MICROFILMED

FROM BEST

AVAILABLE

COPY

 8t the Ettr:
 fanuawt 5, tye:

$$
48212,19250
$$

FILE COPY

Rational anilsoni comiltise for herovaltics.

THE "HAGNUS EFFECT," THE PPIKCIPIE OF AHL FEETMER ROTOK.* Бy A. Rets.

It is indecd possible, by means of the theosy 0 : the "ideal fluidn to make a fair?y through investigation of the action of currents producirg a lifting force. The question of the origin cf such currents and the cause of tine resistance or cicag can, however, be saticfastorily answered only by meanc of prandtiss "theory of uarginal layers." The latter tneory is also able to explain the "Yagnus effect," tine nature of which was so thoroughly investigated at the Göttingen Aerodynamic Experimental Institute, that Flettner sas straightaway able to utilime ${ }^{\circ}=$ results obtainsã at \hat{G} ofttirgen for the fropulsion of ships.

Theoretical Sectior.

Thanks to the successful trial runs of the rlettner Rotor siip "Buckau," a hydrodynamic phennmeron, wich, under the name of "Magnuis effect," has b:eer known for a long time, has suddenly acquired practical importance. Since this phenomenon has not been much discussed in scientific literature and has sometimes been incorrectly present 9 , it may not ce amiss to state the facts clearly in the present article.

A short but very able description, of recent date, is con-- From "Zeitsshrift des Voreines deutccher Ingenieurc,"'January 3, 1325, pp. 9-14.
:̈.A.S.A. Technical Lemrandum Ho. Elo
+ained in Fottinger's lcctirc, "incw Sasic Finciples for the Tr:atment oí the Prope?ler Froblcm" in "Jahriuch der Sckifíbautecinischen Gesellschaft," 1010, p. 335. Janciester gives another pood dercription is "Aerodynamics:" p. 36. Lépzif, 1909, E. G. Feubner. an essay by Frardtl will appear shortly in aiatainmizsenscineftcr:" and a popilar descripticn by Aciceret will be is-

I would like to mention at the outsct, that the "Eacnus effect" is not by any meain easy to underatand, since tine necessary casis, Frandtl's "tneory of marginal leycrs, "is very iittle known, although it has been twenty yEars in existence.

The phenomenon of the Hagrus effect consists in the fact that a revoiving body moving relatavely to the surrounding fluid (air) is subjected not only to drag (i.e., a forcc asing in a direction opposite to that G the diroction of motion), but also to a lift, that is to ε ey, a force acting at right angles to the Grection of motion. The lift is directed toward the side where L the reiative velocity between the fluid and the surface of the revolving ocdy is swallest, that is, the side where the peripheral motion, due to rotation, is in the diraction of flow of the < Eluid (i.e., the air), as illustrated ir Fig. 1 , in mich $\underset{\sim}{w}$ indicates the angular velocity, v tie formara velocity of the revolving body, w the arag, and A the lifi..

Apart from the experinents of wamus, the eifect was constantly noticed in the form of the deviation of artillery projectiles fror their trie trajectory. Ir fact, it was this pie-
nomenon which lad Kagnus to invastigate the problcm. It mas also noticed in the stranscly curved trajectory of temis and other kalls used in gamcs (Fig. 2). (See Lcrd Ray? (ishts paper: "On the Irregular Flight of a Tennis Ball," - "Scientific papers," Vol. I, f. 344.)

Before F endeavor to exclain how the Magnus effect is produced, it will be well to look a little more ciosely into the terms "lifit" and "drag" ani the causes producing these forces. If we move a body (Fig. 1) rith a velocity of v, we must, in order to stercome the drag W, produce, svery second, a power equal to $\overline{E v}$. The lift A, on the other hand, celle for no expenditure of energy, since it is at right angles to ∇. In an "ideal fluid," in which there is no loss of energy, a body moving at a uniform rate rould meet with po resistance, but there would probably be a lifting force. In investigating the process connected with this lifting force in general, ve can, therefore, base ou: inquiries on the processes in an ideal fluid (i.e., a fluid which, in flowing, loses none of its power). In this way, we learn a great deal about the connection between tie flow and the lift, but the question as to how and why, in a given case, this particular flow should be connected with the lift produced, still remairs unanswered.

In the case of an airplane having normal wings with a sharp trailing edge, knoming, as we do, that the fluid cocs wit flow around shazp edges, we can say enmething about the lift to be ex-
pected. But, since the reason winy the liguia does not floy around sharp edges is as yet not clearly known, this inethod of reasoning fails, when the edre is not sharp, büt rure or less roundsd.

To enable us to follow the discussion in the prescrit essay more clearly, lei us briefly examine the processes goirs on in iceal fluids, the so-callal "petential flow," and tnen inquire into the are complex causes of drag anc lift, as explained by Prandtl's theory.

For a body to be cubjectad to a lift, it is necessary that there should be, on an averag:, a higner oressure on the lower side than on the uppez. Irasmuch, however, as the pressure p and the velocity v are connected with each other by the relation $p+\frac{\rho}{2} v^{2}=$ sonstant (known as Sernoulli's equation, in which ρ denctes the density of the I luid), if there is a lift at all, then the velocity mast be, on an average, greater above than below. Following up this line of reasoning, we find, that the best plan is to take the circulation Γ as the standard for this difference in velocity, which we arrive at as follows:

After drawing the line 8 (Firg. 3), around the moving body, we assume that the velocity at a certain puint of s is v and that the component of v, touching this yoint in the direction of the tangent to s, is or. Then tise circulation is

$$
\Gamma=\int_{0} T^{\prime} d \mathrm{~d},
$$

whoreby the integral f is to be continuod clear arcund the a line. For the lift A, re ther get the sirple equation (Kutta-
 of the fluid; v, the verocity at a great distance from the body; and l, the length of tic boly at right ancles to the plane of the drawing. The circulation is assumed as colstant throuchout tine whole length.

Te can iangine a current rith a-lift, as baing comcosed of two motions :ithout lift. In one of them the circulation Γ is 0 , but there is the velocity f relative to the body at a great distance from it (Fig. 4). In the other, however, there is orly a circulation current Γ, but n: forward velocity ε (Fig. 5). Both currents are possible as notential motions. Now, if we superpose the two currents, i.c. ī, at every point, we combine ine two relocitics zectorially (like forces in a parallelogram of forces), we then once more gct a potential motion, composed of the circulation F of one motion and the formard velocity \mathbb{X} of the othcr, resulting in a lift (Fig. 6).

The introducion of the term "circulation" is rery useful, as an aid to the understarding of the comection betreen the course of the flow and the lift, but it does not answer the question as to how this lift is produced. Wltimately it reduccs to the question as to how the "circulation" is.onoduced. Nevertincless this method can advance us a little. If the fluid (i.e., in this case, the air' and the body are both at rest, it is clear that the circulation mast be 0 , since, of course, the velocity tiroughout the entire length of s is 0 . Then, if we
set tine body in motion, the state of the sirculation can, according to a law of iydrocynamics, undergo a change only when vortiof
ces or eudies etray outior into the zone eaciosed within the s line (Fig. 3). In this event, tie increase ódecrease in the circulatior is exactly equal to the sum of the circulation round about the vortices or edcies coming in or eoing out respectively, (one direciion of rotation to be reckoned as positive, the opposite as negative). We see, therefore, that the production of a circulation around a body sirrounded by a fluid which hitherto has been at rest, is possible only winen vortices or cddies are formed simultaneously in the fluid. In ar iacai fluid this, as the very defiaition impiies, is an impossibility, since, of crurse, the formation of rortices or cddics is insworauly connectod with loss of energy. We mist tinerefcre now tixn to tiose processes which cause the formation of vortises or edaien in actual fluids.

If a fluid is set in motion by a difference in pressure alone, a potential motion is producea, as in an ideal fluid. In actual fluids, however, owing to their viscosity, there are addel, to the forc 3s oi pressine p (Fig. 7), shearing forces T, which impart, a rotary motion to the partijles of the finid and thus produce eddies or vortices. Shearing forccs of this kind appear When the velcoity ircreases at right angles to the dircction of the ITom. Inside the fluid the effect of these shearing forces is generally of no consequence, since the velocity variations are not very abrupt. Koreover, as we can prove, sy long as the
N.A.C.S. Teclinical Yemorandum No. 310
cirrent is of a potential nature, tie various siearing forces exerted or a particle of fluid (T_{2} to T_{4} in Fig. 7) counterbalanco one another. On the other hand, the effect of these forces is of supreme importance, when the current finws past a firm wall or surface, Then, mitinin a thin layer, there is a transition from the normal current velocity to zero velocity on the wall (Fig. 8). It is, therefore, in this, the so-called "marginal layer," that the viscosity, which distirguishes actual from ideal fluids, plays an important part. In this layer nearly all those distürbances kiave their origin, which distinguish the flow of actual fluids froin a potential flow. he far back as twenty ycars ago, Prandtl called attention to the iuportance of the processes going on. Within this marginal layer and demonstrated their effect by means of convincing experiments. The following remarks follow closel.y the original argriments adducad by Prandtl. In our inquiries let us consider the flow around a cylindrical body, rhich interests us in particular. Host of the argumentis, however, apply also to bodies of other shapes.

On the sides of the cylinder (above and below in Fig. 4) the lines of flow are more closely crowded together tian elsewhere. Here the velocity is the greatest and the pressure the snallest. In a potential flow the velocity is reduced and the pressure increases again. The kinetic energy of the tipici perticles enables them to penetrate into the region of hjgrier p. sure. In this process, their velocity, under the fiffucroc.
increasing pressure, is retarded in precisely the sume measure as expressed in rirnoulli's equation. Let us now consider a rerticle of the marginal layor. Its volocity is lower than that of the normal flow outside this lay x. Its kinetic enerey is therefore ilsưficient tonecle it to penetrate into the zone of higher pressure. It stops, befure it gets trerc, ard rovorses the direction of its motion. However, since new marginal layers are consiantly flowing out of the zone of lower pressure, more and more marginal-lajer material gradually accumulates in the region where the pressure is increasing. This marginal-layer material has two important properties:

1. Its total energy $\left(p+\frac{\rho}{2} v^{2}\right)$ is less than that of the rest of the current.
2. Its individual particles are rotating.

The aubsequent stages in the development of the marginal layer accumulations are illustratei by Figs. 9 to 11 (according to experiments and pictures made by Prendtl in 1904, and by Rubach, at Frandtl's institute in 1913-14). The marsinal layer material is indicated by the stippled portions. When the marginal layer materiaj has become fairly thick, it is carried along by the current and finally passes away in the form of vortices; whereupon the whole process is repeaied. The eymmetry of the departing pairs of vortices is not stable and, consequently, one vortex gets ahead of its companion. :̈ance the subsequent formaticn of vortices is not symmetrical, put takec place alter-

 It Ezor：two different ancles：

1）In 2 syoter whers tie fluia is at rast and tie crinnier is

 f三or of trxtices，立ozarer，the flaid benina the cyinuer is i上 mosion sne tierefore possesaes kinetic energy，mick in－ creases win eqch new vortex．Ifis kinctiv energy mist be created iy tine mork conc in covina the cylisier，mhicn is only woesibiz by overcoming resistance．

2）In front of ani benina the colinier táe potential flow is ex－ actly symaetrical ani corsequentlj tine pressures or the front side are exactiy tine same as tho ae on tie corresponding Foints on tie rcar side．The various pressures，ficerofore， countertelance one anotier．On account of tie jormation of vortices，horever，the uressire increase on tine rear sids camot，ettain its full strength．mis presoric on fie front ミice tierefore exceais tsiat un twe rcar side．Thc ciiffer－
 must be aidud the surfece friction，which，jowerer，in tic casc 0 ミ゙ $こ=$ ylinder．is isually a ncgligible qua：tity）．

Earing Lom seen
 car retirn to the question or tic caisjin oit tie lift, wick we lest a little while aso, just after arziJing at the conclusion
 lation stray tirough the s line arxina tiae cylinder (Fig. 3). If we apply this maincr of reasorirg to tie process illustrated
 Erow each side of the ouinies, sines the saxe prercquisite corditions for the formation of vortices axist on botis sides of the cylinder, excepting that tine two scts oir vortices rotate in opposite diractions. If, thercfore, a vorsex flowing irom one sixe passcs tinougt tie s line at a siyen rate of circulation, it is counterbaianced by 2 corresporiling vortex cannting from the opposite eidc, at the same rate of circulation, but oppoced to it in valuc (one beirg positste ani the otiex regativej. Iu this way, therciore, no circclaticn is produced around the cylinder, -nici is zat surprising, since, ioz respons of symetry, no ursjumetrical iorce, such as lift, can des expected.

Conitions undergo a racical ciange, however, as soon as we change the prerequisites for vortex formation on both sides. Such a charge is prociucei, for eximele, when the otstaole is ursymmetrical. Typical examcles are ine weil-known profiles oí airplanc wings. Tie cart also pociuce this effect by causing the o-linder to revolve around its xis. On the side minere the
peripheral motion of the cylinder is it tive dixection of the flow, ro marenal layer at all, or only a very mich tininner one, is iorined. Tisis Fequires wuci more time to accumilete to Eiach an cxtent, that it an flow off in the form of 2 vartex. On the opoosite side the conditinns are regersod. Eeve the margimal layer is tilcker arid more vortices are Éormed. ne now havo an izstance of rore vortices floking of= the cyinner or one side thar on the cther, in oticer mords, an incicase in circuiation around the cylEnder, tiris prouncing a lifinng force.

So $20 n 5$ as this provess sontimios, tíc circilaiior and, consequently, the lifting force world go on incre-ging; but this process is soon cercinated. Uning to tine flosing off of the vortices snionly onc side, the entire flow eround the cylinder is changed. A circulation is startod, wich affects the floy as illustrated in Fig. 6. The ve?ocity on ine upoer side has increared, ainile that on the lower side has decreasec. The higher Felocity, however, means the formation of more vortices and vice versa. The circulation, therefors, increases until thig influence counterbalances the effect of the rotation of tie cylinder on sie formation of vortices and unvil an equal number of equally strong vortices flow off the cylinder on botis sides, altiough now in an linsjmmotrical arrangemert (Cownarc witis fig. 12, dramm froin こ picture taken $\mathfrak{c y}$ Praxitl, $=n o u t$ 1910). If ve increzsc the velocity of rotation, both the circulatior and the ifftirg force 2re increased by the one-sided forania on of vartiocs, until the balanca js restored.

Te cor alsc picture the process as filio:s, The thiner marginal layer on one side causes the flot to adizre to the cylinder longer on this sive than on the s.thes. Then it does flow off, it has already acquired, cn its uppcr side, a velocity which ceuses a etrong downerd pressure. On tho lower side, the uprard deviation of the currerit is much less $p=0 n o u n c e d$, ofecause it parts company with the cylinder sooner. On the vhole, there is consequently a downard deflection, which pioduces an upward reactior or lift.

Thère is still a third viewpoint, from which we can resard the protiem. As the flifil (i.e., the air) flows past the cylinder, its cross-secticy fiyst contracted and then expainded, mach like a tube with a constricted section in it. The process at the point, where the cross-se stion expands and where velocity is converted into pressure, is always attended b_{y} considerable losses, due to the formation of vortices, especially winen the expansion takes place rapidly, Jhich is the case on the requ portion of the cylinder. On one side the beneficial effest of the expansion is greatly increased by the rotation of the cylinder, since fewer vortices are formed, and cons'ouiently there id less loss of ener5y. Let lis imagine that in a wind tinnel there are two constrictions side o_{j} side, the narrowest part of the constriction being exactly of the same diameter in both cases, the midening of one being a gentle slope (3 in Fig. 13) with correspondingly high
 ency. The quantity of fiuid (ajr) flowing througn the opening a
with nigh efficiency will be greater than the quantity flowing through tine oticer, since it meets mith less resistance. On accourt of the conscquent ereater velocity at the narromest point of the constriction, the negative pressure will also be greater (BGznoulli's equation. Observe also the similarity of the midile partition to the cross-section of an airplane wing). In a similikr manner, in the case of ous cyliziler, tine fluid (air) will flaw with greater velccity on the side where the rotation reauces the loss of energy and where the negative preseure is greater. This difference in pressure, however, generates a lifting force.

The process has recently beer represented as follows. 0 ing to the rotation, the friction is reduced on one side ena, consequently, the fluid flows faster on that side. This explanation, hovever, is somewhat mislcading, inasmuch as the surface friction does not afrect the flop directly; but only in an indirect way, by the formation of vortices. The forces proauced by surface iriction would be far tco small to exercise such a fer-reaching influence on the flow. The surface friction promotes the formation of vortices, whick, in tieir turn, thuroughif transform the nature of the ficw diagram.

Ail three ways of explaining the problem lead to the sane ultimate conclusion, that the flow is gxatly influenced by the marginal layer. This influence is, hcsever, diminished on cne side and increased on the other by the rotation of the cylinder. As to tice magnitude of the lift to be expected from a given mumber of revolutions, it is thus far iapossible to say anything
definite on tne basis of this tionry, since the monatical cal- com culation of the forces prounced by tie separetion phenomena, descriocd qualitaticely in Prandti's theory oimareinal layerí, is extrenely difíicilt. In this cornccion, i would like to point out tiat, Er the technical press, the circulation is sometimes ctated, on the basis of imcorrect concertions, to be equal to the peripheral velocitw mal tiplied by tho circumferonce of the cylinder, the lift bcing ther colcialatod from this product according to Schukowshyis formle. Therc is, homever, no justification for this purely arhitrary methoc. Kcicoves, the figures ohtaincd in thie way do not agrec with tic experimental results.

Expurimonts

The first experingnts, as already mentioned, mere made by the Beriin physicist hagains, in 1853. They prored the existence of the effect beyord all doubt, Jithoit, however, ceterminirg its magnitude. The first ac oual quartísetive measurenents Fere probably made by the Frenciman lefay, in 19i2. Thesc experiments appear to be practically uninime in gromany Eng neer
 the conclusion of his own experiments. Cmig to circumstarces to whici I shall refcr later on, he rase, howesti, only abie to produce Iifting forces with a maximm value b_{m} gly doubia that of a good airplane wing kaving a chord exajl to the djanifter of the cylinder. In aviation technics it is cuswosry io denete

Ki.A.C.A. Technicai Yemorandum No. 310

the properties of a wing by the respective lift and drag coefficients c_{a} and c_{w}, the lift being

$$
A=\varepsilon_{a} F \frac{\rho}{2} r^{2},
$$

and the drag

$$
\pi=c_{\nabla} F \frac{\rho}{2} \nabla^{2} .
$$

The resultant force is

$$
R=\sqrt{A^{2}+W^{2}}=\frac{R}{2} C^{2} \cdot C_{r} F \frac{\rho}{2} V^{2}
$$

In the above equations F denotes the greatest projection of the wing surface, ρ the density of the fluid \{air) and v the velocity. For a good ring the highest attainablo c_{a} is aoout l, 2 to 1.4. Unusual forms (slotted wings and very highly cambered wings) give values of c_{a} up to about 2. Lafay obtained a maximum $c_{a}=1.8$ or $c_{r}=2.4$.

Er. Wieselsberger, at the Aerodyramic Experimental Insti"ute in Göttingen, belonging to the Kaiser Wiihelm Cociety, attempted, during the first years after the war, to fathom the Hagnus efiect by taking exact measurements. These experiments came to nothing, owing to technical lifficulties, and were then drapped, jecauss D=. Wieselsberger left the Institute. In 1923, an opportanity sac afforied to carry out the experiments with much improved means. Scveral small high-specd motors of comparatively high efficiency had been built at the Göttingen Exporimental Institute, to drive small propellers on airpiare models susperded in the wind tunnel for the purpose of taking measurements, which propel-
lers had to be driven under conditions approximating actual conditions as closely as possille. - These motors ware inghly suitable for driving a cylirder at hish spoed in the investigation of the Hagnus effect. The diameter of ticsc motors, in thair present form, is 42 mm ; length, about 180 mm ; marimum number of revoIutions, $30,000 \mathrm{~K}$. P. H. ; ajout 1 Er . Thesc motors are nom being built by the "Elektroschaltwerike A.G." in Göttingen. For theoreticel reasons, alreany set rozth, it was to be expected that, in order to obtain a powerful effect, peripheral velocities: would be required ameunting to scveral times the velocity of the wind. Now if tice diameter of the cylinder and tic wind velocity perc to be kcpt mitisin the limite desirable for technical reasons, it was obvious that the revolution numbers zould nave io be high. Thesc noy motors rerc, howevcr, quite capable of supplying them. Engineer Acteret wade use of tisis favorable opportunity to determine finally the magnitude of the Marnus effect. The first experimental apparatus was very simp?e. : mhere was a nozsle or funnel $200 \times 200 \mathrm{~mm}^{2}$ in cross-section (Figs. 14 and 15) With two pooden mells as extensions of the side walls of tie funnel.- Between thesc two malls he fitted a cylinder 40 mm in diameter, revolving on ball bearings and driven fron outside the walls by one of the aforesaid high-speed motors. Then tize air was olown out of the funnel against the cylinder at rest, it flowed away behind the cylinder in a practically horizontal direction. If, however, the cylinder was rotatod (direction of
rotation as indicated in Fig. 14, witi the Ifting force dircoted dommard), the air current was civerted uprard (arrofs in Fig. 14). Jow, since the deflection of the cirrent recuirod a force, whicin can ce easily calculated by the lay of impilse and since this force can only have its oripin in the cylinder, conclasions could de írarn, as to the magnitude of this ferce, from the angle of ieflection (:rich was nearly 90°). Even tris first crude expcriment resulted in an unsually laree lift, about, threc times tiat of a sood airplane nine ($\mathrm{S}_{\mathrm{a}}=4$). There is no object in < Giving the exact results of these preliminary expersments, as they rere subsequently repested mith improved apparatlis, the results being given in Figs. 20 and 21.

In orier, horevar, to make qiate sure that the detcrixination of the lift from the deflcction did not lead to mrong conciusions, the mole apparatus (ralls, cylincer an motor) vere installed on a platform belance in the big mind tunnel of $4 \mathrm{~m}^{2}$ cross-section, at the Acrodynamic Experimental Institute, so that the lift coula ba measured. Here also the same large lift values mere obtained.

These rcally remarable rewils were still unsatisfactory, since the theory indicated the possioility of obtaining far greater lifting forces ($\mathrm{c}_{\mathrm{r}}=4 \pi=12.6$). Although it was to be expested, on account of disturinf influences connectod with the formation of vortices and other rcasons, that the maximum could not be attaired, yet the discrepancy was too great to bcex-
plained in this way. Prandtl ticrefore ashod nimself rhat causce might stand in the way of obtaining a greater lift. A carefui investigation of tie ccurse of the current, by suspending silk threads in it, shofed that the liftinfy force mas confined chiefly to the middle portion of the cjlinder. Prandtl expiainsd this as follows: On the suction side of the cylinder there is an exeeptionally lerge negative peessure due to tie unusually great lifting force (fiith $c_{r}=4 \pi, p_{\text {inin }}$ would be $-15 \frac{\rho}{2} \nabla^{2}$; with $c_{a}=0, p_{\min }$ mould be $\left.3 \frac{\rho}{2} \nabla^{2}\right)$. At the ends of the cylinder, however, there is air at ordinary pressure, which is dram into the negative pressure zone (Fig. 16) and interferes vith the production of the Kegnus effect, by having the same effect as a tivick marginal layer (Compare the foregoirg explenation of the production of the Kagnus effect).

The mooden walls, used in the experiments, cannot prevent the flowing in of outside air, since the marginal iayer on the surface of these malls is partly drawn inward toward the central portion of the crlinder and is partly separated from the palls by the rreat differences in pressure, thus enabling the outsice air to penetrate to the cylinder (Fig. 17).

Having, to this exteat, obtained an insight into the conditions governing the process, it became possible to devise means for eifectually preventing the inflow of outside air. Prandtl suggested putting disks on the ends of the cylinder, larger in diameter than the latter and revolving with it (Fig. 18). Oming to the rotary motion, the marginal layer of thesc disks is Lub-
ject to approxiantely the same conditions as the marginal lajer on the surface of the cylinder．Therefore，liãe the iatter，it is not forcod to eeparate or the suction sice，but is acturily driven outwam by the centrifugal force．

The subsequent cxperinents，cariid out with a cylinder fit－ ted with terminal dieks，fully confirmed frandtl＇s viows．Tho lift incressed to $c_{a}=\mathcal{J}\left(c_{r}=11\right)$ ．This figure so closely ap－ proximates the theoretical maximm，that the difference is no longer strange．

The disturbance of the ifagnus effect，caused oy the lajeral inflow of aix the absence of telminal disixs，beco－3s all the mo：e pronounced，the shorter the cylinder is for a given diame－ ter．With very long cylinders，the disturbance is relaijvely small and the terminal disks are $n u t$ of sucin jreat importance． This also explains why，at Gottirgon，we were able tc get far better results than Lafay，even witbout disks，since the cylinder used by Lefay was shorter than ouis．A slibsequent test，made with a cylinder suck as used by La氏゙ay，confirmed his resulits．

As the result of those experiments，the question of the Magnus offect had becn praotjcally solvoz，both by experiment and calculation．It only remainod to rejeai the cxperiments with more erfect apparatus，in order to bring the results up to the high stardard of accuracy required by the Göttingen Insititutio． At this stage，Director slettner learned of these results．At that time he was workine on the idea of replacing the sails of a shjy zy riged wing－shaped devices and was having experiments male
for this purpose at the cottingen Aer Ciynamis Experimental .iristitute. Fith his remarkable insight he immediately recognized the sreciai significance of these nen results for his purfose of replacing the sails of ships by mori suitible devices. In the grat majority of cases, in which lifting forces are used technically, their production by means of the Magnis effect wouli require a $p \neq r y$ high revolution speed, irvolving, in its turn, such great technical difiiculisies, that the advantage sought would be entirely wiped out.

In tre case of a sailing ship, tie conditions are especially favorable. The wind relocities required to produce the aximum efficiency are not high (5 to $10 \mathrm{~m} / \mathrm{sec}$.) and consequently, the pe:ipheral velocities also romain within moderate bounds (up to about $30 \mathrm{~m} / \mathrm{scc}$.). The eylinders are almays several meters in diameter; so that, cven the groatest periokoral veiocity requires ouly madcrate revolution speeds, which occasion no fear of disagreeable resonance phenomena. On the otier land, the adrantages are very great. Owing to the fact that the moximuliftig g force with revolving cylinders is about thirty times as great as tice resistance or drag producea by non revolvirg cylinders in a villd of equal velocity, cuen the most violent gale low_... wesinst ne.-revolving Flettner rotors bas no moro effect than a moderaia wind revolving cylinder driven at a suitabie mubrr of revolutions. Whereas, on an ordinary sailing sioip, the forces mast, be adapted to the velocity of the wind by settine or reefing the
Y.A.S.i. Techaical yemandur zo. 310 31
sails, all finat is necessary on a rotor, iniv is to ediust tize refolution speci jy ceans of a zand-rheel or two.

The exceptiorally pozerful lifting fosces ooinained by dckerat were particulariy valuable in this connjetacn. Fioy ompled the
 within suci moderate limits, that tiof ic not ermanger the stability of the snip in a gale. If, for instance, we jad been compelled to calculate the dimensions of the rotors on the basis of Lafar: s measurements, they mould haya had to be five timea as Iarge, wici wcild riobably have maie tre vaole thing impossible. rite ready adaptraility to the force of the wind renders it possiVie to intilize stronger winds to a far greater extent than is feasible with ozilnary saile. Fitis the latter, one is almays piraid that it way not be pGssible to furl the sails quicily enough, in the event of a gale breaing, and coneequently does not almajs canje to set all the sail the ship pight ne able to carry at the time. Tith a rowor ship re car come mach cleser to utilizing the waximumprer. Aratiar aivantage ik, that the effect of squalls or the rotors is much loss pronouncred than on saile. Fitiz tine latier tha force increases as tine square of the velocity. In the case of the mer with increasing wind velccity and unchareec rejoluticn speed, the ratio of the peripheral velocity to the wisit velocity decreases and the force diminishes with it, so taat it does not increase according to the square of the velocit" but approximately as the velocity.
\because A．s．s．Teannival Yanoranilue wo． 310

Tine revolving upright cyliniors also present edフantages £こつ\＆ a navigation peint or view．Tith careful calcilation re can rua cicser to tice find then its an oñinaiy cailing síp anc more－ over，in turniñ̄，we call assist tie manguvering of the sinip rery easily and effectivoly by weans of the rocors．Far this paipose the direction of rotation of either rotor can oe reverses．

Fhe great adrantages of revolving cylimiers led fletsner to pursue energetically his resclve to exploit tinc lyagrase efficot for the piropulsior of sailing ships，rotwi thstancing the technical Cifficulties of construction．Further experimente mere carried out at Contingen with the assistance of the Flettner cumany． By these experiments the peruliar properties of reroiving cyin－ ders vere explorec and determined witistill sieater accuracy than Defore．In these sxperiments tie motor was fitted into the cJlināer itself．The arcangement is shown in Fig．i9．The erds of the sbaft projecting from the cyivinder，or rather their bal？－ bearings，were connacted by uires to the regular wind－tumel bal－ ances．In tinis ray it was possibie to measurc not ony the Iift－ ing force，buit also tive resistance or drag of the cyivingr and the power required to dréve it．To exable the neasurements of the moments tu be meñe，tae motor itself was aise iittsalso as to be able to revolve on the bearing at the extrene right in Fig．19， anc could be prevented from requlving cnly by meins of a lerer adjoining the balance．Scme of the results obtained are shown in Figs． 20 and 2l．Otier experiments hed to do Fith the action of the rotors on the ship．For this pripose，a mojel of tie stip
was madc. The rotozs or the rodel could te operated by hini-speed wicters instillel in the rodel. Tiae whole ship with its revoiviny rctors was suspenced by wires from the balance bems.

In adáition to tisis experimental work, tie first wrixice cirawings vere made at Gittingen for the rotors to be fitted on boarl the ship, these drawings being ultimately followed with but tififing alterations. In tini.j work wic fere supported by the enerGetic cooperation of eaginee: Groseck, whom the Flettner Gomany sent to Gờttingen. The work thus planned was then executed at the Germania Ship Iarde at Eiel, which admirably jolved the many difficult problems presented. One especially remarkable achievement deserfes special mention; namely, that the rotation of the towers (winich are 2.8 m in ciameter and 15 m higin and ravolve at the rate $\mathrm{ej}_{\mathrm{i}} 120$ R.P. H_{C}) proances practically no noise nor vibration.

I hope tine foregoing remarks may not only contribute torard a fuller understanding of the Magous efrect, so mysterious to the that average layman, but may also show/ such revolutionary aürences in technical science can only gror, as it were, on soil which has been carefully prepared by long, scientific and practical preliminary work. Now that we are enjoying the harvest, let us not forget the seedtime, nor neglect tc provide the means for facilitating to tie utmost the bemeficent work of our scientific institutions.

[^0]A.A.C.A. Tachnical Momorandum सe. 3i0 Fige. i, 2 ; 3

Fig. 1 itiagrar of haenus effect.

Fig. 2 Peth of tennis bell

Fig. 3 Diagram of circuiation

Fig. 4 Gylinder in paralle: flowing non-riscous fluid.

Fiŏ. 5 Circulation fiow around a cylindar

Fig. 6 Tae fions in Figs. 4 \& 5 vectorialy combined. The resultant flow producss a lift.

Fig, 7 Pressure and sienring forces in a viscous fluid.

Fig. ε Volocity distrioution (or veriation) near a Fa?l (marginal leyer).

Figs. 9 to 11 Develcpment of vartices (cr eddies) from the marginal zayer.

Fig. 12 Strean lines and marginal layer in the casa of a rotating cylinder, fren a phote ky Prandti.

Fie. 13 Flow through tro constricticns

Figs. 14 \& 15 Experimental arrangerent for determining the magritude of the Zagrius effect.

Fig, 19 fctating cyiinder with built-in motor for the more accurate wind tunnel tests.
N.A.C.A. TEchnical inmornndum Nn. 3lo Fige. 20 \& 21

Fig. 20 Exper, :esults with a rotating cylinder, diameter 70 mm , length 330 mm . Wind velooity $v=i 1 \mathrm{~m} / \mathrm{sec}$.

Fig. 21 Lift coefficients of a rotating cylinder of $7 C \mathrm{~mm}$ diameter and 330 mm length, without end disks and with end disks of 120 and 40 min diameter.

[^0]: Translated in Office of Haval Attache, serlin. Revised by D. K. Miner, N. A. C. A.

