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SUMMARY

A solid half body was modified to mount first a scoop inlet and
then an NACA submerged inlet while maintaining the same entrance geom-
etry, afterbody, and diffuser for both inlets. The model was mounted on
the transonic bump of the Ames 16-foot high- speed w1nd tunnel and was
tested through an angle-of-attack range of 0° to 9 and a Mach number

a range of 0.79 to 1.12. The range of mass-flow ratio was from O to a
maximum of 0.92. Comparative pressure-recovery, pressure-distribution,
and drag data were obtained for the two inlet types.

At the low mass-flow ratios, the submerged inlet always gave higher
ram recovery than did the scoop inlet. This is attributed to the thicker
growth of boundary layer along the approach of the scoop inlet. At the
maximum mass-flow ratio, ram recovery of the scoop and the submerged
inlets was about the same at 0° angle of attack. The effect of Mach
number was small on both inlet types but Mach number effects augmented
the adverse effects of angle of attack on the submerged inlet.

Total drag was about the same for both inlets except at 6° angle of
attack where the total drag of the scoop inlet was higher. The increment
of external drag was higher for the scoop inlet up to Mach numbers of
1.08 at 0° and at all Mach numbers at 6°.

INTRODUCTION

The scoop-type inlet and the NACA submerged inlet are two current
inlet designs which supply air to a jet engine and require a relatively
short internal ducting. An NACA submerged inlet has been previously
tested at transonic speeds (references 1 and 2), but no previous
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transonic tests of a scoop inlet are known. The purpose of this inves-
tigation was to compare the transonic characteristics of a scoop-type
inlet with those of a submerged inlet. To provide a basis of comparison,
the inlets were each mounted in the same half body, the model being
identical from the leading edge of the entrance lip rearward with either
inlet mounted in the body. The model was tested on the transonic bump
of the Ames 16-foot high-speed wind tunnel. The average Mach number
over the bump test section ranged from 0.79 to 1.12.

SYMBOLS
A inlet area, square feet
d maximum depth of inlet entrance, 0.95 inch
H total pressure, pounds per square foot
h boundary-layer parameter designating the height for which a

complete loss of dynamic pressure would be equivalent to the
integrated loss of total pressure in the actual boundary layer

=
e (H, - H)dy J, inches
Hy - P5 Yo

M Mach number
m mass flow (pVA), slugs per second
P = P,
P pressure coefficient | ——
a5
B critical pressure coefficient (the pressure coefficient

corresponding to sonic velocity)

P static pressure, pounds per square foot
2
q dynamic pressure (% pV ), pounds per square foot
S maximum frontal area of half model,0.0681 square feet

) velocity outside the boundary layer, feet per second
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Hy - Po

&

local velocity in the boundary layer, feet per second

ordinate perpendicular to ramp surface at station of boundary-
layer measurement, inches

drag coefficient <%§—2—§

Jf °2V2(V0"V3)1A2J

internal drag coefficient [:CD. = — =
5 q‘O ¢

increment of external drag coefficient due to the air induc-

tion system <.ACDE = CDT - CDS - CD:’L>

total drag coefficient of model with solid nose and tail cone

total drag coefficient of model with an inlet in place

ram-recovery ratio at the entrance

ratio of the mass flow through the inlet to the mass flow in
the free stream through an area equal to the inlet area

<'01A3VJ->
pOAlVo
angle of attack of the model, degrees

boundary-layer thickness where the local velocity is 0.99 of
the velocity outside the boundary layer, inches

mass density, slugs per cubic foot
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Subscripts
o free stream
1 inlet rake
2 diffuser exit
3 station downstream of the exit where p,; = p,
TESTS

The range of free-stream Mach numbers of this test was from 0.79 to
1.12, corresponding under the test conditions to a Reynolds number range
from 3.7 to 4.4 million per foot of length. Due to the streamwise
gradient of Mach number along the bump, the free-stream Mach number was
taken as the average Mach number between a station 3 inches in front of
the model and a station 2 inches behind the model. These local Mach
numbers were measured along the bump surface away from the influence of
of the model. Also, because of the streamwise gradient, the free-stream
factors used in the calculation of pressure coefficients (qo and po)
were local free-stream values.

The test angles of attack were 0°, 3°, 6°, and 9°. To provide a
range of mass-flow ratio, constrictions were inserted at the model exit,
providing exit-area ratios of 1 (full open), 3/4%, 1/4, and O (plugged).
Pressure recovery and mass flow at the inlet rake were measured at O°
and 6° angle of attack for the full range of exit-area ratios. At 39
and 9° they were measured only with the exit full open. Pressure
distribution was recorded with the exit full open for OO, 60, and 9
angle of attack; drag measurements were made with the outlet full open
and plugged at 0°, 3%, 6°, and 9°. With the exit full open, boundary-
layer measurements were made at 0° angle of attack and tuft photographs
were made at 0° and 90.

(o)

MODEL AND APPARATUS

A complete description and photographs of the transonic bump were
given in reference 1 along with distributions of local Mach number over
the surface of the bump.

Three basic models were tested in this investigdtion: they were the
solid body, the body with the scoop inlet, and the body with the NACA
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submerged inlet. Photographs of the models mounted on the transonic
bump are presented in figure 1. The scoop model and the submerged model
were fabricated by modification of the solid-nose body forward of the
station corresponding to the leading edge of the entrance lip. Thus,
all three models were identical from the entrance lip to the diffuser
exit. The same tail cone was used to complete the solid body and to
plug the exit of the body with inlet installed. Details and dimensions
of the three noses and of the single fuselage afterbody are given in
figures 2 and 3.

Internal diffusion of the air from either the scoop or the
submerged inlet began 0.40 inch behind the lip leading edge (where the
lip curvature ended) and continued to within 1 inch of the exit. The
entrance area was 2 square inches and the maximum exit area was 3.1L4
square inches. To avoid the boundary layer of the bump, all models were
tested 3/h inch from the bump surface. Beneath the model was an under-
body (fig. 2) that was fastened to the bump surface and cleared the
bottom of the model by about 1/8 inch. The model was supported from the
bump by a strut that projected through the underbody.

An inlet rake was in the duct 2.75 inches behind the leading edge
of the entrance 1lip. It was composed of 19 total-pressure tubes and 1k
static-pressure tubes, the total-pressure tubes being disposed so as to
be located in the center of approximately equal areas. Data from the
inlet rake were used to compute ram-recovery and mass-flow ratios. An
exit rake was mounted on the bump surface 1/2 inch behind the model
exit. It was composed of 37 total-pressure tubes and 4 static-pressure
tubes spaced along two mutually perpendicular diameters and provided
data for the calculation of internal drag. The location of the tubes in
the exit rake is shown in figure 4. Total drag of the models was
measured by a strain-gage balance located within the bump.

The boundary layer was measured by a rake centered 1/2 inch in
front of the entrance. For test conditions with a thickened boundary
layer, a l/2-inch—wide strip of mucilage impregnated with fine carbo-
rundum was located 5 inches behind the nose of the model. Flush pressure
orifices were located along the body and the inside of the entrance lip,
as indicated in figure 5.

REDUCTION OF DATA

The ram-recovery ratio at the entrance was calculated from the
measured pressures by the method derived in reference 3. The logarithm
of the total pressure at each of the 19 tubes in the entrance rake was
veighted by the mass flow through the area assigned to that tube.
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The mass-flow ratio was computed from the summation of the mass flows
through the 19 equal areas.

The relative merit of various methods of weighting the pressures
over the area of a duct to determine an average or effective value of
the total pressure is a subject of controversy. Area-averaging, mass-
flow averaging, and other methods have been proposed and used by differ-
ent authors. A comparison of these methods indicates that all of them
give results within 1 or 2 percent of each other for relatively uniform
total-pressure distributions. For extreme distributions, with large
peaks and hollows, these various methods may lead to widely different
results and it has not yet been established that any of these are
accurate for engineering purposes. In view of the fact that in the cases
of most practical interest the various methods yield similar results, the
labor involved in computing results by several methods did not seem
warranted.

The coefficient of internal drag was calculated by the method
outlined in reference 4 and is essentially a measurement of change in
momentum of the air from the free stream to the station of measurement.
Figure 4 presents a typical plot of point-drag coefficient across the
exit of the model, including both internal and external drag influences.
The portion of the drag data that was assumed to be due to internal flow
and which was used in calculation of internal drag coefficient is indi-
cated. Such an assumption is considered to be reasonable for the
comparative values of drag coefficient that are presented for the two
inlets. The increment of external drag coefficient was calculated by
subtracting the coefficient of solid-body drag and of internal drag from
the coefficient of total drag of the body with inlet. It reflects the
change in the external drag due to the air-induction system. All drag
coefficients were based on twice the maximum frontal area of the half
body.

RESULTS

\

The figures presenting results in this report fall into five
general classifications. These classifications and the figures within
each classification are listed as follows:
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Classification Figures

Variation of ram-recovery ratio:

Variation of ram-recovery ratio and
mass-flow ratio with Mach number 6, T

Cross plots of ram-recovery ratio
versus mass-flow ratio 8, 9

Contours of ram-recovery ratio and

mass-flow ratio 10 to 1k
Boundary-layer parameters 15, 16
Tuft pictures 17, 18
Distribution of pressure coefficient 19 to 27
Variation of drag coefficient 28 to 32
DISCUSSION

Ram-Recovery Ratio

Effect of mass-flow ratio.- For comparison at equal mass-flow
ratios, the data of figures 6 and 7 (where both mass-flow ratio and Mach
number vary) are cross-plotted in figures 8 and 9. Curves of ram-
recovery ratio versus mass-flow ratio for the scoop and submerged inlets
(figs. 8 and 9) all showed low ram recovery at low mass-flow ratios.

The scoop ram recovery was always lower than the recovery with the
submerged inlet at low mass-flow ratios due, it is believed, to the
thicker growth of boundary layer along the approach of the scoop inlet
as compared to that along the ramp of the submerged inlet. The much
lower rate of boundary-layer growth along the ramp of a submerged inlet
with diverging ramp walls (similar to the one of this investigation)
compared to that of a submerged inlet with parallel ramp walls was shown
in reference 5. The submerged inlet with parallel walls can be consid-
ered to approach a scoop design.

At the maximum mass-flow ratios, the ram recoveries of the scoop
and submerged inlets were about the same at o angle of attack
(figs. 8 and 9). The fact that the scoop had equal ram recovery even
though a thicker boundary layer was measured (fig. 15) was due to low-
energy air entering the submerged inlet et the corners near the lip,
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the entrance of such air not registering on the boundary-layer rake at
the entrance center line. The presence of the low-energy air is
indicated in the contours of figure 12 by the areas of low ram recovery
at the corners near the lip. The low-energy air is believed to be due
to vortex formation off the diverging walls of the ramp and to fuselage
boundary layer that these vortices carried into the cormers of the
entrance. Photographs of such vortex formation on a submerged inlet
were presented in reference 5.

Effect of angle of attack and Mach number.- Although at low angles
of attack and subsonic Mach numbers the submerged inlet had equal or
higher ram recovery, increasing angle of attack had a more adverse
effect on ram recovery of the submerged inlet than on that of the scoop
inlet (figs. 8 and 9), such adverse effect on the submerged inlet
beginning at lower angle of attack as Mach number increased. The more
adverse effect of increasing angle of attack on the submerged inlet is
attributed to the increasing strength of the vortex which formed off the
lower ramp wall of the submerged inlet with increasing angle of attack.
The reduction in ram recovery with lncreasing angle of attack is
reflected in the contours of ram-recovery ratio (fige. 12 and 13).
These contours show the large increase in areas of low ram recovery in
the lower half of the entrance as the angle of attack increased from
0° to 6°. That a flow of the ramp boundary layer into the lower half of
the entrance of the submerged inlet may have occurred at an angle of
attack is indicated by the curves of pressure coefficient (figs. 26
and 27). These curves show that when the inlet was at an angle of
attack the statlic pressures along the lower edge of the ramp were much
lower than those along the center and upper edge of the ramp. The tuft
pictures in figure 18 indicate the flow direction along the ramp when
the submerged inlet was at 0° and 9° angle of attack.

The contours of ram recovery for the scoop inlet indicate that at
0° angle of attack the losses were mainly along the body side of the
entrance (fig. 10) and that at 6° the losses were greater in the lower
half of the entrance than in the upper half (fig. 11).

Effect of thickened boundary layer.- Ram-recovery and mass-flow
ratios of the two inlets operating with a normal and with a thickened
boundary layer are presented in figure 16. Ram-recovery and mass-flow
ratio of the submerged inlet were both influenced to a lesser degree by
the thickened boundary than were those of the scoop inlet.

Pressure Distribution and Tuft Studies

The plots of pressure distribution show that with similar test
conditions the static pressure at the rearmost orifice of the two inlet
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models (figs. 21 to 27) tended to recover to about the same value as
that of the solid-body model (figs. 19 and 20). This suggests that the
inlet installations caused no local separation along the rear section
of the afterbody. Peaks of negative pressure coefficient just behind
the exterior lip of the entrance were always higher for the scoop inlet
than for the submerged inlet at similar test conditions. The formation
of peaks of negative pressure coefficient at the inlet 1lip of a blunt-
nosed inlet was shown in reference 6 to result in only a minor increase
in drag over that associated with a flat pressure distribution. 1In
general, the curves of pressure coefficient indicate that, for similar
test conditions, the measured pressures acting on the fuselage behind
the scoop inlet were lower than those on the afterbody of the submerged
inlet. However, such lower pressures -do not necessarily indicate a
higher pressure drag on the scoop afterbody, as there was no curvature
of the model afterbody along the surface where the row of orifices was
located. (See drawing, fig. 2.)

The tuft studies of the two inlet models at 0° and 9° angles of
attack show no indication of separation for either model (figs. 17
and 18).

Drag

'All drag measurements with internal flow present were made with the
model exit full open (exit ratio of 1.00) and the inlet rake removed.
The curves in figures 6 and 7 show values of mass-flow ratio with the
inlet rake installed. It is probable that the mass-flow ratios during
drag measurements (inlet rake removed) were somewhat higher than those
indicated in figures 6 and 7 for an exit ratio of 1.00, but about equal
through the two inlets for similar values of Mach number and angle of
attack.

Total drag.- The curves in figure 28 indicate that there was no
consistent difference between the total-drag coefficient of the scoop-
inlet model and that of the submerged-inlet model except at 6° angle
of attack where the coefficient of total drag for the scoop-inlet model
was always the higher.

Figure 30 indicates that, for zero mass-flow ratio and 0° angle of
attack, the total-drag coefficient with the scoop inlet was greater than
with the submerged inlet for Mach numbers above approximately 0.93. The
increase in total-drag coefficient of the solid body due to angle of
attack and to a thickened boundary layer is shown in figure 29.

Increment of external drag.- The curves of figure 32 indicate that,
at 00 and 6° angles of attack, the increment of external drag due to the
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scoop inlet was always greater than that due to the submerged inlet,
except for Mach numbers above 1.08 at 0°. The coefficient of internal
drag, used in the calculation of the increment of external drag, was

always lower for the scoop inlet than for the submerged inlet (Piiges 310K
CONCLUSIONS

From an investigation within a Mach number range of 0.79 to 1.12,
an angle-of=-attack range of 0° to 9°, and a mass-flow ratio range of
0 to 0.92, the following conclusions were reached:

1. At mass-flow ratios below approximately 0.50, the ram-recovery
ratio measured at the entrance of an NACA submerged inlet was higher than
for a scoop inlet (without boundary-layer control) at all angles of
attack and Mach numbers of this test. At the maximum mass-flow ratios
and 0° angle of attack recovery of the two inlets was about egual.

2. Increasing the angle of attack had a more adverse effect on the
ram recovery of the submerged inlet than on that of the scoop inlet.
Such adverse effect on the submerged inlet appeared at lower angles of
attack as Mach number increased.

3. The increment of external drag was greater for the scoop inlet
than for the submerged inlet up to a Mach number of 1.08 at 0° angle of
attack and up to the maximum Mach number of 1.10 at 620

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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