

RESTRICTED

Copy RM E9127

NACA

RESEARCH MEMORANDUM

ALTITUDE-CHAMBER PERFORMANCE OF BRITISH

ROLLS-ROYCE NENE II ENGINE

II - 18.41-INCH-DIAMETER JET NOZZLE

By J. C. Armstrong, H. D. Wilsted and K. R. Vincent

Lewis Flight Propulsion Laboratory Cleveland, Ohio

> CLASSIFICATION CHANGED TO UNCLASSIFIED THIS DOCUMENT ON LOAN FROM THE FILES OF AUTHORITY CROWLEY CHANGE #1926 DATE 12-14-53 NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC

LANCLEY AERONAUTICAL LAFTRATORY

LANGLEY FIELD, HAMPTON, VIRGINIA

RETURN TO THE MON

s document contains classified information ting the National Defense of the United s within the meaning of the Espionage Act, 50:31 and 32. Its transmission or the lation of its contents in any manner to an inforzed person is prohibited by law, rmation so classified may be imparted to persons in the military and naval ces of the United States, appropriate an officers and employees of the Federal nument who have a legitimate interest in, and to United States citizens of known y and dispretion who of measure

CLASSIFIED DOCUMENT

WASHINGTON

October 26, 1949

RESTRICTED

RESTRICTED

ERRATA

NACA RM E9127

ALTITUDE-CHAMBER PERFORMANCE OF BRITISH ROLLS-ROYCE NENE II ENGINE. II - 18.41-INCH-DIAMETER JET NOZZLE By J. C. Armstrong, H. D. Wilsted, and K. R. Vincent

Release Date October 26, 1949

Replace figure 24 with the attached figure.

NACA-Langley - 4-17-50 - 450

RESTRICTED

RESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ALTITUDE -CHAMBER PERFORMANCE OF BRITISH

ROLLS-ROYCE NENE II ENGINE

II - 18.41-INCH-DIAMETER JET NOZZLE

By J. C. Armstrong, H. D. Wilsted and K. R. Vincent

SUMMARY

An altitude-chamber investigation was conducted to determine the altitude performance characteristics of the British Rolls-Royce Nene II turbojet engine with an 18.41-inch-diameter jet nozzle. Results are presented for simulated altitudes from sea level to 60,000 feet and for ram-pressure ratios from 1.00 to 3.50 (corresponding to flight Mach numbers from 0 to 1.47, assuming 100-percent ram-pressure recovery).

Typical performance-data plots are presented to show graphically the effects of altitude and flight ram-pressure ratio. Conventional correction methods were applied to the data to determine the possibility of generalizing each performance parameter to a single curve. A complete tabulation of corrected and uncorrected engine-performance parameters is presented. A comparison of performance with the 18.75- and 18.41-inch-diameter jet nozzles is made to show the effect of small changes in nozzle size under simulated-flight conditions.

The investigation showed that engine performance obtained at one altitude could not be used to predict performance at other altitudes for altitudes above 20,000 feet. Performance at or below 20,000 feet could, however, be predicted from sea-level data or data obtained at any altitude in this range for any particular ram-pressure ratio. For varying ram-pressure ratios, performance can be predicted from other ram-pressure-ratio data only for conditions for which critical flow exists in the jet nozzle.

In comparison with the standard 18.75-inch-diameter jet nozzle, the 18.41-inch-diameter nozzle gave somewhat lower values of netthrust specific fuel consumption at engine speeds below 11,000 rpm

RESTRICTED

at a simulated altitude of 30,000 feet and a ram-pressure ratio of 1.30. Above 11,000 rpm this trend was reversed. Jet thrust, net thrust, fuel consumption, and tail-pipe indicated gas temperature generally increased when the smaller nozzle was used.

INTRODUCTION

Because the British Rolls-Royce Nene II engine is different in design from similar United States turbojet engines and has a high sea-level rating, the Nene engine was investigated in an altitude chamber at the NACA Lewis laboratory during 1948.

The effect on altitude performance of a small change in jetnozzle size is of interest, particularly with reference to engine specific fuel consumption, because aircraft range is directly affected. At altitude, a jet nozzle smaller than standard can be used at cruise conditions without exceeding allowable temperatures; at a given flight condition, a smaller jet nozzle should give higher thrust and possibly lower specific fuel consumption.

In order to determine the change in altitude performance resulting from a small change in jet-nozzle size, three different jet-nozzle diameters (18.75, 18.41, and 18.00 in.) were used in this investigation of the Nene II engine.

The effects of altitude and flight speed on the over-all engine performance using the standard 18.75-inch-diameter jet nozzle are presented in reference 1. The over-all engine performance using an 18.41-inch-diameter jet nozzle is presented herein. Results are presented for simulated-flight conditions varying in altitude from sea level to 60,000 feet and in ram-pressure ratio from 1.00 to 3.50. These ram-pressure ratios correspond to flight Mach numbers from 0 to 1.47, assuming 100-percent ram-pressure recovery. The conventional method of reducing data to sea-level conditions (reference 2) was used to determine whether the performance parameters could be generalized to a single curve; that is, whether data obtained at one altitude and ram-pressure ratio can be used to predict performance at other conditions of altitude and ram-pressure ratio. Also, a comparison of engine performance with these two different jet-nozzle diameters is presented for a simulated-flight condition of 30,000 feet at a ram-pressure ratio of 1.30.

686

DESCRIPTION OF POWER PLANT

A cutaway view of the British Rolls-Royce Nene II power plant, which is a through-flow turbojet engine having nine combustion chambers, is shown in figure 1. The engine incorporates a singlestage double-entry centrifugal compressor (tip diameter, 28.80 in.) driven by a single-stage reaction turbine (tip diameter, 24.53 in.). The turbine-nozzle area is 126 square inches and the standard jetnozzle area is 276 square inches. The dry engine weight is approximately 1720 pounds (starting panel and generator included) and the maximum diameter (cold) is 49.50 inches, giving an effective frontal area of 13.36 square feet.

The sea-level engine performance (reference 3), based on Rolls-Royce static test-bed data with the standard 18.75-inch-diameter jet nozzle, is:

Rating	Jet thrust (lb)	Engine speed (rpm)	Specific fuel consumption (lb/(hr)(lb thrust))
Take-off Military Max. cruise Idle	5000 5000 4000 120	12,250 12,250 11,500 2,600	1.04 1.04 1.02

From these values it can be seen that the rated military thrust per unit weight of engine is 2.91 pounds thrust per pound weight, and the rated military thrust per unit of frontal area is 374 pounds thrust per square foot. The maximum allowable tail-cone gas temperature is 1365° F with the standard 18.75-inch-diameter jet nozzle.

A sea-level acceptance run of the engine with minimum research instrumentation installed showed a thrust of 5110 pounds and a specific fuel consumption of 1.01 pounds per hour per pound of thrust at an engine speed of 12,261 rpm.

APPARATUS AND PROCEDURE

Altitude Test Chamber

The engine was installed in an altitude test chamber 10 feet in diameter and 60 feet long (schematically shown in fig. 2). The inlet section of the chamber (surrounding the engine) was separated from the exhaust section by a steel bulkhead; the engine tail pipe

passed through the bulkhead by means of a low-friction seal. The seal was composed of three floating asbestos-board rings so mounted on the tail pipe as to allow thermal expansion in both radial and axial directions, as well as a reasonable amount of lateral movement to prevent binding.

Engine thrust was measured by a balanced-pressure-diaphragmtype thrust indicator outside the test chamber, connected by a linkage to the frame on which the engine was mounted in the chamber.

An A.S.M.E. type flat-plate orifice mounted in a straight run of 42-inch-diameter pipe at the approach to the test chamber was provided for measuring engine air consumption. Because of the large variation in atmospheric conditions investigated, however, considerable difficulty was encountered with condensation in the orifice differential-pressure lines despite repeated attempts to remedy the situation. The engine air consumption was therefore calculated from engine pressure and temperature measurements in the tail pipe, as described in the appendix.

The ram-air pressure was controlled by a main, electrically operated butterfly valve in the 42-inch air-supply line, bypassed by a 12-inch, pneumatically operated V-port valve. Air was supplied by either a combustion-air (moist, room-temperature) system or a refrigerated-air (dry, cooled) system at temperatures near those desired. Final control of air temperature was accomplished by means of a set of electric heaters in the bypass line immediately preceding the entrance to the test chamber. The air entered the test chamber, passed through a set of straightening vanes, and then entered the engine cowl. The purpose of the cowl was to prevent circulation of heated air from the region of the tail pipe and combustion chambers directly into the aft inlet of the compressor. This heated air was therefore mixed with the cooler air supply before entering the compressor.

The exhaust jet was discharged into a diffusing elbow mounted in the exhaust section of the chamber. This elbow ducted the gases into a dry-type primary cooler. Control of the exhaust pressure was obtained by means of a main, electrically operated butterfly valve, bypassed by a 20-inch, pneumatically operated butterfly valve. The gases then passed through a dry-type secondary cooler and thence into the system exhausters.

Instrumentation

Compressor-inlet temperature and total pressure were measured by eight probes, each consisting of an iron-constantan thermocouple and a total-pressure tube. Four probes were equally spaced around the periphery of the front compressor-inlet screen, and four around the back screen, (station 2, fig. 3). Control of ram pressure and temperature was based on the averaged readings of the eight probes. Compressor-discharge pressures were measured at the exit of compressor-discharge elbows 1, 4, and 7 by seven total-pressure tubes in each elbow.

Engine tail-pipe temperatures at station 6 were measured by means of 25 chromel-alumel, stagnation-type thermocouples located in an instrument ring. The instrument ring also included 24 totalpressure probes, 14 static-pressure probes, and 4 wall staticpressure taps. (See fig. 4, reference 1.) This instrumentation was located approximately 18 inches downstream of the tail cone. In addition, four Nene engine standard tail-cone thermocouples supplied by Rolls-Royce Ltd. were mounted in the tail cone and were used for engine-control purposes.

All pressures, including the thrust-indicator-diaphragm pressure, were instantaneously recorded by photographing the manometer panel. Temperatures were recorded by two self-balancing, scanning potentiometers, which required about 3 minutes to record all engine temperatures. Pressure and temperature instrumentation was also located at other stations throughout the engine; measurements from this instrumentation are not reported.

Engine speed was measured by means of an impulse counter, which operated on the frequency of an alternating-current threephase generator mounted on the accessory case of the engine. Action of the counter and the timer was synchronized by a single mechanism.

Fuel consumption was measured by a calibrated variable-areaorifice flow meter, which allowed near full-scale readings for various ranges of fuel flow by changing the orifice flow area.

With the exception of air consumption, performance data were generally reproducible within 2 percent. Air-consumption data scattered appreciably at high engine speeds and was reproducible only to within 5 percent with a few points showing even greater scatter.

Procedure

Performance characteristics of the engine were obtained over a range of engine speeds at simulated altitudes from sea level to 60,000 feet and ram-pressure ratios from 1.00 to 3.50. Inlet-air temperatures were, in general, held to within 3° F of NACA standard values corresponding to the simulated-altitude and ram-pressureratio conditions. Compressor-inlet total pressures were held at values corresponding to the simulated flight conditions, assuming 100-percent ram-pressure recovery.

RESULTS AND DISCUSSION

A summary of performance and operational data obtained at simulated-altitude conditions is presented in table I. Altitude data corrected for small variations in compressor-inlet pressure and temperature settings and for variations in exhaust-pressure settings are summarized in table II. Table II also includes the data corrected to conditions of NACA standard sea-level static pressure and temperature at the compressor inlet.

Simulated Flight Performance

Effect of altitude. - Typical performance data from table II, obtained at a ram-pressure ratio of 1.30 and simulated altitudes from sea level to 60,000 feet, are presented to show the effect of altitude on jet thrust, net thrust, air consumption (cooling air excluded), fuel consumption, net-thrust specific fuel consumption, and tail-pipe indicated gas temperature (figs. 4 to 9, respectively). The trends shown are identical to those discussed in reference 1; that is, a rapid decrease in jet thrust, net thrust, air consumption, and fuel consumption with increasing altitude and a decrease in specific fuel consumption up to an altitude of approximately 30,000 feet, after which this trend reversed to give an increase in specific fuel consumption as altitude continued to increase. This reversal, as discussed in reference 1, is a result of decreasing inlet temperature, which increases the compressor Mach number thereby producing an increase in the compressor pressure ratio and cycle efficiency. The reversal therefore apparently takes place at the tropopause (35,332 ft based on NACA standard atmosphere). The specific-fuel-consumption curves are computed from values obtained from the faired-in fuel-consumption and net-thrust curves; any discrepancies that occur between the fuel-consumption and netthrust data and the faired curves are carried over to the specificfuel-consumption curves. The data points therefore in many cases

do not fall on the faired curve. The tail-pipe indicated gas temperature (fig. 9) at engine speeds below 10,800 rpm decreased rapidly with increasing altitude to about 40,000 feet, after which there was no further change with altitude. At the engine speeds above 10,800 rpm, there was a reversal in this trend, with tailpipe temperature increasing with increasing altitude. This reversal in trend takes place at lower engine speeds for ram-pressure ratios greater than 1.30, and at higher engine speeds for lower ram-pressure ratios.

Effect of ram-pressure ratio. - Performance data obtained at a simulated altitude of 30,000 feet and at ram-pressure ratios from 1.30 to 3.00 are presented to show the effect of ram-pressure ratio on jet thrust, net thrust, air consumption, fuel consumption, netthrust specific fuel consumption, and tail-pipe indicated gas temperature (figs. 10 to 15, respectively).

As would be expected with increasing air density at the engine inlet, an increase in ram-pressure ratio generally increased jet thrust, air consumption, and fuel consumption throughout the range of engine speeds investigated. The net thrust increased with increasing ram-pressure ratio for high engine speeds, but decreased with increasing ram-pressure ratio for low engine speeds. For the data shown in figure 11 (30,000 ft altitude), the reversal in trend occurred at approximately 10,000 rpm. The net-thrust specific fuel consumption increased with increasing ram-pressure ratio. The curve for a ram-pressure ratio of 1.50 coincides with the curve for a rampressure ratio of 1.70; however, this coincidence is attributable to a slightly high value of fuel consumption for a ram-pressure ratio of 1.50, as indicated by figure 13. The tail-pipe indicated gas temperature, in general, decreased slightly with increasing rampressure ratio. (fig. 15). This decrease was small and somewhat inconsistent and could well be interpreted as data scatter at the higher engine speeds. As would be expected, an appreciable decrease in temperature occurred at the lower engine speeds, where there was a tendency for the engine to windmill.

These trends with varying ram-pressure ratio are identical to those discussed in greater detail in reference 1.

Generalized Performance

Performance data varying in altitude from sea level to 60,000 feet and in ram-pressure ratio from 1.00 to 3.50 were reduced in the conventional manner (reference 2) to NACA standard sea-level conditions. The development of this method of generalizing data involves the concept of flow similarity and the application of dimensional analysis to the performance of turbojet engines. In this development, the efficiencies of engine components are considered to be unaffected by changes in flight conditions.

Effect of altitude. - Typical sea-level corrected engine performance data (table II) obtained at a ram-pressure ratio of 1.30 and simulated altitudes from sea level to 60,000 feet are compared to show the effect of altitude on the corrected values of jet thrust, net thrust, air consumption, fuel consumption, net-thrust specific fuel consumption, tail-pipe indicated gas temperature, and tail-cone indicated gas temperature (figs. 16 to 21, respectively).

The corrected values of jet thrust and net thrust (figs. 16 and 17) did not generalize but decreased with increasing altitude for all altitudes above 20,000 feet. This decrease was attributed, in part, to the decrease in compressor pressure ratio and efficiency as altitude was increased, as discussed in reference 1. Because of the decrease in compressor pressure ratio, a comparable decrease in air consumption would be expected. Although there is an appreciable scatter in the data, a decrease in air consumption with increasing altitude is indicated (fig. 18). The data for 50,000 feet indicate an appreciable decrease at a corrected engine speed of 13,300 rpm after a peak air consumption at 12,800 rpm. This trend and similar trends indicated by other high-altitude data in reference 1 are attributed to scatter in the data at high altitude, where small errors in reading instrumentation are appreciable percentages of the absolute values. Corrected fuel consumption (fig. 19) increased only a small amount with increasing altitude at high values of corrected engine speed. At low engine speeds, the fuel consumption increased very rapidly with increasing altitude. The corrected net-thrust-specific-fuel-consumption curves (fig. 20) generalized up to an altitude of 20,000 feet. Above 20,000 feet the corrected specific fuel consumption increased with increasing altitude. The corrected tail-pipe and tail-cone indicated gas temperature (fig. 21) generalized at all engine speeds. The difference between tail-pipe and tail-cone temperatures is attributed to the differences in the location and the number of thermocouples used.

The failure of the altitude data to generalize to single curves for each parameter for altitudes above 20,000 feet is in agreement with the results of the investigation using the standard 18.75-inch jet nozzle (reference 1).

Effect of ram-pressure ratio. - The conventional method of generalizing data was specifically developed to adjust for changes in the pressure and the tomperature of the atmosphere in which the engine is operating. Variations in ram-pressure ratio (flight speed) change the performance characteristics by effectively changing the compression ratio of the engine. In general, the increased operating pressure with increasing ram-pressure ratio raises the total expansion pressure ratio of the engine (from turbine inlet to jet-nozzle throat) until critical flow is established in the jet nozzle. After critical flow is established, the expansion pressure ratio of the engine remains constant with increasing ram-pressure ratio. The engine is then effectively operating in an atmosphere having a static pressure equal to the pressure existing in the jetnozzle throat, and is operating at a constant effective ram-pressure ratio. The effective ram-pressure ratio is then equal to the ratio of the compressor-inlet total pressure to the jet-nozzle-throat static pressure. With critical flow in the jet nozzle, generalization of flow characteristics within the engine should be possible within the limitations discussed in connection with altitude effects.

Typical performance data obtained at a simulated altitude of 30,000 feet and ram-pressure ratios from 1.30 to 3.00 are compared to show the effect of ram-pressure ratio on the corrected values

of jet thrust, jet-thrust parameter $\frac{F_j + p_0 A_7}{\delta}$, (reference 1), net thrust, air consumption, fuel consumption, net-thrust specific fuel consumption, and tail-pipe indicated gas temperature (figs. 22 to 27, respectively). (The symbols are defined in the appendix.)

The corrected jet thrust (fig. 22(a)) did not generalize but the corrected jet-thrust parameter (fig. 22(b)) generalized for all conditions for which the jet nozzle was choked. The corrected net thrust of figure 23 appears to generalize at the higher speeds; however, examination of plots of the data of table II at other altitudes shows that the data for ram-pressure ratios lower than 1.30 do not generalize. Although the corrected air consumption of figure 24 generalized, the jet thrust did not generalize and thus, there is apparently no reason to expect the net thrust to generalize. At higher flight speeds (ram-pressure ratios), however, the momentum of the incoming air is greater at a given mass flow; this larger quantity, when subtracted from the higher jet-thrust values of figure 22, causes the corrected net thrust to generalize for rampressure ratios above 1.30. Corrected fuel consumption generalized at the high engine speeds when critical flow existed in the jet nozzle (fig. 25). At lower engine speeds, the fuel consumption decreased with increasing ram-pressure ratio. The corrected netthrust specific fuel consumption (fig. 26) showed reasonable agreement for ram-pressure ratios above 1.30. Examination of plots of the data of table II at other altitudes show appreciably lower values of specific fuel consumption at a ram-pressure ratio of 1.00. The corrected tail-pipe indicated gas temperature (fig. 27) also generalized to a single curve for engine speeds at which critical flow existed in the jet nozzle. At lower engine speeds, the corrected tail-pipe indicated gas temperature decreased with increasing ram-pressure ratio.

Effect of Jet-Nozzle Area on Performance

A rational examination of the effect of jet-nozzle area on . engine performance, neglecting secondary effects, indicates that a reduction in jet-nozzle area increases the resistance to flow through the nozzle thus raising the tail-pipe pressure. Because, from considerations of typical centrifugal-compressor performance, the compressor pressure ratio remains nearly constant for small changes in air flow, the higher tail-pipe pressure caused by a reduction in jet-nozzle area results in a decreased expansion pressure ratio across the turbine. In order to maintain the required turbine power output, it is then necessary to raise the turbineinlet temperature, which results in an increased tail-pipe temperature as well. The engine air consumption is essentially proportional to the turbine-inlet pressure and inversely proportional to the square root of the turbine-inlet temperature. Because the turbine-inlet pressure, as previously explained, remains nearly constant and the turbine-inlet temperature rises, a small decrease in air consumption would be expected. This decrease would cause the turbine-inlet temperature to rise slightly at the same fuel flow used with the larger jet nozzle, but an increase in fuel flow to the engine is probably necessary to attain the turbine-inlet temperature required by the smaller jet nozzle. The higher tail-pipe pressure caused by a reduction in jet-nozzle area results in an increase in jet-nozzle-throat velocity in the subcritical flow range, or in a greater excess of nozzle-throat static pressure over ambient static pressure in the critical flow range. In either case, the jet thrust for a given gas flow would increase. Because the jet-nozzle-throat velocity varies directly as the square root of the tail-pipe temperature and the engine air consumption varies inversely as the square root of the turbine-inlet temperature, these effects tend to cancel each other and should not have much effect on the jet thrust. The net result should therefore be an increase in jet thrust due to the higher tail-pipe pressure.

989

Performance parameters at a simulated altitude of 30,000 feet and a ram-pressure ratio of 1.30 using the 18.41-inch-diameter jet nozzle are compared with the engine performance using the standard nozzle (18.75-in. diameter) data from reference 1 (figs. 28 to 33). The decrease in area of 3.5 percent showed the expected trends, causing a small increase in jet thrust, net thrust, and tail-pipe indicated gas temperature over the entire speed range. At an engine speed of 12,000 rpm these increases amount to approximately 4, 5, and 3 percent, respectively. Fuel consumption (fig. 31) also increased over most of the speed range (about 9 percent at an engine speed of 12,000 rpm). Air consumption, because of the scatter in the data, was obtained from the faired curves of figure 24 herein and figure 27 of reference 1. These data show the expected decrease in air consumption when using the smaller jet nozzle, (approximately 1 percent at an engine speed of 12,000 rpm). The net-thrust specific fuel consumption (fig. 32) was somewhat lower for the smaller nozzle at engine speeds below 11,000 rpm (about 5 percent lower at an engine speed of 10,000 rpm); above 11,000 rpm the smaller nozzle gave a slightly higher specific fuel consumption (about 3 percent higher at an engine speed of 12,000 rpm).

SUMMARY OF RESULTS

The following results were obtained from an altitude-chamber investigation of the performance of a British Rolls-Royce Nene II turbojet engine using an 18.41-inch-diameter jet nozzle:

1. Engine-performance parameters could not be predicted for altitudes above 20,000 feet from data obtained at one particular altitude, because of a progressive decrease in compressor pressure ratio and efficiency at high engine speeds at altitudes above 20,000 feet.

2. At a given altitude, performance data at any ram-pressure ratio for which critical flow existed in the jet nozzle could be used to predict performance at any other ram-pressure ratio in the critical flow range within the limits of this investigation.

3. In comparison with the standard 18.75-inch-diameter jet nozzle, the 18.41-inch-diameter jet nozzle (a decrease in area of approximately 3.5 percent) indicated a slightly lower value of netthrust specific fuel consumption at engine speeds below 11,000 rpm (5 percent lower at an engine speed of 10,000 rpm) at a simulated altitude of 30,000 feet and a ram-pressure ratio of 1.30. At engine

speeds above 11,000 rpm, the smaller nozzle indicated a slightly higher specific fuel consumption. Jet thrust, net thrust, fuel consumption, and tail-pipe indicated gas temperature all increased slightly when the smaller nozzle was used (approximately 4, 5, 9, and 3 percent, respectively), whereas air consumption showed a small decrease (about 1 percent).

Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.

APPENDIX - CALCULATIONS

Symbols

A area, sq ft

- D diameter, ft
- F thrust, 1b
- g acceleration due to gravity, 32.2 ft/sec²
- H enthalpy, Btu/lb
- J mechanical equivalent of heat, 778 ft-lb/Btu
- K thrust constant
- M Mach number
- N engine speed, rpm
- P absolute total pressure, lb/sq ft
- p absolute static pressure, lb/sq ft
- R gas constant, 53.3 ft-lb/(lb)(^oF)
- T total temperature, R
- t static temperature, ^OR
- V velocity, ft/sec
- Wa air consumption, lb/sec
- Wf fuel consumption, lb/hr
- Wg gas flow, lb/sec
- γ ratio of specific heats
- δ ratio of compressor-inlet absolute total pressure to absolute static pressure of NACA standard atmosphere at sea level

θ ratio of compressor-inlet absolute total temperature to absolute static temperature of NACA standard atmosphere at sea level

Subscripts:

- b barometer
- d thrust-measuring diaphragm
- i indicated
- j jet
- n net
- p airplane
- s seal

Station notation (fig. 3):

- 0 free stream
- 2 compressor inlet

3 compressor discharge

- 5 tail cone (turbine discharge)
- 6 tail pipe (upstream of jet nozzle)
- 7 .jet-nozzle outlet (throat)

Methods of Calculation

Thrust. - Thrust was determined from the altitude-chamber thrust indicator (by multiplying the diaphragm pressure by a constant) with an added correction factor to account for the pressure differential across the tail-pipe seal. The relation used was

$$\mathbf{F}_{i} = \mathbf{F}_{i} + \mathbf{A}_{s}(\mathbf{P}_{2} - \mathbf{p}_{0})$$

where

$$\mathbf{F}_{\mathbf{i}} = \mathbf{K}(\mathbf{p}_{\mathbf{d}} - \mathbf{p}_{\mathbf{b}})$$

and the seal area

$$A_{g} = \frac{\pi D_{g}^{2}}{4}$$

Air consumption. - Engine air consumption was calculated from measurements of temperature and total and static pressure in the tail pipe. Total-pressure profiles across the tail pipe were plotted for each data point; the profiles were then read at eight points, so selected as to divide the tail-pipe area into four equal concentric, annular areas. The following formula was then applied to each of the four areas:

$$W_g = \frac{P_6 A}{Rt_6} \sqrt{2gJ\Delta H}$$

where

A 1/4 x tail-pipe area (cold)

ΔH enthalpy difference between total- and static-pressure conditions, determined from reference 4

The static temperature in the formula was calculated from the indicated temperature by the following relation:

$$t_{6} = \frac{T_{6,i}}{1 + 0.8 \left(\frac{T_{6}}{t_{6}} - 1\right)}$$

where the temperature ratio was determined from the tail-pipe totalto-static pressure ratio by means of reference 4. The factor 0.8 is the selected average value of thermocouple recovery factor based on instrument calibrations.

The engine air consumption was then determined by adding the gas flows through the four annular areas and subtracting the fuel flow:

$$W_{a} = W_{g} - \frac{W_{f}}{3600}$$

Simulated flight speed. - The simulated flight speed at which the engine was operated was determined from the following relation:

$$\mathbf{v}_{p} = \sqrt{2gR \frac{\gamma}{\gamma-1} t_{0} \left[\left(\frac{P_{2}}{P_{0}}\right)^{\gamma} - 1 \right]}$$

where γ was assumed to be 1.40.

Net thrust. - Net thrust was calculated from jet thrust by subtracting the momentum of the free-stream air approaching the engine inlet, according to the relation

$$F_n = F_j - \frac{W_a V_p}{g}$$

where V_D is the simulated flight speed as previously calculated.

Flight Mach number. - The flight Mach number was calculated from the compressor-inlet total pressure, assuming 100-percent ram-pressure recovery, by the following relation:

$$M_{p} = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{P_{2}}{p_{0}} \right)^{\gamma} - 1 \right]}$$

where γ was assumed to be 1.40.

1

REFERENCES

- Barson, Zelmar, and Wilsted, H. D.: Altitude-Chamber Performance of British Rolls-Royce Nene II Engine. I - Standard 18.75-Inch-Diameter Jet Nozzle. NACA RM E9I23, 1949.
- Bollay, William: Performance Variation of Gas Turbines and Jet Propulsion Units with Atmospheric Inlet Conditions. Power Plant Memo. No. 1, Bur. Aero., Navy Dept., March 3, 1943.
- 3. Anon.: Rolls-Royce Nene II Performance and Installation Data. TSD 57, Dec. 1947.
- 4. Amorosi, A.: Gas Turbine Gas Charts. Res. Memo No. 6-44 (Navships 250-330-6), Bur. Ships, Navy Dept., Dec. 1944.

RRR

Point	Altitude (ft)	Compressor-inlet total pressure, P2 (in. Hg abs.)	Exhaust static pressure, po (in. Hg abs.)	Ram-pressure ratio, P_2/p_0	Compressor-inlet total temperature, T_2 (OR)	Endine speed, N (rpm)	Jet thrust, Fj (1b)	Air consumption, W _a (lb/sec)	Fuel consumption, W _f (1b/hr)	Tail-pipe indicated gas temperature, T6,1 (oR)	Tail-cone indicated gau temperature (Rolls-Roy thermocouples) T5,1	Compressor pressure ratio, P_3/P_2	Fuel-supply pressure (lb/sq in. gage)	Fuel-pump-discharge pressure (lb/sq in. gage)	Main-fuel-manifold pressure (lb/sq in. rage)	Pilot-fuel-manifold pressure (lb/sq in. gage)	011-pump-discharge pressure (1b/sq in. gage)	011 inlet temperature (oF)	Rear-bearing temperatu.	Accumulative engine time (hr)
1 2 3 4 5	0 0 0 0 0	29.94 30.00 29.91 29.86 29.92	30.02 30.02 29.94 29.89 29.89	1.00 1.00 1.00 1.00 1.00	562 562 562 562 561	6,040 7,960 10,012 10,812 11,580	643 1129 2329 2926 3669	34.54 48.95 62.39 67.92 73.94	1250 1745 2640 3210 3950	1323 1301 1400 1474 1581	900 860 1000 1060 1190	1.509 1.978 2.804 3.204 3.624	15 15 18 18 18	1200 1280 1300 1300 1300	200 280 350 360 500	325 380 420 420 550	19 26 35 32 32	140 150 140 180 190	150 175 170 225 270	73
. 6	0	38.91	29.99	1.30	564	8,040	1692	65.12	1535	1055	600	1.888	20	1620	220	350	30	165	180	75
7 8 9	000	38.85 39.00 37.10	29.80 29.90 29.70	1.30 1.30 1.25	561 558 563	7,924 9,020 10,004	1619 2344 3015	64.42 75.22 76.94	1520 2025 2695	1040 1124 1258	600 700 825	1.843 2.238 2.679	20 20 20	1600 1600 1500	220 300 300	325 400 390	30 30 30	165 170 180	185 200 220	141
10 11 12 13 14 15	10,000 10,000 10,000 10,000 10,000 10,000	26.50 26.62 26.58 26.64 26.58 26.55	20.51 20.46 20.56 20.66 20.46 20.46	1.29 1.30 1.29 1.29 1.30 1.30	520 519 521 523 520 521	6,392 8,052 10,000 10,804 11,600 12,292	718 1276 2438 3140 4202 5082	36.60 47.47 59.76 67.67 75.64 79.13	845 1145 2070 2715 3700 4865	914 1001 1214 1330 1496 1685	500 600 850 950 1150 1325	1.497 1.961 2.861 3.321 3.929 4.438	22 22 22 22 22 22 22 22 22	1100 1200 1200 1175 1200 1200	100 200 250 250 450 700	150 300 390 400 500 750	28 32 33 32 32 32 32	120 120 150 170 180 190	130 140 190 220 240 270	90
16 17 18	10,000 10,000 10,000	33.98 34.05 33.92	20.49 20.59 20.74	1.66 1.65 1.64	558 561 560	9,968 10,824 11,588	3126 4178 5394	73.47 82.88 89.37	2030 2965 4085	1148 1298 1463	720 900 1050	2.629 3.108 3.641	20 19 18	1400 1400 1400	280 320 520	380 400 600	29 31 34	190 200 200	230 250 250	75
19 20 21 22	10,000 10,000 10,000 10,000	35.05 35.00 35.00 33.45	20.45 20.65 20.45 19.95	1.71 1.70 1.71 1.68	564 564 562 567	9,084 9,980 10,824 11,600	2342 3254 4386 5279	66.16 76.64 85.20 87.65	1430 2145 3125 4050	999 1155 1316 1489	560 710 900 1100	2.173 2.613 3.095 3.591	20 20 20 20	1420 1420 1420 1420	230 300 370 530	330 400 450 580	33 33 33 33	125 190 200 210	195 215 245 265	140
23 24 25 26 27	20,000 20,000 20,000 20,000 20,000	17.51 17.57 17.36 17.40 17.52	13.76 13.76 13.81 13.76 13.76	1.27 1.28 1.26 1.26 1.27	480 482 481 484 484	7,984 9,992 10,820 11,596 12,140	924 1876 2443 3079 3680	34.76 45.11 48.78 52.45 56.38	850 1499 2065 2765 3415	946 1185 1343 1516 1675	550 800 950 1140 1320	$\begin{array}{r} 2.105 \\ 3.159 \\ 3.727 \\ 4.259 \\ 4.687 \end{array}$	14 14 14 14 13	800 800 800 800 800	100 200 250 300 400	180 340 370 400 450	30 31 31 31 31	85 110 120 140 150	100 140 160 195 230	67
28 29 30 31 32	20,000 20,000 20,000 20,000 20,000	23.16 23.07 23.13 23.18 23.08	13.56 13.61 13.66 13.66 13.76	1.71 1.70 1.69 1.70 1.68	522 521 522 520 520	9,040 10,020 10,800 11,608 12,220	1681 2481 3207 4091 4834	46.85 53.65 59.79 65.26 68.67	1080 1665 2315 3180 4070	972 1162 1323 1489 1666	600 800 950 1125 1300	2.266 2.840 3.311 3.891 4.368	20 20 20 20 20	1000 1050 1050 1050 1050	180 230 250 350 500	250 350 375 425 575	30 20 31 31 32	150 155 165 175 180	170 190 210 230 250	88
33 34 35 36	20,000 20,000 20,000 20,000	29.99 30.07 30.11 30.13	13.74 13.79 13.64 13.65	2.18 2.18 2.21 2.21 2.21	562 562 562 562	9,040 9,984 10,776 11,616	2282 3218 4161 5324	57.49 66.21 71.91 79.32	1070 1740 2550 3670	936 1125 1289 1476	520 700 880 1040	2.118 2.610 3.073 3.627	19 19 18 18	1300 1300 1300 1300	190 300 320 400	260 380 400 480	30 33 33 33	170 175 180 200	190 195 220 240	74
37 38 39 40 41	30,000 30,000 30,000 30,000 30,000	11.48 11.58 11.63 11.73 11.58	8.68 8.78 8.58 8.78 8.88	1.32 1.32 1.36 1.34 1.30	447 446 447 446 447	8,656 10,008 10,776 11,596 12,072	860 1429 1917 2419 2671	27.24 32.91 36.04 38.45 39.60	720 1075 1540 2135 2510	940 1144 1306 1539 1665	520 725 900 1200 1325	2.550 3.408 3.988 4.590 5.001	15 15 15 15	550 550 550 550 550	80 180 220 280 300	120 260 340 380 400	25 27 28 28 28	120 110 110 125 135	155 145 153 190 220	132
42 43 44 45 46	30,000 30,000 30,000 30,000 30,000	13.38 13.38 13.43 13.53 13.33	8.78 8.78 8.68 8.78 8.68	1.52 1.52 1.55 1.54 1.54 1.54	466 468 467 465 460	8,828 10,000 10,800 11,592 12,084	1064 1649 2195 2794 3177	30.53 36.51 38.48 42.79 44.28	840 1224 1676 2350 2545	942 1142 1302 1569 1664	520 720 900 1175 1305	2.528 3.277 3.794 4.458 4.880	15 15 15 15	620 620 620 620 620	95 200 230 290 310	140 300 350 390 420	28 29 29 29 29	93 110 123 140 150	118 140 165 205 228	131
47 48 49 50 51	30,000 30,000 30,000 30,000 30,000	15.14 15.12 15.23 15.04 15.04	8.81 8.86 8.76 8.81 8.91	1.72 1.71 1.74 1.71 1.69	482 484 482 482 482	9,088 9,980 10,808 11,640 12,204	1329 1860 2456 3093 3566	34.96 39.77 43.72 45.46 48.83	865 1166 1745 2445 3020	955 1118 1312 1537 1664	550 750 920 1150 1325	2.527 3.092 3.710 4.307 4.741	14 14 13 13	725 740 730 725 720	100 200 250 300 350	170 300 350 390 400	31 29 29 30 30	130 130 130 135 150	175 160 170 185 230	68
52 53 54 55 56 57	30,000 30,000 30,000 30,000 30,000 30,000	17.83 17.78 17.83 17.58 18.08 17.83	8.78 8.78 8.68 8.88 8.88 8.88	2.03 2.02 2.05 2.00 2.04 2.01	504 502 501 504 501 504	8,988 9,068 9,904 9,948 10,664 11,520	1505 1540 2149 2104 2776 3466	39.81 38.79 44.79 44.75 48.14 51.01	896 916 1328 1260 1876 2590	926 937 1108 1109 1269 1469	500 500 700 700 860 1125	2.371 2.411 2.933 2.936 3.414 3.984	20 20 20 22 20 20 20	800 800 800 800 810 800	100 120 200 200 250 300	180 180 300 300 350 410	30 29 29 28 29 29 29	125 125 135 150 150 170	150 155 170 200 190 230	136
58	30,000	20.09	8.82	2.28	520	7,920	1093	37.28	664	751	325	1.790	21	900	75	100	29	120	140	77
59 60 61 62 63	30,000 30,000 30,000 30,000 30,000	20.08 20.08 19.95 19.84 19.84	8.85 8.95 8.80 8.71 8.91	2.27 2.24 2.27 2.28 2.23	517 520 522 524 520	8,976 10,012 10,784 11,640 12,232	1670 2439 3108 3918 4498	41.71 47.26 50.84 55.66 58.17	890 1395 1985 2835 3515	915 1151 1322 1510 1680	550 800 950 1150 1325	2.228 2.816 3.301 3.922 4.339	20 20 20 20 20	900 925 900 900 900	100 200 250 300 400	170 325 375 400 475	28 29 29 29 29	150 160 170 170 180	170 190 210 240 260	87

TABLE I - PERFORMANCE AND OPERATIONAL DATA OBTAINED AT SIMULATED-ALTITUDE CONDITIONS

^aAverage representing time in altitude chamber. Approximately 22 hr had been accumulated at time of installation in altitude chamber.

NACA

NACA

-

the second s	Foint	Altitude (ft)	Compressor-inlet total pressure, P2 (in. Hg abs.)	Exhaust static pressure, po (in. Hg abs.)	Ram-pressure ratio, P ₂ /PO	Compressor-inlet total temperature, T2 (OR)	Engine speed, N (rpm)	Jet thrust, Fj (1b)	Air consumption, W _R (lb/sec)	Fuel consumption, W _f (lb/hr)	Tail-pipe indicated gas temperature, $T_{G,1}$ (or)	Tail-cone indicated gas temperature (Rolls-Royce thermocouples) T5,1 (OP)	Compressor pressure ratio, P3/P2	Fuel-supply pressure (lb/sq in. gage)	Fuel-pump-discharge pressure (lb/sq in. gage)	Main-fuel-manifold pressure (lb/sq in. gage)	Pilot-fuel-manifold pressure (lb/sq in. gage)	011-pump-discharge pressure (lb/sq in. gage)	011 inlet temperature (oF)	Rear-bearing temperatur (OF)	Accumulative engine time (hr)
	64 65 66 67 68 69	30,000 30,000 30,000 30,000 30,000 30,000	24.16 24.21 24.16 24.11 24.06 24.16	8.81 8.81 8.91 8.91 8.91 8.81 9.31	2.74 2.75 2.71 2.71 2.73 2.60	552 542 549 552 552 552 556	9,132 9,156 9,984 10,808 11,580 12,264	2140 2224 2954 3730 4626 5444	49.04 50.05 53.68 58.66 63.95 68.19	905 950 1450 2200 3030 4000	939 947 1135 1316 1490 1685	500 500 675 900 1100 1300	2.189 2.234 2.694 3.162 3.672 4.164	18 15 18 18 18 18	1040 1020 1040 1040 1040 1040	160 170 260 300 350 510	220 240 360 400 450 580	30 31 30 29 29 29	160 145 165 190 200 210	180 165 195 230 255 280	139
	70 71	30,000 30,000	25.88 25.96	9.04 8.89	2.86	562 562	10,012 11,620	3175 4926	56.73 68.08	1510 2915	1124 1476	700 1100	2.609 2.648	20 19	1120 1100	200 350	310 400	24 29	200 205	235 260	75
	72 73 74 75 76	40,000 40,000 40,000 40,000 40,000	7.28 7.28 7.48 7.23 7.48	5.48 5.48 5.48 5.58 5.48	1.33 1.33 1.36 1.30 1.36	428 426 425 427 424	8,300 8,992 9,992 10,812 11,552	516 671 977 1191 1591	17.11 17.98 21.84 22.91 24.24	500 550 715 1010 1410	899 973 1135 1320 1531	500 600 725 950 1200	2.482 2.853 3.500 4.137 4.695	15 15 15 16 16	390 390 400 390 390	b 80 150 220	80 70 130 230 330	28 25 26 26 26	110 100 100 110 115	145 130 135 160 180	132
	77 78 79 80	40,000 40,000 40,000 40,000	9.40 9.50 9.60 9.50	5.30 5.50 5.40 5.50	1.77 1.73 1.78 1.73	460 461 462 459	9,040 10,008 10,784 11,600	947 1293 1681 2070	23.00 25.93 28.70 29.98	628 795 1120 1630	947 1129 1310 1536	525 705 900 1145	2.628 3.242 3.812 4.432	22 20 20 20	480 480 480 480	50 100 200 240	80 150 280 350	27 26 26 26	100 112 120 140	130 148 160 210	128
	81 82 83 84 85	40,000 40,000 40,000 40,000 40,000	11.06 11.16 11.12 11.18 11.15	5.61 5.61 5.56 5.56 5.56	1.97 1.99 2.00 2.01 2.00	480 482 483 482 484	8,940 9,988 10,800 11,604 12,012	1002 1459 1877 2377 2596	25.57 29.26 31.76 33.77 34.76	700 910 1265 1800 2085	929 1122 1315 1534 1665	550 750 950 1200 1325	2.431 3.100 3.687 4.262 4.556	14 14 14 14 14	570 580 580 580 580	50 100 200 250 260	100 180 300 360 380	26 28 28 28 28 28	130 125 130 140 150	170 160 170 200 215	69
	86 87 88	40,000 40,000 40,000	14.72 14.75 14.75	5.52 5.54 5.57	2.67 2.66 2.65	522 520 520	9,916 10,800 11,584	1861 2418 3023	34.73 38.69 41.29	1010 1518 2095	1113 1316 1516	725 925 1145	2.764 3.340 3.902	24 24 24	710 710 710	150 220 280	205 325 385	27 28 28	157 160 170	193 200 220	78
	89 90 91 92	40,000 40,000 40,000 40,000	14.78 14.86 14.82 14.77	5.55 5.55 5.60 5.60	2.66 2.68 2.64 2.64	520 521 520 521	9,060 9,960 10,784 11,560	1389 1940 2452 3000	31.13 34.95 37.85 40.73	708 1084 1534 2105	939 1145 1340 1536	600 800 1000 1250	2.246 2.812 3.317 3.846	20 20 20 20	700 700 700 700	25 175 200 250	110 240 350 390	27 27 27 27	140 150 170 170	160 180 210 230	85
	93	40,000	19.14	5.56	3.44	563	9,980	2492	41.46	1294	1132	700	2.606	14	850	200	280	26	180	210	70
	94 95 96 97 98	50,000 50,000 50,000 50,000 50,000	4.68 4.68 4.68 4.68 4.68	3.38 3.28 3.38 3.18 3.28	1.38 1.43 1.38 1.47 1.43	428 424 428 428 428 428	9,324 9,988 10,772 11,600 12,096	510 607 754 978 1088	12.36 13.21 14.37 15.51 15.37	438 502 672 918 1120	1043 1134 1307 1530 1723	650 725 900 1125 1325	2.949 3.361 3.915 4.543 4.848	16 16 16 16 17	280 290 280 280 280	60 60 100 170	40 50 85 170 250	26 26 26 26 26	125 115 115 120 130	180 165 170 180 205	133
1	99 100 101 102	50,000 50,000 50,000 50,000	6.00 5.90 6.00 5.80	3.30 3.30 3.40 3.30	1.82 1.79 1.76 1.76	457 460 461 461	8,960 10,004 10,740 11,624	581 809 1031 1244	14.91 16.48 17.83 18.83	396 542 752 1068	922 1119 1293 1540	512 725 900 1175	2.550 3.254 3.783 4.431	20 20 20 20	330 330 330 320	40 160	20 35 120 220	22 24 24 24 24	140 130 130 140	185 170 175 200	129
	L03 L04 L05 L06	50,000 50,000 50,000 50,000	7.32 7.20 7.34 7.38	3.46 3.36 3.41 3.46	2.12 2.14 2.15 2.13	482 482 481 481 482	9,100 10,040 10,828 11,600	683 974 1262 1508	17.11 19.05 20.99 22.23	555 660 885 1160	944 1135 1329 1542	550 750 960 1225	2.520 3.121 3.706 4.215	14 14 14 14	400 400 400	50 50 100 200	50 80 180 300	24 25 26 26	135 130 130 140	170 165 170 190	70
	L07 L08 L09	50,000 50,000 50,000 50,000	9.18 9.15 9.16 9.24	3.72 3.72 3.77 3.77	2.47 2.46 2.43 2.45	522 520 509 519	8,268 10,000 10,828 11,628	551 1135 1500 1814	17.66 22.35 24.60 25.68	358 684 1004 1315	802 1129 1322 1539	405 755 950 1205	1.889 2.867 3.421 3.899	26 25 25 25	500 500 495 495	0 50 75 5 130 5 205	12 100 210 315	18 22 21 22	163 175 185 190	197 225 255 265	79
	111 112 113 114	50,000 50,000 50,000 50,000	9.23 9.12 9.27 9.20	3.50 3.50 3.50 3.55	2.64 2.61 2.65 2.59	520 520 520 520 522	9,020 9,984 10,788 11,588	858 1170 1539 1867	20.00 21.75 24.11 25.22	484 688 996 1378	935 1149 1342 1557	600 800 1000 1300	2.27] 2.829 3.327 3.874	20 20 20 20 20	500 473 480 490	200	45 100 200 350	22 24 24 24 24	160 160 165 180	195 195 210 240	86
:	115	50,000	11.98	3.66	3.27	562	10,016	1505	26.23	860	1142	750	2.626	5 14	600	50	130	18	190	235	71
	116 117 118 119 120	60,000 60,000 60,000 60,000	3.08 2.83 2.88 2.88 2.88 2.78	2.08 2.08 2.08 2.08 1.98	1.48 1.38 1.38 1.38 1.40	434 432 434 434 434 436 441	9,324 9,972 10,752 11,608 12,200	329 330 423 542 601	8.05 7.73 9.45 9.21 9.52	308 320 398 556 664	1075 1153 1310 1541 1717	625 700 900 1120 1325	2.906 3.283 3.847 4.441 4.673	5 17 18 18 18 18 18	210 200 200 200 200		12 10 30 60 90	22 22 22 22 22 22 22 22	140 140 140 145 150	215 210 205 210 230	134
	121 122 123 124 125	60,000 60,000 60,000 60,000	3.88 3.68 3.78 3.68 3.68 3.68	2.18 2.08 2.08 2.08 2.08 1.98	1.78	3 460 4 460 4 62 4 62 4 60 4 62 4 60 4 62 4 62 4 62	8,836 9,984 10,836 11,600 12,088	239 446 602 735 824	9.14 10.24 11.29 11.35 11.74	370 400 506 678 818	916 1134 1329 1540 1726	5 500 725 940 1160 5 1325	2.497 3.242 3.836 4.375 4.698	20 20 20 20 20 20 20 20 20 20 20 20 20 2	250 250 250 250 250	0 0 0 70 95	20 30 60 100 140	23 23 23 23 23	95 115 125 85 150	135 150 160 190 215	135

TABLE I - PERFORMANCE AND OPERATIONAL DATA OBTAINED AT SIMULATED-ALTITUDE - Concluded

^aAverage representing time in altitude chamber. Approximately 22 hr had been accumulated at time of installation in altitude chamber.

^bDashes indicate that values are unknown.

Point Altitude Ram-(ft) pressure ratio
 Fuel
 Net-thrust specific
 Indicated gas

 consumption
 fuel consumption
 temperature

 (1b/hr)
 (1b/(hr) (1b thrust))
 (OR)
 Net thrust Air (1b) consumption (1b/sec) Engine (rpm) Jet thrust (1b) speed Tail-pipe Fail-cone Parameter Corr. N/V@ Alt. Corr Alt. Alt. Corr Alt. Alt. Alt. Corr. Corr Alt. Corr Corr Corr Fj + POA7 Wa Wave/8 Wr/Fnve P2/P0 N Fj Fj/o Fn/o Wr/SV9 T6,1/0 T5,1/0 Fn Wf W_f/F_n F6.1 δ 5,808 7,646 9,618 10,386 11,135 5,808 641 641 7,646 1126 1126 9,618 2327 2327 10,386 2929 2929 11,135 3673 3673 4,554 5,039 6,240 6,842 7,586 64164111261126232723272929292936733673 35.81 35.81 50.90 50.80 64.88 64.88 70.78 70.78 76.97 76.97 1198 1671 2534 1257 1218 00 1.00 1198 1.869 1.869 1223 1223 1198 1671 2534 3087 3802 1.869 1.484 1.089 1.054 1.035 1.484 1.00 345 000 1292 1361 1347 1404 1361 3087 3802 1.054 1.035 1463 1463 1526 0 7,716 1689 1299 6 1.30 4.309 214 1526 1131 8.009 277 65.23 52.09 5.486 5.285 1047 971 976 7,619 1626 1251 4,261 64.81 51.75 75.21 60.05 81.67 65.21 1128 6.483 2.715 1.870 7 0 1.30 7,909 226 174 1522 6.729 1037 962 981 80 00 1.30 9,029 9,966 8,698 2346 1805 9,601 3188 2452 4,815 5,462 719 1421 554 1092 2029 1504 2043 2.818 1128 1046 1079 10,000 10,000 10,000 10,000 10,000 10,000
 6,399
 6,386
 720
 805

 8,068
 8,052
 1283
 1435

 10,000
 9,980
 2475
 2768

 10,783
 10,761
 3162
 3536

 11,611
 11,588
 4226
 4727

 12,292
 12,267
 5112
 5717
 3,815 4,445 5,778 6,546 7,737 8,727 1.30 1.30 1.30 848 1154 10 -46 -51 36.69 41.12 947 00 905 90 947 00 47.64 53.40 60.50 67.80 68.22 76.45 75.98 85.15 323 1355 289 1288 3.996 3.988 1005 1001 1060 1300 1.706 1.570 1.408 1.416 12 13 14 15 1212 2071 2312 1209 1204 1.573 1.411 1.419 1319 1493 1678 1399 1607 1778 1.30 1737 1943 2733 3051 1324 1.30 2640 4158 1499 79.62 89.23 4893 3449 3858 5462 1685 10,000 10,000 10,000 10,017 9,622 3277 2803 10,835 10,408 4346 3718 11,610 11,153 5694 4871 75.41 67.15 84.72 75.44 92.45 82.32 1.70 1.70 1.70 5,105 6,020 7,173 995 1782 2896 851 1524 2477 2083 3037 4203 1712 2496 3454 2.096 1.705 1.451 2.013 1.638 1.394 1094 1253 1394 16 17 18 1153 1064 1196 1351 1296 10,000 10,000 10,000 10,000 8,709 2322 1986 9,568 3243 2774 4,288 5,076 6,048 7,017 19 1.70 9,066 323 276 66.05 58.82 76.43 68.06 1436 1180 4.452 2.297 4.275 1002 924 943 1076 20 1.70 9,960 794 1152 21 1.70 10,824 10,398 4379 3746 11,555 11,100 5512 4715 1805 1544 85.02 75.71 92.09 82.00 3144 4196 2584 1.742 1.673 1317 1215 1256 2725 2331 1.541 3448 1479 1364 1429 8,002 8,299 946 1583 9,994 10,365 1921 3214 10,834 11,236 2546 4260 11,574 12,004 3192 5342 12,117 12,567 3793 6347 4,593 6,224 7,270 8,352 9,357 20,000 20,000 20,000 20,000 20,000 23 1.30 230 385 35.61 57.46 850 1476 3.697 3.834 937 1008 1077 1.30 1.30 1.30 1.30 996 1667 1533 2565 2108 3528 2630 4401 46.01 74.23 50.39 81.31 53.92 87.00 57.87 93.38 1.562 1.421 1.390 1.371 24 25 26 27 1500 2101 2603 3646 1.506 1.370 1.340 1.322 1182 1342 1352 1271 1444 4905 6032 1626 1716 2826 3476 1670 1796 9,040 9,022 1682 2152 10,020 10,000 2530 3238 10,800 10,778 3251 4161 11,619 11,596 4119 5271 12,232 12,208 4924 6301 47.06 60.35 54.22 69.53 60.19 77.18 65.65 84.18 69.50 89.12 4,454 5,540 6,463 7,573 8,603 1095 1683 2330 28 20.000 310 397 971 1.70 1399 3.530 3.523 967 1055 20,000 20,000 20,000 20,000 20,000 29 1.70 950 1216 2149 1.771 1.767 1157 1498 1917 2976 1321 1316 1403 2206 2823 2898 3709 4092 1.453 1.450 1491 1485 1663 31 1.70 3204 1580 1756 4118 33 34 35 36 20,000 20,000 20,000 20,000 9,083 8,684 2445 2313 10,032 9,591 3462 3275 10,828 10,352 4425 4186 60.77 60.14 69.65 68.93 75.21 74.43 4,014 4,976 5,887 7,057 1124 1840 6.370 2.136 2.30 177 862 167 815 1017 6.090 945 864 905 1071 2.042 1039 2.30 10,828 1616 1529 2679 2423 1.658 1301 1189 1236 11.671 11.158 5661 5356 2578 2439 82.60 81.74 3859 3490 1.497 1.431 1491 1363 1385 8,626 9,327 849 2202 9,984 10,796 1416 3671 10,738 11,611 1864 4834 11,568 12,509 2328 6035 12,029 13,007 2670 6922 30,000 30,000 30,000 30,000 30,000 317 822 779 2019 1174 3045 1607 4167 1905 4938 27.64 66.27 33.04 79.22 35.81 85.87 37.37 89.60 39.73 95.25 5,212 6,681 7,844 9,044 9,932 734 1071 1519 2.316 1.374 1.293 1.297 1.312 2.504 1.486 1.398 37 38 39 1.30 942 1148 2058 1101 1379 1584 1937 1301 1.30 4258 40 1 30 2085 5845 7008 1.403 1536 1653 1.30 1933 2072 8,793 9,316 1047 2352 9,940 10,531 1638 3680 10,746 11,385 2142 4811 11,559 12,246 2722 6115 12,116 12,836 3132 7035 30.37 64.40 36.53 77.45 37.99 80.55 42.15 89.37 43.92 93.13 30,000 30,000 30,000 30,000 1.50 4,961 6,289 7,420 8,724 9,644 311 699 753 1692 2.883 1.711 1.443 939 1132 42 43 44 45 46 847 1217 2015 2.721 1054 1096 1.50 2895 1.615 1.362 1.369 1271 1314 1222 2744 1702 3823 1664 3960 1294 1452 1516 1.450 1.50 2328 5541 1560 1825 30,000 1.50 2068 4645 2527 6013 1.221 1672 187 1991 35.09 66.82 39.79 75.77 43.50 82.82 45.75 87.12 49.12 93.53 30,000 30,000 30,000 30,000 30,000 9,059 9,427 1327 2630 9,928 10,331 1850 3666 10,775 11,212 2414 4783 11,604 12,075 3108 6159 12,166 12,660 3582 7098 4,932 5,968 47 48 49 50 51 1.70 347 687 872 1798 2.515 2.617 954 1093 1.70 1.70 1.70 1.70 738 1463 1198 2373 1830 3625 2210 4378 1.575 1.439 1.340 1.366 1.639 7,086 8,461 9,400 1.497 1305 1723 3552 1413 1486 2451 3016 5053 1528 1655 1734 6219 1.421 1792 1922 30,000 30,000 30,000 30,000 30,000 30,000 8,971 9,069 9,915 9,929 10,676 11,499 9,121 1478 2490 9,220 1528 2574 10,080 2124 3579 10,095 2129 3586 10,854 2702 4552 11,691 3436 5789 324 470 1151 1114 1982 3022
 39.75
 65.86

 38.63
 64.01

 44.56
 73.84

 45.35
 75.14

 47.18
 78.17

 50.80
 84.18
 2.00 2.00 2.00 2.00 2.00 2.00 4,446 4,530 5,535 5,542 6,508 7,745 890 912 1331 4.627 3.269 1.949 1.923 4.704 3.323 1.981 1.955 192 923 937 954 989 52 53 54 55 56 57 1524 993 1202 1195 279 683 661 1562 2280 2179 3142 1111 1148 1272 1834 1177 1794 1.559 1.585 1272 1464 1367 1632 4402 1513 58 7.936 7.912 1115 1634 3.335 -238 37.75 55.48 978 755 30.000 2.30 -348 669 00 00 750 783 30,000 30,000 30,000 30,000 30,000 9,021 10,032 10,784 11,629 12,257 2.30 2.30 2.30 2.30 2.30 2.30 8,994 10,002 10,752 11,594 1705 2498 2509 3676 3210 4703 4038 5917 4,199 5,377 6,404 7,618 192 790 1351 1982 2539 282 1157 1979 2904 3720 42.22 47.99 51.89 57.40 62.04 70.52 76.26 84.35 1311 2069 2969 4282 5322 4.663 1.793 1.504 1.479 1.434 4.649 1.788 1.500 1.475 1.430 925 1156 1323 1507 1014 1256 1402 1596 1786 59 60 61 62 63 897 919 1416 2032 2931 3643 1148 1314 1497

59.62

4675 6

8,551

TABLE II - PERFORMANCE DATA ADJUSTED TO STANDARD ALTITUDE AND CORRECTED TO STANDARD SEA-LEVEL ATMOSPHERIC CONDITIONS (Adjusted for variations in ram-pressure ratio)

NACA

1694

.

.

686

_						(Ad)	(Adjusted for variations in ram-pressure ratio)														
Point	Altitude (ft)	Ram- pressure ratio	Engin (rpm)	e speed	leed Jet thrust (1b)			Net (1b)	thrust	Air consu (1b/s	mption ec)	Fuel cons (1b/	umption hr)	Net-thrus fuel cons (lb/(hr))	st specific sumption (1b thrust))	temperature (°R)					
		P2/P0	Alt. N	Corr. N/VO	Alt. Fj	Corr. F /8	$\frac{\begin{array}{c} Parameter \\ F_j + p_0 A_7 \\ \hline \delta \end{array}}{$	Alt. Fn	Corr. F _n /S	Alt. Wa	Corr. Way9/8	Alt. Wf	Corr. W _f /6/9	Alt. W _f /F _n	w _f /F _n ö	Tail Alt. T _{6,1}	-pipe Corr. T _{6,1} /9	Corr. T _{5,1} /0			
64 65 66 67 68 69	30,000 30,000 30,000 30,000 30,000 30,000	2.70 2.70 2.70 2.70 2.70 2.70 2.70	9,096 9,201 9,965 10,766 11,524 12,169	8,857 8,959 9,703 10,483 11,221 11,849	2122 2182 2929 3704 4589 5430	2635 2722 3655 4621 5725 6775	4,084 4,171 5,104 6,070 7,174 8,224	172 229 819 1392 2049 2722	215 286 1022 1737 2556 3396	49.02 49.34 53.33 58.42 64.20 68.45	62.81 63.22 68.33 74.85 82.26 87.70	894 947 1427 2170 3009 3954	1086 1150 1734 2636 3656 4803	5.187 4.130 1.743 1.559 1.469 1.452	5.051 4.021 1.697 1.518 1.430 1.414	931 955 1131 1305 1475 1658	883 906 1073 1238 1399 1573	903 919 1073 1279 1465 1643			
70 71	30,000 30,000	3.00 3.00	10,022 11,631	9,618 11,162	3312 5084	3720 5710	5,024 7,014	857 2163	962 2429	58.52 69.65	68.49 81.51	1547	1667 3225	1.806 1.384	1.733 1.328	1127 1480	1038 1363	1071 1440			
72 73 74 75 76	40,000 40,000 40,000 40,000 40,000	1.30 1.30 1.30 1.30 1.30	8,255 8,964 9,973 10,767 11,543	9,140 9,925 11,042 11,921 12,780	503 660 923 1183 1498	2088 2741 3832 4912 6218	5,098 5,751 6,842 7,922 9,228	183 325 526 753 1059	760 1348 2182 3126 4398	16.99 17.83 21.11 22.86 23.31	63.70 66.86 79.14 85.71 87.38	503 546 697 999 1358	2312 2510 3202 4592 .6242	2.747 1.682 1.325 1.327 1.282	3.041 1.862 1.467 1.469 1.419	901 975 1139 1309 1533	1105 1195 1396 1604 1879	1179 1301 1457 1714 2037			
77 78 79 80	40,000 40,000 40,000 40,000	1.70 1.70 1.70 1.70	9,013 9,968 10,728 11,578	9,603 10,620 11,430 12,335	847 1215 1513 1989	2690 3858 4803 6315	4,992 6,160 7,105 8,617	220 509 737 1179	699 1617 2339 3742	22.96 25.86 28.43 29.69	68.41 77.06 84.71 88.47	638 790 1092 1615	2157 2671 3692 5461	2.897 1.551 1.481 1.369	3.086 1.652 1.578 1.459	945 1120 1301 1530	1073 1271 1477 1737	1116 1312 1533 1815			
81 82 83 84 85	40,000 40,000 40,000 40,000 40,000	2.00 2.00 2.00 2.00 2.00	8,927 9,953 10,751 11,563 11,945	9,293 10,361 11,192 12,037 12,435	1006 1448 1871 2349 2578	2715 3906 5047 6338 6954	4,671 5,862 7,003 8,294 8,910	196 528 866 1289 1478	530 1423 2336 3476 3986	25.62 29.14 31.80 33.57 34.83	66.40 75.50 82.40 87.00 90.25	689 904 1258 1782 2062	1934 2539 3534 5003 5792	3.505 1.714 1.452 1.381 1.396	3.649 1.784 1.512 1.438 1.453	926 1115 1304 1524 1647	1004 1208 1413 1652 1785	1092 1303 1515 1787 1914			
86 87 88	40,000 40,000 40,000	2.70 2.70 2.70	9,906 10,811 11,595	9,886 10,789 11,572	1897 2465 3082	3791 4928 6161	5,240 6,377 7,610	532 949 1466	1064 1896 2931	35.29 39.23 41.79	70.67 78.56 83.70	1023 1539 2124	2040 3070 4237	1.921 1.622 1.449	1.917 1.619 1.446	1112 1320 1521	1106 1313 1513	1178 1382 1602			
89 90 91 92	40,000 40,000 40,000 40,000	2.70 2.70 2.70 2.70	9,069 9,960 10,795 11,560	9,051 9,940 10,773 11,537	1415 1956 2501 3062	2829 3910 4999 6121	4,278 5,359 6,448 7,570	193 592 1018 1460	385 1183 2035 2919	31.62 35.29 38.35 41.42	63.33 70.67 76.81 82.96	717 1092 1557 2130	1431 2178 3106 4249	3.724 1.845 1.529 1.459	3.717 1.841 1.526 1.456	941 1146 1343 1538	936 1140 1336 1530	1057 1255 1456 1703			
93	40,000	3.50	9,971	9,578	2529	3900	5,018	666	1027	42.05	67.51	1305	1934	1.960	1.883	1130	1043	1069			
94 95 96 97 98	50,000 50,000 50,000 50,000 50,000	1.30 1.30 1.30 1.30 1.30	9,274 9,980 10,714 11,537 12,031	10,268 11,050 11,862 12,774 13,320	473 545 692 868 980	3165 3648 4635 5812 6562	6,175 6,658 7,645 8,822 9,572	249 306 432 592 709	1669 2046 2895 3960 4746	11.87 12.72 13.80 14.70 14.42	71.79 76.88 83.45 88.85 87.19	433 490 644 863 1064	3207 3628 4769 6395 7887	1.735 1.601 1.488 1.459 1.501	1.921 1.773 1.647 1.615 1.662	1048 1145 1297 1521 1712	1285 1403 1590 1865 2099	1366 1465 1654 1932 2174			
99 100 101 102	50,000 50,000 50,000 50,000	1.70 1.70 1.70 1.70	8,963 9,975 10,696 11,577	9,549 10,627 11,396 12,334	446 703 917 1187	2282 3596 4691 6073	4,584 5,898 6,993 8,376	52 255 438 665	266 1307 2243 3404	14.42 16.37 17.51 19.09	69.29 78.65 84.12 91.71	402 536 730 1071	2192 2925 3983 5841	7.735 2.101 1.667 1.610	8.241 2.238 1.776 1.715	931 1117 1283 1527	1057 1268 1456 1734	1113 1342 1531 1841			
103 104 105 106	50,000 50,000 50,000 50,000	2.00 2.00 2.00 2.00	9,068 10,005 10,801 11,559	9,440 10,415 11,244 12,033	620 901 1145 1362	2696 3922 4984 5926	4,652 5,878 6,940 7,882	112 323 521 709	488 1406 2266 3085	16.05 18.30 19.77 20.66	67.10 76.50 82.65 86.35	536 636 822 1068	2428 2880 3722 4838	4.779 1.968 1.577 1.505	4.975 2.049 1.642 1.567	942 1132 1328 1532	1021 1227 1439 1660	1093 1308 1537 1814			
107 108 109 110	50,000 50,000 50,000 50,000	2.70 2.70 2.70 2.70 2.70	8,259 10,010 10,956 11,651	8,243 9,990 10,934 11,628	578 1205 1569 1879	1864 3882 5057 6054	3,313 5,331 6,506 7,503	-116 326 614 877	-373 1052 1979 2826	17.95 22.71 24.69 25.90	57.96 73.33 79.74 83.63	347 691 1042 1334	1119 2221 3350 4292	2.115 1.696 1.522	2.111 1.693 1.519	801 1133 1355 1557	797 1127 1348 1549	860 1213 1438 1675			
111 112 113 114	50,000 50,000 50,000 50,000	2.70 2.70 2.70 2.70 2.70	9,033 9,999 10,805 11,577	9,015 9,979 10,783 11,554	872 1207 1552 1912	2809 3889 5001 6163	4,258 5,338 6,450 7,612	96 351 619 922	309 1130 1996 2971	20.07 22.14 24.11 25.61	64.81 71.48 77.85 82.70	488 700 1002 1398	1568 2250 3224 4496	5.084 1.995 1.618 1.515	5.074 1.991 1.615 1.512	944 1154 1348 1561	939 1148 1341 1553	1064 1259 1459 1755			
115	50,000	3.00	9,795	9,622	1256	3645	4,949	309	896	23.11	68.27	734	2091	2.376	2.334	1071	1034	1097			
116 117 118 119 120	60,000 60,000 60,000 60,000 60,000	1.30 1.30 1.30 1.30 1.30	9,210 9,871 10,621 11,438 11,954	10,197 10,929 11,759 12,664 13,235	277 314 388 502 572	2990 3385 4184 5418 6174	6,000 6,395 7,194 8,428 9,184	139 170 213 333 391	1501 1838 2303 3598 4225	7.33 7.61 9.26 8.95 9.59	71.47 74.22 90.25 87.28 93.51	292 315 380 530 649	3495 3767 4545 6329 7758	2.104 1.851 1.782 1.589 1.658	2.329 2.049 1.973 1.759 1.836	1082 1138 1282 1500 1657	1326 1395 1572 1839 2031	1338 1404 1631 1886 2111			
121 122 123 124 125	60,000 60,000 60,000 60,000 60,000	1.70 1.70 1.70 1.70 1.70	8,810 9,954 10,780 11,565 12,025	9,386 10,605 11,485 12,322 12,812	209 429 553 711 773	1722 3539 4566 5868 6381	4,024 5,841 6,868 8,170 8,683	-26 151 256 405 461	-212 1251 2116 3341 3809	8.58 10.14 10.87 11.21 11.41	66.51 78.62 84.25 86.99 88.42	357 399 482 666 795	3142 3508 4245 5858 6998	2.632 1.883 1.645 1.724	2.804 2.006 1.753 1.837	920 1131 1320 1531 1708	1044 1284 1498 1738 1939	1093 1342 1578 1828 2005			

TABLE II - PERFORMANCE DATA ADJUSTED TO STANDARD ALTITUDE AND CORRECTED TO STANDARD SEA-LEVEL ATMOSPHERIC CONDITIONS - Concluded (Adjusted for variations in rag-pressure ratio)

NACA

Figure 1. - Cutaway view of British Rolls-Royce Nene II turbojet engine. (Photographed from Rolls-Royce Manual on Nene engine.)

.

.

*

22

.

.

.

.

.

23

.

~~~



Figure 4. - Effect of altitude on jet thrust. Ram-pressure ratio, 1.30.



Figure 5. - Effect of altitude on net thrust. Ram-pressure ratio, 1.30.



Figure 6. - Effect of altitude on air consumption. Rampressure ratio, 1.30.



....

, 189



Engine speed, N, rpm

Figure 7. - Effect of altitude on fuel consumption. Rampressure ratio, 1.30.



Engine speed, N, rpm

Figure 8. - Effect of altitude on net-thrust specific fuel consumption. Ram-pressure ratio, 1.30.

28

NACA RM E9127





Figure 9. - Effect of altitude on tail-pipe indicated gas temperature. Ram-pressure ratio, 1.30.



-











Figure 12. - Effect of ram-pressure ratio on air consumption. Altitude, 30,000 feet.



Figure 13. - Effect of ram-pressure ratio on fuel consumption. Altitude, 30,000 feet.







Figure 15. - Effect of ram-pressure ratio on tail-pipe indicated gas temperature. Altitude, 30,000 feet.













.

•



Figure 19. - Effect of altitude on corrected fuel consumption. Ram-pressure ratio, 1.30.



Figure 20. - Effect of altitude on corrected net-thrust specific fuel consumption. Ram-pressure ratio, 1.30.

40

# NACA RM E9127



(a) Tail pipe.

Figure 21. - Effect of altitude on corrected indicated gas temperatures. Ram-pressure ratio, 1.30.



Figure 21. - Concluded. Effect of altitude on corrected indicated gas temperatures. Ram-pressure ratio, 1.30.

NACA RM E9127



Figure 22. - Effect of ram-pressure ratio on corrected jet thrust. Altitude, 30,000 feet.

.



Figure 22. - Concluded. Effect of ram-pressure ratio on corrected jet thrust. Altitude, 30,000 feet.

Ram-pressure ratio 5000 1.30  $\overline{\diamond}$ 1.50 1.70 2.00 2.30 2.70 3.00 A 00 4000 0 8 Corrected net thrust,  $F_n/\delta$ , 1b 3000 Ç 2000 1000 0 0 NACA--1000 8,000 10,000 12,000 14,000 4,000 6,000

Figure 23. - Effect of ram-pressure ratio on corrected net thrust. Altitude, 30,000 feet.

Corrected engine speed,  $N/\sqrt{\Theta}$ , rpm

45

989

.



Figure 24. - Effect of ram-pressure ratio on corrected air consumption. Altitude, 30,000 feet.

.









NACA RM E9127







Figure 28. - Effect of jet-nozzle size on jet thrust. Altitude, 30,000 feet; ram-pressure ratio, 1.30.



Figure 29. - Effect of jet-nozzle size on net thrust. Altitude, 30,000 feet; ram-pressure ratio, 1.30.



Engine speed, N, rpm

Figure 30. - Effect of jet-nozzle size on air consumption. Altitude, 30,000 feet; ram-pressure ratio, 1.30.

NACA RM E9127

.

.

.







.

. 989

Figure 32. - Effect of jet-nozzle size on net-thrust specific fuel consumption. Altitude, 30,000 feet; ram-pressure ratio, 1.30.



