two different cambers can there–

fore be expressed by some such formula as

~~ (o,/Cl) - c~ (02/@ = 3.92 (71 - 72)

= 5.65 (ol/~ - o,/ca)

Experience gives

5.85 X A O/C

We find, moreover, that the symmetrical biconvex ming, which

might be considered as the basis of the Lachassagne series of

airfoils, has an experimental lift Czo = 3.92 sin io in the do-

main of the angles of attack of a good airfoil section.
,.
i Another confirmation can be found in the results obtained
L.?

with a series of Dewoitine airfoils tested at Saint Cyr. These

‘“ are the S.T.Ae. airfoils 25A to 28A, whose characteristics are

given in the following table and represented in Fig. 5.
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Airfoil 3T0. 25 A i 26 A 27 ~
I 28 A

.— ——. ——-

o/c max. .~o 3.0 5.0

:“:oi-

11.33

il 5.0° 4.2° . I 2.65°
—

In Fig. 6 the unitaxy curves Clz are plotted

angle of attack i=i~+~< It is evident that

against the

Y = 0.78 arc tan ~

or, tanY = 0.78 X 2 o/c = 1.56 o/c

The relative maximum thicknecs of these airfoils is practi-

cally equal to that of the Royer airfoils. The theo~etical and

experimental lifts must therefore be expressed by the sarleformu-

las and we have

cz~ - Czl = 4.18 (’7,- Tz)

= 6.55 (O1/Cl - Oz/C2)

Fig. 6 gives the experimental differences which verify the

foregoing ratio with a very close approximation. It is also man-

ifest that the imaginary biconvex airfoil corresponding to these

airfoils would have experimental lifts Czo = 4.18 sin i~, the

same as the Royer airfoil No. 13A.

Lastly, let us consider ?.irfoils429 and431 of the G8ttingen

Laboratory. These airfoils have practically the same thickness

m/c = 11.6% and the biconvex airfoil No. 429 may be considered

as the basis of airfoil ITo.431, for which we have

o/c = 7.0$ and il = 1.70°
I

—— —. ——..,.—____ ....- ________________________________._.-__ ..-.. _._---. _.__, .- ,,
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The experimental data contained in Prandtl]s book gives,

for airfoil 429, Czo = 2,8 when i = O... This is doubtless due to
>.-

?.slight lack of symmetry in the model. We have corrected the ex-

perimental values by reducing the Cz by 2.8 and subtracting the
>

corresponding induced drag from the measured c~. l?ewill first

consider the Cz. The coefficient of the theoretical lifts for

the infinite aspect ratio is t“nen

2 ‘tt~l+ 0i1~6> = 6*88.

5,

by

If we add the induced angle corresponding to the aspect ratio

this amounts to multiplying the coefficient by 0.’703

6.88 X 0.703 = 4.84

The experimental lifts of airfoil No. 429 can be represented

the equation

Czo = 4.1 sin io

from which we conalude that the ratio of the experimental to the

thecjreticallifts, fw the aspect ratio 5, would be

4,1/4.84 = 0,845. This value is very admissible, being given the

prod~ct V1 relative to these tests (VZ = 6 ma sec.), Under

~ these conditions, the lifts of airfoil 431 are given by

Cz = 4.1 sin (’Y+ i)

Y = 9.5° - 1.? = 7.8°

20
arc tan ~ = 8.6°

we have 20
tan’Y= 0,905 X ~ = 1.81 0/C.

—



— —

Hence,
dc~ = 7.4 o/c.

-.

This equation is coniirmed by experiment for all angles of

attack beti~een -6° and.+12°.

Conclusions.- The difference of the lifts (Cz, - CZ2), for .

all angles of attack at which the flow takes place without much

discontinuity, for two wings of the same series, with ‘maxitimin

cambers 01/c1 and 02/c.2, is proportional to the difference

(0,/C1 - 0,/cp)..

The proportionality coefficient P is a function of the max-

imum relative thickness m/c and is expressed by the formula

The numerical factor 5 obtained fro-mthe product of z~

times the CP.lCUlated ratio of the theoretical and experimental

lifts, or 0.8 for recent wind tunnel experiments (VZ = z to 6 fi~ec]

c~/cm is the c~ll~~atd ratio of the theoretical lifts for the

finite aspect ratio a and.for the infinite aspect ratio. For

a=6 Irefound Ca/Cm = 0.725, so that

‘ (~$)P(G)= ~“= (~ + 1.5 c /

Lastly, the ratio
& is the quotient obtained by dividing

the zero angle of lift (expressed in radians) by the maximum rel-

ative cauber (o/c).

c~l - c~2 (%.1+= 6.28 X 0.8 X cm Q>:
.

or,

* [%4- W%.]

l__ . ..
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The ratio & is constant for any given m/c. It seems to

ir.crease slightly with /inC.

.
‘-Y(7- ( ~’1= 1.44 for ~ = 9.6? and ~, = 1-50 for ~ = 17.4?)

Oc

We may conclude that
A Cz

A-)
increases when m/c increases.

The relative increase in thickness is therefore

crease in lift.

Effect of o/c on Cx___Fig. 3 shows that

favorable to in-

the unitary curves

c= are regularly staggered with reference to one arlother, eXcep’t

for the o/c of 8.85 and 9.25?. For the latter there is an over-

lapping, the same as for the Cz. We can express CX - ~x~, for

any given angle, in terms of o/c. Thus we find that, for positive

lifts

Cx - Cxo = * (3.7 + 0.086 Czo) (0/Cf

but this relation does not prove strictly true in the neighborhood

of Cx minimum. We have tried to discover a mo~e accurate form-

ula by proceeding as follows:

a) Studv of u.nitarv drag for the biconvex airfoil .- The uni-

tary dTag Cxo of the biconvex airfoil may be considered as con-

stituting the sum of several components, to wit:

1. The minimum drag at the zero angle of lift, CXPO* This

drag corresponds practically to the friction

airfoil section for the case of flovrwithout

I 1 11 11 11

of the air on the

lift.
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2. The increase of this frictional drag LCXpO, when the

distribution of the dynamic pressures and velocities is changedF

alGng the airfoil section as a result of the flow with lift; r .*

3. The induced drag Cxi due to the lifts

4. The drag Cxd due to discontinuity of the fluid filaments

l’Karmanllvortices with the ap-along the contour, which produce

pearance of a rapidly increasing supplementary drag. Hence wc

have
C2

Cxo = Cxpo +ACX +-&+Cxd
po

We shall try to find the value of each of these drags.

1. Miniwum drag of wing section.- According to the experi-

ments, this drag is C~. = 0.8. It may generally be calculated

with sufficient approximation, when the coefficient of friction

of the air on the exterior surface of the wing section is known.

(It is known that this coefficient depends also on the character-

istic nroduct Vi.) For e.closer approximation, it would be well

to know also the distribution of the pressures or velocities along

the contour, as given farther along for the evaluation of A Cxpo.

2S Increase of draE due to friction.- lThen the angle of at-

tack is increased, the distribution of the pressures or velocities

is modified. The upper camber of the airfoil is the seat of dy-

namic negative pressures and the corresponding velocities are

greater than the average velocity of the air stream. The reverse

is true of the lower camber. On an element dS of the wing sec–

tion, the elementary drag dF, due to friction, is given by the

formula
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a, TT2

‘F=co-dszg Cosa’
. . . ..

dS cosu being the ‘projection of the element of the airfoil sec-

tion on the di~ection of -Lheair stream.. Let us consider the

diagran of thq dynamic pressures for a certain lift. The abscissa

5.sequal to ZdS C05a. Consequently, the air F, of the sur-

fsce EDABCKE (Fig. 8), corresponding to the negative pressures

of tileupper camtier,will have the v:.lue

In like manner, the air TP, corresponding to the pressures

of the lower ca-mber,mill be

The fo~mula

A= ‘I+ FZ=. Xi + rZ~

2 AB X AD 2 VO* Z dS cosa

gives the increase in drag due to the friction resulting from the

distribution of the velocities along the contour. This forrridla

varies therefore with the lift, i.e.,

The frictional drag is then

a, V O*
F=AC ——

02g

or, in unitary drag,

Cxpo ‘ “%o= ‘co x

with the angle of attack.

Zdi3’cosa

~ dS COSQ
s

= A Cxpo

1-



, ------- —. —

-15-

For a theoretical airfoil section, calculated and investi–

gated experimental ly in a horizontal parallel air stream, Betz

obtained the values of A corresponding to different lifts Cz.

17ehave remarked th~.tthe values found by Betz can be exactly rep-

resented by the simple expression

X==l+0.25CZ

This expression evi~-entlydepends on the shape of the airfoil.

section. For the present investigation, however, we are assum-

ing that it applies to all the airfoil sections. Thus we obtain

d Cxno = 0.25 CZO X Cxpo
L

3. Induced drag .- This is readily calculated, by known for-

mulas, in terms of Cz and of the real or reduced aspect ratio

(k’ L’/S) of the given surface.

4. Drag due to discontinuities c~~,- In our present ignor–

ante of the circumstances producing discontinuity and the correl-

ative vortices, the value of cxd can only be deterinined experi-

mentally by the difference between the total drag and the par-

tial calculable drags. The following table gives the calculation

data for the biconvex section IJO. 13A.

i —— 0° 2.5°

C.z —— o 0.185
i!!%.

(Cxpo+ Lc~o) = 0.8 0.837

Cxi-=o 0.183

Cxpo+ “XnO+cXi= 0.8 1.020
.-

.—

T
0.365 0.55

0;’873 0.91

0.705 1.61

1.578 2.52

,1.75 2*9O
0.172 0.38

...

10.0°

0.73

0.945

2.825

3.77

4.32
0.55

..

12-5° 15°

0.90 1.05

0.98” 1.015

4.30 5,85

5.28 5.85

6.28 9.30
1.00 2.44



These values of Cxd for the biconvex airfoj.1appear to in-

crease in Cz2j at least for the angles correspondiilgto lifts

below Cz = 0.9, above which they increase still more rapidly,

especially after exceeding the angle of ‘maximumlift.

b) Study of u~tarv drag for airfoil of any ordinate.- We

can anply to any a,irfoil the same reasoning as for a biconvex air-

foil and write

cX(-J= Cxpo + dCxpo + Cxi + CXd

For example, let us consider airfoil No. 17A, for which

O/C = 6.42. We find experimentally that CX6-4 = 1.1, but we

must take the minimum theoretical Cx, or 1.03.* we

out the following table.

i —— -5°

Cz = 0.035

(CXD+ Acxp) = 1.01

Cxi =0

Cxp+ Acxn+c – 1.01
L ‘i –

Cx ‘= 1.15
exp

CXd =+0.14

* We must take cx6.4

-2 ● 5° 00

0.23 1 0.415

1.06 1-1o

0.28 I 0.91

1.34 2-01

1.30 ‘ 2.00

-0.04 -0.01

2.5°

0.60

1.155

1.90

3-05

3.06

+0.oi

can then make

5°

0.78

1.20

3.25

4.45

4.45

0.00

without initial discontinuities. AcCOrd-

ing to the variation of Cxm vith o/c, this C!Xpo is given.
by the formula

cXpo = 0,8 + 0.037 O/C

or for
O/C = 6.4 Cxpo = 0.8 + 0,23 = 1.03
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.
Ta.bi.

i = ?.5° I0°

Cz = 0.955 1.11

(c%+ mj?) = 1.24 ~..~8

Cxi = 4.85 6.55

cxp+ Acxp+cxi = 6.09 7.83

C:<=., = 6.2 8.313
Pu...

c‘d
= +0.11 -0.4’7

3.24 \ 1.35 I 1.405
I

1.31 I 1.340 1.49
I

8.17 ! 9-*70 10.05

9.48 1.1.04 1.1-54’

1(3.75 ‘ 13.Eic! I >7,55

;.~7 2.76 6.00
—

It is seen that the discontinuities are generally zero, down

to lifts Icss than Cz = 100. Thus ai~ioils possessing a certain

camber appear to conform better to W,e lifting flow than the bi-

convex airfoil. The Va~Ues Of c‘xd ~.~aini-ncreasevery rapidly,

when we approach the a,nglcof maximum lift. Let us agatn take

airfoil 19A for rhich o~c = 87:. We obtain C~ = 1..8, but must

take 1.1. We have the following table.

i .0= -3

c~ = 5.25

Cxp+ AC
-%

= 1.13

Cxi = 0.08

CXp+ “x.p+cxi = 1.21

Cxm = 1.85——.

cXd o.64

~:= : l:?1:--‘:~=
1.24 1.35 ‘ 1.45 1.50 1.50

1.44 4.35 \ 8.43 \ 11 ● 40 11.40

2.68 ‘ 5.70 9.98 12.90 2.2.90

—- 5=. –—3.10 7.0.70 ~ 15.50 \ 23-60

0.42 O*5O i 0.82 I 2.60 I 10.70
_l”’—
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Th.epocitive values found for %d show that

cliscontinuiiies contjhue at al1 ~,nglesof attack.

ta,keairfoil No.,15., for which Olc = 3.3$. It has

expe~imentally that CX-7 ~ = 0492. The following

—

i = -2.5°

c~ = 0s035

(Cxp+ L%p) = 0.93

c~i = 0.006

GXP+ LcxP+Cxi = 0.936

cx~ = 0.92

Cxd = -0.916
L

—

—

——
00

oe~~

0.9’/

0-26

1.23

1.2

+0.03

——

—

i = So”

Cz = 0.935

(Cxp+ /4cxp) = 1.133

Cxi = 4.65

cXp+ dcXp+cXi = 5.583

Cxe = 6.10

Cxd = 0.32
—

—

2.5°

0.405

0.995

0.!37

1.965

1.86

+G.005

..__.—

12.5°

1.09

1.17

6.30

7.47

8.3@

0.83
.—

-.——— .

the initial

Lr.stly, let US

been found

table is corn-

15°

1.225

1.20

8.00

9.20

11.01

1.85
-—

. .— .
7,50

9.77

1.-096

3.15

4.245

4-35

0.105

17.5°

3.26

1.21

8.45

9.66

14.20

4.54

-- Here the discontinuities remain zero or negligible for lifts

below Cz = 90. The minimum airfoil section drag corresponds

therefore to the flow without initial discontinuities. This

study leads to the following conclusions.

1. The airfoil section drag increases in proportion to the lift.

--
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2. The minimum airfoil section drag

reference, so iong as the section is not

may be taken as initial

too curving 3,nddoes not

produce too lar2e initial discontinuities. It is, moreover, easy

to take acco-cmtof the limit of o/c, nhich c’ausesan increase in

this initial drag due to the airfoil section. In fact, from the

exnerime-ntal curves Cx me obtain the following values:

1.

‘i;:i; ‘o= ‘7’116’ 1’ A ‘l*A119A~20A ‘2~--

—— —

,
0 i 1“4

3.3 !, 4.6 6.4 I 7.15‘ 8.0 8.85 9.25

Cx min. 0.8 1 i.89 0.’32 0.95 1.1 1.45
I

1.8 t 2.1 2,2
[

iC n _~o ,_~ ● 4 -3,4 I-4.4 1–5.2 I–5.8 I-5 -3.25
Xm .— I_ I —-.—

The graphic presentation of these d~tta (Fig. 3), sho~~sthat:

a) For v,r-luesof o/c not exceeding 6%, we have

Cy “ Cxpo
+ 0.037 (~~ (o/c) in %

“po

or, c~mn = 0,8 + 0.37 o/c for Royer airfoils.
p u

b) For values

section drag given

(o/c - 6.2). Thus

or

Cxno
L

of o/c not exceeding @, the miilimUm airfoil

by the above formula must be increased about

Tpeobtain

Cx = Cxpo + 0.407 :-- 2.3po

= o.q37 : - 1.5 for Royer airfoils.

The increase to be applied to Cxpo corresponds to the initial
discontinuities, which are doubtless produced under the intrados of

>.,,,,. the cambered airfoil sections at angles near zero lif”t. It is more-
over, observed. that, for negative coefficients of lift~ th@ same air–
foil sections quickly produce large drags, owing to t-nerapid in-
crease of the initial disco-ntinuities.

c) The angle for which Cx is rninimu-rnis practically equal

to 85% of the angle of zero lift.

d
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tan iCxm = 1.28 o/c = 0.8!5tanv

For a practical calculation, we might make icmin and 1 corre-

spond, since tl,e induced drag corresponding to CZ for icxmin

is entirely negligible.

3. The biconvex airfoil presents,

nO-Lnegligible discontinuities even at

The cambered airfoil derived from this

in general, moderate but

angles of lift below 0.9.

biconvex airfoil does not

present such discontinuities. In order to calculate the effect

of the relative o/c on the unitary drags, the experiment~.1drags

of the bicoilvexairfoil. should, therefore, be diminished by the

amount of the ~.ddeddrag due to the discontinuities. Tiefound

that, for airfoil No. 13A, this value of Cxd is practically

equal to 1.2 Czs.

Effect of o/c on Cx (difference between the polars)-- The

relation found-

enables the plotting of the unitary curves in terms of i, when

we knou Czz, Q.. and cpl, as likewise the ratio ~1/% which is

constant for a given series of airfoils. For a given value

cz, =Cz, the induced

m. tmeen thepolars is.

drags are the same and the difference be-

Cxl- c% = Cxp, - CXP2 + Jcxm - ACXP2+

(Cxdl - c~d2 ) = (1 i-0.25 Cz) (cxpl - cxlo,) + (cxdg - c%~).
.

I .—
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He have seen that, when o/c does not exceed 6%,

cXFj - CXP2 = 0,037 (* - ~)

We then have

the difference due to the airfoil section being very small.

So long as Cxdl - Cxdz = O, the polars will be regularly

staggered toward the right, in proportion as o/c increases,

the stagger tending to increase slightly with Cz, for

“Cz = O CX8 - Cxo = 0.037 X 8 = 0.296 = 3mnl

cX~-l, cx@ and cxd~ - cx& generally differ, howeve~, from

zero , Cxd~ - cx& may even become negative, when airfoil 2 at-

tains the higher lifts for which the more arched airfoil 1 would

be better adapted. These discontinuities cause the majority of

the staggers between the polars.

On several of the experimental polars, there is observed a

point of increase. This increase occurs when Cz = about 1.14.

At this point

(Cxd, - CXd, ) = 0=0475 (~, - q,)-

For airfoils whose o/c ,is less than 6.2~0,

Cx - C*2 = 0.407 P?l - V2)+3X0.037(V1 -v2)+cxd - ~x~~1 1



since

whence

L5cxpl = 0.25C c~ (Cxro + 0.C37 Q,)3

A c~p2 = 0.25 Cz, (Upo + 04037 %)

= Cz x 0.25 x 0.037 (Vl - Vz )

c - C*2 = (0.407 + 0.009 Cz) ($$ - ‘?z)+ (cx~,-cxd~)x,

Study of Di~ontinuities.

~Discontinuities in the vicinit’~of_zSro lift.—.— .— ——. -—._—-—. — ● ✍ T!ehave

sem that C:Zcflin varies directly as o//c up to o/c ==6.2%,

but beyoni this value the C:CIYingiven by 0.037 o/c must be

increased by 0.37 (o/c - E’.2). This increase is due to disconti-

nuities in the vicinity of the angle of zero lift. These discon-

tinuities shol~ldra~idly diminish, when Cz increases S1ightly

and the airfoil.section is better adapted to the Iifting flow,

so that the value of the initial discontinuities takes the form

Of 0.37 (0/C - 6.2) - N Cz,

In the case of the biconvex airfoil, we have seen that the

discontinuities at sustaining speeds are at first of the form

1.25 CZ02 to Cz = 0.9, when they begi-nto incre”asemuch more rap-

idly. For other airfoils, the calculations already indicated
~-,-

render it possible to plot the curve of the c~d against Cz

or Cx. l~ethus find that the discontinuities are zero or negli-

gible up to values of Cz as much larger as o/c is larger.

The result of this study may be represented by a simple relation



,- —

-23-

such aS Cz
LE

= 0.145 to 0.15 o/c.

On the unitary curves C7 = o(i) we then observe that the

angles of attack corresponding to the values of Cv
‘T,D

tlflusrie-

termined are exactly equal.to arc tan 2 o/c (Fig. 2). ~or~overz

we have

cz~~ = 0.147 o/c = G*042 x 0.75 2 o/c + 0.042 i

whence
0.147 -i=— 0.063 0 = 00084 0

0.042 c 0A042 C

whence
20i=~

This simple relation expresses an imports-ntproperty of cambered

airfoil sections from the viewpoint of the o~igi-nof the discon-

tinuities.

Verification of the above on Dewoitine airfoils-- FOr

these airfoils, we do not have the curves of the initial bicon.vex

airfoil, but we can take airfoil No. 13A, which has the same

thickness. Under these conditions, it is seen that the minivum

c~ of all these airfoils is greater

CXmin = 0.8

than given by

+ 0.037 o/c

the formula

This shows that there are always initial discontinuities which

must be taken into account. We have, therefore, taken the values

of Cx;flin given by the formula and have found.that for

Airfoil No. 26A, – 0.8 + 0.037 X 5 = 0.95CXmin –

If No. 27A ‘1 = 0.8 + 0.037 X 7.3 = 1.07

1! No. 28A “ = 0.8 + 0,037 X 11.3 = 1.22 .

l.— —
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We then calculated the resultant of the drags and plotted

., the polars of the discontinuities (Fig. 6). The discontinuities

for airfoil 28A do not become zero, which proves that, by ~eason

of the camber of the

are maintained until
\

ties. The origin of

the lifts Czd = 1.4

airfoil section, the initial discontinuities

the appearance of the posterioz discontinui-

the latter appears to be characterized for

o/c corresponding to the angles

iLD = 0.9 x 2 o/c.

Lachassame airfoils.-——. We assumed that the minimum c~ of—.

airfoil E429 could be taken as the origin. Since this airfoil has

a camber of 2.66% and C = 1.14 for Cz = 0.174,
‘P

me have, for

the initial biconvex airfoil,

(1.14 - Cxi) - (0.037 X 2.67) = o *1
Cxpo = – .

1 + 0.25 X 0.17.

whe-ncewe deduced, for

Airfoil No. E 429, Cxp = 0.81 + 0.1 = 0.91

!1 NO. E 431, Cx = 0.8 + 0.217 = 1.017
P

II No. E 432, ~Xp = 0.8 + 0.28 = 1.08

II No. E 438, Cxp = 0.8 + 0.33 = 1=13.

As above, we plotted the discontinuities (Fig. 4) according

WI
to the resultant of the drags, these polars being characterized by

CZD = 0.155 o/c

i~D = 2.4 O/Cwith

l.—- – .-. .—
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In short, the polars of the posterior discontinuities are

characterized in general by a liirlitingangle ‘LD which varies

between 0.9 x 2 o/c and 1.2 X 2 o/c.

These polars have such a trend that they canriotbe calculated,

The present paper is simply for the purpose of establishing, by

finclingthe resultant of the drags, the angle and lift at which

these posterior discontinuities appear.

Effect of O/C on the Maximum Cz.—

If we plot the maximum values of Cz againti o/c, we ob-

tain, for the Royer, Dewoitine, and La.chassa,gneairfoi~q a group

of thee parallel straight lines, the P,oyerline lying between the

other two (Fig. 7), and having for its equation

cZm = 105 -t-5.6 (0/C) o/c in $.

The coefficient 5.6 woun therefore be practically the same

for all three series of airfoils and the conste.ntat the origin

(Czmo) would be 111 for the Dewoitine airfoils and 90 for the

Lachassagne.

Mr. Margoulis indicated on p.258 of No. 29 (June, 1923) of

LIAeronautique, a straight line which cuts the R, D and L group.

Its equation would be

cz~ = 80 + 8.6 (0/C)

After what we have already seen, the coefficient 8.6 would

seem to be considerably too large.

,-—— _.—-— .- —-..—-... -.—— .. .-.-—.—..- -------- -.-—.. .. -..--------- ..... I . - .,
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Effect of the Camber on the Moments.

It is known that, according to the theory of supporting air-

foils, the angular coefficient of the straight lines representing

cm in terms of Cz is equal.to 0.25.

If we examine these straight lines for the different Royer

airfoils, we find they are actually parallel, with this same

angula~ coefficient (0.5 in the

and differ only in the abscissa

value of CmO of the moment at

case of the S_T.Ae. graphics),

at their origin, i.e. in the

zero angle of lift. On repre-

senting the values of CmO in terms of Olc,

c~o = 1.88 Ojc for the R, L and D airfoils.

It follows that the straight lines of Cm

we obtain -

(within the lim-

its where the initial and

can be plotted in advance

las Cmo = 100 Cmo and

Cm. =

posterior discontinuities are small)

from any airfoil by means of the formu–

0.25 Cz + 1.88 O/C (o/c in %)

Mr. Nargoulis gave, in the above-mentioned paper, the varia-

tions Of Cm,o in terms of the angle of the bisector of the ele-

ments of egreBs with the theoretical chord. He thus found

Cmo
= 1.2a .

This value,found as the

C#ttingen, is in accord with

ing to the figures indicated

O/C = 0.64u, w-hence 1.88

mean for the many airfoils tested at

the value found by us, since, accord-

by Mr. Margoulis, we have

ojc = 1.2a. The coefficient 1.88

must, moreover, be a function of the thickness of the airfoil, as

I_



-27-

indicated by Mr. Mar~ulis in his naper.

Lastly, tile CmO, thus calculated fzom experimental re-

sults, appear to be in the same relation with the theoretical

%&lo as the experimental lifts:

Cmoex c~
-JEP”

c“=
= 0.80 to 0.85.

‘Othe. Czthe.

If we imagine an airfoil automatically deformable (by con-

struction or some suitable mechanism), so that we may pass regu-

larly from the airfoil section with a small o/c

with a large o/c, when Cz must be increased,

line of the Crflfor this automatic airfoil will

to the axis of the Cm. It will be such that we

or stable equilibrium, at will, according to the

Translated by
lTationalAdvisory Committee
for Aeronautics.

h the section

the straight

be more inclined

may have neutral

change made.

. —_
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Fig.2

A= Theoretical Cz, (Aspect ratio=o)
B= Theoretical Cz, (Aspect ratio=6)
c= Cx Experimental, (~=6)
D=ld = arc tan, 20/c. CZd=O.luT O/C.
E= Line of the angles and lifts of discontinuities.,.,-
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