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CORRECTION OF TEE LIFTIRG~LINE THEORY
FOR THE EFFECT OF THE CHORD

By Robert T. Jones
SUMMARY

It is shown that a simple correction for the chord of
a Tinite wing can be deduced from tae three~dimensional
potential flow around an elliptic plate. When this flow is
compared with Lhe rlow around a section of an endless plate,
it is found that the edge velocity is reduced by the factor
1/E, vwhere E® is tae ratio of the semiperimeter to the
span. Applving this correction to the circulation drings
the theoretical 1ift into closer agreement with experiments.

INTRODUCTION

Although a numder of simple, exact solutions exist
for the two~dimensional potential flow around wing sec-
tions, there are no corresponding solutions that are di-
roctly 2pplicadle to the thrce-~dimensional problem., It has
consequently been necessary to employ approximate correc-
tions to the two-dimensional theory in its apvlication to
a wing of finitc aspect ratio. Trc correction commonly
used is that introduced by Prandtl and is known as the
lifting-linc thcory. In tihis theory, the finite span of
the wing is taken into account but the 1ift and henee the
chord are assumed to be concentrated along = single line,

In the present paover it is shown that o simplc approx-

imate correction for the chord can be deduced from the
three~dimensional flow around an elliptic plate.
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CORRECTION OF THE LIFTING-LINE THEORY

FOR TEE EFFECT OF THE CHORD

In the wing-section theory, the relation between the
11ft and tae normal velocity of the section is established
by the Kutta condition, wheredy the magnitude of the cir-
culation, and hence of the 1lift, depends directly on the
edge velocity induced by the relative normal motion of the
section.

In the application of tae 1ifting-line theory, the
relative normal velocity of the wing section is corrected
for the downflow induced by the walke. It is assuned that
the effect of a given normal velocity of the wing section
in producing 1ift is the same as that for a section of an
infinite wing, as long as the corrected normal velocity
computed from the downwash is used. This assunmption is
expressed by tae equatiogﬁ

CL = 2n (o - ai) ) (1)

where Cp 1is the 1ift coerficient, 2m is the slope of
tac 1ift curve of a thin wing for infinite aspect ratio,
o 1is the angle of attack of the section, and a3 1is the
induced angle of downflow.

It may ve siaown by tke potential-flow theory that the
velocity near the edge of a finite elliptic plate is less
than the velocity near the edges of an endless plate. The
ratio of -the edge velocities in potential Ilow is found
(see the appendix) to be 1/E, where E 1is the ratio of
the semiperimeter to the span. Hence, the circulation re-
quired by the finite elliptic vlate is- expected to be
less than thad required bv tae jnTinite plate in this ratio.
The corrected Yormula for tiae lift is then .

~ O, = %g (o - ay) » : .. (2)

This correction may be oiven a physical interpretuavson
by considering that with a finite plate the fluid has a
longer edge around which to cscape and that the velocity
is less in inverse proportion to the length of the edge.
The rule is not exact for plan forms otaer than the ellip-
tical ones. Also, it will be noted that the form of the
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circulation in three dimensions is assumed similar to that
in two dimensions. Because this similarity has not been
proved for tae elliviic plate, equation (2) must be con-
sidered simply as a first correction to the lifting-line
theory for the effect of the chord. :

According to the lifting-line theory, for elliptic
loading,

where A 1s the aspect ratio. Substitution of this value
into equation (2) gives:
aCy, 5 -é_*_

da T T EALFC

The more accurate correétion for the aspect ratio is there-~
fore A/(EA + 2) rather than AfA + 2), waich has been
used hneretofore.

Figure 1 shows that tzis simple correction for_the
chord brings the lifting-line theory into closer agreement
with the results odtained dy Blenk for a rectangular wing
(reference 1) and by Krienes (reference 2), who used the
more complex analysis of lifting—surface theory.

It is found that thae additional correction for the
chord accounts for an appreciable fraction of the loss in
1ift that has deen ettriduted to viscosity. Measurcments
made on wings of aspect ratio 6 and corrected by the lifting-
line theorr have led to the conclusion that the lift-curve
slope in two-dimensional flow is adbout 5.7, a value that 1s
only 85 Derc\ nt of the slope predicted by the wing-section
theory for moderately taick airfoils. At the same time,
howevor, experiments in which two-dimensional flow has been
closely simulated (reference 3) have shown slopcs consist-
ently closer to the tacoretical than were ohtained by ap--
plying thc conventional corrcction to the values measurcd.
on wings of finitec aspect ratio. The modified correction
brings the standard vind-tunnel experiments (A = 6) into
agreement with the tests reported in reference 3 and also
accounts for about one~-third of the discrepancy between
them and the theory. The greater part of the loss of 1lift
is presumadbly due to ar imperfection of the flow in satis-
fying the Kutta condition. ‘ ’

- o eome e e P P UUIII. SINIPS WL PAPRPIP N 1Y



4 NACA Technical MNote No. 817 é

Since the Kutta coadition plays such an important
part in the wing theory and since its applicability depends
on the existence of a sharp trailing edge, it is of inter-
est to note the actual effect of changes in the slope of
the wing near the trailing edge. This effect is illus-
trated in fizure 2. As pointed out by Munk, the airfoil
with the thick, wedge-shaped trailing edge (NACA 0012-85, .
reference 4) shows a considerably smaller 1ift than do con-
ventional wings. On the other hand, the 1ift of the wing
with a thin, sharp edge (NACA 0012-F,, reference 5) attains
nearly its theoretical value ard if corrected to infinitoe
span, would exceed the value 2m for tae flat plate.

Langley Memorial Aeronautical Lavoratory,
National Advisory Committce for Aeronautics,
Lang}ey‘Field. Yz2., June 9, 1941

APPENDIX

The problem of the fluid motion produced by transla-
tion of a solid oliipsoid was first solved by Green in an
investigation of the vibration of pendulums. Formulas for
this problem given in textbooks on hydrodynamiés become
indeterminate when applied to the case of an elliptic disk.
The following short cdiscussion is therefore presented to
snow the application to the present prodblem.,

As explained in reference 8, the surface potential of
an ellipsoid can be given by a very simple formula., For
motiof along a principal axis, the poterntial at any point
on the surface is provortional to the coordinate of the
point in the éﬁrection of motion. Thus, if the ellipsoid
with semiaxes a > b > c¢ along x, ¥, snd z, rospective-
ly, is moving with unit velocity in the direction of =z,
the surface potential is simply

$p = Cz ‘ (3)

‘Phe equipotential lines are the similar ellipses formed by

the intersection of the ellipsoidal surface with a series
of equidistant parallel planes parpendicular to z. The
constant C devends on the axis ratio and its evaluation
involves o special class of transcendental Tunction known
as Green's Integrals. The solution for the surface poten-
tizl oppears in the form:
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f = -2 _ 2 (4)

/')
Y = abct/ d A
d(e®+ ) /(a‘°+>\) (b2 + ) (c® + A)

is Greent's integral.

The reduction of these inte,rels to the standard el
liptic Tunctions is givern in reference 6. Following equa-
tion (3.1) of referencs & and sudbstitutirg A =0, in
order to restrict the soclution to the surface of the el-
lipsoid, will give

_ 2abe . a2 - ¢®
Yo = z 7.3 ( ./
/ (a =~ c)

waere E is the compliete elliptic integral witih the modu-

lus k = — .« The integral XE 1is egual to the
o i

perimeter of a quadrant of ftae ellipse ad divided dy the
semiaxis a. (See reference 7.)

As c—>0
c
'Yo'——92 (l - -;5 E)

Since equation (4) vscomes indeterminate {(z—=>0 and
—>2), Yt is necessary to express thc solution in terms

of x and 'y, waica are related to 2z through the cqua-
tion of the elliipsoidal surface? .

=2  ¥® 22"
v
ST et el
or
2 2
x v
z = ¢ 1 -5 - X (6)
:// a2 ba , .

Substitution for Yo and 2z in equation (4) gives
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B <8 ya
= - 1 - -3 - a 7
¢ E a be (7)
or
2 g2 2
.:S_ + Z—— v -—-—2 = l (8)

HEencoe the distribution of tae surface potentlal over
the disk may be represented by the ordinates of a circunm-
2b,

scrived ollipsoid kaving the vertical axis 3 For infi-

rite axis ratio, E =1 and the chordwise cross scctions
of the potential distridution are circles of radius D.

Ir order to illustrute the aralogy vwith two-dimensional
flow, it 1s converient to introduce tae angle O defined,
at a particular valuc of X, F

cos § = <~ (9)
Yo
where yo = b /1 = Z; 1s the ordinate of the edge of the
a

disk, Tnen, from equation (8),

¢ = -:F—Je- sin 8 : (10)

*..

which is the votential function of the ‘two-dimensional case
except for the Factor 1/E. It follows then that the edge
velocity is also reduced fronm that in two~dinensional flovw
by the factor 1/E,

"

\
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