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A CORRELATION BY MEANS OF THE TRANSONIC SIMILARITY RULES
OF THE EXPERTMENTALLY DETERMINED CHARACTERISTICS OF
22 RECTANGULAR WINGS OF SYMMETRICAL PROFILE

By John B. McDevitt

SUMMARY

The transonic similarity rules have been applied to the correlstion
of experimental data for a series of 22 rectangular wings having sym-
metrical NACA 63A-series sections, aspect ratios from 1/2 to 6, and
thicknesges from 2 to 10 percent. The data were obtained by use of the
transonic bump technique over a Mach number range from 0.40 to 1.10,
corresponding to a Reynolds number range from 1.25 to 2.05 million.

The results show that it is possible to correlste experimental data
throughout the subsonic, transonic, and moderate gupersonic regimes by
using the transonic similarity parameters in forms which are consistent
with the Prandtl-CGlauert rule of linearized theory.-

The multiple femilies of basic data curves for the various aspect
ratios and thlckness ratios have been summarized in single presentations
involving only one geometric variable - the product of the aspect ratio
and the 1/3 power of the thickness ratio.

INTRODUCTION

A unified approach toward an understanding of transonic flows has
been achieved only in recent years. Our meager knowledge of tramsonic
flows, in comparison with the more complete and cogent understanding of
subsonic and supersonic flows, is due not only to the complexities of
the mathematics involved but also to the limitations of test facllitles
at transonlic speeds.

Similarity rules for transonic flow in two dimensions were derived
by von Kdrmdn (reference 1) and were extended recently by Spreiter
(reference 2) and Berndt (reference 3) to include wings of finite span.
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These rules csh be shown to coincide with one of the possible forms of
the  Prandtl-Glauert rule of subsonic and supersonic flows. (Reference 2.)
Although the similarity rules do not provide explicit solutions, they do
suggest the manner in which experimental data can be correlated.

A recent systematic experimental investigation of the effects of
wing aspect ratio and thickness at transonic speeds (reference k) has
provided experimental data ideally suited to correlation using the tran-
sonic similarity parameters. The snalysis of these dats is presented in
this paper to provide the transonic characterigtice of rectangular wings
of symmetrical profile and to help evaluate the usefulness of the tran-
sonic similarity perameters for the correlation of experimental data.

The similerity rules are presented in slightly modified forms to
permit a direct and convenient application in the data correlation. The
form of the data presentation was chosen so that direct comparisons with
the various linearized theories could be indicated.

The correlation is epplied to the experimental data for 22 rectan-
gular wings having symmetrical NACA 63A-series sections, aspect ratios
from 1/2 to 6, and thicknesses from 2 to 10 percent. The data were
obtained by use of the transonic bump technique over a Mach number range
of 0.40 to 1.10, corresponding to a Reynolds number range from 1.25 to .
2,05 million. The basic data for the aspect ratios 1, 2, 4, and 6 have
been published in reference 4. The basic date for the aspect ratios 0.5,
1.5, and 3 were obtaired by identical testing procedures but have not
been published previously. A description of the wing models and the
testing procedure is given in.reference k.

SYMBOLS'
A aspect ratio <g>
b wing span
c wing chord
Cp total drag coefficient <EQEE%§EEE%> S ==
CDmin minimm drag coefficient

(CDP)min minimum pressure-drag coefficient

Cpe friction-drag coefficient, assumed equal to minimm drag
coefficient at 0.7 Mach number :

LS
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ACp
CL

Clopt

drag coefficient due to 1lift (Cp - Chpin)

1ift coefficient <%E§%>
a

1ift coefficient for meximum lift-drag ratio

pitching-moment coefficient, referred to 0.25¢ o
pitching momenﬁ) ‘ :
gSc

pressure coefficient

ordinate distribution function

\

thickness distribution function

camber distribution funection
camber parameter proportional to the amount of camber

meximm lift-drag ratio

free-stream Mach number
critical Mach number
drag-divergence Mach number
dynamic pressure

wing area
thickness-to-chord ratio

Caritesian coordinates where x extends in the direction of
the free-stream velocity

angle of attack
ratio of specific heats (for air ¥ = 1.}4)

ordinate-amplitude perameter

4
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perturbation-velocity potential

Q@

dcr

i’ CL& slope of ;ift curve, measured at zero 1ift coefficient
dCp

slope of pitching-moment curve __ e o

daci,

EE _pressure-drag function

AD _drag-due-to-1ift function . §
L . 1ift function

M pitching-moment function

P . pressure-coefficient function

THEORETICAL CONSIDERATIONS

Transonic Similaerity Rules

Similarity rules (references 1, 2; and.3) for the transonic flow
around thin wings show how a wing can be affinely distorted in order to
retain a related potential distribution when the free-stream Mach number
is altered. These rules of correspondence can be shown to coincide with
one of the possible forms of the Prandtl-Glauert rule, derived from the
linearized potential equation of subsonic or supersonic fléws (refer-
ence 2). The various results of linearized theory can be expressed in
terms of the transonic similarity parameters and the use of these param-
eters will be consistent for both the linearized theory and the nonlinear
transonic theory.

Experience hags shown that the linearized potential equation is a
good approximation for sufficiently thin wings when the whole field of
flow is subsonic or well-established supersonically. In the transonic
regime certain nonlinear terms must be retained to show the mixed nsture
of the flow. The nonlinear terms of the basic potential equation are
important only near sonic speed and only the nonlinear terms involving
derivatives with respect to the direction of the undisturbed fluid motion
need be retained, since perturbations in sonic flow diminish more slowly
in the directions perpendicular to the flow than in the direction parallel
to it. This assumption 1s valid only for unswept plan forms, which 1s the
only case to be consldered here. The baslc potential equation may there-
fore be written as '
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(1-M2)Px + Pyy + Pz = (7+1)MPxPrx , (1)

where M is the free-stream Mach number and ¢ 1is the perturbation-
velocity potential normalized by division by the free-stream velocity.
This equation retains the essentlial features of both linearized and
transonic theory and the similarity rules may be obtained from this
equation and applied at subsonic, transonic, and moderately supersonic
Mach numbers.

Similarity of flow about wings of finite span requires the con-
stancy of two parsmeters (M=-1)A2 and

[ a(x/c) ( )T/s

x
where T 18 an ordinate-amplitude parameter and F(E’%) is the ordi-

nate distribution function. In general, T may be used to denocte

changes in profile thickness, angle of attack, and csmber. The constancy
of these two parameters lmplies the existence of an glternative similarity
parameter

‘ ey (58

which 18 of fundamental importence. Since the ratio of specific heats .
v 1is constant for s fixed medium the expression (7+l) which appears
in equation (1) has not been retained in the similerity parameters nor
in the following similarity rules.

The similerity rule for the pressure coefficient on the surface of
the wing may be written in the form

% = [TBTB/BF f’%ﬁ/ﬁ P{[ a(/) < )}273 ’

sG] 5 1) )

3 x '
The expression T mj‘ (—c-,%r) represents the slope of the airfoil

- surface and can be expressed as .

3 Ta<xa/c)F &Y - (t/"’-Txa/c") [f( 2 < D) )

(3)
RS
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where f< g) and g <§,%> are the alrfoil thickness and camber

distribution functions with the origin at the leading edge of the root
chord and the parameter h 1s proportlional to the amount of camber. _
For airfoils having the same thickness and cember distribution funetions
the similarity rule for the pressure coefficient may be expressed in the
more useful form

-

2/3

M1 o
Cp = (t/c)’ [(T/’c_)??i’ A(t/C)l/sj t/c’ / . y}_ ™)

In this equation « and t/c can be simultaneously interchaenged, that

is, t/c may be replaced by a, and « by t/c. This is possible by
virtue of the presence of the parsmeter . -7— The form of the function P,

however, may be altered in the process.
Generslized Force and Moment Coefficients

From the gimilarity rule for the pressure coefficient the general-~
ized expressions for 1ift coefficlent and lift-curve slope are obtained

C1L, 1/5 @ h ’
B - L[y M 5 )
. ] 4
/el /L - L[ sk a6/0) % e ] (6)

When the lift coefficlent varies linearly with sugle of attaeck the param-

eter E%Z may be omitted from equation (6).

The generalized expressions for moment ocoefficient, pitching-
moment slope, and center of pressure are

_C_IL , A(b/c)t/e, & B
B [———,—/ 270 Me/e)S, /c] 1)
aCm 1/8 h
aor, [ e M o e (8

M2.1 h '
e, 2 ] (9)

C.P. = ME[W: A(t/e)
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The total drag coefficlent may be expressed as

Cp = Cpp + (CDP)min + ACp (10)

The friction-drag coefficient Cpp cannot be expressed in terms of the
similarity parameters since the theory neglects =21l viscous effects.
The generalized expression for minimum pressure drag is

( EE)mjn = M- 1/:3 b
HER =5 [ /S 7] o

Although the similarity rule implies a generalized drag-due-to-1ift

paraemeter 295—]%5 » & more useful generalized expression is

2 ' . _
(t/c)*/3 zD = ADl[ﬁc;—Jz'ﬁ’ A(t/e)/%, 55’ f}g} (12)

and a comparison of ACp with CLZ may be obtained from
AC ME2-1 ' o _h
-1/3 =D _ 575 A(t/e)/?, ==, — 1
(t/c) CL2 ADg [(t/c)z L4 ( / ) ) t/c’ 't/c (13)

In equations (12) and (13) the ratio ;on_ may be neglected if the drag
e

due to lift shows & parsbolic variastion with angle of attaeck and with
1ift coefficient.

A comperison of drag due to 1ift with the limits for drag with full
leading-edge suction (elliptic spanwise loading) end drag with no leading-
edge suction may be obtained by use of the expression

cL® < <
A ACp = C1

or, when written in terms of the generslized lift-curve slope and assum-
ing a linear varilation of Cj, with a,

(t/e)*%cr 1 < 8 ACD < 1/3
[ ol S (4/e) V0D E (/o) %0y, (14)
wA(t/c)1/3 a®
h
In the preceding generalized expressions the argument 7 vanishes
M3-1 e
for symmetrical profiles, ﬁ_(t /c =75 venishes at M = 1, and in the case

of two-dimensional flow A(t/c)'/® does not enter into the similarity
rules.

MORYTOENT IAL>
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Use of the Similarity Paremeters

The generalized coefficients and derivatives can be applled only
to experimental date for wings having the same thickness and camber dis-

tribution functions. For constant values of E;_ and E%— the general-
c c

ized expressions will remein constant and the flow patterns will be simi-
lar if the Mach numbers are chosen so that @/[MELl[A and M1
(t/c)2/3
remain congtant. This will be possible only if the wings have equal
values A(t/e)1/3, and thus similarity can exist only if the wing geome-
tries are related in & gpecial manner, The varistions of Mach number
with thickness ratio and with aspect ratio for several constant values of

: 2
,/[MELllA and (E§;Té7§ are shown in figure 1(a). The variations
between aspect ratio and thickness ratio for several constant values of
A(t/c)l/s are shown in figure 1(b).

According to smell perturbation theory the thickness ratio must be
small but no restriction is necessary concerning the magnitude of the
aspect ratio. A given value of A(t/c)l/s must alweys correspond to &
small thickness ratlo and therefore a systematic survey of airfoll data
should. cover e wide range of A(t/e)/3 vsalues as was done for the
analysis of this paper. (The values of A(t/c)1/® for these airfoils
are tabuléted in tsble I.)

For Wingsahaving unequal values of A('t:/c)l/s the use of the two

M=-1 ' 1/8
parameters (t/0)27 and A(t/c) suggests two different but essen-
tially equivalent forms of data correlation, one showing the variation
of the generalized coefficients with A(t/c)l/s for constant values of

2
the gpeed parameter bed s the other showing the varistion with
M2_1 (téc)a/s
IBEE for constent ¥alues of A(t/e) /3. For conven:l.enc;;é the corre-
' -1
lation in this paper will be made for constant values of —;r——§7§ and
c

the results summarized for constent values of A(t/c)l/s. Thus, the use
of the similarity parameters permits the multiple families of basic data
curves for various aspect ratios and thickness ratios to be summarized
in a presentation involving only one geometric variable, the parameter

A(t/e)r/3.

The actual flow sbout winge will slways violate to some extent the
assunmptlions necegsgary in the derivation of small dlsturbance theory,
which assumes that the flow deflection is everywhere small. The theory
also ignores the existence of a stagnation region at the leading edge

w!
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and of a boundary layer. A theory for transonic flow must alsc consider
the extent and position of the mixed subsonic and supersonic flow regions.
Although the essential properties of shock waves snd. of Prandtl-Meyer
flow can be approximated in terms of the speed parameter, provided the
flow deflection angle is small (references 1 and 5), a successful corre-
lation of experimental data will be possible only if the boundaries of
the mixed flow regions for related airfolls possess similitude of size
and position. ’

The usefulness of the similarity rules can be determined only from
a systematic survey of experimental datsa.

Slender-Wing Theory

A solution in general is not known for the nonlinear transonic
potential equation

(LM% P + By + Py = (41RO (1)

For two-dimensional flow the partial derivatives ®Px and Pxx are
known to become very large as the Mach number spproaches 1. However,

for wings of slender plan form, that is, wings of sufficiently low aspect
ratio, these derivatives may be considered to be of the same relative
magnitude as_the partial derivatives ny and @yz and the nonlinear
term (7+1)M°PyPyy, which is of the second order, can therefore be
neglected. Thus, for slender wings the linearized equation

(L12)Ppy + Py + Pgz = O (15)
can be used throughout the transonic speed range.

For vanishingly small aspect ratios, or for moderate aspect ratios
at near sonic speeds where the coefficient 1-M® becomes small independ-
ently of Oxx, the linesrized equation reduces to Laplace's equation in
two dimengions

q)yy + Qg = o

for which solutions are well known. 8Such solutions have been given by
R. T. Jones (reference 6) for the case of slender, pointed wings and by
various asuthors (see, e.g., references 7 and 8) for slender wing-body
combinations. The slender-wing theory furnishes the interesting result
that all the 1ift is carried upstream of the point of maximum spen and
the center of pressure of a rectangular wing of vanishing aspect ratio
will, at sonic speed, be at the leading edge. The theory, however, is
uneble to predict the effects of profile thickness and is restricted to
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the lifting case. A solution cannot be obtalned for the zero-1ift pres-
gure drag.

The theory of reference 6 provides the following expresslons for
the 1lift and drag coefficients: :

T
= = Aq
CL, 5

ACp = % Ad® (full leading-edge suctilon)

The alternative expressions

(6/e)72 L = X A(t/e)™/® (16)
(t/c)wéc—]2 =z A(t/c )/ (full leading-edge suction) (17)

will be used in the data correlation to obtain a comparison between -
theory and experiment for the- wings of low aspect ratio at the sonic
Mach number.

DATA CORRELATION

Before beginning the date correlastion it might be well to point
out that the experimental data were obtailned by mounting semispan wing
models in the high-velocity flow field of the Ames 16-foot high-speed
wind-tunnel transonic bump. The streamlines of the bump flow fleld are
slightly curved with Mach number gradients in the plane of the wing
model. Typical Mach number contours are presented in reference L,
These gradients are most pronounced at the higher Mach numbers and for
the larger aspect ratios. The effects of the nonuniformity of the flow
fleld are unknown but a certain rounding off of any sharp breaks In force
and moment coefficient varistion with Mach number can be expected.

Minimum Pressure Drag

The drag-similarity rule cannot be .applied directly to a correla-
tion of minimum drag data since small perturbation theory ignores the
existence of friction drag. The friction drag coefficient is believed
to change little with Mach number in .the transonic range and the corre-
lation can be applied to the minimum pressure drag coefficient. The
minimum pressure drag has been calculated by subtracting a constant_
friction dreg, assumed equal to the minimum drag at 0. 7 Mach number,

from the minimum dreg, that is, -

(CDpXmin = CDpin = (CDmin)M—o .7 (18)
~QURTTIINIIAL
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The basic data curves for the variation of minimum drag coefficient
with Mach number are presented in figure 2. The variation of the general-

(Cpp -1
min :
ized coefficient (t/c)s 5 with the speed parameter (%7;7575 ie shown

in figure 3 as an introductive step to the completely generalized data
correlation of figures 4 and 5. (The symbols used in fig. 3 represent
the aectusl test dats points and were included to show the manner in
which the data have been faired.)

The date curves for the wings of aspect ratio 6 in figure 3 may be
closely represented by a common curve, indicating that at this aspect

(cp.)
ratio the values of E—;Egg%% may be considered to depend only on the
t/c
2
value of -(-l/i-)'-l'% and that the flow is essentially two-dimensional. -
t/c . :

The aspect-ratio-6 wings also exhibit the negative veriation of the
force coefficient with Mach number which is characteristlc of two-
dimensional flows at sonic speed. This variation 1s a consequence of
the relative variations of local and free-stream dynamic pressures.

The local Mach numbers are effectively frozen at near-sonlc values as
the free-stream Mach number increases through the transonic speed range.
(See references 9 and 10.) It is interesting to note that the experi-
dCp

aM Ag=1

agree qualitatively with the values implied by the following relation-
ship (an exsct theoretical result applicable to symmetrical profiles
of any shape, reference 10):

mental values of

for the wings of aspect ratio 6, figure 2,

i) S
aM / M=1 (D) (19)

This agreement occurred In spite of the fact that the test conditions
are not 1desl and do not agree with the concept of an infinite and
uniform flow field assumed Irn the theoretical reasoning.

The lower aspect ratios show increasing effects of three-dimensional
flow and the smaller thickness ratios have progressively lower general-
ized drag coefficients with the exception of the thinnest (2-percent-
thic%) w%ng models. These thinnest airfolls have unusguslly large values

c _
of zzggjgé%,'which are believed to be largely the result of the boundary
layer creating an effective thickness considerably larger than the
actual profile thickness. The generalized drag coefficients are then
magnified for the thin airfoils by the 5/3 powers of the ratios of
effective thickness to profile thickness.
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The completely generalized correlation of minilmum pressure drag is
presented in figures 4 and 5. (The symbols used in these flgures and in
the remaining figures of the report represent values taken from faired
curves of preliminary cross plots. A different symbol has been used to
represent the data for each particular wing tested.,) The transonic

correlation for constent values of ./ Il-Ma’A is presented in figure L
merely to illustrate the inability of presenting data at the sonle '

M2.1
veloclty using simultaneously the parameters ~/IM?-1|A and z;7—757§.
<]
M2-1

The correlation for constant values of c c;2/5 1s presented in

figure 5. The correlation 1s best at the sonle velocity and the curve
for this particularly interesting Mach number is repeated in flgure 6.
Although the data for 2-percent thickness have been omitted from the
preceding correlation becausge the extraordinarily large values interfere
with the adjacent correlation curves, these data have been included in
figure 6 to show the pronounced effect of the boundary layer for these
thinneat profiles.

At the sonic speed the minimum pressure drag is seen to vary lin-.
early with aspect ratio and with the second power of the thickness ratio
for velues of A(t/c)l/s less then sbout 1 as can be expressed by

M=1

+ (CDp)yyy, = 2-3A(8/e)%; Mt/ < - (e0)

For values of A(t/c)l/a greater than asbout 1 the generalized coeffi-
(c
cient (tDP)sig spproaches rapidly and asymptotically toward s constant
c

value for which the minimum pressure drag varies with the 5/3 power of
the thickness ratio in =ccordance with the drag similarity rule for
sonic, two-dimensional flow. The extrapolated two-dimensional-flow
value for M=1, (CDP)min = 3.55 (t/c)5/3, was obtained by plotting

against the inverse parameter -1/A(t/c);/3. The calculated theoretical
pregsure drag for a double-wedge profile (reference 11) is somewhat
higher. . :

_ The correlation.of minimum pressure drag is summerized in figure T
by cross plotting from the faired curves of figure 5. The predicted
critical Mach numbers® for NACA éﬁOXX profiles are given in reference 13

and may be approximated by ?%7§Té7§'= -1.95. The compressibility drag

1Tn reference 12 Kaplan has shown that the section eritical Mach number,
according to first-order linearized theory, is related to the thick-
ness ratio by a constant value of the gpeed parameter, the constant
depending on the particular profile shape. '

A
[

T

Ll
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rise becomes noticesble at slightly higher Mach mmbers, that is, for
M2-
= -1.80.
(t/c)273

The fundamentel importance of the similarity parameter A(t/c)l/S
is clearly evident from the summarization of minimum pressure drag &s
pregsented in figure 7. The curves of figure 1 and the values of table IT
mey be used with figure 7 for convenience in calculating the minimim
pressure drag for given values of aspect ratio, thickness ratio, and
Mach number. '

Lift

The variation of the 1lift coefficient with angle of attack is
essentlially linear at moderate angles of attack throughout the Mach
mumber range for aspect ratios greater than 1.5. The lower aspect _
ratios, however, show an increasingly nonlinear variation of 1ift with
angle of attack and approsch the theoretical sin® a variation for
vanishing aspect ratio. For convenience the 1ift analysis will be
restricted to a consideration of the lift-curve slope evaluated at zero-
1ift coefficient, which provides a close approximation for 1lift charac-
teristics at the moderate angles of attack for which the similarity
rules can be expected to hold.

The variation of lift-curve slope with Mach number is shown in
figure 8 and is compared with the theoretical lift-curve slopes calcu=~
lated by applying the three-dimensionasl Prandtl-Glsuert transformation
to the Weissinger 1ifting-line theory of reference 1L. The agreement
between theory and experiment for aspect ratios greater thanm sbout 3 is
satisfactory only in the suberitical Mach number range.

Above the critical Mech number an abrupt decrease in lift-curve
slope occurs for some of the wings of larger aspect ratio and thickness
ratio and is believed to be the result of the formation of strong
velocity discontinuities and flow separation at the airfoll surfaces.
This "bucket" type variation in the lift-curve slope is a phenomenon
gpparently dependent on a combination of thickness and aspect-ratio
effect since the smaller thickness ratios and smaller aspect ratios
show no such irregularities in the lift-curve variation with Mach number.
Indeed, it will be shown in the following data correlation that this
erratic variation occurs only for the wings having values of A(t/c)l/3
greater than about 1.6.

The variétion of the generalized lift-curve-glope paraméfer

1 - .
('b/c) /3 < ‘dig;,_) with the speed parameter '('-(;%4'5)'2175 is shown in
=0

@ENEIDENTTAL
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figure 9 as an introductive step to the completely generalized data
correlation of figure 10. A comparison of figures 8 and 9 shows that
the curves for aspect ratio 6 have converged toward a single variation
at the transonic speeds, indicating that the flow is essentially two-
dimensional for the higher agpect ratios. -For these wings the lift-
curve-slope shows the characteristic negative variation with Mach number
at near-sonic speeds. '

The correlation of (t/c )1/ s( ) for several constant values

2
of ?2%25%75 is presented In figure 10. The correlation and cq@pgr;son
with theory are good for the large negative values of the speed param-
eter (i.e., low Mach numbers) and a reasonasbly good correlation is
indicated at near-sonic speeds. At supercritical Mach numbers and —
values of A(t/c)1/3 greater than 1.6 the poor correlation suggests a
geparated flow for which the concepts of small perturbation theory
would be violated. The value A(t/c)1/8 = 1.6 appears to be the limit-
ing value for airfoils which do not exhibit noticeable irregularities in
lift-curve-slope variation with Mach number.

At M=1, and for small values of A(t/c)1/3, the experimental 1ift
agrees well with the lifting-line and slehder-wing theories. Hence,
within the indicated limits, the 1ift mey be approximated by the follow-
ing equation:

. M=1
Cy = 5 A, (21)
2 A(t/e) /8 <1

For increasingly greater values of A tfc)l/B a rapid and apparently

ac
asymptotic approach of (t/c)1/8 &EL' __ to a constant value is

indicated. The theoretical result of Guderley and Yoshihara?® for a
double-wedge profile in sonic, two-dimensionel flow is included in
figure 10.

The results of the datae correlation for lift-curve slope are summa-

rized 1n figure 1] for those values of A('t/_c)l/s and ?E%—7%7§ where

&8 good correlation was indicated.

2This theoretical value of the lift-curve slope was calculated in
Air Force Technical Report 6683, Unsymmetric Flow Patterns st Mach
Number One, by Gottfried Guderley and Hideo Yoshihars,

QANELIENTIR).
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Moment

The variation of the degree of static longitudinal stabllity with
Mach number 1s presented in figure 12, The pltching-moment-curve slope

dCp/dCy, was measured for ;EL ratios of 0, 1, and 2 radians. (The
e
values of o in degrees are tszbulated in table ITI.)

‘ d
For the larger aspect ratios Egm- varies smoothly with Mach number
‘ L

in the low subsonic and in the supersonic regimes, although at different
levels, but behaves erratically at high subsonic speeds. This erratic
behavior is probably due to the same causes as the irregulasrities of the
lift-curve slope at the corresponding Mech numbers. At Mach numbers up
to the critical the effects of compressibility are relatively small as
is predicted by linearized theory. At transonic speeds a large change
in the center of pressure occurs for the wings of large aspect ratio as
the aerodynamic center moves from the vieinity of the 25-percent-chord
point of subsonlc speeds towards the LO-percent-chord peint. Only for
very low values of the aspect ratio is this undesirsble change in center
of pressure substantislly decreased.

The correletion of pitching-moment-curve slope for wvarious

Cm
_ dcy, ]
values of the speed parsmeter ?E737§7§ is presented in figure 13.

Although conslderable scatter of dats is evident the curves have been

faired favoring the data for the thickness ratio of 4 percent which do

show a good correlation. The values of E—E for —%— = 0 represent

Cr, . t/e
the poslition of the center of pressure and for sll values of the speed
barameter the center of pressure is shown to -move progressively toward
the leading edge as the aspect ratioc becomes small. At transonic speeds
the stability derivative varies almost linearly with A(t/c)1/3® for
values of A(t/c)2/S 1less than sbout 1 with the center of pressure
located at the leading edge for vaenighing aspect ratio at zero angle of
attack. For values of A(t/c)l/3 greater than about 1 the staebllity
derivatives may be considered constent and independent of both aspect
ratio and thickness ratio.

The pitching-moment-curve slope correlation is summarized in fig-

ure 1lhk. When using these curves to estimate EEE for particular wvalues®

of aspect ratlio and thickness ratio the 1lift coefficient corresponding
to a given value of E%Z can be approxima%ed_by use of the identity

CL, = (t/c)a/a[(t/c)l/sclu]ﬁg

Vg
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In this equation the lift variation with angle of attack has been
assumed to be linear. Numerlcal values for (t/b)l/sciu can be
obtained from the summary curves of figure 11.

Drag Due to Lift

Equation (12) will be used for the correlation of the drag-due-to-
1ift coefficient ACp. The correlation will be made for several con-

stant values of ';%&-(m in radians), since it is not slways known
beforehand if it is possible to represent closely the drag due to lift
by & parabolic variation with the angle of attack.

_ 2
The variation of (t/c)/ 840D yith the speed parameter —M T
cx,2 (t/c) 2/3
for the various thickness ratios and aspect ratios is shown in figure 15.
The approximate limits for drag with full leading-edge suction (elliptic
spanwise loading) and drag with no leading-edge suction as glven by
equation (14) have been evaluated using the sumery curves of figure 11
for the lift-curve slope and are presented in figure 15 to show the
degree of leading-edge suction. At transonic speeds the drag force for
the larger aspect ratios and thickness ratlos 1g actually somewhat
higher than the value corresponding to a resultant force perpendicular
to the plane of the wing, suggesting that some increase in separatidn
and viscous effects.occurs with increasing angle of attack.

The correlation of (ﬂl:/c):l"B ACD . for several constant values of
M3.1 o i
and is presented in figure 16. The correlation curves

7_f(t SEE tfe P a

for constant tm are presentéd in the left-hand side and summarized
e

in the right-hand side of fi e 16. A poor correlation is indicated
for large values of A(t/c)'/® at the largé negative values of the speed
parameter where the degree of leading-edge suction . apparently is chang-
ing raplidly with Mach number. When the resultant force becomes normal
to the chord line the drag-due-to-lift correlation is connected inti-
metely with the lift correlation. For transonic va}gss of the speed
parameter & reasonably good correlation of (t/c)Y8 ;;? is indicated

o
and the various E7E curves mey be closely represented by a common

" curve as they should for a parabolic variation of ACp with «.

The sonic date are presented in figure l6(c) and are compared with
the low-aspect-ratio theory for both ACp = gi— and ACp = Cim (where
k: .

the 1ift ccefficient is given by Ci = % Ac). These summery curves Bhgw_m. -
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that the drag due to 1ift, for low-aspect ratios, is glven approximately
by

M=1 .
I ac®; (22)
2 0.5<A(t/c) /B<1.3

Only for very low values of 1-‘-.(“l:/c):""s does the drag due to lift tend .

towerd the formel result of low-aspect-ratio theory, ACp = E 202,

The drag-due-to-1ift correlation is summarized in figure 17. Since

the correlation curves were found to be nearly independent of %%E’

especially in the transonic speed range and for the moderate angles of
attack used, the presentation is made only for the ratio E%E = 1.

A comperison of the induced drag for constant 1ift coefficient may
be obtained from a conslderation of the generallzed parameter

(t/c)l/s‘ggg. The variation of this parameter with - -—Efiik—- for con-
L

(t/c)2/e
stant values of A(t/c)l/a is shown in figure 18 as derived from the
1ift and drag summary curves of figures 11 and 17. A consistently -
decreasing drag due to 1ift, for comnstant 1ift coefficient, is indicated
for incressing aspect ratioc. It should be remembered, however, that the
correlation of data does not apply at the high subsonic Mach numbers for
values of A(t/c)l/3 grester than 1.6. TFor these wings, of large
aspect ratio and lerge thickness ratio, a reversed and erratic trend of
large induced drsg results, probably from the large effects of shock-
induced flow separation.

ADDITIONAL CONSIDERATIONS

Maximum Lift-Drag Ratio and Optimum Lift Coefficient T

The variation of the meximum lift-drag ratio and the corresponding
optimum 1ift coefficient with Mach number is -shown in figures 19 snd 20.

The maximum 1ift-drag ratio is expressed by the familisr formuls

<%> -z / — AC sl
max [eDg + (CDp)ysn] 52

provided the variation of ACp with Cp 1s parasbolic. The value of the
the friction coefficient CDf for the conditions under consideration
may be taken to be 0.006. From the eguivaiﬁat expression
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<%>max ="2"(*-5L/c)/ ¢or . (CDplyin |i1/ey/e A0 B _
/ e R [ 8

it i1s spparent that the inclusion of the friction drag does not permit

a generalized expregsion for L in terms of the similarity param-

D /max . : :
eterg. A correlation of date must consider, individually, each separate
value of the thickness ratio. Although no generslized correlation
appears possible g few remarks will be made concerning the effects of
aspect ratio and thickness ratlio at transonic speeds. -

At low speeds and large Reynolds numbers, the maximum lift-drag
ratio shows a dependence principally on the value of the aspect ratio.
Above the ecriticel Mach number, where the minimum presgsure drag becomes . o
large, the lift-drag ratios are found to be eggentially independent of . -~ . .= -
the aspect ratio but indicate a pronounced dependence ‘on the. thickness :
ratio. This independence of aspect ratio-at transonic speeds 1s illus-
trated by the sonic data in figure 21 where the variation with A(t/c)/3
of the two expressions -

CDg ACp 'Ql/ﬁl [ ( )min] ACp —1/5]
L] [ ) w28 | Gerere)] L2
used in equation (23) for (i% nex’ ic shown for several thiclmess e

ratios. The two variations have a compensating effect that leads to a . .=
maximum -1ift-drag ratio essentlally independent of aspect ratio. : Lz

<+

The optimum 1ift coefficient 1s represenﬁed by the following for- L
muls when the drag polars are parabolic: . . — = 7

) cpe + (CDp)
Clopt = fAcDDPmi_? N 2

CL2 R

The basic data curves of figure 20 show that the value of Cropt at

near-sonic speeds dedreages with both decreasing aspect ratio and
decreasing thickness ratio. ’ i

The linear variastion of the force coefficients with aspect ratio
at the sonlic speed is charscteristic of the,wings having values of -
A(t/c)1/® 1less than sbout 1. The following empiricel formulas were
obtained by substituting equations (20), (21), and (22) into equa-
tions (23) and (25)
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TN 1 [ =x/e
D 2 [Cpp
\D/ max %f_+2.3(t/c)z -

(26)

Altfe)/® <1

Clopt = /1:/2 [ oL+ 2. 3(t/c )2-|

The friction drag coefficient may be closely approximated by 0.006 and
the calculated values from these formulas asgree closely wlth the sonic
experimental data for the aspect-ratio range of 3 to 1.

Drag-Divergence Mach Number

The drag-divergence Mach number Mpp may be defined as the Mach
number at which a definite and abrupt increage In drag coefficient
occurs and is usually chosen as the Mach number for which the rate of -
change of drag coefficient with Mach number reaches some arbitrary
value, say 0.l. A new definition for drag-dlvergence Mach number follows -
from & consideration of the similarity rule for the drag coefficient _—
, A(sfe)Me, &, B ]

[ MZ-1
(t/c)2/3 tfe’ t/e |

Differentiating with respect to the Mach number gives

= (¢/¢)*° D

a h

M-
= (t/c)M Dl[wa%/-g’ A(t/e), =, UE]

The drag-divergence Mach number may now be defined as the Mach number
for which

ICOR = constant | (27)

and this implies the functlonal relatlonship

s = [ 5 ] @)

For two-dimensional flows it follows immediately that the relationship
between drag-divergence Mach number and thickness ratio for symmetric%l
1-Mpp

wings at zero angle of attack iz given by & constant value of -——2 .,
(t/c)2/3

ST
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The experimental drag-divergence Mach numbers for zero 1ift coeffi-
cient = . 0 are correlated in figure 22. For convenience ﬁhe
t;c d.C'D/dM _ .
(t/c)M = 1. According to figure 22 the
two-dimensional-flow value for Mpp 1is given spproximately by

TE;M%%7§ 1. 75 ‘as is indicated by the asymptotic nature of the curve.

evaluation has béeen made for

CONCLUDING REMARKS

The similarity rules have been used to correlate the experimental
data for a geries of 22 rectangular, symmetrical wings having :
NACA 63A0XX sections, aspect ratios from 1/2 to 6, and thicknesses from
2 to 10 percent. The data were obtalned by use. of the transonic bump
technique for a Mach number range of 0.40 to 1.10 and Reynolds number
range of 1.25 to 2.05 million.

The results of. the correlation have shown that, with the exception
of wings having large values of A(t/b) 1/3 at high subgonic Mach numbers
where an erratic variation of the force and moment coefficients with
Mach number was indicated, it is possible to correlate experimental data
throughout the Mach number range using the transonic similerity param-
eters. The use of the generalized coefficients has permitted the pres-
entation of experimental data for a wide range of aspect ratios and
thickness ratios by & unlfied method throughout the Mach number range,
eand the form_of presentation used has permitted a direct comparison of
the data with the known results of theory.

At the sonic Mach number a linear variation of the force and moment
coefficients with aspect ratio was found to be a universal property for
wings having values of A(t/c)1/2 1less than sbout 1. For increasing
values of A(t/c) 1/8 greater than 1 the generalized coefficients at
the sonic speed show a rapld and asymptotic approach to constant values,
indicating that & trensition from three-dimensional-flow characteristics
(where the force and moment coefficients vary linearily with aspect
ratio) to two-dimensional-flow characteristics (where the force and
moment coefficients are essentially independent of the aspect ratio)
occurs near the particular value of A(t/c)/3 equal to 1,

The date correlation was summarized in presentations involving only
one geometric variable A(t/c)2/®. The summary curves may be used as
design charts for estimating the transonic characteristics of rectangular
wings provided the .airfoil profile doeg not differ greatly from the
NACA 63A series. Although a correlation of experimental data was not
possible for the meximum lift-drag ratio and the optimum lift coefficient,

GO AL
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the summary curves for minimum pressure drag and drag due to 1lift may
be used to estimate these values.

Ames Aeronautical ILsboratory,
Nationsl Advisory Committee for Aeronautics,
Moffett Field, Calif.
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TABLE I.- VALUES OF THE GEOMETRIC PARAMETER
A(t/c)1/® FOR THE WING MODELS TESTED

A ft/e [a(t/c)r/ A /e |a(t/e) /e
6' 0.10 2.78L4 2 0.0k 0.684
6 .08 2.586. 2 .02 .5h2
6 06| 2.352 1.5 | .0k 513
% | .10] 1.856 1.5 | .02 . hoT
L .08 1.72h 1 .10 b6l
b | 06| 1.568 1 .08 31
b .0k 1.368 1 .06 «392
3 Ok | 1.026 1 .Oh 342
2 .10 .928 1 .02 271
2 .08 .862 .5 | .ok 171
2 .06 .78k 5 .02 .136
NAGAT

T e a—
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- TABLE II.- NUMERICAL VALUES OF (t/c)1/2,

(t/c)®/®, mD (t/c)S/3

/e | (8/e)*° | (8/e)®/° | (t/e)®/°
0.12 0.493 0.243 0.0293
.11 479 .230 .025k4
.10 ek .216 .0217
.09 448 .201 .0181
.08 431 .186 .0148
. W07 12 .170 .0118
) .06 . .392 .15h .0092
.05 .368 .136 . 0068
.0k .32 - J117 .00L68
.03 .311 -097 .00292
.02 271 073 .00LLT
o
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TABLE III.- VALUES OF THE ANGLE OF ATTACK (IN DEGREES)
FOR VARIOUS VALUES OF THE RATIO -2 (IN RADIANS)

t/c
Angle of attack o, degrees

t/e 't_%’ 0.5 radian | 1.0 radian | 1.5 radians | 2.0 radians
0.10 2.87 5.73 8.60 - -

.08 2.29 k.58 6.87 - -

.06 1.72 3.4k 5.16 6.87

.ok - - 2.29 3.h4 I.58

.02 - - - - 1.72 2.29

~NAAT T
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Mach number, M
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Figure |.- Requiremants for similitude of transonic flow.
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