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SUMMARY

An axial-discharge mixed-flow compressor, which is especially

adapted for Jet engines because of the large mass flow per unit

frontal area, is described. The basic concept of the design pro-

cedure is the incorporation of conditions for efficient flow into

the design equations so that all reasonable cases can be computed

without investigating the effect of a large number of design param-

eters. General equations of relative fluid motion are developed to

show clearly the assumptions involved, and the empirical character

of the simplifications employed to render the system of equations

solvable and to complete the design.

The best impeller was selected on the basis of the maximum

air-flow capacity, which was 19.8 pounds per second for a 14-inch-

diameter impeller with a tip speed of 1480 feet per second and a

pressure ratio of 3.8.

I_I_RODUCTION

The centrifugal compressor hasthe advantage of high pressure

ratio in a single stage, simple construction, mechanical strength,

compactness, and reliability, but is handicapped by relatively low

efficiency and low mass flow per unit frontal area. For high-speed

Jet engines, the frontal area is important from the standpoint of

drag and mass flow is important from the standpoint of power. The

axial-flow compressor, on the other hand, has the advantage of high

efficiency, high air-flow capacity per unit frontal area, and ease

of staging, but is complicated and expensive to manufacture, frag-

ile, and relatively heavy. A compressor combining the best features

of these two types would be rendered compact, simple, lig_ht, and

strong by accomplishing the compression in rotors of high blade
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solidity and work output, and would be reduced to a small frontal

area by having the air directed axially at the entrance and exit

of the impeller and in the diffuser. The apparent lower efficiency

of the centrifugal compressor could probably be improved by the

development of a more rational method of design, thus Justifying

the development of a compressor with high blade solidity and com-

pression in a single stage.

A compressor of this type was therefore developed with a

maximum internal diameter of 14 inches including the diffuser, an

equivalent tip speed of 1480 feet per second based on stagnation

inlet conditions, and a compression ratio of 3.5. The air flow

was to be maximized in the design process.

AERODYNAMIC BASIS OF DESIGN

The basic problem of the design is to assign the correct.

velocity distribution at the impeller entrance and exit and to

select dimensions that will produce maximum weight flow for a

prescribed outer diameter, rotative speed 3 and pressure ratio.

A study of the effect of all design variables on air-flow capacity,

however, is a stupendous task because of the large number of cases

that must be computed. Relations between the design parameters

are therefore established on the basis of certain assumptions as

to how the air could be efficiently handled and the independent

variables are reduced to two, thus permitting an evaluation of all

reasonable designs with minimum effort.

Equations of flow at the entrance and exit are first developed

and these flows are related by means of conditions for efficiently

handling the air. This part of the design is completed with a

maximized flow before the impeller shape is determined. An

impeller shape is then computed to accomplish the desired change
in air flow and state from the entrance to the exit. General

equations of motion in the impeller are developed in order to

indicate clearly the basic assumptions made in obtaining the shape

of the impeller hub. Appropriate simplifications are used to per-

mit an easy solution for the impeller design. Stream-filament

methods are used in determining the velocity distribution and

blade shape in the inducer section, and from this point downstream

a faired curve is used for the blade camber line.
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Basic Assumptions

The following assumptions are used in establishing flow rela-
tions and velocity distribution:

I. At the entrance and exit (stations i and 3 in fig. i), the
entropy is constant on an axial plane, which is the equivalent of
assuming no boundary layer on the shrouds and equal entropy increases
for all streamlines in the impeller.

2. The gas inside the impeller flows on surfaces of revolution.

3. Tangential Velocity at the casing in the discharge annulus
is 0.95 of the tip speed.

4. The velocity reduction at the blade tips in the inducer
section is one-third the incoming relative velocity.

5. Pressure rise allowed on the case is slightly less than the
centrifugal pressure rise on the assumption that the boundary layer
limits the pressure rise.

6. At the exit, the maximumaSlowed absolute Machnumber
is 1.4.

7. At the entrance, the maximumallowed relative Machnumber
is 1.0.

For computing the shape of the impeller there are the follow-
ing asstunptions:

i. The blade tips are shaped according to two-dimensional
stream-filament theory, which is applied to compute the velocity
on the blade surface. Suitability of the velocity distribution is
Judged by two-dimensional boundary-layer theory. The rest of the
blade, extending down to the root, is shaped to maintain radial
blade elements.

2. Inside the impeller the entropy is constant on surfaces of
revolution normal to the meridional projection of the stre_lines.

3. The frictional forces on only the blades and impeller are
taken into account; those on the case are neglected.

4. An infinite number of blades is assumedfor computing the
hub shape.
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Determination of Entrance and Exit Conditions

At the entrance, it is assumed that radial equilibrium exists

at the impeller face. For balance of the centrifugal and pressure
forces

! _ Vu2 (i)
p dr =-E -

where

p pressure

r radius

V absolute gas velocity

p density

Subscript :

u rotational component

From thermodynamics, with the assumption of constant entropy,

and

i

= I dp (2)
P

V 2
=_ - T (3)

dH dHt

dr- dr

where

H enthalpy

Subscript:

t stagnation state

Substitution gives

(4)
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At the entrance , the.stagnation enthalpy is constant because of the
constant energy level, and (4) reduces to

d
I'oa__)= i d (rVu) 2 (5)
\../ dr •

where the subscript a indicates the axial velocity ccmponent. The

mass flow W between the cylinder of radius r and the case rc
is

vardr (e)

The impellers considered ere to have subsonic internal relative

flow and the relative velocity at the entrance blade tips is there-

fore assumed to be sonic. The mathematical expression for this
condition is

(_a,c, I)2 = y+l-- at, 1)2 + 200 (rc,lVu, c,l) -_o2 (rc,l)

- (Vu, c,lrc,1)2/(rc,1 )2 (7)

where

a sonic velocity

7 ratio of specific heats

angular velocity

Subscripts :

C case

i impeller entrance

Station numbers and some dimensions and flow parameters are shown

in figure I. For convenience, the symbols used in the text and

appendix A are listed in appendix B.
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With these three equations for the entrance flow, insufficient
relations are available to establish the flow there. At the exit,
additional conditions are required to prevent the work output and
exit Machnumber from varying too much. In order to apply equa-
tions (5), (6), and (7) it is therefore necessary to relate the
entrance to the exlt flow and to apply the conditions imposed on
the exlt flow to determine the entrance flow.

Flow on Impeller Blade Tips

The gas near the blade tips is assumedto be compressed to
such a degree in the inducer section that the boundary ls_ver on
the blade tips will separate from the blades with a further pres-
sure rise in a reasonable distance. Downstream of the end of the
inducer, a pressure rise in the radial direction slightly less than
that due to centrifugal force is therefore allowed at the case.
In symbolic notation,

dp < p_2 rc dr c

There is an entropy rise of the alr and the pressure rise is
therefore arbitrarily reduced

1 dp =_2 dS
P_c rc - T d-_c

where

S entropy

T absolute temperature

But

I dp T dS + dH
P drc drc dr c

and Euler's equation c(xQbinedwlth the energy equation gives for
any streamline

dEt = 00d(rVu) = d +
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Theref ore,

*d (rcVu2 c) d _V_I
002 rc _ drc drc

If the relative velocity v is introduced, the solution of the

equations is found to be

vc = constant = Vc, 2 = Vc, 5

where the subscript 2 indicates the end of the inducer section

before radial flow begins and 3 indicates conditions at the

impeller exit. A compression in the inducer is estimated as
feasible with

Vc, 2 = _Vc,l = _ Va, c,l )2 + (Vu,c, 1 -_rc, l)

(8)

(9)

Flow at Impeller Exit

If the blade tips at the exit are directed axially at this

point the tangential component of the velocity is

Vu,c,5 = Vu,c,5 + _rc,5 = f 00rc,3 (i0)

where f is the sllp factor. For the impellers under considera-

tlon, eighteen blades are used, and an estimate gives f = 0.98.
The axlal-flow component is then

Va_c_ 3 =Va_c, 3 = )2 J(Vc,2)2 (l-f)2 002 (rc,3)2(Vc,3) - (Vu_c,3 =

(n)

In the discharge annulus the velocity components will vary in some

manner from the values at the tip. If a linear variation of the

quantity (Vu,3)2/r3 is prescribed,

(Vu,, 3 )2 (Vuih, 3) 2 _Vu,c, 3)2/rc ,3] - _Vu,h,3)2/rh,_
r3 - rh, 3 + - (rc, 3 -rh,3) (r3 - rh, 3)

(12)
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where subscript h indicates the inner-radius (hub) or blade-root

value. The enthalpy at the exit is a fundamental compressor per-

formance parameter, and is, of course, related to the exit veloc-

ities. Because of limits to be imposed on the exit gas velocity at

the blade roots, the enthalpy at the exit will be related to the
Mach numbers of the absolute and relative flow at the blade roots

in the discharge annulus. If equation (4) is now applied at the

exit and (12) is substituted 3 the resultant equation can be inte-

grated to give

sl - thiS) ]+/V2u' c' s-V2u'h'\rc,3 rh,S 2/r_, - rh,3)J jr3 - rh'3Is

or

Ev 12

The Mach number at the exit must not be too high for efficient

diffusion. Its value is given by

(is)

(14)

The relative Mach number M' is also of significance because its

magnitude will indicate choking flow in the impeller. It is

related to other flow variables by

, )2 (Vs)2 __.(Va,s)2 + (Vu_s -<_rs) 2(Ms : __1__
(y-l)H3

(M'5) 2 = (M3) 2 +-
002(r3)2 - 2oYr3Vu,3

(y-l)_s
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The value of H3 at the root (Hh,3) from (16) is substituted in

(14) to give the value at the case related to the Mach numbers at

the root

)2
Hc, 3 = 2arrhj3 Vuth_3 -002(rh_3

(rc 3 - rhj3) _(Vu 5 )2 (Vu, )2+ , , _ _h_ + c,5

2 \ rh, 3 rc, 3 /
(17)

There are now available sufficient relations to determine the

complete flow at the entrance and exit with only two independent

parameters, provided there are reasonable limitations on the flow

conditions. A number of designs are therefore computed with

various assigned values of these parameters and the design is

selected on the basis of the best air-flow capacity. The assump-

tions and procedures for computing the entrance and exit velocities
are now summarized.

SCHEDULE OF DESIGN COMPUTATIONS

For all impellers to be designed_ the work output per pound

is assigned and known. Consequently, from the state of the enter-

ing gas (Pt,l' Ht_l)' Ht,c, 3 is known. The work output varies

from streamline to streamline, and therefore the mean work output

per pound is known only approximately. The rotatlve velocity 00

and the maximum frontal dimension rc, 3 are also assigned.

Computations at Case

1. From the assigned data, Vu, c,5 and Vu, c,3 are camputed

by means of (10), which assumed axially directed blades at the

exit near the case. The Euler equation

Ht, 3 - Ht, 1 = _o(r3Vu, 5 - rlVu, l) (18) "-

can 5hen be used to find the entering moment of momentum at the

ca e (rc,lVu,c, 1).
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2. The particular design being investigated now enters into

consideration by assigning values to rc, I and rh, 3. The

assigned value of rc, I permits the computation of Vu, c, I from

(rc,iVu,c,l). The value of rh, 3 is only tentative because in
some cases the entrance annulus will not accommodate the entire

exit flow. Therefore, when the minimum permissible rh, I is

computed, the corresponding streamline position at the exit must
be found and the exit annulus cut off at that position.

3. Equation (7) is used to find Va,c, I. A relative Mach

number of 1.0 at the entrance blade tips is assumed.

4 For the exit at the case, equations (8) and (9) give Vc i,
•

vc,2, and Vc,3. With Vc, 3 and Vu, c, 3 equation (ll) deter-

mines Va, c_ 3 which with Vu,c, 3 is used to find Vc, 3. Then

the enthalpy Hc, 3 is computed from

V2 (19)
H=H t --_-

By assuming an efficiency for the impeller (0.85), it is possible

to find Pt_c,3 and Pc,3 from

1

/ H \7-1

I. c;3 I Pt_c,3
Pc,3 = \Ht, c,3/ RTt, c,3

1

pt= _7__ _c_3

7-i Ht,c, 3 \Ht,c,3/
(2o)

where R is the gas constant.

Computations at Exit

5. The first step in computing the flow conditions and gas
state at the exit is to find the conditions at the blade roots.

Because the Mach number increases with decreasing rt, and because

the efficiency of normal shock compression drops rapidly for Mach

numbers increasing above 1.4, a limit of Mh, 3 = 1.4 is taken at_

the root. There are two possible procedures for the next step.

(a) The maximum flow at the blade roots is assumed by

setting M'h, 3 = 1.0. With these values for the relative and

absolute Mach numbers, equation (17) then determines Vu,h,3,

/i
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and Hh, 5 is then computed from equation (16). Equation (15)

is theu employed to find Vh, 3 and Ht.h,3; Va,h, 3 is com-

puted by a right triangle formula. In completing a design begun

on such a basis, it was found that the flow limitation occurred
at the entrance rather than the exit and the condition

M'h, 3 = 1.0 was therefore discarded.

(b) An alternative procedure assigns several values of

Hi,h, 3 for each rh, 3. When the entrance flow is computed for

each case, it is found that this flow could be accommodated at
some radius for the root at the exit. Of the values of the

exit root radius thus found, that which is equal to the assumed

rh, 3 then gives the desired Ht,h,3. For any assumed value

of Ht,h,3, the procedure would consist of first finding Hh_3

and Vh, 5 from equation (15). Equation (14) is solved for

Vu,h, 3 and Va, h, 3 then found, thus determining all needed
flow conditions at the blade roots.

6. In computing the variation in fluid state and flow condi-

tions at the exit, Ht, 3 is assumed to vary linearly wlth radius

between the value at the case and that at the blade roots. Equa-

tion (13) gives H3 and (12) determines Vu, 5. Then

(v3)2 = 2(_t,3- H3)

(va,3)2--(v3)2 - (Vu,3)2

and by assuming isentropic conditions at the exlt

i

f 3V-I
03 = %,3 \_c,3}

(2l)

For correlation of the entrance and exit streamlines, the mass flow

'_r3 between the case and a cylinder of radius r3 is required.

rc j3W = 2_ P3 Va,3 r3 dr3 (22)

dr 3
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Computations at Entrance

7. Computations of flow at the entrance use equation (18) 3
which gives

1 (23)
rl Vu,1 = _ (Kt,1 - Ht, 3) + r3 Vu,3

The entering moment of momentum rI Vu, 1 is therefore known as a

function of r3, the radius at which that element of gas leaves

the impeller. However, the value of the mass flow W 1 between

radius rI and rc 1 is the same as that between r3 and rc, 3

for the same streamline; that is,

r1
W(rl) = -2x Pl Va, l rl drl

,I

r3
W(rl) = -2_ P3 Va,3 r3 dr3 = W(r3)

,3

(24)

establishes a relation between the corresponding

any streamline. (The mass flow density Pl Va,1

At the exit r3 Vu, 3 is a known function of W

therefore also gives rI Vu, 1 as a function of

gives

rI and r3 for

Is not yet known.)

and equation (23)

W. Equation (5)

d(Val)2 l  (rlVu,1)2
2 =

dW (rl) 2 dW

(25)

which cannot be solved directly for (Va, l )2 as a function of W

because rI is not known as a function of W. The quantity

d(rlVu21 )2
is a known function of W, however_ and can be evaluated

dW
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d(rlVu21 )2" dr 3 d Ir3Vu,3 _ _I- _w -2(r:Vu,l) _ _3

But

Also, Ht, 3

sequently

and (Vu,3) 2/r3

2_r3 P3 Va,3

are linear functions of r3; con-

_tL3 = Et,3c - _,3h
dr3 3-rh,3rc

and

d _ + (r3)2

dr3 (r3Vu,3) = 2 2Vu, 3

_(Vu,c,3)2/rc,3] - _Vui:h,3)2/r_,_

rc, 3 - rh, 3

Therefore

_X -----

d(rlVu, l )2

dW

rlVu 1
= 2

_r3 P3 Va,3

r32 Vu 2c23 )2

+ZVu,3(rc,3-rh,3)L rc,3
(Vu,h,3)2_ Ht,c,3-Et,h,3_

rh,3 - (rc,3 _ rh,3)_

(26)

can be evaluated from exit computations 8_ a function of W before

solving for the entrance flow. Now equation (25) can be written

a(Va,:)2
dW

- [_ ._ (27) _-

(r!)_

_nd equation (24) can be expressed
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d(rl)2 I

dW _PlVa, i

(28)

The system of equations (27) and (28) can be numerically integrated

by the Kutta-Runge method.

Another scheme of good accuracy for this special system was

devised. Equation (27) can be expressed

)2
d(Va, l = 1

d(rlVu,1 )2 (rl)2

or

dy= 1

dx (rl)2

where for convenience y = (Va31)2, x = (rlVu, 1)2.

d2y 1 d(rl)2 1 _w
dx 2

dx 2 (rl)4 (rl)4 d(rlVu, I)

Then

d(rl )2

dW

d2y= I

dx 2 _PlVa, I_ (rl)4
(29)

A Taylor's series expansion for y is

a_ A5 y"' (x) +y(x+_)= y(_)+ Ay'(x)+ _ y'(x)+ 3-[.

or

A3
_2 y"(x)- y'"(x)+ +y(x-_)= y(x)- Ay'(x)+ V _.
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Then

y(x+a)= 2y(_)- y(x-a)+ a2y'(x)+ + (30)

_d

1 A3 y"'(x)+ (31)y(x+A)= y(x-A)+ 2Ay'ix)+

In starting the solution, a small increment in (rlVu,1)2 is used

i A3 y.,,and the term _ (x) in equation (31) is neglected to obtain

2 I( 2 bl _Vu, 12rl2) a (Vuj12rl2)b_
(Va,12)b - (Va,1 )a = -

r12) a + (rl2)

(32)

as the difference in axial velocities squared at two inlet radial

stations a and b for the estimated value of (rl2)b. The mean

value of OlVa. 1 for the step is then estimated, utilizing the

guess for (rl_)b to compute the value of O1 at the average

position by means of the stagnation density and the velocity. Wlth

this mean value of PlVa,1 for the step from a to b, a better

estimate of (rl2)b is obtained from

(rl2)b_ (rl2)a_-_ 1 (Wb - Wa) (33)
OlVa, 1

where Wb and Wa are known in advance for the corresponding step

in (rlVu_l) b - (rlVu, 1)a. The new value of (rl2)b can then be

used again in equation (32) and the process repeated to find the

of (rl2) b that checks. After one small step has beenvalue

taken, equation (30) is used because it neglects only the fourth

and higher derivatives. The size of the interval can be doubled

after the second step because of the higher accuracy of the formula.

In the case of equation (30), the steps are uniform in (rlVu, l)2.

Then equations (30) and (29) give

2 2 2 I
(va,l )d--_(Va,l )b - (Va,1)a +

(PlVa, l_rl 4)b

× rl2Vu,12)d - (rl2Vu, l ) (34)
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and parabolic (second degree) integration of (28) gives

2Vutl2)d - (rl2Vu21 )bI(rl2)d - (rl2)b = - _ 12

x
I 1 8l)a + z)b

(3s)

In equation (35), (Va, l)d and Pd are known, but (pl) d is not.

If an estimate is made 3 then (rl2)d and hence

1

(Vu, 1) - rl (Vu, lrl )

and finally Pl can be computed. Equation (35) is repeatedly

used until the estimated and computed values of (rl2)d agree.

The method fails if (rlVu, I) as a function of W is constant;

in that case however, a much simpler method of solution is avail-

able because equation (25) indicates (Va, l)2 is constant, and

(Vu, l)2 and hence 0 are known functions of rI. The solution

of equation (28) by Simpson's rule .then identifies the variation

of rI with variations in W.

8. At this stage of the computations the entire velocity dis-

tribution at the entrance and the exit is known, and the mass flow

is also known as a function of radial position at the entrance and

the exit. Examination of the velocity diagrams indicates in some

cases a radius at which it is desirable to set the blade root.

Computation of the blade stress at the roots also imposes limita-

tions. If the blades are tapered with increasing thickness toward

the root, blocking of the flow area may indicate a desirable radius

for the root. By such considerations, a blade-root radius is

decided upon and a mass flow established for the assumed values
of and

rc, 1 rh, 3"

DESIGN OF IMPELLER

After the best gas velocity distribution has been computed at

the entrance and exit, the next problem is to design an impeller

between these planes to accomplish the desired turning of air.
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Inducer Section

The inducer section is regarded as that portion of the impeller
where the air receives an initial compression_rlth no radial flow
at the case. At the end of the inducer section, the flow area is
made as large as possible by designing for no radial flow at the
root. Conditions at the inducer exit are estimated by the dif-
ferential equations of motion on the assumption of a certain pre-
scribed relative velocity at the case. (See equation (18).)
Inside the impeller

V2
Ht = H + _-= Ht, 1 + _(r2Vu, 2 - rlVu, I)

The quantity

1 V2 _ _rVu = H + 1 v2 1 _2r2+ _ _ - _ --Ht,1 - _rlVu,1 (36)

is therefore constant for any one streamline, and the relative

stagnation enthalpy H + (vZ/2) changes on any streamline only
a_ a result of change in the potential energy level (u2/2).

Equation (4) is then

(Vu)2
dr - r

d

°Od-_l (rlVu, l)
drl d (rVu) I dV2_+oo_ 2 ar (37)

In terms of relative velocity

d dW
200vu - 03_ (rlVu, l)

Continuity gives

dW
dr -2_r O va

(38)

In accounting for the area blocked by the blades, the quantity

2_r - (Bd/cos 4) must be used for 2_r where

B n_nber of blades

d blade thickness
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angle between direction of axis of rotation and intersection
of blade surface with circular cylinder about axis of
rotation

The corrected mass-flow equation is

dW -(2xr Bd_-1= pv cos $
(39)

For structural strength it is prescribed that radial lines through

the blade tips be blade elements and consequently

tan _ = (r/rc) tan _c (40)

Isentropic conditions are assumed at any axial depth; from this

assumption the density variation is estimated by means of

1

in conJunction with (3G) re_Titten

(41)

i v2 to2r2 (42)
H = Ht, 1 -torlVu, 1 - _- +

The equation of motion is then

d_T = 2xr - Bd sec 4) pv cos

d(rzVu'z)X sin 2 qJ + 2V tO sln - (t;''_dW ' (43)

This equation may be solved simultaneously with equation (39) by a

step-by-step process such as the Kutta-Runge method. The quantity
d "_

(, _-_ (rlVu_l) is a known ftmction of W and is computed before

the inducer section is desi_aed The botuqdary value for ,to = vc,_

is also known# but _c is not. A solution is therefore obtained

for several values of "_c and the one giving the desired value Cot

r_ Is _elected.
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The blades must be turned from the entrance direction rapidly,

especially in the beginning because the blade thickness ma_T cause

a velocity rise before the diffusion process is begun. The veloc-

ity distribution at the blade tips is estimated on an assumed

c_mber line by the stream-filament method as outlined in refer-

ence I. A check for boundary-layer separation is then made from

the calculated velocity distribution and the suitability of the

assLLmed design so evaluated. Modifications in shape are indicated

by the desired change in velocity. The rest of the inducer blade

surface is shaped according to equation (40).

Mixed-F low Sect ion

From the end of the inducer section to the impeller exit, a

smooth st_face of revolution is assumed for the shape of the case,

and on this suxTace the curve representing the blade shape at the

tips is 8sstune@. The blade surface is then obtained from equa-

tion (40). The quantities rc and _c are then known functions

of the axial depth, and therefore _ is known at every point. The

boundary condition of constant vc is attained by properly shaping

the root. The equations utilized in this step are derived in

appendix A, and are listed here for continuity. The mass flow
between two s_n_faces that are meridional projections of the stream-

]ines _s

-dW = Dv (2_r Bd )cos c_ cos a dn (44)

and the variation in relative velocity is determined by

d(v_ = - v

dW

0(2_r coBs< .)

o sin _ sin _ cos d(°°rlVu, (45)
× " -- + r cos _ dW

_here

angle between velocity and meridiona] component

dl] element of length in merldional plane normal to meridional

velocity component
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Rm radius of curvature of meridional projection of streamline

angle between merldlonal component and axis of rotation

If the blade consists of radial elements then

r__ tan _c tan atan _ = rc - cos q_
(46)

F]uid density is related to that at the case and the enthalpy of

the fluid by

1

Pc

(47)

The density at the case Pc Is computed on the assumption of

constant efficiency during the compression process. Equation (46)

is evaluated on a plane normal to the axis, and equation (47) Is

evaluated along the curve n, which consists of the line

elements dn. An infinite number of blades and constant entropy

along the n-curves are assumed. This system of equations Is

solved by taking small increments In the mass flow and evaluating

the position of the streamline next to and inward frc_ the one

already known. The velocity is also evaluated at thls streamline.

The new streamline position is computed throughout the whole

impeller before moving on to the next streamline. By thls method

it Is possible to evaluate Rm and solve the equation. _en the

entire mass flow is thus accounted for, the shape of the hub is

outlined by the last streamline.

Impeller Design Dimensions and Performance

The foregoing system of computations resulted In an impeller

wlth the following design dimensions and performance character-

istics:
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Dimensions:

Radius of case at entrance, inches .............. 5.62

Radius of case at exit, inches . . . , ............ 7.00

Radial blade clearance, inch .................. 040

Radius of root at entrance, inches .............. 2.75

Radius of root at exit, inches ................ 5.90

Flow Characteristics at Exit:

Absolute Mach number at case ................. 1.28

Absolute Mach number at root ................. 1.40

Relative Mach number at case .................. 80

Relative Mach number at root .................. 75

Rotation velocity component, feet per second ......... 1400

Axial velocity component at case, feet per second ...... 710

Axial velocity component at root, feet per second ...... 840

Impeller velocity at V-inch radius, feet per second ..... 1480

Performance :

Average pressure ratio .................... 3.5

Mass flow, pounds per second ................. 19.7

Efficiency near case ...................... 85

The conditions at the exit are shown in figure 2 and those at the

entrance in figure 3. Because of the constant entropy assumed at

the exit the efficiency of compression is lower for streamlines

near the root because of the lower work input.

EVALUATION OF DESI(_ PROCESJ2E

The fundamental objective of the design method was to find

sufficient reasonable restricting conditions on the types of flow

so that the number of variable design parameters would be as small

as possible. The highest air-flow capacity design for variation

of these parameters could then be found with a reasonable amount

of labor. Some of these restrictions are quite arbitrary, such as

the energy conversion possible In the inducer and the limitation
of the absolute Mach number to 1.4 which was chosen because of the

high efficiency of normal shock compression at this value. How-

ever, efficient diffusers can be designed at higher Mach numbers by

utilizing oblique shocks.

More exact calculations of flow detail are also desirable,

especially at the impeller entrance where radial flows exist.
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More detail of the velocity distribution on the blade surfaces inside

the impeller is required to account for three-dimenslonal flows. To

utilize such a knowledge to the utmost, however, solution of the

equations for the boundary-lawer flow on the rotating blades is

required in order to decide what Is a good velocity distribution.

No such solution exists.

One can therefore say that the design procedure is partly

rational and partly empirical. Because the analytical solution of

these flow problems Is not In immediate prospect, experimental

techniques must provide some of the information required for the

step-by-step improvement of this promising type of canpressor.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio.

• ,i¸
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APPENDIX A

EQUATIONS OF INTERNAL RELATIVE FLOW IN

The gas inside the impeller is assumed to flow on surfaces of

revolution, which permits an extensive simplification of the equa-

tions of motion. For a compressible fluid with absolute velocity V

and steady velocit[ v relative to the impeller, which rotates With

angular velocity (D, the equation of motion is

v2
vT- vx (vxV) g+2Vx +F-/0P

(i)

The bar over the symbol indicates a vector quantity; F is the

force per unit volume exerted by viscous forces and bodies dis-

tributed in the fluid. The term

_ r 2 u 2
(D2 ux (D:oo2 VT= v T

is the centrifugal force where

: _ X r linear velocity of rotation

V= U+V absolute velocity

2vx(D Coriolis force

From the laws of thermodynamics, the equation will be modified by

expressing the pressure and density in terms of other gas-state
functions

i vp = vH T?S : v - TvS
0

In the section on inducer design, it was found that the quantity

v2 u2

h =- Ht - Vu (Dr = Ht - u.V = H + 2 2 (2) --

_as constant on streamlines in the inducer. This quantity is

tntroduced into the equations of motion in order to determine the

,_c_iitions f_r _hich it is constant for streamlines in the impeller.
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(l/p) vp = vh - TvS + (vu2/2) - vv2/2

Equation (1) then becomes

_h=T_S+vx (2¥+_xv) +2-/p (3)

This equation shows that the condition for

streamline (v.vh = 0) i8

h constant on a

_s _ Fv/p (4)T ;5-_"=

where 3/3s is the derivative along a streamline and Fv is the

component of F parallel to _. The entropy rise is a result of

friction, and hence Fv is a frictional component of force. The

rest of the force is normal to the velocity vector v and is

designated as a lift force F Z. Because h is constant along any

streamline, then changes in h may be determined from values on
different streamlines at the impeller entrance. At the entrance h

is constant for different streamlines at the same radius. Because

the flow is assumed to be on surfaces of revolution, h is there-

fore constant on surfaces of revolution; that is,

u.vh= 0

The oRly remaining component of vh is therefore normal to
and u and is parallel to the unit vector

^n= v x u (s)
,/(_ x _)2

which is in the meridional plane and normal to the projection of v

on that plane. If the assumption is made that vS is parallel to

V,

T_S = - (IFv)/0

and

#z/o+vx (25+ _xT) A_h ,_h= n_'=

where _ is a unit vector parallel to _.



NACARMNo. ESF04 25

It is now assumed that the llft force F_ Is on the surface

of revolution formed bythe stream sheet as well as normal to the

velocity. Thus, FZ is normal to _, and therefore,

a__h_-_.._ x (25 + v x V) (6)
8n

Equation (6) provides the basis for comp_Sation of the streamlines

in the impeller.

For greater convenience the velocity is broken down into two

components vm the merldional component and vu the rotational

component. Then

Also,

and

n. X = -- --X _ v._ cos qo/r vu u cos _/r vu00cOs

_ _ v2/V X V X V = _7 2 - V._TV

v-_v = (_m+ _u) _ (Vm_ + vu ¢)

2 _ 8Vm

= vm -_+_Vm_--+ + etc.

A Vm2 - 8Vm 5Vu Vu 3Vm
= n _+ Vm _+ _ Vm _ + _-r-_-

9 _ 3Vu
+ Vm vu sin q_- _Vu 2 + - vu_- r _-_

i 3Vm
where r _-_ is the derivative in the direction of

tion (6) becomes

_. Equa-

L - =an

Vm2 Vu2
+ _ C08

r
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Because the stagnation enthalpy is assumed to be uniform at the

entrance to the impeller, equation (2) gives

_h 8(Ul'V1)

_n _n

so that equation (7) becomes

8v Vu Vm2 Vu2 z 8(51"Vz)

_n = - 2 T *c°s_ +Rm v vr cos _ v 8n

If an infinite number of blades is assumed with loading and volume

dispersed in the fluid, the variation of mass flow is

Then

- dW = pv m 12_r Bd (e)cos

8W = I2_r c_ _/D

[cos o, I_ sin _)sin _ cos _] d (Ul._l) (9)
× [_ R m + r cos _ - d-W

The quantity d(ul'Vl)/dW is a known function of the particular

streamline in application of this equation to impeller design.

The angle _ between the axial direction and the curve formed

by the intersection of the blade with the clrcular cylinder about

the axis Is related to a and _ by

tan _ = sin _ _ tan _ (i0)
cos _ cos _ cos

If the blades consist of radial elements#

r__ tan _Pc
tan _ = rc
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APPENDIX B

a

B

d

F

f

H

M

M'

n

P

R

r

S

S

T

U

V

V

W

SYMBOLS

The following symbols are used in the text and the appendix:

sonic velocity

number of blades

thickness of blade

force exerted on fluid by blades and viscous forces

slip factor for discharge tangential velocity

enthalpy of gas

Mach nl_nber of absolute velocity

Mach number of relative velocity

coordinate on curve in meridional plane and normal to the

relative velocity

pressure

gas constant

radius of curvature of meridional projection of streamline

radial distance from axis of rotation

entropy of gas

coordinate along a streamline

absolute temperature

linear velocity of rotating impeller

absolute velocity of gas

relative velocity of gas

mass flow between two stream surfaces of revolution

]:
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7

P

cp

angle between meridional component and resultant relative gas

velocity

ratio of specific heats of gas

d(rlVul I)2

dW

gas density

angle between meridional and axial components of gas velocity

tan -I (Vu/Va)

angular velocity of impeller

Unit vectors:

in direction of relative velocity

in direction of velocity of impeller

in meridional plane normal to stream surface of revolution

N
m parallel to projection of relative velocity curve on

meridlonal plane. (Normal to _ and _)

Subscripts :

i

2

3

a

c

h

impeller entrance

inducer exit

impeller discharge

axial velocity component

case value (at blade tips)

hub value (at blade roots)

lift
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m

r

t

U

meridional velocity component

radial velocity component

stagnation state

rotational velocity component

REFERENCE
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Figure I..- Experimental axial-discharge mixed-flow imDeller.
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Abstract

An axial-discharge centrifugal compressor,

especially adapted for Jet engines because of the

large mass flow per unit frontal area, is described.

General equations of relative fluid motion are

developed to show assumptions involved and empirical

character of simplifications.

The best impeller was selected on basis of

maximum alr-flow capacity, which was 19.6 pounds
per second for 14-inch diameter with tip speed of

1480 feet per second and pressure ratio of 3.5.
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