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SUMMARY

It is shown that a simple correction for the chord of

a finite win_ can be deduced from the three-dimensional

potential flow around an elliptic plate. When this flow is

compared with Ahe flow around a section of an endless plate,

it is found that the edae velocity is reduced b_ the factor

l/E, where E ° is the Fatio of the semiperimeter to the

span. Applyinb this c0rrection to the circulation brings

the theoretical lift into closer a_recment with experiments.

INTRODUCTION

Althou_h a number of simple, exact solutions exist

for the two-dimensional potential flow around _ing sec-

tions_ there are no corresponding solutions that are di-

rectly applicable to the three-dimensional problem. It has

consequently been necessary to employ approximate correc-

tions to the two-dimensional theory in its application to

a wing of finite aspect ratio• The correction commonly

used is that introduced b_ Prandtl and is knowm as the

liftin@-linc thcor_. In this theory, the finite spam of

the wing is'_aken into account but the lift and henano the
chord are assumed to be concentrated along a sin61o line.
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In the present paper it is shown that a simple approx-
imate correctio_ for the chord can be deduced from the

three-dimensional flow around an _ elliptic plate,
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CORRECTION OF THE LIFTING-LINE THEORY

FOR THE EFFECT OF THE CHORD

In the wing,sectlon theory, the relation between the

lift and the normal velocity of the section is established

by the Kutta condition, whereby the magnitude of the cir-

culation, and hence of the lift, depends directly on the

edge velocity induced b_, the relative normal motion of the

section.

In the application of the lifting-line theory, the
relative normal velocity of the wing section is corrected

for the downflow induced b_, the wake. it is assumed that

the effeck of a given normal velocity of the wing sectio_

in producing lift is the zame as that for a section of an
infinite wing, as long as the corrected normal velocity

computed_ from the downwash is used. This assumption-is

expressed by the equation/:

where CL is the lift coefficient, 2w is the slope Of
the lift curve of a thin wing for infinite aspect ratio,

is the angle of attack of the section, and _i is tha

induced angle of downflow.

It may be shown by the potential-flow theory that the

veloci.ty near the edge of a finite elliptic plate is less
than the velocity near the edges of an endless plate. The

ratio of-the edge velocities in potential flow is found

(see the appendix) to be l_E, where E is the ratio of

the semiperimeter to the span. Hence, the circulation re-

quired by the finite elliptic plate i's-expec ted to be

less than tha_required by the infinite plate in this ratio.
The correctedTormula for the lift is then

This correction ma_, be oiven a physical interpretation

by considering that with a finite plate the fluid has a

longer edge around which to escape and that the velocity
is less in inverse proportion to the length of the edge.

The rule is not exact for plan forms other than the ellip-

tical ones. Also, it will be noted that the form of the

°
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circulation in three dimensions is assumed similar to that

in two dimensions. Because this similarity has not been

proved for the elliptic plate, equation (2) must be con-

sidered simply as a first correction to the lifting-line

theory for the effect of the chord.

According to the lifting-line theory, for elliptic

loading,

N

_i _A

where A is the aspect ratio." Substitution of this value

into equation (2) gives:

dCL - 2_ A
d_ F__.+ 2

The more accurate correction for the aspect ratio is there-

fore A/(EA + 2) r_ther than A_A + 2), which has been
used heretofo÷e'.

A

Figure 1 sho-_s that this simple correction for the

chord brings the lifting-line theory into closer agreement
with the results obtained by Blenk for a rectangular w°ing

(reference l) and by Krienes (reference 2), who used the

more complex analysis of lifting-surface theory.

It is found that the additional correctio_ for the

chord accounts for an appreciable fraction of the loss in

lift that has been attributed to viscosity. Measurements

made on wings of aspect ratio 6 and corrected b._ the lifting-

line theory have led to the conclusion that the lift-curve

slope in two-dimension_-_l flow is about 5.7, a value that is

only 85 percent of the slope predicted by the wing-section
theory for mo'deratel.v thick airfoils. At the same time,

however, experiments in _ which two-dimensional flow ha6 been

closely simulatad (reference 3) hav.e sh6wn slopes consist-

ently closer to the theoretical than were olitained by ap-

plying the conventional correction to the values measured

on wings of finite aspect ratio. The modified correction
brings the standard wind-tunnel experiments (A = 6) into

agreement with the tests reported fn reference S and also

accounts for about one-third of the _iscrepancy between

them a'nd the theory,. The greater part of the loss of lift

is presumably due to an imperfection _of the flow in satis-

fying the Kutta condition.
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Since the Kutta condition plays such an important

par_ in the wing theory and since its applicability depends
on the existence of a sharp trailing edge, it is of inter-

est to note the actual effect of changes in the slope of

the wing near the trailing edge. This effect is illus-

trated in figure 2. As pointed out by Munk, the airfoil

with the thick, wedge-shaped trailing edge (NACA 0012-65,

reference 4) shows a BonslderablF smaller lift than do con-

ventional wings. On the other hand, the lift of the wing

with a thin, sharp edge (NACA 0012-F o, reference 5) attains

nearly its theoretical value an_ if.corrected to infinite

span, would exceed the value 2w for the flat plate.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

LangleyField, Va., June 9, 1941
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APPENDIX

The problem of the fluid motion produced by transla-
tion of a solid ellipsoid was first solved by Green in an

investigation of the vibratiom of pendulums. Formulas for

this problem 6iven in textbooks on hydrodynamiSs become
indeterminate when applied to the case of an elliptic disk,

The following short discussion is therefore presented to

show the application to the present problem.

As explained in reference 6, the surface potential of

an ellipsoid can be 6iven by a very simple formula. For

motio_ along a principal axis, the potential at any point

on the surfac_is proportional to the coordinate of the
point in the dSrection of motion. Thus, if the ellipsoid
with semiaxes a > b > c along x, y, and z, respective-

ly, is moving with unit velocity in the diroctio_ of z,

the surface poten_ial"is simply

= c, Cs)

;The equipotential lines are the similar ellipses fgrme_ by
the intersection of the ellipsoidal surface with a series

_f equidistant parallel planes perpendicular to z. The

constant O depends on the axis ratio and its evaluation

involves a special class of transcendental function know_

as Greenls Integrals. The solution for the surface poten-

tial appears in the form:
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where
co

D

'Yo = abc J

O (c

Yo- z (_)
2 - Yo

d_

a+ _) /(a = + X) (_a + _) (c= + _)

is Greents integral.

The reduction of these intebrals to the standard el-

liptic functions is given in reference 6. Following equa-

tion (8.1) of reference 8 and substituting _ = 0, in
order to restrict the solution to the surface of the el-

lipsoid, will give

_O -

where E

lus k =

perimeter of a quadrant of the ellipse
semiaxis a. (See reference 7.)

_c) b -c

is the complete elliptic integro.1 with the modu-

as The integral E is e_ual to theb2 "

ab divide S b_, the

As c_O

( c)_0----->2 I - _ E

t

Since equation (4) b_comes indeterminate (z_0 and

_o_2), St is necessary to express the solution in terms

of x and _y, which are related to z through the equa-

tion of the ellipsoidal surface:

" "_- v "_- D •

X + ____ + Z

a bs

elf

z = c I - aa - bs (6)

Substitution for Yo and z in equation (4) gives
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or

=_ 1 -_ - (7)

x s _rs ___

-_ + "b2 + = i (8)a (bl_,)_

Hence the distribution of the surface potential over

the disk may bc represented by th_ Ordinates of a cir_um-

2b. For infi-scribed ellipsoid having the vortical axis E

nite axis ratio, E = I and the chordwise cross sections

of the potential distribution are circles of radius b.

In order to il!ustrato the analog2, with t:_o-dimensional

flow, it is convenient to introC_uce the angle e defined,

at a particular valuc of x, b_,

•, cose -_;L (9)
Ye

Ye = b -_ is the ordinate of the edge of the
a s

Then, from equation (8),

# : :"esin @ (zo)
E

which is the potential function of the two-dimensional case

except for the factor 1/E. It follows then that the edge

velocity is also reduced from that in two-dimensional flow

by the factor 1/E.
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