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SUMMARY

Previous work on turbulent heat transfer end flow in tubes was gen-
eralized and spplied to flow in noncircular passages of equilateral tri-
angular and square cross section. Expressions for eddy diffusivity that
had been verified for flow and heat transfer in tubes were assumed to
apply in general slong lines normal to a wall. Velocity distributions,
wall shear-stress distributions, and friction factors, as well as wall
heat-transfer distributions, wall tempersture distributions, and average
hegt-transfer coefficients, were calculated. In addition, results from
a previous analysis for axlal flow between rods were compared with new
experimental data. For calculeting wall tempersture distributions, uni-
form heat generation in the passage wall =and uniform heat trensfer at
the outer surface were assumed. The application of the results is re-
stricted to moderstely small peripheral wall temperature variations.
Calculations were made for Reynolds numbers from 20,000 to 900,000 and
Prandtl numbers from 0.73 to 300.

Results show that velocities, shear stresses, and hest transfer in
the reglon near the corner were lower than average values and were zero
at the corner. Friction factors and average Nusselt numbers were lower
then in a tube.

INTRODUCTION

Until recently, most analyses for flow and heat transfer in passages
were confined to clrcular tubes or to parallel plates. Those passages
were analyzed extenslvely because of their importance in technical ap-
plications and because thelr simplicity makes them asmenable to analysis.

In recent years the problems associated with the use of noncircular
passages in heat exchangers have become important. In reference 1, wall
temperature distributions for turbulent flow in rectangular end triangular
ducts were calculasted by using experimental velocity disbtributions and
average heat-transfer coefficients, together with an assumed similarity
of the wall heat-transfer and wall shear-stress variations; no attempt was
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made to calculate either the heat-trangfer coefficients or the velocity
and temperature distributions in the fluid field. Some calculations of
velocity and shear-stress distributions in corners are reported in
reference 2.

As a part of an investigation being conducted at the NACA Lewis
lgboratory on heat transfer end flow in passages of various shapes,
turbulent axlal flow between rods and in eccentric annull wes analyzed
in references 3 and 4. In the present investigation, the calculstions
were carriled out for flow in passages having square and equilateral tri-
angular cross sections. As in the previous analyses, expressions for
eddy diffusivity that had been verified for flow and heat transfer in
tubes were assumed to apply in general along lines normal to a wall.
This assumption, although appearing to be reasonasble, should of course
be checked experimentally. Also, the peripheral temperature variation
was assumed to be small compared with the varlation of temperature across
the passage.

BASIC EQUATIONS AND ASSUMPTIONS

The differential equations for fully developed flow shear stress
and heat transfer can be written in the following form:

T = (u + pe) %% (1)
q = - (k+ pe,ep) %5 (2)

where € and ¢, are the eddy diffusivities for womentum and heat
transfer, respectively, the values for which depend on the amount and
kind of turbulent mixing at a point. (ALl symbols sre defined in appendix
A.) 1In these equations, y is taken as the perpendicular distance from
the wall, and T and q are measured in planes parallel to the wall.
Equations (1) end (2) can be considered as definitions of € and .

They can be written in dimensionless form &s:

Toofe, o _e o (3)
70 Ho ~ Po Ho/Po dyt

. (&L , 0% o <€ \a&t (4)
% \ko Pro  Po °p Ho/Po ) ay*
where the subscript O refers to values at a wall and the properties in
the definitions of ut, yt, and t+ are evaluated at the wall.

ATRY
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Expressions for Eddy Diffusiviiy

In order to use equations (3) and (4), the eddy diffusivity e must
be evaluated for each part of the flow. As in reference 5, in the reglon
away from the wall the mechanism for turbulent transfer is assumed depend-
ent only on the velocities In the vicinlty of the point, measured relative
to the point, or on the space derivatives of the velocity. In the region
close to the wall, the turbulence is assumed dependent on quantities meas-
ured relative to the wall, that is, on u and y and on the kinematic
viscosity p/p. On the basis of dimensional analysis and simplicity, it
is assumed in reference 5 that, for the region close to the wall (yT < 26),

_Eiz)

€= nzuy<l -e Vv (5)
vwhere the constant n has the experimentally determined value 0.124.1

In the region away from the wall (y¥ > 26), ¢ is assumed to be de-
pendent on the relative velocities in the neighborhood of the point.
From a Taylor's series expansion for u as & function of y and gz,

c-r(Ou % . % 2% P
Sy’ ayz’ ? 3z’ azz’ Szdy

where y end 2z are measured in normal directions in the cross section
of the passage. Since, in the case of flow through a tube or bhetween
parallel plates, the velocity-gradient line 1s a line that at each point
is normal to a constant-velocity line, the derivatives in the =z direc-
tion are zero. For flow in noncircular passages, the velocity-gradient
lines nesr g wall are also normal to the surface, but they are usually
curved in the center part of the passage. Inasmuch as the greatest
changes of velocity with respect to distance take place in layers near
the wall, the effect of the derivatives with respect to z will be
neglected. It seems ressonsble to expect that near the center of the
flow passage the effect of the derivatives with respect to 2z would be
to increase the turbulence and flatten the profile in that region.
However, the normal turbulent profile (derivatives with respect to =z

1The quantity in parentheses in equation (5) becomes importent only
for heat transfer at Prandtl numbers apprecisbly grester than 1. For
Prandtl numbers on the order of 1 or less, or for the calculation of
velocity profiles, € = nluy (the value of n differs from that in eq. (5))
and is a good aspproximation for the region close to the wall (ref. 6).
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gbsent) is already very flat in that region, so that the increased turbu-
lence should not produce significant changes in the wvalues of the veloc-
ities. Therefore, the expression for € for y* > 26, obtained by using
dimensionsl analysis, is

€ = )(_2 ._(.di'l&)s_ (6)
(a2u/ay?)"”

where x has the experimental value 0.36 (ref. 6); this 1s von Kermsn's
expression.

Further Assumptions

In order to integrate equations (3) and (4), the following assump-
tions are mede, in eddition to those concerning the eddy diffusivity

(egs. (5) and (6)):

(1) The fluid properties are consldered constant. The analysis
could be carried out for varieble properties, but the complexity would
be incressed.

(2) The eddy diffusivities for momentum e and heat transfer e,

are equal (the ratic o = 1). Previous analyses for flow in tubes based
on this assumption ylelded heat-transfer coefflclents that agreed with

experiment (refs. 5 and 7). At low Reynolds or Peclet numbers (Pe = RePr),

o sappears to be a function of Peclet number (ref. 8); but for Reynolds
numbers sbove 15,000, as in the present analysis, o is nearly constant
for gases and for fluids with Prandtl numbers greater than 1.

(3) Along lines normal to a wall, the variations of the shear
stress T and heat-transfer per unit area g have a negligible effect
on the velocity and temperature distributions. It is shown in figure 12
of reference 7 that the assumption of & linear variation of shear stress
and heat transfer across a tube (T or g =0 at passage center) gives
very nearly the same velocity and temperature profiles as those obtained
by assuming uniform shear stress and heat transfer across the passage.

(4) The molecular shear-stress and heat-transfer terms in equations
3) and (4) can be neglected in the reglon aswey from the wall (y* > 26)
ref. 7, fig. 14).

676%
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Generalized Velocity and Temperature Distribution

With the foregoing assumptions, equations (3) and (4) were integrated
in reference 5. The results are reproduced in figures 1 and 2. These
curves give the relations of u't, y*, and tt +that are used in the fol-
lowing calculations for flow in noncircular passages.

CALCULATION OF VELOCITY DISTRIBUTIONS FOR FLOW
IN NONCIRCULAR PASSAGES

For applying the relation between ut and yt in figure 1 to the
calculation of velocity distributions for noncircular passages, an lterative
procedure must be used, inasmuch as the lines of velocity grasdient (lines
normal to constant-velocity lines) are unknown at the outset. A typical
flow passage of the type considered is shown in the followlng sketch:

Line of
syrmetry

Veloclty-—
gradient
lines \

1
Ve T T T T T O T T TR O T T T O T T T U ETT T EL T
—d A2

r - - 1

;I
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The first step In obtaining the velocity distribution is to draw the
line of symmetry; the velocities on either side of this line are lower
than the velocities on the line. In the present case, the line can be
drawn lmmedlately from symmetry consideretions, as shown 1in the sketch,
The next step is to draw assumed velocity-gradient lines. By using these
assumed veloclity-gradient lines, lines of constant velocity can be calcu-
lgted, as will be shown. A new and more accurate set of veloclty-gradient
lines can then be drawn, inasmuch as they must be normal to the congtant-
veloclty lines. With a little practice, the velocity-gradient lines can
be estimated quite accurately the first time, so that usually the iterative
procedure need not be used more than once or twice.

Calculation of Lines of Constant Velocity

For calculating velocitles at various points in the passage, 1% is
convenient to define the following veloclty parameter:

-r dp/dx
p

This parameter is used in place of ut because the shear stress in the
definition of ut wvaries with position. Equation (7) can be written in
terms of quantities that can be calculated as

gt
urr = O 3’;1 (7a)
m

where

ut=F(yT) = F (‘COZE % y) = F(SEE y;) (8)

The function F is obtained from the relation between u¥ and y+ in
figure 1. The parsmeter rt+ is a type of Reynolds number and is as-
signed an arbitrary value. In order to calculate y*, a force balance
is written on the element AA in the preceding sketch. The forces on
the element are the ghear force acting on Al and the pressure forces
acting on the faces of the element. There are no shear forces acting
on the velocity-gradient lines because the normal veloclty derivatives
are zero along those lines. Wrlting a force balance on the element
gives

o= -5 (8) (s)

RYRT
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where the pressure gradient dp/dx is uniform over the annulus because
the flow is fully developed. Substituting equation (9) into the defini-
tion of yE results in

yh= /AL i B (10)

r r

where AA, Al, ¥y, 8nd r are measured from & figure similar to the

preceding sketch and r™F ig a parameter. If, for a specified value of
rt+, we consider a given line normal to the surface, the value of y/ym

for a given u't can be calculated by using equations (10), (7a), and
(8) in that order.

By carrying out the calculstion for variocus lines normal to the
surface, lines of constant velocity (comstant utt) can be obtained.
As mentioned previously, new and more accurate velocity-gradient lines
are next drawn so as to intersect the constant-velocity lines at right
angles. The calculation ls then repeated with the new velocity-gradient
lines.

Calculated Velocity Distributions

Several veloclly distributions for flow in equilabteral triangular
and in square passages, calculated by the method described, are shown
in figure 3. The calculations were carried out for several Reynolds
numbers, but the effect of Reynolds number was found to be negligible.
In all cases the constant-velocity lines (solid lines) are essentially
normal to the velocity-gradient lines (dashed lines) as required. Com-
parison of these constant-veloclty curves and the experimental curves
of Nikuradse (ref. 1) indicates that both have the same general shape,
although the experimental curves seem to approach the corners more
closely than the anslytical ones. This might indicate the presence of
secondary flows in the corners, as originally suggested by Prandtl,
but 1t sppeers that no definite conclusions can be drawn on the basis
of the available experimental datas.

FRICTION FACTOR AND REYNOLDS NUMBER

With the velocity distributions for the passage known, friction
factors and Reynolds numbers can be calculated by integrating the distri-
butions to obtain bulk or average velocities. The bulk velocity between
two adjacent straight lines normal to the wall (dashed lines in preceding
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sketch) is first obtained. This bulk velocity varies with position on
the tube and is glven by
AA!
u gA'
_ JO
T (1)

where AA' is the area between two adjacent straight lines normal to the
wall. Equation (11) cen be written in dimensionless form as

AL
f utt aar
0

upt = AL (12)

The average velocity for the whole passage is

A
1l
u'b-‘-:l,.a.v = 'A—J; ubH da (13)

where A 1s the total ares of the passage. The variastion of
ug+/ug+ = ub/ub with dimensionless distance from the corner for a
,8v ,8v -

low and a high Reynolds number is shown in flgure 4.

For later comparison with heat transfer, the ratioc of the local shear
stress to the average shear stress can be obtained from equation (8), and a

corresponding equation for the whole passage, as

0 AA T
== = (14)
TO,av A AZ .

Curves for 'l:o/'ro’&V against dimensionless distance from the corner

are presented in figure 5. The curves indicste that the shear stress is
lowest in the region near the corner and goes to zero st the corner. The
slopes of the TO/To,av curves neasr the corners are not as steep as those
of Nikuradse; this is probably due to secondaery flow in the corners, which
is not considered in this analysis. The value of Reynolds number has a
small effect on the shape of the curves. The values for the Reynolds
numbers were calculated from

ug+ rHt+

av (15)

which follows directly from the definitlon of Reynolds number. The hy-
draulic dismeter Dy is defined in the usual way as four times the flow

area over the wetted perimeter. -

The fact that the shear stress should decrease in the reglon near the
corner can be seen directly from equation.(g), which indicates that the

AP67
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shear stress is proportional to 2A/Al. But AA ~ Alyy, and, hence, the
shear stress is approximately proportional to yp, which decreases as the
corner is approached.

The friction factor for the passage, based on the pressure gradient,
is defined by

= - 2 P/ di/ = (16)
Zp ub,av
or, in terms of dimensionless groups,
L
T= (17)
2
-+
Z(r/De)ub,av

Figures 6(a) and (b) show friction factors based on the pressure
gradient plotted against Reynolds number for the equilateral triangular
and the square passages, respectively. Data from reference 10 are in-
cluded in the figure. The data for the square passege are In good agree-
went with the predicted curve; those for the triangular passsage are
about 10 percent sbove the predicted curve but are still below the
circular-tube line taken from reference 7.

Figures 6(c) and (d) show analytical and experimentasl friction
factors for exial flow between rods. These experimental values (from
ref. 11) were not available at the time the analysis for flow between
tubes was presented (ref. 3) and so are included herein. The original
results in reference 11 have since been recomputed by the authors of that
report, and the corrected date are shown in figures 6(c) and (d). The
agreement between analysis and experiment is reasonably good. It is
possible that the higher values of the friction factors at the higher
Reynolds numbers in the case of the square array are caused by secondary
flow. It was found in reference 12 that secondary flows occurred only
at the higher Reynolds numbers.

WALL HEAT-TRANSFER DISTRIBUTION

With the velocity distributions previously obtained (and with certain
assumptions), the fully developed heat-transfer distributions are calcu-
lated herein. From these values, the wall temperature distributions
will be calculsted in the next section.

The heat added between two stralght lines normal to the wall per
unit length of tube is qOAZ (see sketch on p. 5). It is assumed herein

2It is perheaps surprising that the curves in figure 5 for the triangu-
lar passage, as well as those in figure 3(a), have nearly the same shape as
corresponding curves calculated for laminar flow.
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that all this heat is used in heating the fluid element between the
straight lines. Thisg 1s a good assumption when the peripheral tempera-
ture variation is small compared with the variation of temperature

across the passage.

Making & heat balance on the element of fluld between two straight 3
lines normal to the surface and using the foregoing assumption result in

d
AAT = pupey ( tb) AAY (18)
For the whole passage cross section,

a
90,av" = PY%,avp ( tgxaf)A (19)

It 1s shown in appendix B thet, for the fully developed case,
dty/ax = aty, ay/0x when the heat trensfer per unit area at-s given cir-

cumferential location does not vary with . x. Division of equation (18)
by equation (19) and conversion to dimensionless form give

B _ 9 mx (20)
= & %
40, av U ey

Equation (20) also glves the ratio of locsl Nusselt number to av-
erage Nusselt number for the case of uniform circumferential wall tem-
perature, when the heat-transfer coefficients are defined in the following
way:

% do
h = = 21
to - % tO,av - tb,av (21)
and
90, av
be 22
t0 av - tb,av (22)
or
h o Y (23)

= =
hoy  Nugy Qg av

3As an alternative assumption, en element bounded by veloclity-gradient
lines rather than by straight lines was used. No net heat transfer across
the velocity-gradient lines was assumed. This assumption was found to
give essentially the same distribution of qp as did the assumption used
in the text.

RTAT -
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Egquation (23) is true only for the case of uniform circumferential wall
temperature, because for any other temperature distribution the tempera-
ture differences in equations (21) and (22) will not cancel.

Values of qo/qo,av (h/bgy, for uniform circumferential wall temper-

ature) are shown as a function of dimensionless distance from the corner
in figure 7. As wes the case with the shear stress (fig. 5), the heat
transfer decreases as the corner is approached and goes to zero at the
corner. However, comparison of figures 5 and 7 indicates that the heat
transfer approaches zero much more rapidly than does the shear stress.
Comparison of these figures indicates, therefore, that the assumption

of similarity of the shear stress and heat-transfer distributions, which
is made in reference 1, might be expected to give heat-transfer coeffi-
cients in the vicinity of a corner that are too high. Actuslly, that
assumption gives results that are in reasonsble agreement with experiment
(ref. 10), possibly because of the compensating effects of secondary
flows and periphersl heat transfer in the fluid.

The reason that the hest transfer decreases more rapidly than the
shear stress as the corner is spproached can easily be seen by comparing
equations (9) and (18). Both equations comtain AA/AL, or AA'JAl, which
causes the shear stress or heat transfer to decrease near the corner.
However, the heat-transfer equstion (eq. (18)) contains, in addition,
the local bulk velocity uwy,, which also decreases; therefore, the heat

transfer decreases more rapidly than the shear stress as the corner is
approached.

WALL, TEMPERATURE DISTRIBUTION

It 1s assumed in this section that the passage walls are thin and
that heat is transferred uniformly to the outside surface of the passages.

Uniform heat sources may also be present in the wall. Because of tangential

conduction around the wall, the heat tramsfer through the inner gurface
wlll not be uniform and will have the distributions obtained in the pre-
ceding section on wall heat transfer. The heat transfer per unit area
through the outer surface plus the heat generated per unit volume times
the wall thickness is equal to qO,av’ the sverage heat transfer per

unlt area through the inner surface to the fluid.
In order to obtain the temperature distribution around the passage,

8 hegt balance is first made on an element of wall of ecircumferential
length di1. This heat balance gives

qO,a'v -~ g =0 %%E ' (24)
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where b is the thickness of the wall and qi 1s the tangential heat
conduction per unit area. Equation (24) can be written in integral form

as
1/r at

90 1\_ b b
( %,av)d(r)'%,avrfo ey S

where q 1s zero at the corner because the wall temperature distribution

is symmetric sbout that point (temperature gradient is zero). However,

d‘to
U = kg T (26)

Substituting equation (26) in (25) and integrating again result in

1rp i/ ( ] ——%—2;) . (%) a(%) } ktb(zz,jj:z— tg) (27)

o 0

where tO,max is the wall temperature at the corner. By using the values
of qo/qO oy Obbalned in the preceding sectlon, the difference between
, €
the meximum well temperature and the well tempersture at any point for
a given heat flux can be calculated from equation (27). A dimensionless

parameter containing the difference between the maximum and the average
wall temperatures can be obtained by integrating equation (27); that is,

1
kP (b0, max - Bo,av) | EtP(b0,max - to) &(1) (28)
2 - 2 r
%, e . %, o

The relation for ktb(to - tO,av) /qo’avr2 can be cbtalned by subtracting
equation (27) from (28).

The results for the wall temperatugq_distributions are presented in
figure 8, where kgb(tg - $0,ay)/d0 ayT” 1s Plofted against dimension-
less distance from the wall. As mentioned previously, the quantity 90, av
in the wall tempersture parameter is equal to the sum of the uniform heat

flux at the outer wall of the tube and the heat genersted per unit volume
times the tube wall thickness. Figure 8 indicates that tO,max - to,av,

which is the quantity of greatest practical interest, is directly propor-
tional to 90,av*
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Experimental wall temperature differences from reference 10 were 12
to 60 percent lower than those in figure 8. This difference might be
caused by secondary flows or by periphberal conduction and turbulent
transport in the fluid, both of which were neglected in the analysis, or
by nonuniform heat generation in the test-section walls.

AVERAGE HEAT-TRANSFER COEFFICIENTS

All the results obtained thus far (wall heat-transfer distributions,
wall temperature distributions, etc.) were independent of Prandtl nunmber,
inasmuch ag it was not necessary to use the generalized temperature dis-
tribution in figure 2. However, it is necessary to use that distributlon
for obtaining the difference between wall and bulk temperatures that
corresponds to a given heat flow; that is, for obtaining the heat-transfer
coefficient.

The average heat-transfer coefficient for the inner wall of the
passage is defined by

_ %
Pay = $0,av = %p,av (z2)
where 1
t0,av = J(; tg & (%) (30)
AA!
J. tu dA
and
Ao
j; tplp dA
tb,gv ) ub avAO (32)

The average Nusselt number corresponding to the average hegt-transfer
coefficient (eq. (29)) can be calculated from the following equation, which
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can be verified by subatituting the definitions of the various quantities:

1
1 _x/De B Y d(__A_ _
Nugy — ripr 0 90,av %o Up,av A

L

T kr keb(to - t0,av) ( U, ) A
De kgb qo,avrz Ub,av ¢ (35) (23)

where

7= | T U—E a (Ffﬁ) (34)

and

ttrtty /v

+

m

A (35)

As in the case of velocity distributions, the values of y+ are measured
along lines that are norwmal to the wall and extend to the line of maxi-
mum velocities. The values of t%+ are obtained from figure 2.

Aversge Nusselt numbers calculated by equation (33) are plotted
ageinst Reynolds number for various values of the parameter kr/kﬁb and

of Prandtl number in figure 9. The parameter kr/ktb is zero for

uniform wall tempersture and incresses as the varigtion of wall tempera-
ture lncreases. The wall temperature distributions were obtained from
figure 8. The Nusselt numbers decrease as kr/htb incresses or as

tube conductivity or thickness decreamses; that 1s, the Nusselt nunbers
decrease as the wall temperature variastion increases. These trends are
qualitatively similar to those obtained for laminer flow in reference 13,
vhere it was found that the Nusselt number for a rectangular duct with
uniform peripheral heat flux was lower than that for uniform wall
temperature. :

Experimental data from reference 10 are included in flgures g(d)
and (h). Tn general, the data are in reasonsbly good agreement with
the predicted values. It 1s possible that the slight departure from
the predicted curves at the higher Reynolds numbers is causged by secondary
flow (ref. 12}.

676¥
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SUMMARY OF RESULTS

The following results were obtained from the analyticel investigation
of fully developed axial turbulent flow in noncircular passages with heat
transfer:

1. The velocities and shear stresses in the region near the corner
were lower than the average values and went to zero at the corner.

2. When the passages were heated, the heat transfer to the fluid in
the region near the corner was lower than the average value and went to
zero at the corner.

3. The friction factors for the noncircular passages were somewhat
lower than those for a circular tube.

4, When uniform heat sources in the passage wall and uniform heat
transfer gt the surface were assumed to occur, the difference between
the maximum and average wall temperstures was directly proportional to
the heat flux.

5. The average Nusselt numbers for the noncirculsr passages were
somewhat lower than those for a circular tube. The average Nusselt
number was also found to be a function of wall temperature distribution
and of Prandtl number.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeromautics
Cleveland, Ohio, August 21, 1358
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APPENDIX A

SYMBOLS AND DIMENSIONLESS QUANTITIES
aresg

total area of section of passage

wall thickness of passage

specific heat of fluid at constant pressure

equivalent dlameter

a:
Do T

2
Zpub,av

local hest-transfer coefficient, TT_—E%E——_
0~ “b,av

friction factor,

90, av
tO,av - 1:’b,a.v

average heat-transfer coefficient,

thermal conductivity of fluid

thermal conductivity of meterial of passage wall

wall temperature distribution

peripheral distance along the wall from corner

Nusselt number based on local heat transfer, hDg/k
Nusselt number based on average heat transfer, havDe/k
constant, 0.124

Prandtl number, cpp/k

static pressure

RHRT
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a rate of heat transfer per unit ares
dg rate of heat transfer from wall of pessage per unit area
9%, av average rate of heat transfer from wall of passage per
, .
unit area
Re Reynolds number, pubDe/u
r distance from corner to midpoint of wall
-r{ dp/dx
rtt parameter, g T
B/o
t temperature of fluid at a point
(tn - tle, T
+t temperature parameter, 9 p_0
% Vr/e
g temperature parameter, =
r)
tg arbitrary temperature at a given cross section
tb local bulk tempersture of fluid at given distance from
corner at cross section of flow passage
1
++
tb"'*' bulk-tempersture parameter, f 'l%—l- P—d(-é—)
+ \AA
0 %
to wall temperature
tO,max maximum wall temperature of passage
u time-average velocity parallel to wall at a point
ut velocity perameter, u/ \/-ro?p
3t U
u velocit arameter
v E NEICIED

P
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T
Subscripts:
av

t

NACA TN 4384

local bulk velocity at given distance from corner at
cross section of flow passage

AA
u dA
bulk-velocity parameter, A
_ A
bulk-veloclty parameter, % f Uy, dA
0

axial distance along passage

normal distance from wall

wall distance parameter, v hg

value of y at u =y,

yt evaluated at line of maximum velocitles

ratio of eddy diffusivity for heat transfer to eddy
diffusivity for momentum transfer, eh/e

coefficient of eddy diffusivity for momentum

coefficient of eddy diffusivity for heat

Karmsn constant, 0.36
abgolute viscosity of fluid
kinematic viscosity

mass density of fluid

shear stress in fluid

average
tangential

pertaining to a wall
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APPENDIX B

CONDITION FOR FULLY DEVELOPED HEAT TRANSFER

For fully developed heal transfer and constant fluid properties,

do

—_—— =h Bl

where hg, an arbitrary heast-transfer coefficient, is Independent of x.
If h, were not independent of x at a great distance from the entrance

(cyclic variations of hg excluded), the absolute value of hg would

become arbitrarily large as x increased, so that for finite temperature
differences the sbsolute value of gq5 would become arbitrarily large.

The following equations are special cases of equation (Bl):

4

%o = tp,av =8 (52)
% .
— h (B3)

For the case where the wall heat transfer per unit area is Independent .
of x (but not of circumferential position), equations (B2) and (B3)
can be differentiasted to give the following results:

dto _ dib,av

dx =~ &
dtg ~ dty
dx = dx

ox

The quantity dtb/dx is therefore independent of circumferential
position when the heat transfer is independent of x.
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(a) Triangular passage; Reynolds number, 24,000 or 900,000.

Pigure 3. - Predicted veloclty distribution in nonclrcular passage.
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Bulk velocity paremeter, uy/up av

NACA TN 4384
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Friction factor, f
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Heat-tranafer parameter, CJQ/QQ ,av
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