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SUMMARY

Previous work on turbulent heat transfer and flow in tubes was gen-
eralized and applied to flow in noncircular psssages of equilateral tri-
angular and square cross section. Expressions for eddy diffusivity that
had been verified for flow and heat transfer in tubes were assumed to
apply in general along lines normal to a wall. Velocity distributions,
wall shear-stress distributions, and friction factors, as well as wall
heat-transfer distributions,wall temperature distributions, and average
heat-transfer coefficients, were calculated. In addition, results from
a previous analysis for axial flow between rods were compared with new
e~erimenta3 data. For calculating wall temperature distributions, uni-
form heat generation in the passage wall and unifom heat transfer at
the outer surface were assumed. The application of the results is re-
stricted to moderately small peripheral.wall temperature variations.
Calculations were made for Reynolds numbers from 20,~ to 900,~ and
Prandtl numbers from 0.73 to 300.

Results show that velocities, shear stresses, and heat transfer in
the region near the corner were lower than average values and were zero
at the corner. Eriction factors and average Nusselt numbers were lower
than in a tube.

INTRODUCTION

Until recently, most analyses for flow and heat transfer in passages
were coufined to circukr tubes or to parallel plates. Those passages
were analyzed extensively because of their importance in technical ap-
plications and%ecause their simplicity makes them amenable to analysis.

In recent years the problems associated with the use of noncircular
● passages in heat exchangers have become important. In reference 1, wall

temperature distributions for turbulent flow in rectangular and triangular
ducts were cal.culatedby using experimental velocity distributions and
average heat-transfer coefficients, together with an assumed similarity
of the wall heat-transfer and wall shear-stress variations; no attempt was
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made to calculate either the heat-transfer
and temperature distributions in the fluid
velocity and shear-stress distributions in
reference 2.
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coefficients or the velocity
field. Some calculations of
corners are reported in

As a part of an investigationbeing conducted at the NACA Lewis
laboratory on heat transfer and flow in passages of various shapes,
turbulent axial.flow between rods and in eccentric annuli was analyzed
in references 3 and 4. In the present investigation,the calculations
were carried out for flow in passages having square and equilateral tri- :
angular cross sections. As in the previous analyses, expressions for
eddy diffusivity that had been verified for flow and heat transfer in
tubes were assumed to apply in general along lines normal to a wall.
!JIhisassumption, although appearing to be reasonable, should of course
be checked experimentally. Also, the peripheral temperature variation

—

was assumed to be small compared with the variation of temperature across
the passage.

BASIC EQUATIONS AND ASSUMPTIONS

The differential equations for
and heat transfer can be written in

T=(W+

q =-(k+

fully developed flow shear stress
the following form:

~) g (1)
m

~peh) ~ (2] ●*

where c and ~h are the eddy diffusivities for momentum and heat
transfer, respectively, the values for which de~end on the amount and
kind of turbulent mixing at a point. (All symbols are defined in appendix
A.) In these equations, y is taken as the perpendicular distance from
the wall, and ~ and q are measured in planes parallel to the wall.
Equations (1) and (2) canbe considered as definitions of e and ~h.

They canbe written in dimensionless form as:

(s. .&&+-e-i. e )d-b+

% koPro Pocpo =7

(3)

●

(4) .

where the subscript O refers to values at a wall and the properties in

the definitions of u+, Y+, and t+ are evaluated at the wall..
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Expressions for Eddy Difflmivity

.
In order to use equations (3) and (4), the eddy diffusivi.ty E must

be evaluated for each psrt of the flow. As in reference 5, in the region
away from the wall the mechanism for turbulent transfer is assumed depend-
ent only on the velocities in the vicinity of the point, measured relative
to the point, or on the space derivatives of the velocity. In the region
close to the wall, the turbulence is assumed dependent on quantities meas-
ured relative to the wall, that is, on u and y and on the kinematic
Vfscosi-ty pjp. On the basis of dimensional analysis and simplicity, it
is assumed in reference 5 that, for the region close to the wall (y < 26),

where the constant

In the region

E = .2UY(,S-+9 (5)

n has the experimentally @termined value 0.124.1

away from the wall (Y+ > 26), e is assumed to be de-
pendent on the-relative velocities in i%e nei~~orhood of the point.
From a Taylor’s series expansion for u as a function of y and z,

(au a% &l a% a%E =
f &’ ~y2’

—..

)
“’ X’ ~ Z&” “ “

where y and Z are measured in normal directions in the cross section
of the passage. Since, in the case of flow through a tube or between
parallel plates, the velocity-gradient line is a line that at each point
is normal to a constant-velocity line, the derivatives in the z direc-
tion are zero. For flow in noncircular paasages, the velocity-gradient
lines near a wall are also normal to the surface, but they are usually
curved in the center part of the passage. Inasmuch as the greatest
changes of velocity tith respect to distance take place in lsyers near
the wall, the effect of the derivatives with respect to z will be
neglected. It seems reasouble to e~ect that nesr the center of the
flow passage the effect of the derivatives with respect to z wouldbe
to increase the turbulence and flatten the profile in that region.
However, the normal turbulent profile (derivativeswith respect to z

.
be quantity in parentheses in equation (5) becomes important ouly

for heat transfer at FYandtl nwbers appreciably greater than 1. For
. Prandtl numbers on the order of 1 or less, or for the calculation of

velocity profiles, e = n2uy (the value of n differs from that in eq. (5))
and is a good approximation for the region close to the wall (ref. 6).
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absent) is already very flat in that region, so that the increased turbu-
lence should not produce significant changes in the values of the veloc-
ities. Therefore, the expression for e for y+ > 26, obtained by using
dimensional analysis, is

E =Xz (dW)3

(d2u/dy2)2
(6)

where x @s the experimental vslue 0.36 (ref. 6}j this is von K&n&n’s
expression.

Further Assumptions

In order to integrate equations (3) and (4), the following assump-
tions are made, in addition to those concerning the eddy diffusivity
(eqs. (5) and(6)):

(1) The fluid properties are considered constant. The analysis
could be carried out for variable properties, but the complexity would
be increased.

(2) The eddy diffusfvities for momentum e .m.dheat transfer ~

we equal (the ratio a = 1). Previous analyses for flow in tubes based
on this assumption yielded heat-transfer coefficients that agreed with
e~riment (refs. 5 and 7). At low Reynolds or Peclet numbers (Pe = Rel?r),
a appears to be a function of Peclet number (ref. 8); but for Reynolds
numbers above 15,000, as in the present analysis, a is nearly constant
for gases and for fluids with Prandtl numbers greater than 1.

(3) Along lines normal to a wall, the variations of the shear
stress ~ and heat-transfer per unit area q have a negligible effect
on the velocity and temperature distributions. It is shown in figure 12
of reference 7 that the assumption of a linear veriation of shear stress
and heat transfer across a tube (~ or q = O at passage center) gives
very nearly the same velocity and temperature profiles as those obtained
by assuming uniform shear stress and heat transfer across the passage.

(4) The molecular shesx-stress and heat-transfer terms in equations

[

3) and (4) canbe neglected in the region away from the wall (y+ > 26)
ref. 7, fig. 14).

●

.
.

—

.



NIK!.ATN 4384

Generalized Velocity and Temperature

With the foregoing assumptions, equations
in reference 5. The results are reproduced in
curves give the relations of u+, Y+, and t+

5

Distribution

(3) and (4) were integrated
figures 1 and 2. These
that are used in the fol-

lowing calculations for flow in io~circular passages.

CAKUIATION OF VELOCITY DISTRIHJTIONS FOR FLOW

IN NONCI.RCULARPASSAGES

For applying the relation between u+ and y+ in figure 1 to the
calculation of velocity distributions for noncircular passages, an iterative
procedure must be used, inasmuch as the lines of velocity gradient (lines
normal to constant-velocity lines) are unknown at the outset. A typical
flow passage of the type considered is shown in the following sketch:

*
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.

The first step in obtaining the velocity distribution is to draw the
line of symmetry; the velocities on either side of this line are lower
than the velocities on the line. In the present case, the line can be

*

drawn immediately from symmetry considerations, as shown in the sketch,
The next step is to draw assumed velocity-gradient lines. By using these
assumed velocity-gradient lines, lines of constant velocity can be calcu-
lated, as will be shown. A new and more accurate set of velocity-gradient
lines can thenbe drawn, inasmuch as they must be normal to the constant-
velocity lines. With a little practice, the velocity-gradient lines can $
be estimated quite accurately the first time, so that usually the iterative $
procedure need not be used more than once or twice.

Calculation of Lines

For calculating
convenient to define

velocities at
the following

This psmmeter is used in
definition of u+ varies

of Constant Velocity

various points in the passage, it is
velocity parameter:

‘“=* (7)

place of u+ because the shear stress h the
with position. Equation (7) canbe written in .

terms of quantities that can be-calculated as -

U+Y:u++ . .—,

r* 5

(7a) =

r

where

(8)

The function F is o%tained from the relation between u+ and y+ in
figure 1. The psrameter r+ is a type of Reynolds number and is as-
signed an arbitrary value. In order to calculate y+, a force balance
is written on the element AA in the preceding sketch. The forces on
the element are the shear force acting on Al and the pressure forces
acting on the faces of the element. There are no shear forces acting
on the velocity-gradient lines because the normal velocity derivatives
are zero along those lines. Writing a force balance on the element
gives

*

.—

(9)
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.
where the pressure gradient
the flow is fully developed.

. tion of y$ results in

.

dp/dx is uniform over
Substituting equation

-me
(9)

7

annulus because
into the defini-

(10)

where AA, AZ> Ym> and r are measured from a figure similar to the

preceding sketch and r~ is a parameter. If, for a specified value of
r++, we consider a given line normal to the surface, the value of Y/Yin

for a given Uw can be calculatedly using equations (10), (7a), and
(8) in that order.

By carrying out the calculation for various lines normal to the
surface, lines of constant velocity [constant u+) can be obtained.
As mentioned previously, new and more accurate velocity-gradient lines
are next drawn so as to intersect the constant-velocity lines at right
angles. Ths calculation is then repeated with the new velocity-gradient
lines.

Calculated Velocity Distributions

Several velocity distributions for flow in equilateral triangular
and in square passages, calculated by the method described, sre shown
in figure 3. The calculations were carried out for several Reynolds
numbers, but the effect of Reynolds num%er was found to be negligible.
In all cases the constant-velocity lines {solid lines) are essentially
normal to the velocity-gradient lines (dashed lines) * required. Com-
parison of these constant-velocity curves and the experimental curves
of Nikuradse (ref. 1) indicates that both have the same general shape,
although the experimental curves seem to approach the corners more
closely than the analytical ones. This might indicate the presence of
secondary flows in the corners, as originally suggestedby Prandtl,
but it appears that no definite conclusions can be drawn on the basis
of the available experimental data.

FRICTION FAC~R AND REYNOLDS NUMBER

With the vel=ity distributions for the passage known, friction
factors and Reynolds numbers canbe calculatedly integrating the distri-
butions to obtain bulk or average velocities. The bulk velocity between
two adjacent straight lines normal to the wall (dashed lines in preceding
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sketch) is first obtained. This bulk velocity varies tith position on
the tube and is given by

AA’

\

u dA’

%’ o&f (11)

where AA’ is the area between two adjacent straight lines normal to the
wall. Equation (11) can be written in dimensionless form as $@

AA’ u

J
~+ ~1

%*= 0 & (12)

The avem.ge velocity for the whole passage is —

(13)

where A

%-/%~av
low and a

is the total area of the passage.- The variation of

= %/%,av
with dimensionless distance from the corner for a

.

.-

high Reynolds number is shown in figure 4.
.

=“
For later comparison with heat transfer, the ratio of the local shear

stress to the average shear stress can be obtained from equation (9), and a
corresponding equation for the whole passage, as .

-

(14)

curves for ro/~O,av against dimensionless distance from the corner

are presented in figure 5. The curves indicate that the shear stress is
lowest in the region near the corner and goes to zero at the corner. The
slopes of the ~0/~O,av curves near the corners are not as steep as those

of Nikuradse; this is probably due to secondary flow in the corners, which
is not considered in this analysis. The value of Reynolds number has a
small effect on the shape of the curves. The
numbers were calculated from

~H r+

‘e=%i-
which follows directly from the definition of
draulic diameter Dc is defined in the usual
area over the

The fact
corner can be

wette~ perimeter.

values for the Reynolds
A

Reynolds number.
way as four times

(15) .
.

The hy-
the flow

that
seen

the sheer stress should decrease in the region near the
directly from equation (9), which indicate= that the
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.

shear stress is

. shear stress is

proportional to Ah/AZ. But Ah --A2ym,

approximate proportional to ym, which
m

9

and, hence, the

decreases as the

corner is a~roached.d

The friction factor for the passage, based on the pressure gradient,
is definedby

&

De dp/dx
f=-

2P ~,av

or, in terms of dimensionless groups,

f
1=

++2
2(r/De)~,av

(16)

(17)

Figures 6(a) and (b) show friction factors based on the pressure
gradient plotted against Reynolds number for the equilateral triangular
and the square passages, respectively. Data from reference 10 sre in-
cluded in the figure. The data for the squsre passage are in good agree-
ment with the predicted curve; those for the triangular passage are
about 10 percent above the predicted curve but me still below the
circular-tube line taken from reference 7.

Figures 6(c) and (d) show analytical and experimental friction
factors for sxial flow between rods. These experimental values (from
ref. 11) were not available at the time the analysis for flow between
tubes was presented (ref. 3) and so are included herein. The original
results in reference 11 have since been recomputed by the authors of that
report, and the corrected data are shown in figures 6(c) and (d). The
agreement between analysis and experiment is reasonably good. It is
possible that the higher values of the friction factors at the higher
Reynolds numbers in the case of the square array are causedby secondary
flow. It was found in reference 12 that secondary flows occurred only
at the higher Reynolds nuuibers.

WALL HEAT-TRANSFER DU3~I13UTION

With the velocity distributions previously obtained (and with certain
assumptions), the fully developed heat-transfer distributions are calcu-
lated herein. IYom these values, the wall temperature distributions
will be calculated in the next section.

The heat added between two strai@t lines normal to the wall per
unit length of tube is q@2 (see sketch on p. 5). It is assumed herein

21t is perhaps surprising that the curves in fi~e 5 for the trismgu-
lar passage, as well as those in figure 3(a), have nearly the same shape as
corresponding curves calculated for laminar flow.
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that all this heat is used in heating the fluid element between the
.

straight lines. This is a good assumption when the peripheral tempera-
ture variation is small compared with the variation of tempemture ●

across the passage.

Making a heat balance on the element of fluid between two straight
lines normal to the surface and using the foregoing assmption result in3

For the whole passage cross section,

()‘%,av ~
%,a+ = P%,avcp dx

(18)

(19)

It is shown in appendix B that, for the fully developed case,
dt#x = d% av/ti when the heat transfer per unit area at.a given cir-

cumferential.’locationdoes not vary with .=. Division of equation (18)
by equation (19) and conversion to dimensionless form give .-

%3 ‘~tir—= — ——
%, av ~~av A ‘x

(20)

Equation (20) also gives the ratio of local Nusselt number to av- &
erage Nusselt number for the case of unifofi circumferential
perature, when the heat-transfer coefficients are defined in
way:

.-
wall tetn-
the following

.

(21)

and .—

hav =

or

h

%,av

‘O,av - ‘%,av
(22)

(23) 4

.

3As an alternative assumption, an element boundedby velocity-gradient
lines rather thsn by straight lines was used. No net heat transfer across
the velocity-gradient lines was assumed. This assumption was found to
give essentially the same distribution of qo as did the assumption.,psed

..

in the text.
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Equation (23) is true only for the
temperature, because for any other
ture differences in equations (21)

l-l

case of uniform circumferential wall
temperature distribution the tempera-
and (22) will not cancel.

Values of @/~,av (h/~v for unifozm circumferentialwall temper-

ature) are shown as a function of dimensionless distance frmn the corner
in figure 7. As was the case with the shear stress (fig. 5), the heat
transfer decreases as the corner is approached and goes to zero at the
corner. However, comparison of figures 5 and 7 indicates that the heat
transfer approaches zero much more rapidly than does the sheer stress.
Comparison of these figures indicates, therefore, that the assumption
of similarity of the shear stress and heat-transfer distributions, winch
is made in reference 1, might be expected to give heat-transfer coeffi-
cients in the vicinity of a corner that are too high. Actually, that
assumption gives results that are in reasonable agreement with experiment
(ref. 10), possibly because of the compensating effects of secondery
flows and peripheral heat transfer in the fluid.

The reason that the heat transfer decreases more rapidly than the
shear stress as the corner is approached can easily be seen by courparing
equations (9) and (18). Both equations contain WAX, or AA’/Al, which
causes the shesr stress or heat transfer to decrease near the corner.
However, the heat-transfer equation (eq. (18)) contains, in addition,
the local bulk velocity ~, which also decreases; therefore, the heat

transfer decreases more rapidly than
approached.

WAIL TEMPlmATuRE

the shear stress as the corner is

DISTRIBUTION

It is assumed in this section that the passage walls sxe thin and
that heat is transferred uniformly to the outside surface of the passages.
Uniform heat sources may also be present in the well.. Because of tangen%iaJ-
conduction sround the wall, the heat transfer through the inner surface
will not be uniform and will have the distributions obtained in the pre-
ceding section on wall heat transfer. The heat transfer per unit area
through the outer surface plus the heat generated per unit volume times
the wal thickness is equal to ~jav, the aver%e heat transfer per

unit area through the inner surface to the fluid.

In order to obtain the temperature distribution =ound the passage,
a heat balance is first made on an element of wall of circumferential
length d2. This heat balance gives

dqt

%,av-%=b~
(24)
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.

where b is the thickness of the wall and qt is the tangential heat

conduction per unit area. Equation (24) canbe written in integral form ●

as
2/r

1(

1-

0

where ~ is zero

is symmetric about

~)d($=+~dqt=~% (25)
o

at the corner because the wall temperature distribution

that point (temperaturegradient is zero). However,

dt~

%= -kt ~ (26)

Substituting equation (26) in (25) and integrating again result in

j:r~’rf-~).($]d(:) fitb(;:;;t”) (,2,) ‘-
)

where ~o,max is the wall temperature at the corner. By using the values

‘f %J%l,av obtained in the preceding section, the difference between

the maximum well temperature and the wall tem~erature at any point for
a given heat flux canbe calculated from equation (27). A dimensionless -
parameter containing the difference betwe~_nthe maximum and the average

—

wall temperatures can be obtainedby integrating equation (27); that is, --

/

1
ktb(to,m= - to,av) ()ktb(to,m= - ‘o) d 2

= (28)

%,avr2
F

o %,a#2

The relation for ktb(t” - t0,av)/~,a#2 can be obtained by subtracting

equation (27] from (28).

The results for the wall temperature distributions are presented in
figure 8, where ktb(to - ‘O,avJ/%,a@ 2--is plotted against dimension-

less distance from the wall. As mentioned previously, the quantity ~,av
&

in the wall temperature pemmeter is equal to the sum of the uniform heat
flux at the outer wall of the tube and the heat generated per unit volume -
times the tube wall thickness. Figure 8 indicates that ‘CO,mu - to,av)

which is the quantity of greatest practical interest, is directly pro~r-
tional to @,av.
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.

Experimental wall temperature differences from reference 10 were 12
to 60 percent lower than those in figure 8. This difference might be.
causedby secondary flows or by peripheral conduction and turbulent
transport in the fluid, both of which were neglected in the analysis, or
by nonuniform heat generation in the test-section walls.

AVERAGE HEAT-TRANSFER COEI?FICIENTS

All the results obtained thus far (wall heat-transfer distributions,
wall temperature distributions, etc.) were independent of fiandtl num~er~
inasmuch as it was not necessary to use the generalized temperature dis-
tribution in figure 2. However, it is necessary to use that distribution
for obtainiu the difference between wall and bulk temperatures that
corresponds IO a given heat flow; that is, for obtaini&
coefficient.

The average heat-transfer coefficient for the inner
passage is definedby

%,av
h-&v ‘O,av ‘%,av

where

m

and

The average
coefficient

J
Ml

tu dA

%= 09,

s43
tb~ dA

%,ECV= 0
‘%,avAO

the heat-transfer

wall of the

(29)

(30)

(31)

(32)

Nusselt number corresponding to the average heat-transfer
(eq. (29)) can be calculated from the following equation, which

——-— ——
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.

can be verified by substituting the definitions of the various quantities:

+x=a(*~”(iwi)-
/

1

‘- ~avr,’ (*).($ (33,

r kr ktb(to - to ~v)

‘e %b

o
)

.

where

(34)

—

and

‘m

As in the case of velocity distributions, the values of y+ exe measured .
along lines that are normal to the wall and extend to the line of maxi-
mum velocities. The values of t+ are obtained from figure 2.

—

Average Nusselt numbers calculatedly equation (33) are plotted
“

against Reynolds number for vsrious values of the parameter kr/~b and

of Prandtl number in figure 9. The parameter kr/ktb is zero for

uniform wall temperature and increases as the vsriation of wall tempera-
ture increases. The wall temperature distributions were obtained from
figure 8. The Nusselt numbers decrease as kr/~b increases or as

tube conductivity or thickness decreases; that is, the Nusselt numbers —

decrease as the wall temperature variation increases. These trends are
qualitatively similar to those obtained for laminar flow in reference 13>
where it was found that the Nusselt number for a rectangular duct with
uniform peripheral heat flux was lower than that for uniform wall
temperature. a

Experimental data from reference 10 are included in figures 9(d)
and (h). In general, the data are in reasonably gmd a~eement with

.

the predicted values. It is possible that the slight depsrture from
the predicted curves at the higher Reynolds numbers is causedby secondary
flow (ref. 12).
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SUMMARY OF RESULTS

15

The following results were obtained from the analytical investigation
of fully developed axial turbulent flow in noncircul.arpassages with heat
transfer:

1. The velocities and shear stresses in the region near the corner
were lower than the average values and went to zero at the corner.

2. When the passages were heated, the heat transfer to the fluid in
the region near the corner was lower than the average value and went to
zero at the corner.

3. The friction factors for the noncircular passages were somewhat
lower than those for a circular tube.

4. When uniform heat sources in the passage wall and uniform heat
transfer at the surface were assumed to occur, the difference between
the maximum and average wall temperatures was directly proportional.to
the heat flux.

5. The average Nusselt numbers for the noncircular passages were
somewhat lower than those for a circular tube. The average Nusselt
number was also found to be a function of wall temperature distribution
and of Prandtl number.

A

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Clevelandj Ohio, August 21, 1958

.

.

—
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APPENDIX A

SYM601S AND DIMENSIONLESS

area

total area of section of

wall thickness of passage

specific heat of fluid at

equivalent diameter

-De %
friction factor, —

2p~, av

WTITIES

passage

constant pressure

%
local heat-transfer coefficient, tO

- %,av

average

thermal

thermal

heat-transfer coefficient,
%,av

‘O,av ‘%,av

conductivity of fluid

conductivity of material.of passage wall

●

1P
u
&
cc
.
.-

—

wall temperature distribution

peripheral distance along the wall from corner

Nusselt number based on local heat transfer, hDe/k

Nusselt number based on average heat transfer, hav eD /k

constant, 0.124
-.

Frandtl number, cpp/k .

static pressure

.

.
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.

q

.
%

%,av

Re

r

r++

.

.

to

‘O,msx

u

@

rate of heat

rate of heat

average rate
unit area

transfer per unit area

transfer from wall of passage

of heat transfer from wall of

Reynolds number, P~De/P

distance from corner to midpoint of wall

-

-ddx
Pparameter,

vPr

temperature of fluid at a point

temperature parameter,

temperature parameter,

per unit area

passage per

%

sxbitrary temperature at a given cross section

local bulk temperature of fluid at given distance from
corner at cross section of flow passage

bulk-temperature parameter,
J:t~&@)

wall temperature

maximum wall temperature of passage

time-average velocity parallel to wall at a point

velocity parameter, u/#@

velocity parameter,

*
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%

%*

%i!av

x

Y

y-t

a

P

v

P

r

Subscripts:

av

t

o

.

local bulk velocity at given distance from corner at
cross section of flow passage

●

J
AA

udA
o

bulk-velocity parameter, ~

J
A

bulk-velocity parameter, ~
A

ub dA

o

axial distance along passage

normal distance from wall

I/’o/p
wall distance parameter,

Ty

value of y at u = urn

ratio of eddy diffusivity for heat transfer to eddy
diffusivity for momentum transfer, eh/e

coefficient of eddy diffusivity for momentum

coefficient of eddy diffusivity for heat

K&m&n constant, 0.36

absolute viscosity of fluid

kinematic viscosity

mass density of fluid

shear stress in fluid

.

.

average

tangential

pertaining to a wall
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.

CONDITION IOR FULLY DEVELOPED EliMT’TRANSFER

For fully developed heat transfer and constant fluid

%
to - ta

= ha

properties,

(Bl)

where ~, an arbitrary heat-transfer coefficient, is independent of x.

If ha were not independent of x at a great distance from the entrance

(cyclic variations of ha excluded), the absolute value of ~ would

becow sibitraril.ylarge as x increased, so that for finite temperature
differences the shsolute value of ~ would become arbitrari~ large.

The folJ.owingequations sre special cases of equation (Bl):

%

‘O - %jav = h
(B2)

(B3)

For the case where the wald.heat transfer per unit area is independent
of x (but not of circumferential position), equations (B2) and (B3)
can be differentiated to give the following results:

dto ‘%, av—=
dx dx

or

d% ‘%, av—=
dx dx

The quantity

position when the

d~/dx is therefore independent of circumferential

heat transfer is independent of x.
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(a) Triangular passage; Reynolds number, 24,000 or 900,000.

Figure 3. - Predicted veloclty dlatrlbutlon In nonclrcular passage. —
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(b) Square passage; Reynolds number, 24,000 or 900,00Q.

Figure 3. - Concluded. tiecUcted velocity distribution in noncircular passage.
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