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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
RESEARCH MEMORANDUM

CALCUIATION OF AERODYNAMIC FORCES ON A
PROPELLER IN PITCH OR YAW

By John L. Crigler and Jean Gilman, Jr.

SUMMARY

An analysis has been made to determine the applicability of existing
propeller theory and the theory of oscillating airfoils to the problem
of determining the magnitude of the forces on propellers in pitch
or yaw. Strip calculations Including the Goldstein correction factors
and . using compressible airfoil characteristics were first made as though
steady-gtate conditions existed successively at several blade positions
of the propeller blades during one revolution. A theory of oscillating
airfoils in pulsating incompressible linearized potential flow was then
congidered from which it was possible to determine factors which would
modify the forces as calculated under the assumption of steady-state
compressible flow.

Comparisons of the steady-state calculations with experimental
results show that the magnitude of the force changes experisenced by the
blades can be predicted with satisfactory accuracy. Results of calcula-
tlons made by the oscillating theory indicate that the actual forces on
the blade may be somewhat lower than the values calculated by the steady-
state method. It was not possible to establish this conclusion definitely
becauge of the lack of sufficient experimental data for comparison.

The turning moment on the shaft of a two-blade propeller fluctuates
between approximately zero 4nd its maximum value twice per revolution.
For the operating condition investigated the turning moment on the shaft
of a three-blade propeller remains nearly constant at about T5 percent
of the maximum value attained with the two-blade propeller.

INTRODUCTLION

Large-diameter propellers incorporating thin blade sections are
becoming a necessity for certain aircraft installations using large unit
power plants at high eltitude and high speed. On such propeller installa-
tions, the oscillating air forces due to yaw or pitch of the propeller
axis may cause dangerous vibratory stresses with a frequency of once per
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revolution. The airfoll blade section experiences oscillating air forces
that very wlth the position of the blade around the periphery. These

air forces on the propeller blade section in flight must be related to

the proper Mach number, advance ratio, blade-section 1lift coefficient,
inclination of the propeller shaft axis to its forward motion, and the
wave length of the oscillation. A knowledge of the air forces on the
blade sectlon as a function of the propeller operating conditions is
needed in a study of the problem. No existing theory completely describes
the operating condition of a pitched or yawed propeller.

In this report the air forces on the propeller blades are calculated
first under the assumption that the existing propeller theory may be used
in conjunction with the Instantaneous angles of attack and resultant
velocities along the blades of the pitched propeller at successive blade
positions around the periphery. This method, herein termed the "steady-
state" method, permits the use of the usual steady-state compressible air-
foil characteristics with the Goldstein correction factors for a finite
number of blades. Then several aspects of the nature of the forces developed
by an oscillating airfoll are considered. Expressions based on linearized
theory for calculating the air forces on a two-dimensional thin flat-plate
airfoil oscillating in angle of attack in a steady stream in a nonviscous
incompressible fluid were developed in reference 1. Some modifications to
this theory were presented In reference 2 to permit calculations when the
stream velocity as well as the angle of attack varied with time. The
expressions of reference 2 are used to estimate the changes of the airfoll
characteristics in a compressible oscillating flow field.

There are very little experimental data with which to compare the
results of these calculations. The steady-state compresslible character-
istics are computed for the propeller tested in reference 3, however, and
are compared with the experimental data given therein. The calculations are
made for two-blade and three-blade single-rotating propellers and satis-
factory agreement with the available experimental data is obtained.

SYMBOLS
a distance to center of rotation from midchord of airfoil,
feet (fig. 2)
B number of blades
c chord, feet
cq profile drag coefficient
cy two-dimensional 1ift coefficient

C(k) =F + iG C function (reference 1)
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/[ T
C thrust coefficient
EC-E element thrust coeffici‘ent -QT—Ld—x
Cdx anD)4
D propeller diameter, feet
h vertical deflection (flapping) of airfoil, feet (fig. 2)
J advance ratio (V/nD)
Jwto local advance ratio, steé.dy part (J cos u.T>

X COS
JwJG instantaneous local advance ratio o
5 + sin apsin wh
k ,k parameter used in determining the function F + iG
wt” %p

x = 2C.
oW,

w P o
L 1ift, pounds
I"c 1lift coefficisnt of oscillating airfoil pr 5
ana,  —5o
m turning moment, foot-pounds
me moment coefficient ( o )
o]
M Mach number
n propeller rotational speed, revolutions per second
r radius to blade section, feet
R tip radius
t time, seconds
T thrust, pounds

v forward velocity of airplane, feet per second
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geometric resultant velocity, steady part, feet per
second (fig. 1)

ingtantaneous geometric resultant velocity, feet per second

fractional radius to propeller blade section (%)

angle of attack, degrees
angle of inflow, degrees

amplitude in oscillation of angle of attack, radians or
degrees (fig. 1)

instantaneous incremental angle of attack of blade sectiom,
radians or degrees

angle of inclination of propeller thrust axis, degrees
(fig. 1)

blade-angle setting at 0.75 radius, degrees

W,
fractional amplitude of stream pulsation —Q%EEK -1
o

Goldstein correction factor for finite number of blades

mass density of air, slugs per cubic foob

gection solidity “%%%)

local geometric helix angle, steady part, degrees
tan’l g cos
Instantaneous geometric helix angle, degrees

tan-1 Gos o1

X .
?F-+ gin aTsin.wt

aerodynamic helix engle, degrees (equation (%))



NACA RM No. L8K26 5

o angular velocity of propeller, radians per second
(2mn)

A dot over a quantity denotes the first derivative of the quantity
with respect to time;. two dots, the second derivative with respect to
time.

FORCES ON AN INCLINED PROPELLER

The Velocity Diagram

Figure 1(a) shows a side view of a propeller disk the thrust axis
of which is inclined at an angle ap to the forward velocity V. This
forward velocity V 1s shown resolved Into a component V cos i

perpendicular to the plane of rotatlon and a component V sin aq parallel

to the plane of rotation. Figure 1(b), a view perpsndicular to the plane
of rotatlon along the thrust axis, shows the velocity component V sin Qp

at a sectlion of a propeller plade which is located at a position wt on
the propeller disk. In this paper the time variable wt, which defines
the position of the blade, is considered to be zero when the blade is
initially wvertical upward with the propeller axis in positive pitch and
is measured in the direction of rotation (these axes may be retated to
comply with propeller attitudes other than pitch). With this convention
the vector V sin Gp  IBY be rq?olved into a component V sin aTsin wb

in the direction of -the tangential velocity wr and a component
V sin pcos wt 1n a radial direction along the blade. In the treatment

that follows it is assumed that the radial componsnt of the flow
(V sin GTCOS(ut) has a negligible effect on the airfoil characteristics.

With this agsumption, 1t remalns to determine the effect of the periodic
change in the rotational welocity (mn Ix + V sin apsin wt) and the

component velocity V cos Qq on the propeller characteristics.

The vector diagram-for a section of an inclined propeller is shown
in figure 1(c). In this figure the induced effects are not included.
It should be realized, however, that the aerodynamic helix angles will be
gomewhat different from the geometric helix angles shown. From figure l(c)
the geometric helix angle for any position of the propeller blade is
given by

V cos dq
mmDx + V sin apsin wt

-1

\¢wt = tan



6 NACA RM No. LEBK26

or

cos agq

th tan-1 o - (1)
Tt sin apsin wt
The resultant velocity is given by
= vaecoszaT + (1mDx + V sin apsin wt)? (2)

' Using the relationship in equation (1), the local advance ratio is given
by :

X coS On
ot = X ) - (3)
i + sin agpsin wt

From (3) it is seen that the local advance ratio varies depending on the
position of the blade.

Method of Analysis
L

In calculating the forces on an inclined propsller it must be
realized that not only do the blade sections operate in a variable flow
field but that the flow is a compressible one with the possibility of
high section Mach numbers along the propeller blades. The method of
reference 2 for dealing with the oscillating effects applies to incom-
pressible flow where the slope of the 1lift curve is approximately 2=,
while in the compressible case, the slope may be conslderably higher.
Since the wave length in oscillating flow is usually several blade chord
lengths (10 or more), it appears logical as a first approximation to
consider the oscillating effects to be negligible as compared with the
change of slope of the 1ift curve with change in Mach number. Also, the
Goldstein correction factors for a finite number of blades have been found
to apply reasonably well when applied to the calculation of forces on
nonoptimum propellers (reference %4). Therefore, it appears reasonable
to extend their use to the present case.

Steady state.- In steady-state calculations of the forces and .
moments on the blade of a pitched propeller, a change in time (blade
position) is treated simply as a change in the operating V/nD of the
propeller in accordance with equation (3). The complete propsller is
assumed to operate successively at different blade positions under the
instantaneous conditions at each particular position. The thrust per




NACA RM No. L8K26 7

blade at each position is determined from

B "B ax ), & (
Xo ot

where

ac o4
T % oot @ - tan 7 ( J )e
— = ki3x3 29 . 1 + — sin opsin ot (5)
. Q: \2 5
ax /. 3 (oot g + i ©

57+3

Equation (5), except for the factor (l + _i; sin apsin aﬂ)g, is

from reference 4. The quantities ¢ and o4 are determined by the same
method as in reference 4 using the quantity Tt (equation (3)) in place
of J. The additional factor (1 + .% sin agsin 0@2 in equation (5)

1s nesded to pui the element thrust gradlent .(}&I'. in terms of pneDl"
: ax
rather than in terms of the apparently varying n in J,; (eqation (3)).

The turning moment (yawing moment of a pitched propeller on the
propeller shaft 1s the difference in bending moments from the highly
loaded side to the lightly loaded side of the inclined propeller. For the
steady-force calculations this bending moment reaches a maximum on the
two-blade propeller when the blades are in the herizontal plane. The
maxlimm turning moment from the steady-flow calculations is found by
graphically integrating

dac ‘
xanQDl‘ (——g> - (ﬂ dx (6)
dx 90 ax 270

from the spinner surface to the propeller tip.
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Oscillating flow.- The expression for the total 1lift of an infinitely
thin airfoil of infinite aspect ratio oscillating in an incompressible
pulsating stream (see fig. 2) is given in reference 2 as

oo [ i+ e o) - 0 25
- 2mpWyy 24 Woa + €Wgal (kat) ot
+ [%(% - a)&? + WOGP] c(ka?> + KC (kh>
b e.wou?c ( et k@) oot (7)

where

W, -W =woeei“>’°

= iwt
h = hoe
Jlat
= ]
ap = dp.
Cc(k) =F + iG (from reference 1)

In the above expressions, ¢ denotes the fractlonal amplitude of the

perturbation part of the stream pulsations, h, the amplitude of the

vertical displacement (flapping), and o the amplitude of the incre-
0

mental angle of attack due to the rotation of thé airfoil about the axis

X = a. The equations defining the quantities (th~wo), h, and ap

describe these quantities as pure sinusoidal variations; it thus becomes
necessary to ascertain the applicabllity of these definitions to the
inclined propeller case.
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From figure 1 it can be seen that the maximum increment in the geo-
metric angle of atback occurs when the gquantity sin ot = 1 (ot = 900)
and at sin wt = -1 (wt = 270°). The amplitude (&? 3\ of the geometric

\ Fo)
angle of attack at wt = 90° is
/ cos
g, - ¢ tan'l L cos ap - bt ——n T
90 = X .
T 4+ 8ln GqI,

and the emplitude at wt = 270° is

cos
¢27O - ¢o = tan™1 E_____:fg__ - tan"l . cos aq
f% - sin ap X

These values have been calculated for several values of 2 with the
X

angle mT ag parameter, and the results are shown plotted in figure 3.

In figure 4 are shown results of similar calculations made to determine
the value of ¢ at wt = 90° and wt = 270°. Figures 3 and 4 show that
in the propeller casge the deviation from sinusoidal variations in the
resultant veloclity and angle of attack is small at thrust-axis angles less

than about 6° and values of ﬁL less than approximately 2.
X

The flapping motion h 1is a function of the blade.stiffness and will
not be considered here. Calculations show that the effect of this motion
on the maximum force is.in general small but that the lag in the position
of the maximum force may become large depending on the frequency of the
ogscillations.

Dropping the h terms, equation (7) reduces to

L = -np T[ wilp + W t<“+ a.P)J 2npW, o ﬁroo,
e H)o g (B ) @

+ (th - wo>o(Pc<kmeG + Xk
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For the type of motion being considered here it will be convenient
to assign the following values to the parameters appearing in equation (8):

. o= =3 eiﬂ)t
%p = "%,
h=0
Wyt = w0<1 - 1eeiwt>
e =90 _ 4
WO

c(k) = F + 1G

In the above expressions the parameter (L-P ig taksn as the ampli-
+o

tude of the aerodynamic angle of attack as estimated by steady-state
calculations in potential flow. The function C(k) 1s a complex function
of the parameter k (reference 1) and is given by

(k) = F(k) + 1G(k)

where F and G are obtained from standard Bessel functions of the first
and second kinds with argument k. The varlation of the functions F

and G with the parameter % is given in figure 4 and table II of reference l.

In the present case the functions P and G are evaluated as in reference 2
for k's defined as follows:

k __cwwwt
W(D’b— zwo
p - 3
p W,
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For the case being considered it is assumed that mwmt = mGT = w., Therefore

= K =k and Kk + =k =2k, A he functions Cfk
kwwt xp Wyt ka 1 ccordingly the fun <Ww9
and C/k are equal and are denoted by C(k) = F + iG while the

function Cfk + k ig denoted by F,. + iGye

It should be noted that some of the real terms in equation (8) are not
miltiplied by the C(k) functions. These real terms can be interpreted
as giving the total force on the airfoil and the imaginary terms the force
due to perturbation velocities only.

Taking the real part of edquation (8), the resulting total force
coefficient is given by

L a o k qQ

L. = = + [P/l +e=—\- =G +¢—]8In ot
¢ DW02 G'Po < a'P) C ap
e, ° :

0
+ € ké.+-F§>+GCL+eL + Gy sin2wt-€2Flsin3wt
op

%1+F+e-—“— + Gf1 + e2-\| cos wt

- € F(L + Ea._;—> - % G+ Fl cos 2wt - e'gGlcos 3wt 9)
o]

The lift-force coefficlent Lc for propeller blade computations
applies to only one blade element. If the curves from all blades are
plotted and integrated and the ordinates summed, the curves thus obtained
may be used to determine the turning moment on the propeller shaft as a
function of time. The turning moment on the shaft (yawing moment for
pitched propeller) for any position is found by plotting the 1ift force
at each blade element times its moment arm and integrating graphically.

CALCULATION OF FORCES AND DISCUSSION OF RESULTS

Steady state.- The calculations were made for a 4-foot-diasmeter
propeller having an NACA 4-(3.9)(07)-0345-B blade design of NACA 16-zeries
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sections. A description of the propeller and blade-~form curves is given
in reference 3. The calculations made, assuming steady flow, were for a

two-blade propeller for blade angles of 26° and 530 measured at the 0.75
radius, for a free-stream Mach number of 0.30, and fcr the propeller thrust

axis inclined at an angle of 4°, For each operating condition of the pro-
peller there is a variation of Mach number along the blade which must be
taken into account. The airfoll data used were taken from reference > but,
gince the highest Mach number covered in the report was 0.7, extrapolation
of the airfoil data to Mach numbers as high as 0.9 was necessary. The
1ift characteristics for a Mach number of 0.6 were used to extrapolate to
higher Mach numbers. The extrapolation was made by holding the angle of
zero 1lift obtained at M = 0.6 constant and changing the slope of the
1ift curve by the Prandtl-Glauert relationship

(@ (o

Vi-M

Figure 5 gives a. comparison of the variation of the calculated and
the wake-survey thrust coefficients with respect to the blade position wb

at J = 1.2 for a blade-angle setting of 26° and a thrust-axis angle dep
of 40, Figure 6 gives a similar comparison at J = 2.8, B = 53°,

and ap = 4°, and figure T at J =3.1 for B =53° and ap = 4°. The
maximum and minimum calculated instantaneous thrust coefficients differ
slightly from the measured values in all cases. There is also a rather
large phase difference in the position of the maximum calculated and
measured thrust coefficient at the value dJ = 1.2. The position of the
survey rake for the experimental data of reference 3 was changed to get
each individual point rather than making simultaneous measurements of a
number of points for each particular operating condition.

At the same time that the experimental rake survey data were taken
force-test thrust coefficlents were measured. A study of these data
revealed that the force-test thrust coefficients (Cp) at the operating

V/nD of 1.2 for the 26° blade-angle setting varied from Cp = 0.0125
to Cp = 0.0170 depending on the position of the survey rake. The force-
test thrust coefficient for the condition of V/nD of 2.8 and the blade-

angle setting of 530 varied from 0.0725 to 0.0800. This change in thrust
coefficient with rake position suggests that there is a blocking effect
which changes with rake position. This blocking effectively changes the
velocity in the plane of the propeller and thus the operating V/nD of

the propeller. Therefore comparisons made at the same V/nD with theoret-
ical calculetions based on free-air conditions would not be expected to
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be in exact agreement. With this consideration In mind the agreement
between experiment and theory is good.

The shift.in the position of the maximum force between the experi-
mental and calculated data noted particularly on figure 5 is due to
several factors. First, the survey rake for the experimental data was
18 inches (0.375 propeller diameter) behind the center ling of the
propeller. Calculations showed that, in this distance, the twist of the

propeller slipstream accounted for approximstely 12° shift of the maximum

force for the operating condition of %% = 1.2 and B = 26° but was'
negligible for the operating condition of g% = 3.1 and B = 53°. Second,

the unsteady flow on the blade sections causes a lag in the forces (about 50)
which mesans that the maximum force does not occur on the horizontal as

would be indicated from steady-flow calculations. This lag In the position of
the maximum force is a function of the frequency of the oscillation and
decresases with the propeller rotational speed, which means that it would
decrease as the V/nD 1is increased for constant forward speed. Third,

the inclusion of the flapping of the blade section in the calculations

causes an additional lag in the position of the maximum force (about 16°).

Figure 8 shows calculated differential thrust-coefficient curves of

a two-blade propeller for three blade positions for tae 26° blade-angle
setting operating at a V/nD of 1.2 and with the thrust axis inclined

4° to the air stream. The experimental curves for two positions for a

300 lag in phase angle are shown for comparison. The calculated distribution
of thrust coefficlent with radius is in good agreement with the experimental
distribution.

Forces computed by oscillating-airfoll theory.- Figures 9 to 12,
inclusive, show the results of some of the calculations made for an oscillating
airfoil in a pulsating flow fleld in incompressible flow. The results
for all the curves in these figures apply to any particular blade sectim.

The total force on the propeller blade for any blade .position is found by
summing up the forces along the blade.

The variation of LC with ot is shown in figure 9 at ¢ = 0.10

for several values of k with the steady part of the angle of attack o
equal to zero. In any particular case, the quantity k is fixed by the
operating condltions of the propeller and by the blade chord. Interpreted
physically, the quantity l/k is a measure of the wave length between
successive waves in the vortex wake in terms of the half-chord lengthj; in
the gteady-state calculations this wave length is arbitrarily assumed to
be very large with respect to the chord. Thus, in figure 9 the curve of



1k NACA RM No. LEK26

Lo against wt at k = 0 shows the results obtained for assumed steady-

state conditions in potential flow. The curves in figure 9 for other values
of k show that the effect of the oscillations is to modify the forces as
obtalined from the assumption of steady-state conditions. Presumably, a
gimilar effect would occur in a compressible flow.

The asymmetry of the Lc curves In figure 9 is caused primarily by
the variation in the dynamic pressure .% W&te during the cycle. This

agymmetry may be also seen in figure 10, which shows the variation at
k = 0,10 of L, with wt with e as parameter for several values of %/GPO.

The curves for € = 0 are the most nearly symmetricalj this condition
corresponds to Theodorsen's case of an airfoil osclllating in a steady flow
(reference 1). It can be seen from figure 10 that the amplitude of the
1ift variation tends to increase as € 1increases and also that this
amplitude increase 1s further accentuated by increasing the initial load

at ot = O(:%/GPO 1ncreasiné). Figure 11 shows the variatlon of the

force coefficients for wt = 90° and for wt = 2700 for several values

of ¢ for % = 0. On the same figure are values of (L. =~ L
gur ( c90 027é>
o)
which are a measure of the maximum bending moment on the shaft axis of
a two-blade propeller (divided by 2 for convenience of plotting). The
absolute magnitude of the maximum force coefflclents varies greatly as
the value of € 1is increased, but the variation of the difference in the

forces from the heavily loaded side to the lightly loaded side which
gives the pending moment is wmall.

Figure 12 shows the variation of L, at 90° and 270° with k at
several values of %/ﬁTO with € = 0. In this special case it is seen

that the magnitude of the loading increases as q/aPo is increased but

L - L
that the bending load factor —20 n °219 15 independent of initial

loadlng on the blade section. This independence does not hold in a
pulgating flow field as may be seen in figures 13, which shows the

Logn - L
variation of the bending load factor °90 5 210 with k at several

values of ¢ %,

%

Figure 14 shows the variation in the turning-moment coefficilent
on the inclined propeller shaft (yawing moment for pitched propeller) of
the NACA 4-(3.9)(07)-0345-B propeller. These coefficients were calculated
by the oscillating-flow theory and are considerably lower than the moments
calculated by assuming steady-state conditions at each phase angle and
using compressible airfoil characteristics. The curves are only useful
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in showing the variatlon of the moments with the time varlable wt and
not the absolute magnitude. The varilation of the turning-moment coef-
ficlent with time for a two-blade propeller operating at a V/nD of 1.2,

ap = 49, and B = 26° is shown by the solid curve and for a three-blade

propeller by the dashed curve. It 1s seen that the moment coefficlent for
a two-blade propeller varies from approximately zero when the blades ars

in the vertical position to a maximum of 0.0021 when the blades are
approximately on the horizontal (twice per revolution). For the same
operating conditlion for the three-blade propeller the moment coefficient
remaing very nearly congtant at approximately 0.0016 .(varying between 0.0015
and 0.0017).

Combined steady and oscillating forceg.- From the standpoint of
theory a combination of the steady-state and the oscillating-airfoll theories
approaches the actual operating conditions of the pitched or yawed propeller.
The forces or moments are computed by the steady-state methods including
compressibility and downwash. The oscillating-airfoll theory is then used
to modify these forces. For a two-blade propeller, the maximum force dif-
ferenbe"Lgo - L270 at each section as computed from steady-state calcu-

lations with compressible airfoil characteristics would be reduced by a
factor which is the ratio of (L, - L, > at the operating values of k
90 270
to its value at k = O (from fig. 13). From figure 13 it will be noticed

that, properly, the operating value of ¢ —%- should also be taken

0
into account; within the 1limits given in the figure, however, the ratio

L, =~ L,
(CW W@k

changes only slightly with e %,
L - Lc ) ap
€90 270) o N

Figure 15 shows the calculated distribution of the moment coefficient
along the radius for the two-blade NACA 4-(3.9)(07)-0345-B propeller with
the blades in the horizontal position, with the thrust axis inclined at

49 with the propeller blade angle set at 26° at the 0.75 radius, and
. operating at a V/nD of 1.2. The moment coefficients are computed for
steady-state conditions in compressible flow and for an oscillating
airfoil by the oscillating-airfoil theory. An integration of these curves
gives the total turning moment on the propeller shaft. The correction for
each radius as obtained from figure 13 has been applied to the steady-state
calculations. This correction does not bring the curves into agreement
because of the differences in the airfoil characteristics used.
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CONCLUSIONS

Methods have been developed to determine the air forces acting
on yawed or pltched propellers. At the present time the lack of
extensive experimental data precludes conclusive verification of the
theoretical considerations presented in this report, particularly in
regard to the applicabllity of the combined eteady-state compressible
and oscillating incompressible theory. The comparisons and calcula-
tions made, however, indicate the following conclusions:

1. The steady-state method for calculating the propeller
forces gives satisfactorily accurate results.

2. The results from the oscillating-flow theory indicate that
the actual forces on the blade are somewhat lowsr than the values
calculated by the steady-state method, particularly at low advance
ratiog.

3« The turning moment on the shaft of a two-blade propeller
fluctuates between approximately zero and its maximum value twice
per revolution.

4, For the operating condition investigated the turning moment
on the shaft of the three-blade propeller remains nearly constant
at about 75 percent of the maximum value attained with the two-blade
‘propeller.

Langley Aeronautical Laboratory
National Advigory Committee for Aeronautics

Langley Air Force Base, Va.
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Figure 3.— Variation in a.niplitud.e of geometric angle of attack.
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Figure 11.— Variation of force coefficient with k.
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