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NATIO'NAI, ADVISORY COMMETTEE FOR 

CGNFIGUWTIONS FO3 Sl?X&I\T TETN NACA AIRFOIL SECTIONS 

By Jones F. Cahi11 and Stanley F. Racisz 
"d( 

s a w m  i 

An investigation has  been made i n  the Langley two-dimenaional 
low-tiwbulence tunnels t o  deveiclp op.tlmwn doubf e-slotted-flap con- 
f igumtions f o r  scveri t h in  NLCR a i r f o i l  se'ctions. 
t es ted  were the NACA 63-210, 6k-208, 6b21.0, 641-212, 65-210, 66-210, 
and 143.0 a i r fo i l .  sections. Each of the aiyi 'oil  sections tes ted was 
equipped with a f l a p  of O,25 chord and a, f o m  f lap of 0.075 chord. 
I n  addition, the NAC.4 66-210 and the MACA 64-208 a i r f o i l  sections 
were also tes ted with a O.'LOO-ch.ord and a. 0.056-chord fore  flap,  
respectivelr .  
2.4 x 3.0 6 t o  obtain the configatation giving the highest max l tmm 
sect ion l i f t  cooOn'Scient f o r  each of the a i r f o i l  sections tested.  
The l i f t  chasacterlstS.cs wei-e meamred f o r  Reynolds numbers up 
t o  9.0 x 10 6 i n  order t o  obtain an inclicatian of t& scale effects .  
The section pitchiag--mcment character is t ics  ar& $he ef fec t  of leading- 
edge rouglmess on the l i f t  character is t ics  were measured f o r  the 
best  double-slotted-flap configuration fo 

The a i r f o i l s  

Lift 318~31: aer i t s  were made a t  a Reynolds number of 

each 02 the  airr^oil 
sections a t  a Reynold8 numbsr of 6.0 x 10 8 . 

The bes t  fore--flap locations were generally found t o  be about 
l-?ercent chord forward and e,bouC 2-percent chord below the s l o t  
l i p ,  The bes t  f l a p  positions varisd comlderably . The deflections 
foil wbtch the highest maxam l i f t  coeff ic ients  were measured were 
about 50' t o  55' for the f l a p  and a b w t  25' t o  30' f o r  the fore flap. 

The maximum sect ion l i f t  coeff ic ient  of the a i r f o i l  sectiolk with 
e i ther  a spplit or double s lo t t ed  f l ap  decreased as the posit ion of 
minimum preasujrs was moved t o  the rear  o r  as the a i r f o i l  thickness 
war; decreased to 0.08 chord. 
coef f ic i  
2.4 x 10 r t o  6.0 x 10 6 but generally decreased o r  amained cons an t  
as the Repolds number was increased from 6.0 x 10 t o  9.0 x 10 . 
Increasing the fore-fiap chord provided increases i n  the maximum 
sect ion lift coefficients of both the NACA 64-208 and the NACA 66-210 
a i r f o i l  seckions with double s lo t t ed  f laps ,  The addition of standard 

In  a i l  cases, the maximum section lift 
t increased as the  Reynold6 niunber was inoreased from 

t; 
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roughness t o  the leading ed-ges of' the a i r f o i l s  equipped with double 
s lo t t ed  f laps  generally decreased the m a x i m  sect ion l i f t  coeff ic ient  
by amounts s l igh t ly  less than those obtained with the f l a p  retracted, 
decreased the var ia t ion of the inaximmn sect ion l i f t  coeff ic ient  with 
posf t loa of niniam pressure and w i t h  a i r f o i l  thickness, aad caused 
the  stt23.1 t o  be less  a$l";l;?t t k x m  t h a t  f o r  the snooth condition, The 
r a t i o  of increment of' section pitching-noment coeff ic ient  t o  Incre- 
ment 09 section l i f t  coeff ic ient  a t  a sect ion angle of a t tack of 0' 

based on the t )tal  chord of' the a i r f o i l  with the double 
&Cm (..;>, 0- -00 

extended was approximately the sane as that obtained fo r  
the a i r f o i l  with the s p l i t  f lap ,  
is  encountered a t  the  s ta l l  f o r  each of the a i r fa f l s  when equipped 
with the dou.ble s lo t t ed  flaps and seem t o  be peculiar t o  double 
s lo t t ed  f laps .  

A n  un8table pitGhin&4.nOment break 

The use of t h h  wing sections t o  increase the c r i t i c a l  speeds 
of high-speed, highly loaded airplanes has been accompanied by the 
need f o r  sui table  hi&-lift devices t o  be used f o r  take-off and 
landing, 
dimemiom1 low-tur-bulence tunnels t o  develop high-lift trailing-edge 
f laps  sui table  f o r  use on thin wing sections that are  most  l ike ly  t o  
be used on high-speed aircraft. 
reported i n  refe  
f l a p  f o r  the NAC 
discussed i n  reference 1, gave m a x i m m  l i f t  coefficients higher than 
any one of the three singie s lo t t ed  ZJaps tes ted.  
of t h i s  investigation, reported herein, covers the developmn'c of 
s i m i l a r  double-slotted-flap configurations f o r  s i x  other th in  
NACA a i r f o i l  sections. Data from reference 1 on the NACA 65-210 
a i r f o i l  section with a double s lo t ted  f l a p  have been included t o  
complete the comparison of -the resu l t s  obtained. 

A n  investigation has been made i n  the Langley two- 

The first part o f  t h i s  investigation, 
1, covered the development of four types o f  

210 a i r f o i l  section. The double s lo t t ed  flap,  

The second pa r t  

The seven thin NACA airfoi l ,  sections tes ted  w i t h  dauble s lo t ted  
f laps  i n  the Langley two--dimensional low-turbulence tunnels are as 

and 1410 a i r f o i l  sections. Profiles of the plain a i r f o i l  sections 
are shown i n  f igare  1, 

follows: NACA 63-2~0, 64-208, 64-210, 641-212, 69210, 66-210, 

The best  maximum l i f t  configurations were developed at a 
Reynolds number of 2.4 x LO6 f o r  each of the double s lo t t ed  f laps  
which consisted of  a O.25O-chord main f l ap  and a 0.0'75-Chord fore  flap, 
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The sect ion Lift and pltching-aomnt chamcte r i s t i  s yore then 

t ions that not only approxima.ted the Ses t  mxirrrurn l i f t  configurations 
but  that a l so  allo-cred the f1q m-d fore  f l a p  t o  r e t r ac t  as a un i t  
within the a i r f o i l  coiltour. 
on the sect ion lif chxmwbsr:stfcs were determined a t  a Reynolds 

measured a t  higher Reynolde numbers ug t o  9.0 x 10 8 f o r  configura- 

number of 6*0 x 10 G 
The ef fec ts  o f  leaLing-eCge roughness 

Data on the l i f t  and pitching-momsnt character is t ics  of these 
a i r f o i l  sections equipped with 0,2!3-chord s p l i t  f laps  deflected 
60' are included t o  show a comparison betwean the e f fec ts  of the two 
types of f lap.  

section angle of attack, degree8 

a i r f o i l  chord with f l ap  retractied 

section l i f t  coefficient 

maximum section Uf t  coeff ic ient  

section pitching-nonent coeff ic ient  about quarter-chord point 

f l a p  deflection ueasured between f l a p  c b r &  l ine  
and. i ts  posit ion when retracted,  degreies 

I 
' fore-flap deflection measured bekweea fore-flap 

chmd l i n e  and a i r f o i l  chord l ine,  degrees 

distance along a i r f o i l  chord l ine,  f rac t ion  of c 

a i r f o i l  thicknese, fi-action of c 

horizontal and v e r t i c a l  positions, respectiyely, of the 
fore-flap re ferewe point measured from t r a i l i n g  edge of 
s l o t  l i p ,  percent c, posi t ive forward and down, 
respec t ively,  ( f ig .  2) 

horizontal, and v e r t i c a l  positions, respectively, of flap 
reference point measured from t ra i l ing  edge of' fore  flap, 
pcrcent c, posi t ive forwaxd and down, respectively, 
( f ig -  2) 
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R RepoLds nxmber 

increment of sect  Ion pitcliii~-moraent coefficient 

increment of section 1if-T; coefficient 

ncn 

MODELS 

Bach of the models tes ted  had a chord of 24 inches &d 
con?pletelg &panned the 3-foot-wiCe %@st sections of the two tunnels. 
The main par t  of each node1 ahead of the flap was GOnStrUCted of 
larnhated mahogany, an& tks  flaps were comtrucj;ed of s t ee l ,  
typical  s t i r fo i l  and dotable s lo t t ed  flap,  including the essent ia l  
dinensfons, is shotn i n  figuze 2. 
sections are given i n  tables  1 t o  7. 

A 

Ordinates f o r  the p la in  airfoil 

Each of the  maSn f l aps  WEB of 0.250 chord and was developed by 
scaling the ordinates of the  main f l a p  tes ted  on the NACA 65-210 
a i r f o i l  section (refercn.:3 1) i n  proportion to the  a i r f o i l  t h l c h e s s  
a t  each s t a t ion  along the chord. 
given 13 tables  8 t o  14, Each of the  f l aps  was tes ted i n  combination 
w i t h  the O.O7>c fore  flcip used i n  reference 1. 
NACA 64-208 a f r f o i l w a s  tes ted  w i t h  a 0 .056~  fore  f l ap  and the 
NACA 66-210 a i r f o i l  was tes ted w i t h  a 0.100~ fore f lap.  Sketchers 
of the three Pore f l aps  are presented a s  f igure 3, and t h e i r  ordinates 
a re  given i n  tab les  15 t o  17. 
t o  the main portions of the models a t  the ends i n  such a manner tha t  
they could be s e t  a t  any desired posit ions and deflections, 
f l a p  and fore-flap positions were measured from t h e i r  reference 
points, which a re  defined as the intersect ion of their  chord l i nes  
w i t h  t h e i r  leading edges. 

Ordinates of the f laps  tes ted are 

I n  addition, the 

The f laps  and fore  f laps  were a t t a c b d  

The 

(See f i g .  2.) 

For t e s t s  of each model i n  the smooth condition, the model 
was sanded with no. 4.iX carbomndw paper t o  produce aerodynamically 
smooth surfaces. For t e s t s  of the a i r f o i l  with leading-edge rough- 
ness, the  surfacoe were the  same a s  f o r  the  smooth condition except 
t ha t  0,011--inch ctarborundum grains were applied over a surface 
length of 04.6 chord centered a t  the chord l i ne ,  
edge-roughness condition corresponde t o  the standard roughness 
described i n  reference 2. 

Thie leading- 

APPARA!RJS AND TESTS 

The investigation was made i n  the Langley two-dimensional 
low-turbulence tunnel ( L T  ) and the Langley two-dimenslonal low- 
turbulence pressure t u m e l  (TEC) . 



Section l i f t  character is t ics  were obtained from s t a t i c  pressure 
measureaents along the f l o m  and cei l ing of t he  tunnel t e s t  section, 
and sec t  i on p i t ching-&one- 
deflections of a torque t a w .  
metkods used i n  correcting %he dcta t o  free-air conditions a r e  given 
i n  reference 2. 

character i st, i c s were d.e t ermined from 
Details of the t e s t  methods and the 

L i f t  measurements were md,e a t  a Reynolds number of 2.4 x 10 6 
i n  t he  LTT t o  cStsin the idea l  configurat.ions. The 
t ions  (those glving the highest maximura l i f t  coeff i  
deteruiined by first determiniag the idea l  posit ion 
r e l a t ive  t o  the  fore  f l a p  f o r  several combinations 
f l a p  deflections. 
l i f t  wa8, if  necessary, a l te red  s l igh t ly  t o  allow the  f l a p  and fore  
f l a p  t o  be retracted as a uni t  d i t h i n  the  wing contour. 

The configuration giving the  hfg 

With the 
fixed r e l a t ive  t a  the fore  flap,  lift 
obtain the best posit ion of the f l a p  and 

pOFsXt&n of the-.f..tzp t 
n t s  were mace 

ination. 
on. The optimum posit ions developed i n  the L E  a t  
1 de$lections were then tes ted  i n  the TDT a t  a Reynolds 

For the configuration giving the h i  hest 

This resul t ing posl t ion i s  called the 

number of 6.0 x 10". 

manen% character is t ics  and the e f fec t  of leading-edge roughness on 
the  lift character is t ics  were a l s o  determined a t  a Reynolds number 
of 6.0 x lo", aird the l i f t  cbaracter is t ics  were determined a t  
Reynolds numbers of 3.0 x 10' and 9.0 x 10 6 . The maximum free- 
stream Mach number at ta ined during any of these tesbs  was l e s s  
than 0~18. d 

maxiram l i f t  coefficient a t  a Reynolds number of 6.0 x 10 8 , pitching- 

PRESFYTATION OF RESULTS 

The data obtained f o r  the a i r f o i  section with a double slotted 
f l ap  at a Reynolds n-mber of 2.4 x LO k a r e  presented as  contours of 
maximum l i f t  coefficient for various f l a p  and fore-flap posjtions. 
These ilata indicate the maximm section l i f t  coefficient that may be 
cjbtained for a given f l a p  location and deflection,or the 1088 i n  
mxximiun s w t i o n  lift coefficient t ha t  may r e su l t  if f l a p  locations 
other than the idea l  a r e  selected. 

The l i f t  character is t ics  a t  a Reynolds number of 6,o X 10 6 
a r e  presented fo r  several of the more promislng double-slotted- 
f lap configurations for each a i r f o i l  section. 
moment character is t ics  for the smooth condition and also the  l i f t  
charac te r i s t ics  f o r  the condition v i t h  leading-edge roughnss~ 

The section pitching- 
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are presented f o r  Yne configwation having the highest maximum l i f t  
coefficient a t  a Reynolds nw-ber of 6.0 x 10 6 . Additional data a m  
preseatsd shQwing the  l i f t  and pitcnirG-moment character is t ics  of 

6 the  p la in  a i r f o i l  section a?; Beveral Reynolds nm3er6 and the l i f t  
and p-;tching-monent chaYactwi=tics a t  a Reynolds nunber of 6.0 x LO 
f o r  the  a-lrfoil section with a 0.20-chord s p l i t  f l a p  deflected 60°. 
The data f o r  the plain airfoil sectior, and. the a r r f o i l  with a s p l i t  
f l a p  were obtained f r o m  reference 2.  
airfoil section with a s p l i t  f l ap  were available fo r  several 
additional Reynol-ds numbers arid are  also included. 

I n  Gome cases, data f o r  the 

< *  

The figures i n  wbich the data are presented for  each of the 
a i r f o i l  sections tes ted are  Listed i n  the following table: 

--.. A i r f o i l  ssct ion 

--I- 

location fo r  C 

Contoum of fore-flap 
location f o r  c 
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Maximum L i f t  

7 

Effect of fLaxand fom-flap location.- The var ia t ion of the -.-.-I___ ------.-_ 
section l i f t  character is t ics  of %lie flapped airfoil section a s  the 
f l a p  location var ies  is primarily a r e s u i t  of changes i n  the s l o t  
shapes. A secondary effect ,  resul t ing from t he  change i n  a i r f o i l  
chord a s  the f l a p  is  moved chordw-tse, a l s o  exists;  but  a t h i n  the 
range of positions f o r  these t e s t s ,  t h i s  e f f ec t  is  amall. The -1 
configurations are therefore the ones f o r  which the best'2slot shapes 
a r e  fomed a t  the  f l a p  and fore-flap leading edges. The data shown 
on the  contours of f l a p  and fore-flap location indicate that the  
idea l  f l a p  and fore-flap configuration f o r  maximum l i f t  is  one that 
forms coriverging cozzles and d i r ec t s  the  air flow downward over 
both the f l a p  and foye f lap .  

For most of the  idea; configurations with the 0,075~ fore 
f lap,  the fore  f l a p  was located approximately l-peflont c for 
ward of the s l o t  l l p  and approximately P-pxcent c Selow the 
s l o t  l i p ,  For the NACA 63-210 a i r f o i l  section, however, ( f ig .  6) 
the  idea l  fore-flap location was approximately 1-percent 
f a r the r  forward than the  L -;@rage, 
the fore  f l ap  for t h s  I?ACA 641-212 a i r f o i l  I s  actual ly  behind the  
s l o t  l i p  ( f ig ,  33j there  is l i t t l e  differezlce between the maximum 
l i f t  ccsff ic ients  obtained a t  the idea l  posit ion and a t  the posit ion 
corresponding t o  the average of the others. 
the  idea l  confiwrat ions varied considerably f o r  each of the a i r f o i l  
and f l a p  conibinations tested,  as would probably be expected inasmuch 
a s  each a l r f o i l  section was tes ted  with the  f l a p  designed for that 
a i r f o i l ,  An indication of the idea l  double-slotted-flap configu- 
ra t ions  f o r  a i r f o i l s  and f l aps  similar t o  those tested i n  t h i s  
investigation may be obtained frcm the contours of f l a p  location. 
These configurations, hDwever, should not be applied t o  a i r fo i l -  
f l a p  ccmbinations having shapes radical ly  different  fram those tes ted,  
In addition, an indication of the loss in  maxfmwn section l i f t  
coeff ic ient  which may be caused by s t ruc tura l  deflections of the 
f l a p  or by construction errore  may be obtained from the  contours, 
For example, i n  tho case of the NACA 63-210 a i r f o i l  section 
(f ig .  5(a)), a departure of 0,OI.c from the idea l  f l a p  location can 
decrease the maximum section l i f t  coefficient by as much as 0.3. 
F9r most of the  oonfigurations, the f l a p  def lect ion was 
50° or 5 5 O  and t lap deflection wag 25O or 30°, although 
there  was l i t t l e  difference i n  the maximum l i f t  coeff ic ients  
measured for  these deflections, Increasing t h e  deflection of the. 
fore-flap aids both i n  forming a converging 810% and i n  direct ing 

c 
Although the  best  posit ion of 

The f l a p  locations for 
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the a i r  flow downward over the f l  A U t  f a  reach 
effects ,  however, when the fore-flap 
t o  cause the flow over the q p e  
t o  separate, The use of the 

positions i n  the tests 
ase i n  the maxlmupl l i f t  coeff ic ient  of 0.07. 

r&.- The ds.ta presented i n  figures 23 
ik;o fore-flap chord from 0 , 0 7 5 ~  t o  

ilaum section l i f t  coeff ic ient  of the 
fan by approximtely 0.1 a t  a Reynolds number 

A com3arisoz of the ifata presented i n  figures 11 and 12 of 6*0 x 106, 
indicates Ghat decreasing the fore--flap chord from 0.0?5c t o  0,0!36c 
resu l t s  ia a s l igh t  decrease i n  the maximum sect ion l i f t  coeff ic ient  
of the lTACA 64--208 airfoil sect ion wi th  a doubJ-e s lo t t ed  f lap,  
The data presexited i n  reference 3 a l so  show t h a t  increasing the 
fore-flap chord m y  be beneflcial  i n  increasing the maximum section 
l i f t  coeff ic ient ,  The increase i n  maximum sect ion l i f t  coeff ic ient  
obtained by the use of la rger  fore  f2aps m y  be a t t r ibu ted  t o  a 
combination of the increased area of the l i f t i n g  surface and b e t t e r  
slat  shapes, 

Effect  of posi t ion of minimum gressure.-'Ehe var i  of 
w i t h  the posi t ion of miniminu Bressure f o r  several  

NACA &series a i r f o i l s  of I.&-pement thickii ss i s  presented i n  

reference 2 iddicaee thct f o r  a i r f o l l l  sectiona of' thicknesses less  
than about 0,12c, t he  s t a l l  usually begins a t  the leading edge, 
the leading-edge radii of MACA &series airfoi1.s decrease as the 
posi t ion o f  miniaim prelssure moves t o  the rear,  this 
becomes more pronounced. 
with rearward movement of the posit ion 05 mininun pressure, shown 
on f igure 35, is  therefore probably caused principally by the ,  decrease 
i n  leading-edge radius. 
sections, where the s ta l l  begins over some rea r  portion of the ail-- 
f o i l  instead of near the leading edge, the decrease i n  the leading- 
edge radius with rearward movement of the posi t ion of! minimum pre8sum 
would have a smaller e f fec t  on the max imum section l i f t  coefficient.  
The increment i n  section l l f t  coeff ic ient  caused by the addition 
of the double slotted, f l a p  t o  the NACA &series p la in  a i r f o i l  section 
having a maximus thickness of 1C-percent c remained substant ia l ly  
constant (approx. 1.4) over the range of minimum pressure positions 
tes ted,  

coefficxent with a i r f o i l  thickness f o r  the three .NACA 6 h e r i e s  
a i r f 'o i ls  t es ted  i s  shown i n  figure 35. 
that f o r  a i r f o i l  thicknesses between 0.12~ and O.O& the maximum 

I-.--I--____̂  - 
c h a x  

figure 35 f o r  a Repol-ds nmber of 6.0 x 10 % Data pmsente& i n  

Since 

The decrease i n  maximum l i f  

It i s  expected that f o r  thicker  a i r f o i l  

E I thickmep2.- The var ia t ion of maximum l i f t  

The data i n  f igure 35 show. 



NACA RM No. L7B17 9 

lift coefficients of the p ia in  a i r f o i l s  and the  a i r f o i l s  with both 
s p l i t  and donble slotted f l aps  dccreme as the  a i r f o i l  thickness is 
decreased, althwgh not a i l  i n  the same mamer. 
mxsmiXm l i f t  coefficient caused by the double s lo t ted  f l a p  decrease8 
a t  a nearly coastant .rate a8 the  thickness is decreamd, while the  
inwenen5 SI; mE.sinm 1.iT-t; coefficierit caused by the s p l i t  f l a p  
decreases as the tkickness is  decreased from 0 . 1 2 ~  t o  0.13~ &Ed 
then inti-eases again os %'+3 thickness is  fur ther  decreased t o  0.08~. 

Th9 incre?nent cf 

Data i n  reference 2 have shorn t h a t  the maxlmum l i f t  coeff ic ients  
o.f most a i r f a i l  sections decrease as the  a i r f o i l  thickmess is 
incrcaeed above about cj,l2c although the  naximim l i f ts  
8 m e  a i r f o i l s  whon squipped wi%h s p l i t  flapB continue t g  increase up 
t o  a thfalmess ashigh as 0.16~ or 0.18~. 
have ahown that the  mximum l i f t  coefficient8 of a i r f o i l  sections 
aquippcd wikh d.ouSle s lo t ted  f l a p s  follow tho sama general trend. 
The data i n  figure 35 ext?nd these previous resu l to  down t o  8 
t h i c h e s s  af 0 .08~ .  

Previous scattered data 

The maximum l i f t  coefficient of the NACA 1410 a i r f o i l ,  also 
shcwn i n  f igure 35, i s  approximately the  Eane as the maximum l f f t  
coeff ic ient  for the NACA 641-212 a i r f o f l  section, 

-.- Rex-nolda II- number effeat ,-  The var ia t ion of mxlmm section 

6 

l i f t  coeff ic ient  with Reynold8 number is skown i n  f i gw 

6.0 x 10 
coeff ic ients ,  
t o  9.0 X 10 6 caused s l ight  decreases or no change i n  the mximum 
l i f t  coefficiecta of' each of the  a i r f o i l  sections except the  
NACA 6b-210 sectfon, 
oection fo1lowed.the same trend a s  the  NACA 64-21.0 esclion. 

36. I n  
all caseBj increasing the Reynolds nwnber from 2.4 x LO 8 t o  

6 resul ted i n  large increases i n  the  maximum section l i f t  
Bowever, increasing the Reynolds number from 6,o X 10 

Flgixre 11, indicates that the PJACA 64-208 

I .  

An explawtion of scale effect  on the  maximum lift of a i r f o i l  
sections is given in  reference 4,- and th i s  explariation is  usually 
applicable t o  a i r f o i l s  w i L h  f laps .  ' Generally, variations of' the  
lift v i t h  Reynolds nmber are apparent only i n  regions of inciEient 
s ta l l  (high anglos of a t tack) ,  but fo r  thhsse t h i n  a i r f o i l  sections 
with double s lo t ted  f l aps  the  l i f t  decreases with increase i n  
Reynolds number i n  the l i nea r  portion of the l i f t  curve (low angles 
of a t tack) .  
by changes i n  tbe flow conditions through the a lo te  as the  Reynolds 
number i s  varied. 
configuraticm could be iteveloped a t  higher Reynolds numbers, and 
s l igh t ly  higher mximunlifts might be obtained, 

This deorease i n  l i f t  coeff ic ient  is probably caused 

It is, therefore, probable thqt a new ideal 

Effect  of flx.on a n g h - o f  s t t ack  fo r  maximq lift.- A compari- 
son of the data f o r  t he  p la in  a i r f o i l  sections and tha t  for  the  
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a i r f o i l s  w i t h  f laps  deflected show8 that the  s ta l l  OCCUTB 
considerably lower angle o f  a t tack  when the f l a p  is defle 
deflection of a trailing-edge f l a p  causes an incremental load 
d i s t r ibu t  ioii which consista cf an incremental basic load dis t r ibut ion 
and an incremental adnitional 1-oad distribution. 
The decrease i n  the angle of a t tack  a t  which the s t a l l  occurs is 
a t t r ibu ted  t o  the f a c t  that the additional load, which camprises a 
large pa r t  of the incro-mental load dis t r ibut ion,  increases the 
adveme pmslare  @adient i n  the v ic in i ty  of the a i r f o i l  leading 
edge; and, therefore, the c r i t i ca l -  pressure gradient is attained at 
a lower a-le of attack. 

(See reference 5,) 

Effect of leading-edge roughness,- The addition of standard . -.---.1..----11----.-----_-___-_ 

roughness t o  the leading edge of the a i r f o i l  decreased the maximum 
l i f t  coefficients of a l l  the a i r f o i l  configgwations i n  such a way 
t h c t  there  w a ~  only a s l igh t  var ia t ion of mxhm l i f t  coefficient 
with posit ion of minirnuzn pressure {fig. 35) 

The maximm lift coefZicients of the  p la in  a i r f o i l  and the 
a i r f o i l  w i t h  e i ther  or" the f l aps  in the rough condition, increased 
as the  a i r f o i l  thickness was increasled but not s o  rapidly &is i n  the 
mooth condition. For the airfoil .  with e i ther  a s p l i t  or a double 
s lo t ted  f lap,  the decrement i n  maxinun section l i f e  coefficient 
caused by leading-edge roughness was less than t h a t  obtained f o r  tb 
pla in  a i r f o i l  section with the exception of the NACA 1410 and the  
NACA 64L-212 a i r f o i l s  which gave s l igh t ly  hlgher decrements w i t h  
the  double s lo t ted  f lap  deflected. 

A comparison of the l i f %  curves f o r  the smooth condition w i t h  
those f o r  the  condition with feading-edge roughness indicates t h a t  
f o r  t h i n  a i r f o i l  sections, leahirq-edge roughness tends t o  give a 
lees abrupt stall than that obtained f o r  the srnooth cond9tion. 
can be a t t r ibu ted  t o  the  manner i n  which the s ta l l  occurs. For a 
smooth t h i n  a i r f o i l  section, the s t a l l  first occurs i n  the vic in i ty  
of the leading edge, whereas with leading-edge roughness the s t a l l  
occurs over some pear portion of the a i r f o i l  and progresses forward, 

Thie 

Pitching Moments 

Glauert has shown in  reference 5 that  for plain trail ing-edge 
hinged f laps ,  the incremental pitching ar0men-t caused by the dsflec- 
t i o n  of a f l a p  is a l inea r  function of the incremental l i f t  
coefficient. 
is  probably a l so  t rue  f o r  a i r f o i l s  with e p l i t  o r  double s lo t ted  f laps .  

The ra ther  meager data i n  flgure 37 show that t h i s  



NACA RM NO. ~ 7 ~ 1 7  11 

chord of the model with the double s lo t t ed  f b p  extended, reasonably 
good agreemerit is  skr,tiwn f;: the eouble s lo t t ed  flap and the s p l i t  
f l a p  on these a i r f o i l  sections,  
extended is equal t o  the sua of the f l ap  chord an2 the distance 
from the a i r f G i l  leading edge t o  the f l a p  leading edge. 

The t o t a l  chord with the f lap  

For each of tkese a i r f o i l  sections equipped w i t h  the double 
s lo t t ed  flap,  an ms tab le  break i;s the pitching-aoaent curve 
(decrea8e i n  negative pitchlag monent) occLirs a t  the stall. 
unstable break seem t o  be peculiar t o  the double s lo t t ed  f laps  
since it occurs i n  no case f o r  the p la in  a i r f o i l  o r  f o  
with the s p l i t  f la2*  
c l e a r  and an analysis of pressure-distribution data would be required 
t o  shown what flow changes detemine the s t a b i l i t y  of the section 
at the stall .  

This 

Tle actual  cause of t h i s  phenomenon is not 

CONCZUSIONS 

Seven t h i n  NACA a i r f o i l  sections equipped with double s lo t t ed  
f laps  were tes ted i n  %he Langley twP-dimensional low-turbulence 
tunnels, 
64+?12, 65-210, 66-210, and llrl0 a i r f o i l  sections 
was tes ted with a double s lo t t ed  f l ap  consisting of a 0.2ZfS-chord 
main f l ap  and a 0,075-chord fore  f lap ,  
a i r f o i l  was tes ted with a 0 . l O k h o r d  fore  f l a p  and the NACA 64-208 
a i r f o i l  was tes ted with a 0,056-chord fore  f lap.  
the t e s t s  provided the following conclusions: 

The a i r f o i l s  tes ted were the NACA 63-210, 64-208, 64-210, 
Each a i r f o i l  

I n  addition, the NACA 66-210 

The resu l t s  of 

1. The best  fore--flag positions f o r  these a i r f o i l s  were 
generally about l-percent chord forward and 2-percent chord below 
the s l o t  l i p .  The best  f l a p  positions varied considerably, The 
deflections f o r  which the highest maximum l i f t  coeff ic ients  were 
measured were about 50° t o  55O f o r  the f l a p  and about 25O t o  300 
f o r  the fore  flap.  

2. For the a i r f o i l  section w i t h  e i t he r  a s p l i t  o r  double s lo t t ed  
flap,  the m a x i m  section l i f t  coeff ic ient  decreased as the posit ion 
of minimum pressure was moved t o  the r ea r  and as the a i r f o i l  thickness 
was decreased t o  0.08 chord, 

3. I n  a l l  cases, the maximum section l i f t  coeff ic ient  increased 
appreciably as the Reynolds number was increased from 2,4 x 106 
t o  6.0 x lo6 but generally decreased o r  remained constant as the 
Reynolds number was increased from 6.0 x 106 t o  9.0 x 10 6 



4, Increaaing the €ore-flap chord provided increases in  the 
maximun sec-tion l i f t  coefficients of the NACA 64-208 ana the 
R E A  66-210 a i r f o i l  sections w i t h  double s lo t t ed  flaps.  

5. The addition of standard roughness t o  the leading edge of 
the  a i r f o i l s  equipped wit% dou3le s lo t t ed  f laps  ( a )  caused decrements 
in  maxizurn l i f t  coefPicient t h a t  xere generally slightly less than 
those with f l . a p ~  retrwted, (b)  caused a decrease. in the var ia t ion 
of maximum lift coeff ic ient  with posit ion of minimum preesure o r  
with a i r f o i l  thicknesz, and ( c )  caused the stalls t o  be lesa abrupt 
than those f o r  the air€oi l .  i n  the sEoath condition. 

6, The m t i o  of Zricrement of sect ion pitching-noment &eff ic ien t  
t o  increment of section L i f t  coeff ic ient  at a sect ion angle or" 

a t tack  of Oo based on the t o t a l  chord of the airfoil 

with the double Blotted f l a p  extended was approximately the same 
RS that obtained f o r  the a i r f o i l  with the s p l i t  f lap.  

7*  A n  unstable p5tchingmoment break i s  encounte;red a t  the 
s ta l l  f o r  each of the airfoils when equlpped x i t h  the double s lo t t ed  
flaps and swms t o  be peculiar .to double s lo t t ed  f laps ,  

Langley Memorial Ae u t i c  al. Lab oratory 
National Advis Cornnittee for Aeronautics 

Langley Field, 
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Upper sur face  

S t a t i o n  Ordinate 

NACA RM No. L7B17 

Lower sur face  

S t a t i o n  Ordinate 

TAELE 2 

O R n I N A T E S  F O R  NACA 65-210 A I R F O I L  

@ta t ions  and ord ina tes  gfven 
i n  percent  a i r f o i l  chord7 

Upper sur face  

TABLE 1 

ORDINATES FOR NACA 63-210 AIRFOIL 

/$tations and ord ina tes  given 
i n  percent  a i r f o i l  chordJ 

Lower sur face  

Upper sur face  Lower sur face  Lower surface Upper sur face  

S t a t i o n  

0 

1.331 
2.592 
5.102 
7.606 

10.106 
15.101 
20.091 

3:; 

:z::z; t2::g 
45.016 
50.000 

94.986 
100.000 

3rdinate 3rdin a t e 

.876 
0 

1.107 
1 - 379 
2‘:% 
il:2: 
3.372 

5.240 
5 -647 

6.009 
5.861 
5.599 

4.264 
E82 
282 3.684 

1.761 
1.121 

-530 
0 

3rdinat t  I rd ina te  

0 
.a19 
.999 

1.273 

3 -069 
;:zg 
t:g3 

m4 
8:%! 

::;g 

4.938 
5.397 
5.732 

6.05i 
5-915 
5.625 

!+ .128 

2.7 

.622 
0 

us: 0.a 
rad ius  t l  

S t a t i o n  S t a t i o n  

0 

3;; 
-1.0 9 
-1 .$5 
-1. 59 
-2 221 
-2.521 
-2.9 2 
-3.316 
-3*608 -3. 8 
-3.i94 
:$:B 
-3 -709 
-3.435 
-3 -075 
-2 6 2 
-2:& 
-1.689 
-1.191 

,010 
::z;; 
0 

0 

22; 
2:38 

x $1”; 

25o:::z 

82::;: 

1.162 

7.382 

2 .933 
31.951 

50.000 

65.032 
70.036 

90.021 
85.030 
95.010 

100 .ooo 
L.E. ra 

0 
m.716 
-.9 7 

-2.121 
-2.524 
-2 -843 

2:$$ 

I;:@ 
-3.1357 
-3.966 
-3 -970 
-3 -867 
-3.671 

-1.271 

-.4l 
-.822 

-.08$ 
.lo2 

0 

us: 0.770 
Slope of radius  through L.E.: 0.084 L.E.: 0.084 

1.326 
2.602 
?:ti$ 

$::% 
49.973 
2$:%9 

9x.979 

10.146 
15.139 
20.120 
25 -093 

i 9  .q5l 
.$66 1 100 .ooo 

0 

::i;$) 
-1.031 
-1.327 
-1.769 
-2 . n o  
-2 89 
-2&6 
-3.204 
-3.267 
-3. 64 
-3.802 
-3.882 
3:8% 
-3.770 
-3.594 
-3.272 
-2.815 
-2.281 
-1.697 
-1.099 
-.556 -. 092 
0 

0 

2;; 

7’3;5 
;1:;’2$ 
%:?it 

1.171 
2.412 
4.902 

&903 

2 .937 
31.952 

70.051 
75 -056 

90.037 
95.019 

100.000 

L.E. radius:  1.10 
Slope o f  rad ius  through L.E.: 0.05 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

I I I 

L.E. radius:  0.662 
Slope of r a d i u s  through L.E.: 0.084 
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Upper surface 

NACA RM No. L7B17 

Lower surface 

Airfoi l  chord l i n e  -, 

Upper surface 

Flap chord l i n e  

Lower surface 

0 
.25 

1% 

z::: 
;(:% 

2.00 

5.00 
6.00 

9 .oo 
10.00 
12.00 
15.00 
18.00 
21.00 
24.00 
25.00 

0 0 "  0 
-74 -25 -a35 

-50 ::%: 112 1.00 

3: 

::g 
::% 

1.60 2.00 -.83 
2.50 -.83 
3.00 -.79 
6.00 -.56 1.95 

1.99 9.00 -.35 
12.00 -.15 
15.00 . 01 
18.00 .11 
21.00 .16 
24.00 -06 1.62 

1.21 25.00 o 
.a2 
.47 
.12 o 

TABLE 10 

FLAP ORDINATES FOR 66-210 AIRFOIL 

Wdinate 

0 

1. 
1-93 
2.20 
2 6  
2 :la 
2-55 

::g 

132 

2.56 
2.50 
2.27 
1.81 

.28 

.11 

Stat ions and ordinates given f r 5  f lap  
'chord l i n e  i n  percent a i r f o i l  chora 

Dimension a: 0.752 

Stat ion 

0 
.25 
50 

1.00 
2.00 
2.50 
3 .oo 
6.00 
9.00 
12 .oo 
1 00 

21.00 
24 .OO 

13:00 
25.00 

.7i 

.18 
0 

0 0 0 
1.09 .25 -.50 

i:tG -i:ZT 
2.00 -1.27 2.30 
2.50 -1.30 
3.00 -1.26 
6.00 -.9a 

::45 
::862 

3 2  

2-95 
3.00 9.00 -.72 
3.02 12.00 -.46 

3:% 1::; 3.00 

1.35 25.00 o 
21.00 -06 
24.00 .Oh 2. 0 

1.25 

2.22 

7.00 
9.00 

12.51 
15.01 

22.50 
25.00 

11.00 

17.51 
20.00 

L.E. radius centet: 0.240 above f l a p  
chord l i n e  

TABLE 11 

FW O R D I N A ~ S  FOR 140 AIRFOIL 

S ta t ions  and ordinates  given from f lap  
'chord l i n e  in percent a i r f o i l  ohor3 

Upper surface I Lower surface 

Station 

0 
.25 
-50 
1.00 
2.00 

$2: 
2::: 
80" 
9.00 

15.00 
18-00 

24.00 
25 .oo 

10.00 
12.00 

21.00 

)rdina t e 

0 
-.38 
-.62 
-.92 
-1.14 
-1.15 
-1.13 
-1.01 -.ea 

-.47 
-.30 
-.14 

::8 
-.11 

L.E. radius: 0.831 
L.E. radius center: 

Dimension a: 0.700 

0.249 above f l a p  
chord l i n e  

NATIONAL ADVISORY 
COMMITTEE FOE AERONAUTICS 
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NACA RM No. L7B17 Fig. 1 



Fig. 2 NACA RM No. L7BI.7 

(a) A i r f o i l  w i t h  f l a p .  
0 

-- \ 

__j 
Airfo i l  chord l i n e  

fl 

(b) Variables used to  define f l a p  conf igmat ions .  

NATIONAL ADVISORY 
COMMITTEE FOO AERONAUTICS 

Figure 2 .- Typical a i r f o i l  and f l a p  configurat ion.  



NACA RM No. L7B17 Fig. 3 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

. 
Figure 3 .- Profiles of the three f o r e  f l a p s  tested. 

. i n  combination with 0 . 2 5 0 ~  slotted f l a p s .  
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Fig. 9b NACA RM No. L7Bl.7 
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Section angle of attack, a*, deg 

Fig. 12 
11 

64-208 

; NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

Figure 12.- Section l i f t  and pitckiing-moment characterist ics  
of the MACA 64-208 a i r f o i l  sect ion with a double slot’ted 
f lap;  0 . 0 5 6 ~  f o r e  f lap;  0 . 2 5 0 ~  f l a p .  

R = 6.0 x 10 . 
6ff = 2 5 O ;  

6f = 50°; = 1-47; 91 = 2.36; ~2 = 1.78; ~2 = I.&.; 
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Fig. ala NACA RM No. L7B17 
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Fig. 26 NACA RM No. L7B17 
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NACA RM No. L7B17 Fig. 27 
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Fig. 28a NACA RNI No. L7B17 
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NACA RM No. L7B17 Fig. 28b 
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Fig. 28c NACA RM No. L7B17 
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NACA RM No. L7B17 Fig. 29 
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Fig. 30 NACA RM No. L7B17 
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NACA RM No. L7B17 Fig. 31 
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Fig. 32a NACA RM No. L7B17 
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NACA RM No. L7B17 Fig. 32b 

NACA 64,0212 

.. 
0 1  0 .  

L " n c  
II w 



Fig. 32c NACA RM No. L7B17 
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NACA RM No. L7B17 Fig. 82d 
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Fig. 32e NACA EWI No. L7B17 
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NACA RM No. L7B17 Fig. 32f 
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Fig. 32g NACA RM NQ, L7B17 
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NACA RM No. L7B17 Fig. 33 

NACA 641-212 

9 
d 

I 

K\ M 



Figo 34 NACA RM No, L7B17 



NACA RNI No. L7B17 Fig. 35 
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Figs. 36,37 NACA RM No. L7B17 
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