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The transonic similarity rules have been applied to the correlation 
of experimental data for a series of 22 rectangular wings having sym- 
metrical NACA 63A-series sections, aspect ratios from 1/2 to 6, and 
thicknesses from 2 to 10 percent. 
transonic bump technique over a Mach number range from 0.40 to 1.10, 
corresponding to a Reynolda number range from 1.25 to 2.05 million. 
The results show tha t  it is possible to correlate e-xperimental data 
throughout the subsonic, transonic, and moderate supersonic regimes by 
using.the transonic similarity parameters in forms which are consistent 
Kith the Prandtl-Glauert rule of linearized theory: 

The data were obtained by use of the 

The multiple families of basic data curves for the various aspect 
ratios and thickness ratios have been summarized in single presentations 
involving only one geometric variable - the product of the aspect ratio 
and the l/3 power of the thickness ratio. 

INTRODUCTION 

A unified approach toward an understanding of transonic flaws has 
been achieved only Fn recent years. 
flows, in comparison KLth the mre complete and cogent understanding of 
subsonic and sqpersonic flaws, is aue not only to the complexities of 
the mthenatics involved but also to the limitations of test facilities 
at transonic speeds. 

Similarity rules for transonic flow in two dimensions were derived 
by von I&m& (reference 1) and were extended recently by Spreiter 
(reference 2) and Berndt (reference 3) to include w i n g s  of finite span. 

Our meager knowledge of transonic 

. -  
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These rules cghbe shown to coincide with one of .the possible forms of 
the Pra,ndtl&l&uert r u l e  of subsonic and supersonic flm. 
Although the similarity rulers do not provide explicit solutions, they do 
suggest the manner in which experimental data can be correlated. 

wing aspect ratio and thickness at transonic speede (reference 4) has 
provfded.experlments1 data ideally suited to correlation uaing the tran- 
sonic similarity parameters. The analysis o f  these @ta is presented in 
this paper to provide the transonic characteristics of rectangular wings 
of symmetrical profiie and to help evaluate the usefulness of the tran- 
sonic similarity parameters for the correlation of eqerimental data. 

(Reference 2.) 

A recent systematic experimental investigation of the effects of 

The similarity r u l e s  are presented in slightly modified forms to 
permit a direct and convenient application in the data correlstion. The 
form of the data presentation was chosen so that direct comparisons with 
the various linearized theories could be indicated. 

gular wings having symnaetrical NACA 63-series sections, aspect ratios 
from 1/2 t o  6, and thicknesses from 2 t o  10 percent. 
obtained by use of tihe transonic bump technique over a Mach number range 
of 0.40 to 1.10, corresponding to a Reynolds number range from 1.25 to , 

2.05 million. 
been published in reference 4. The basic data for the aspect ratios 0.5, 
1.5, and 3 were obtained by identical testing procedures but have not 
been published previouslg. 
testing procedure is given in-reference 4. 

The correlation is applied t o  the experimental date for 22 rectan- 
I 

m e  data were 

%e basic data for the aspect ratios 1, 2, 4, and 6 have 

A description of the wing models and the 

SYMBOLS' 

A e.. aspect rat io 

b wing span 

C wing chord 

CD (totaFag) total drag coefficient 
.- 

CDmin minirmrm drag coefficient 

( CDP)min minimum pressure-drag coefficient - 

friction-*ag coefficient, assumed equal to minimum drag 
coefficient at 0.7 Mach number 

Q f  

.- 
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drag coefficient due to lift (CD - c%~,) 
(%) lift coefficient 

lfft coefficient for maximum lift-drag ratio 

referred to 0.23 

pressure coefficient 

F (:,:) ordinate distribution f'unction 

CP 

\ 

thickness distribution fqction 

g (:,E) camber di,stribution function 

h 

M 

Mcr 

MDD 

U 

Y' 

7 

camber parameter proportional to the amount of camber 

max- lift-bag ratio 

free-stream Mach number 

critical Mach number 

drag-divergence - Mach number 

dynamic pressure 

wing area 

thickness-to-chord ratio 

Cartesian coordinates where x extends in the direction of 
the free-stream velocity 

angle of attack 

ratio of specific heats (for air y .  = 1.4) 

ordinate-amplitude parameter 
4 

3 



Y 
perturbation-velocity potential 

slope o? lift curve, measured at 

slope of pitching-moment 

pressure-drag function 

drag-due-to-lift function 

lift f’unc t ion .. 

curve 

pitching-moment function - 

pressure-coefficient function 

zero lift 

WACA RM A5lL17b 

coefficient 

.. 
._ . . .  

THEOKl3TICAL CONSIDERATIONS 

Transonic Similarity Rules 

Shilarity rules (references 1, 2, and 3) for the transonic flow 
around thin wings shm how a wing can be affinely distorted in order to 
retain a related potential distribution when the free-stream Mach number 
is altered. These rules of correspondence can be shown to coincide with 
one of the possible forms of the’prandtl-Glauert rule, derived from the 
linearized potential equation of subsonic or supersonic f l o w s  (refer- 
ence 2). 
terms of the transonic similarity parameters and the use of these param- 
eters will be consistent for both the linearized theory and the nonlinear 
transonic theory. 

The various results of linearized theory can be expressed in 

merience has shown that the linearized potential equation is a 
good approximation for sufficiently thin wings when the whole field of 
flow is subsonic or well-established supersonically. In the transonfc 
regime certain nonlinear terms must be retained to show the mixed nature 
of the flow. The nonlinear terms of the basic potential equation are -- 
important only near sonic speed and only the nonlinear terms involving 
derivatives with respect to the direction of the undisturbed fluid motion 
need be retained, since perturbations in sonic flow diminish more slowly 
in the directions perpendicular to the flow than in the direction parallel ~- 
to it. This assumption is valid only for unswept plan forms, which is the 7 

only case to be considered here. The basic potential equation may there- & - fore be written as 
r 
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where M is the free-stream Mach nuniber and 0 is the perturbation- 
velocity potential normalized by division by the free-stream velocity. 
This equation retains the essential features of both linearized and 
transonic theory and the similarity rules may be obtained f r o m  this 
equation and applied at subsonic, transonic, and moderately supersonic 
Mach numbera. 

Similarity of flow about w-s of finite span requires the con- 
stancy of two  parameters (M~-I)A= and 

where 7 is an ordinate-amplitude parameter and F (:,:) is the ordi- 

nate distribution function. In general, T may be used to denote 

of these two parameters implies the existence of an alternative similarity 
changes in profile thickness, angle of attack, and camber. The constancy . 

parameter 

which is of fundamental importance. Since the ratio of 
7 is constant for a fixed medium the expression (y+l) 
in equation (1) has not been retained in the similarity 
in the following similarity rules. 

specific heats I 

which appears 
parameters nor 

The similarity rule for the pressure coefficient on the surface of 
the wing may be written in the form 

(5 "> represents mF (c'b 
a 

The expression 

x z }  
cy b 

the slope of the airfoil 
- .  . 

surface and can be express& as 
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where f e,:) and g (:,:) are the airfoil thickness and camber 

distrlbution Ruictions Kith the origin at the leading edge of the root 
chord and the parameter h is proportional to the amount of camber. 
For airfoil8 having the same thickness and camber distribution functions 
the shilarfty rule for the pressure coefficient may be expressed in the 
more useful form - _  ~ - 

I 

- - 

- - 

In this equetion a and t/c can be simultaneously interchanged, that 
is, t/c may be replaced by a, and a ky t/c. This is possible by 
virtue of the presence of the parameter 
however, may be altered in the process. 

- The form of the functionP, 
- -  - 

Generalized Force and Moment Coefficients 
. -  

.- - 

Fram the similarity rule for the pressure coefficient the general- L 

ized expressions for lift coefficient and lift-curve slope are obtained - 

When the lift coefficient varies linearly wlth angle of attack the param- 
eter % may be omitted from equation ( 6 ) .  

The generalized expressions for moment ooefficient, pitching- 
moment slope, and center of pressure are .- - 
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The total drag coefficient may be expressed as 

CD = cDf f 
4- AcD 

The friction-drag coefficient 
similarity parameters since the theory neglects all viscous effects. 
The generalized expression for minimum pressure drag is 

mf cannot be expressed in terms of the 

Although the similarity rule implies a generalized drag-he-to-lift 
ACD 
u5 

parameter T~ a more useful generalized expression is 

and a comparison of ACD with C L ~  m y  be obtained f r a n  

a - may be neglected if the drag In equations (12) and'(13) the ratio 
due to lift shows a parabolic variation with angle of attack and w$th 
lift coefficient. 

t/c 

A comparison of drag due to lift e t h  the limits for drag with fu l l  
leading-edge suction (elliptic spanwise loading) and drag with no leading- 
edge suction m y  be obtained by use of the expression 

or, when written in terms of the generalized lift-curve slope and assum- 
ing a linear variation of CL with a, 

h In the preceding generalized expressions the argument - vanishes 
t/c 

vanishes at M = 1, and in khe case M2-1 for symmetrical profiles, 

of two-dimensional flow does not enter into the similarity 
I 

rules. 
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Use of the Similarity Parameters 
" 

The generalized coefficients and derivatives can be applied only 
to experimental data for w i n g s  having the 8ame thickness and camber dis- 

h the general- tribution functions. For constant values of 

ized expressions w i l l  remain oonstant and the flow patterns w i l l  be sbi- 
$ ana q-c 

M2-1 o3 1ar if the Mach numbers are chosen so that J W A  and 

remain constant. 
values 
tries are related in a special masner. 
with thickness ratio and with aspect ratio for several constant values of 

J W A  and 

between aspect ratio and thickness ratio for several constant values of 
A(t/c)'13 are shown in. figure l(b). 

This will be possible only if the wings have equal 
A(t/c)1/3, and thus similarity can exist only if the wing geome- 

"he variations of Mach number 

are shown in figure l(a). The variations 02/3 

According to small perturbation theory the thickness ratio must be 
small but no restriction is necessary concerning the magnitude of the 
aspect ratio. A given value of A(t/c)l/" must always correspond t o  a 
s m a l l  thickness ratio and therefore a systematic survey of airfoil data 
should cover a wide range of A(t/c)1/3 
analysis of this paper. (The values of A(t/c)li3 for these airfoils 
are tabulhted in table I. ) 

values as was done for the 

For wings having unequal values of A(t/c)l/" the use of the two 
and A(t/c)l'' suggests two different but essen- parameters 

tially equivalent forms of data correlation, one showing the variation 
of the generalized coefficients with A(t/c)'13 for constant values of 

0'79 

the speed 
M2-1 

lation in 
oils 

parameter M2-1 the other shawing the variation wlth 
for constant alues of A(t/c)lI3. For convenience, the corre- 

this paper will be made for constant values of 

(t@12/3 

M2-1 
and 

( t /c )2/3 

the results summarized for constant values of A(t/c)li3. Thus, the use 
of the similarity parameters permits the multiple fhmilies of basic data 
curves for various aspect ratios and thickness ratios to be summarized 
in a presentation invkving only one geometric vmiable, the parameter 
A( t/c)l/'. 

The actual flow about wings w i l l  always violate to some extent the 
assumptions necessary in the derivation of s m a l l  disturbance theory, 
which assumes that the flow deflection is everywhere mall. The theory 
also ignores the existence of 'a stagnation region at the leading edge 
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and of a boundary layer. 
the extent and position of the mixed subsonic and supersonic flow regions. 
Although the essential  properties of shock waves and of Prandtl-Meyer 
f l o w  can be approximated in terms of the speed parameter, provided the 
f l o w  deflection angle is  sma~. (references 1 and ?), a successful corre- 
la t ion of experimental data w i l l  be possible only if  the boundaries of 
the mixed,flow regions for  related a i r f o i l s  possess similitude of s i z e  
and positinn. 

A theory for  transonic flow must also consider 

The usefulness of the similari ty rules can be determined only from 
a systematic survey of experhental  data. 

Slender-Wing Theory 

A solution in general is not known for  the nonlinear transonic 
potential equation 

For two-dimensional flow the pa r t i a l  derivatives and (4m are 
known t o  became very large as the Mach number approaches 1. However, 
for wings of slender plan form, that  is, wings of sufficiently low aspect 
ra t io ,  these derivatives may be considered t o  be of the same relat ive 
mappitude as the partial. derivatives 'pyy and 'Pzz and the nonlinear 
term (r+l)&#&, which is of the second order, can therefore be 
neglected. Thus, f o r  slender wings the linearized equation 

(1-@)Tn + 'pyy + 'pzz = 0 

can be used throughout the transonic speed range. 

For vanishingly small aspect ra t ios ,  or for  moderate aspect ra t ios  
at  netu sonic speeds where the coefficient 
ently of 'pxx, the linearized equation reduces to  Laplace's equation in 
two dimensions 

L M 2  becomes m a l l  independ- 

for  which solutions are w e l l  known. 
R. T. Jones (reference 6 )  f o r  the case of slender, pointed wings and by 
various authors (see, e.g., references 7 and 8) f o r  slender wing-body 
combinations. The sl'ender-wing theory furnishes the interesting result 
that a l l  the lift is carried upstream of the point of maxFmum span ssd 
the center of pressure of a rectangular w i n g  of vanishing aspect r a t i o  
w i l l ,  a t  sonic speed, be a t  the leading edge. The theory, however, is 
unable t o  predict the effects of prof i le  thickness and is rest r ic ted t o  

Such solutions have been given by 



the lifting case. 
sure drag. -. 

A solution cannot be obtained for the zero-lift pres- 
" 

The theory of reference 6 provides the following expressions for 
the lift and drag coefficients: 

c L = 5 u  
. 2 . -  

The alternative expressions 

fl (t/C)NA3 = T; A( t/c)l" (fill leading-edge suction) 

.. .- 

will be used in the data correlation to obtain a canparison between - - 

theory and experiment for the'wings of lcsw aspect ratio at the sonic 
Mach number. 

DATA CORRELATION 
c 

Before beginning the data correlation it might be well to point 
out that the experimental data were obtained by mounting semispan Wtng 
models in the high-velocity flow field of the Ames 16-foot high-speed 
wind-tunnel transonic bump. 
slightly curved with Mach number gradients in the plane of the wing 
model. 
These gradients are most pronounced at the higher Mach numbers and for 
the larger aspect ratios. 
field are unknown but a certain rounding off of any sharp breaks in force 
and moment coefficient variation with Mach number can be expected. 

The streamlines of the bump f l o w  field are 

Typical Mach number contours are presented in reference 4. 

The effects of the nonuniformity of the flow 

Minimum Pressure Drag 

The drag-similarity rule cannot be applied directly to a correla- 
tion of minimum drag data since small pepturbation theory ignores the 
existence of friction drag. 
to change little with Mach number in the transonic range and the corre- 

minimum pressure drag has been calculated by subtracting a constant 
friction drag, assumed equal to the minimum drag at 0.7 Mach number', 

The friction drag coefficient is believed 

lation can be applied to the minimum pressure drag coefficient. The . - 

from the minimum drag, that is, . .. - - 

z 
- - 
- 
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The basic data curves for  the varfation of minimum drag coefficient 
with Mach number are presented in  figure 2. (c4)mr with the speed peameter ized coefficient 

in  figure 3 as an introductive step t o  the completely generalized data 
correlation of figures 4 and 5. (The symbols used in f ig .  3 represent 
the actual t e s t  data points and were included t o  show the manner in 
which the data have been faired.)  

closely representedby a comm~n curve, indicating tha t  a t  this aspect 

r a t io  the values of 

The variation of the general- 
6 1  

c)2/3 i s  shown (t/CI5 = 

The data c m e s  for  the wings of aspect r a t i o  6 in f i w e  3 may be 

may be considered t o  depend only on the (CDp'rnin 
(t/c, 513 

I 

Vdue of M2-1 and tha t  the f l o w  is  essentially two-dimensional. ' 

(t /c) 2/3 
The aspect-rat io4 wings .also exhibit the negative variation of the 
force coefficient with Mach number which i s  characteribtic of two- 
dimensional flaws at sonic speed. 5bfs variation is a consequence of 
the relat ive variations of local and free-stream dgnamfc pressures. 
me  local  Mach numbers are effectively frozen st near-sonic values as 
the free-stream Mach nuniber increases through the transonic speed range. 
(See references 9 and 10.) It is interesting t o  note that the experf- 

mental values of - for  the wings of aspect r a t i o  6, figure 2, 

agree qua l ik t ive lywi th  the values implied by the following relation- 
ship (an exact theoretical  result applicable to synanetrical profiles 
of any shape, reference 10) : 

( 
' 

This agreement occurred in  spite-of the fact  that the test conditions 
are not ideal and do not agree with the concept of an in f in i te  and 
uniform flow f i e l d  assumed in the theoretical reasoning. 

The lower aspect r a t io s  show increasing effects  of three-dimensional 
flow and the smaller thickness ra t ios  have progressively lower general- 
ized drag coefficients with the exception of the thinnest (2-percent- 
thick) wfng models. These thinnest a i r f o i l s  have unusually large values 

(CDp)min which are believed t o  be largely the resul t  of the boundary 
Of -- 
layer c rea tbg  an effective t h i c h e s s  considerably larger than the 
actual profile thickness. The generalized drag coefficfents are then 
magnified f o r  the thin a i r fo i l s  by the 5/3 powers of the ra t ios  of 
effective thickness t o  prof i le  thickness. 
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The completely generalized correlation of minimum pressure drag is 
presented in f i w e s  4 and 5. 
the remaining figures of the report represent values taken from faired 
curves of prelhinary cram plots. 
represent the data for each particular wlng tested.) 
correlation for constant values of ,/=A 
merely to illustrate the inability of presenting data at the sonic 
velocity using simultaneously the parameters A / W A  and 

(The symbols used ih these figures and in 

A dlfferent symbol has been used to 

is presented in figure 4 

(t/C)2/3' 

The transonic 

M2-1 

M"-1 
is presented in 

figure 5. The correlation is best at the sonic velocity asd the curve 
for this particularly interesting Mach number is repeated in figure 6 .  
Although the data for 2-percent thickess have been omitted fram the 
preceding correlation because the extraordinarily large values interfere 
with the adjacent correlation curves, these data have been included fn 
figure 6 to s h o w  the pronounced effect of the boundary layer for these 
thinnest profiles. 

jqpF The correlation for constant values of 

At the sonic speed the minimum pressure drag is seen to vary lin- 
early with aspect ratio and with the second power of the thickness ratio 
for values of A(t/c)lI3 less than about l'as can be expressed by 

M = 1  

For values of A(t/c)ll3 greater than about 1 the generalized coeffi- 
(CDp) 

cient *- approaches rapidly and asymptotically toward a constant 
(t c)5 3 

value for'which the minimum pressure drag varies with the 5/3 power of 
the thickness ratio in accordance with the drag similarity rule for 
sonic, two-dimensional f low.  The extrapolated two-dimensional-flow 
value for 
against the inverse parameter 1/A( t/c) 'I". The calculated theoretical 
pressure drag for a double-wedge profile (reference 11) is aomewhat 
higher. 

M=l, ( C ~ P ) ~ ~  = 3.55 (t/c)"/", was obtained by plotting 

The correlation of minimum pressure drag is summarized in figure 7 
by cross plotting from the faired curves of figure 5.  
critical Mach numbers1 for NACA POXX profiles are given in reference 13 

&LI?- = -1.95. and may be approximated by 

'In reference 12 Kaplas has sham that the section critical Mach number, 

The predicted 

The compressibility drag 
(t/c) 213 

according to first-order linearized theory, is related to the thick- 
ness ratio by a constant value of the speed parameter, the constant 
depending on the particular profile shape, 

.- - .  

c 

... 

. .  . -  

r 

-- - , .  
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r i s e  becomes noticeable a t  s l ight ly  higher 
M2-1 = -1.80. p 

Mach numbers, that  is, for  

The fundamental importance of the similari ty parameter A(t/c)l/s 
i s  clearly evident from the summarization of minirmun pressure d ~ a g  as 
presented in  figure 7. 
maybe used.with figure 7 f o r  convenience i n  calculating the minimum 
pressure drag for given values of aspect ratio,  thickness r a t i o ,  and 
Mach number. 

The curves of figure l a n d  the values of table I1 - 

L i f t  

The variation of the lift coefficient with angle of attack is  

The lower aspect 
essentially l inear a t  mgderate angles of attack throughaut,the Mach 
number range for  aspect ra t ios  greater than 1.5. 
ratios,  however, show an increasingly nonlinear variation of lift with 
angle of attack and approach the theoretical 
vanishing aspect ra t io .  
res t r ic ted to  a consideration of the lift-curve slope evaluated a t  zero- 
l i f t  coefficient, which provides a close approximation f o r  lift charac- 
t e r i s t i c s ' a t  the moderate angles of attack for which the similari ty 
rules can be expected t o  hold. 

sin? a variation fo r  
For convenience the lift analysis w i l l  be 

The variation of lift-curve slope with Mach number is  shown in 
figure 8 and is compared with the .theoretical lift-curve slopes calcu- 
la ted by applying the three-dfmensional Prandtl-Glmert transformation 
t o  the Weissinger l i f t ing-l ine theory of reference 14. 
between theory and experiment for aspect ra t ios  greater than about 3 is 
satisfactory only i n  the subcrit ical  Mach number range. 

The agreement 

Above the c r i t i c a l  Mach number an abrupt decrease in lift-curve 
slope occurs for  some of the wings of larger aspect ra t io  and thickness 
ra t io  and i s  believed t o  be the resu l t  of the formation of strong 
velocity dfscontinuities and flow separation a t  the a i r f o i l  surfaces. 
This "bucket" type variation in the lift-curve slope is a phenomenon 
apparently dependent on a combination of thiclmess and aspect-ratio 
effect  since the smaller thickness ra t ios  and smaller aspect ra t ios  
show no such i r regular i t ies  in the lift-curve variation with Mach number. 
Indeed, it w i l l  be aham in the following data correlation that th i s  
e r ra t ic  variation occurs only for the wings having values of 
greater than about 1.6. 

A ( t / c ) l I 3  

The variation of the generalized lift-curve-slope 
M2-1 w with the speed parameter 

( t / c y 3  (3) CLFO 

parameier 
i s  shorn i n  

. .  

. .  
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figure 9 as an introductive step to the completely generalized data 
correlation of figure 10. A comparison of figures 8 and 9 shows that 
the curves for aspect ratio 6 have converged toward a single variation 
at the transonic speeds, indicating that the flow is essentially two- 
dimensional for the higher aspect ratios. ._For these wings the lift- 
curve slope shows the characteristic negative variation with Mach number 
at near-aonic apeeds. 

The correlation of (t/c) for several constant values 

M2-1 is presented in figure 10. The correlation and canparison 
-0 

Of -3 . I - ,  - 
with theory are good for the large negative values of the speed para- 
eter (i.e.., l o w  Meeh numbers) and a reasonably good correlation is 
indicated at near-sonic speeds. At supercritical Mach numbers and - 

values of A(t/c)1/8 greater than 1.6 the poor correlation suggests a 
separated flow for which the concepts of small perturbation theory 
would be violated. A(t/c)l/a = 1.6 appears to be the limit- 
ing value for airfoils which do not exhibit noticeable irregularities in 
‘lift-curve-slope variation with Mach number. 

The value 

At M=l, and for small values of A(t/c)lI3, the e-erimental lift 
agrees well with the lifting-line and slender-wing theories. 
within the indicated limits, the lift m y  be approximated by’ the follow- 
ing equation: 

Hence, 
.. 

M = l  

A(~/c)~” < 1 
5[ CL = - Aa, 

. .- 

L 

For increasingly greater values a rapid and apparently 
asymptotic approach of to a constant value I s  

indicated. The and Yoshihara2 for a 
double-wedge profile in sonic, two-dimensional flow is included in 
figure 10. 

The results of the data correlation for lift-curve s l o  e are summa- 
where MS-1 

w 3  
rized in figure U for those values of A(t/c)1/3 and 

- .  . 
a good correlation w a s  indicated. 

2This theoretical value of the lift-curve slope was calculated in 
Air .Force Technical Report 6683, Unsymmetric Flow Patterns at Mach 
Number One, by Gottfried Guderley and Hideo Yoshihara. - 
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Moment 

The variation of the degree of s t a t i c  longitudinal s t ab i l i t y  with 
Mach number is presented i n  figure 12. 
d%/aCl was measured for  - ra t ios  of 0, 1, and 2 radians. (The 

values of a in degrees are tabulated i n  table  111.) 

The pitching-moment-curve slope 
a 

t /c 

For the larger aspect ra t ios  5 varies Bmoothly with Mach number 
dCL 

in the low subsonic and i n  the supersonic regimes, although at different 
levels, but behaves e r ra t ica l ly  at high subsonic speeds. 
behavior is probably due t o  the same causes as the i r regular i t ies  of the 
lift-curve slope at  the corresponding Mach numbers. 
t o  the c r i t i c a l  the effects of cmpresaibi l i ty  are relat ively anall as 
is  predicted by linearized theory. A t  transonic speeds a large change 
i n  the center of pressure occurs for  the wings of large aspect r a t i o  as 
the aerodynamic center moves from the vicini ty  of the a-percent-chord 
point of subsonic speeda towards the 40-percent-chord point. Only for  
very low values of the aspect r a t i o  is th i s  undesirable change in  center 
of pressure substantially decreased. 

This erratic 

A t  Mach numbers up 

The correlation of pitching-moment-curve slope - for  various 
@ -1 dCL 

is presented i n  figure 13. 7 q q -  values of the speed parameter 

Although considerable sca t te r  of data is evident the curves have been 
faired favoring the data for  the thickness r a t i o  of 4 percent which do - - 
show a good correlation. The values of - for  + = 0 represent 

dCL . 
the position of the center of pressure and for  a l l  values of the speed 
parameter the center of pressure is  shown to.move progressively t m d  
the leading edge as the aspect r a t i o  becomes s m a l l .  
the s t ab i l i t y  derivative varies almost l inear ly  w i t h  A( t / c ) l I3  for  
values of A(t/c)l/s less than about l w t t h  the center of pressure 
located a t  the leading edge for vanishing aspect r a t io  at zero angle of 
attack. For values of A ( t / c ) l I 3  greater than about 1 the s t ab i l i t y  
derivatives may be considered constant and independent of both aspect 
r a t i o  and thicknese rat io .  

A t  transonic speeds 

The pitching-moment-curve slope correlation is summarized i n  f ig-  
for  particular values ’ dcm ure 14. When using these curves to  es thate  - 

dCL 
of aspect r a t i o  and thiclmess r a t i o  the lift coefficient corresponding 

to a given value of a - can be approximated by use of the identity 
t /c  c 
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In this equation the lift variation with angle of attack has been 
assumed to be linear. Numerical values for (t/c)l/"C can be 
obtained from the summary curves of figure 11. h 

Drag Due to Lift 

Equation (E) will be used for the correlation of the drag-due-to- 
lift coefficient ACD. 
staht vdues of & (a 

beforehand if it is possible to represent closely the drag due to lift 
by a parabolic variation with the angle of-attack. 

The correlation will be made for several con- 
in raiiians), since it is not d w a y s  known 

t/c 

M2-1 - 

The variation of (t/~)l'~hCD with the speed parameter 
(t/c) 2'3 2 a 

for the various thiclmess ratios and aspect ratios is shown in figure 15. 
The approximate limits for drag with full leading-edge suction (elliptic 
spanwise loading) and drag with no leading-edge suction as given by 
equation (14) have been evaluated using the summary curves of figure 11 
for the lift-curve slope and are presented in figure 15 t o  show the 
de'gree of leading-edge suction. At transonic speeds the drag force for 
the larger aspect ratios and thickness ratios is actually somewhat 
higher than the value corresponding to a resultant force perpendicular 
to the plane of the wing, suggesting that some increase ip sepasatihn 
and viscous effects occurs with increasing angle of attack. 

. The correlation of ( t / c p  
is presented 

for constant $ are presented 
.. M2-1 

0 3  and * 

.. 
.. 

- - -. 

.. 
.. - 

A c ~  
7 - 

in figure 16. The correlation curves __ 

for several constant values of 

in the left-hand side and summarized - 

16. A poor correlation is indicated in the right-ha& side of fi 

parameter where the degree of leading-edge suction.apparent1y is chang- 
ing  rapidly with Mach number. 
to the chord line the drag-due-to-lift correlation is connected inti- 
mately with the lift correlation. 

for large values of A(t/c)' Ye at the large negative values of the speed 

parameter a reasonably good correlation of (t/c)V3 ACD is indicated 

When the resultant force becomes normal 

For transonic values of the speed 

- 
and the various curves m a y  be closely represented by a common 

'curve as they should for a parabolic variation of ACD with a. 

The sonic data are presented in figure 16(c) and are compared with 
the low-aspect-ratio 

the lift coefficient 

w -  

theory for both ACD = - and ACD = C p  (where 

is given by CL = 5 Arc) .  
3TA _.  

II 
~ 

n -  These summary curves show 
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that the drag due to lift, for low-aspect ratios, is given.approximately 
by 

M = 1  A% ,= 9 Aa'; 
2 0.5<A(t/~)'/~<1.3 

Only for very low values of 
toward the formal result of low-aspect-ratio theory, ACD = 

A(t/c)ll' does the drag due to lift tend 
h2. 

4 

The drag-due-to-lift correlation is summarized in figure 17. Since 
the correlation curves were found to be nearly independent of e 

= 1. 

/ C Y  
especially in the transonic speed range and for the moderate angles df _ _  

a attack used, the presentation is made only  for the ratio 

A comparison of the induced drag for constant lift coefficient may 
be obtained from a consideratfon of the generalized parameter 

for con- M?-1 (t/~)'/~ a 
stant values of A(t/c)l/s 

The variation of this parameter with 
CL2' (t/C)2/3 

is shown in fiaure 18 as derived from the . .  - 
lift and drag summary curves of figures =-and 17. 
decreasing drag due to lift, for constant lift coefficient, is indicated 
for increasing aspect ratio. It should be remembered, however, that the 
correlation of hta does not apply at the high subsonic Mach numbers for 
values of .A( t / ~ ) l / ~  greater than 1.6. For these wings, of large 
aspect ratio and large thickness ratio, a reversed and erratic trend of 
large induced drag results, probably from the large effects of shock- 
induced flow separation, 

A consistently 

ADDITIONAL CONSIDmTIONS 

Maximum Lift-Drag Ratio and Optimum Lift Coefficient 

The variation of the maximum lift-drag ratio and the corresponding 
opthum lift coefficient with Mach number is shown in figures 19 and 20. 

The maximum lift-drag ratio is expressed by the familiar formula 

(5) max =;/- 'I ACD 
(23) 

[af + (C%)minJ e , 

provided the variation of ACD with CL is parabolic. The value of the 
the friction coefficient CDf for the conditions under consideration 
may be taken to be 0.006. From the e uiva t expression -lJ&& 

m r n  _- 
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* 

- 
it i s  apparent that the inclusion of the fr ic t ion drag does not permit 
a generalized expremion for 

eters. 

appears possible a f e w  remarks w i l l  be made concerning the effects of 
aspect ra t io  and thiclmess .ratio a t  transonic speeds. 

in terms of the similarity param- (5 >m- 
A correlation of data must consider, .individually, each separate 

- value of the thiclmess ratio. Although no generalized correlation _ -  

A t  low speeds and large Reynolds numbers, the maximum lift-drag . 

ra t io  shows a dependence principally on the value of the aspect ratio. 
Above the c r i t i ca l  Mach number, where the minimum pressure drag becomes 
large, the lift-drag ratios are found t o  be eesentially independen% of 

ratio.  
trated by the sonic data i n  figure 21 whe.re the variation with 
of  the t w o  expressions 

- 

the aspect ra t io  but indicate a pronounced dependence on the thickness - 
This independence of aspect ra t io  a t  transonic speeds 5s i l lus-  

A(t/c)'l3 
. .. 

- _  - .  
Y -  

, .. i E  shown for several thickness :- . - 
.- 

used in equation (23) for (;)my 
ratios.  The two variations have a compensating effect that leada to  a : - .. . ~. 

- maximum -lift-drag ra t io  essentially independent of aspect ratio.  

mula when the drag polars are parabolic: 

- -  
- . - .  

. The optirmun l i f t  coefficient is  represent.ed . .. by the following for- . . .  . 
- 

- . -. . --. . .  

. .  - 

-. - - . .  
(25) 

- . ... C b p t  =/y . .  .. . .  

.. - .. - The basic data. curves of figure 20 show that the value of 
near-sonic speeds deereases kith-both decreasing aspect ra t io  and 
decreasing thickness ratio.  

C b p t  a t  - 

, . . . .  . -  

The linear variation of the force coefficients with aspect ra t io  - 
- - at the sonic speed is characteristic of the.wings having values of - 

A(t/c)li3 less  than about 1. The following empirical formulas were 
obtained by substituting equations (20 ) ,  (21), and (22) into equa- 
tions (23) and (25) d 



NACA RM A31Ll7b 19 

The f r ic t ion  drag coefficient may be closely approximated by 0.006 and 
the calculated values fromthese formulas agree c l o s e l y d t h  the sonic 
experimental data for the aspect-ratio range of 3 to 1. 

Drag-Divergence Mach Number 

The drag-divergence Mach number MDD may be defined as the Mach 
number a t  which a definite and abrupt increase in drag coefficient 
OCCUTS and i s  usually chosen as the Mach number for  which the ra te  of 
change of drag coefficient w i t h  Mach nunher reaches some arbitrary 
value, say 0.1. 
from a consideration of the similari ty rule for the drag coefficient 

A new definition f o r  drag-divergence Mach number follows 

Differentiating with respect t o  the Mach number gives 

The drag-divergence Mach number may now be defined as the Mach number 
for  which 

and th i s  implies the functional relationship 

1-MDD2 = f w3 
For two-dimensional flows it follows immediately tha t  the relationship 
between drag-divergence Mach number and thickness ra t io  f o r  symmetrical 
wings a t  qero angle of attack is  given by a constant value of 1-m= 

( t /c)  W3’  

. *. 

.. 



20 MCA RM A51Ll7b 

The_exper@ental drag-divergence Mach numbers for zero l'ift coeffi- 
cient (e = 0) are correlated in figure 22. For convenience the 

evaluation has been made for dcD'dM = 1.'. According to figure 22 the OM 
two-dimensional-flow value for MDD is given approximately by 

1-MDD2 1.75 as is indicated by the as&totic nature of the curve. 
0 3  = 

CONCLUDING F@dARKS 
, z. . -. 

-- - 
The similarity rules have been used to &orrelate the experimental 

data for a series of 22 rectangular, symmetrical. wings having - - 
NACA 63~0xx sections, aspect ratios frm 1/2 to 6, and thicknesses from 
2 to 10 percent. The data were obtained by use of the transonic bump 
technique for a Mach number range of 0.40 to 1.10 md Reynolds number 
range of 1.25 to 2.05 million. 

- 

The results of. the c'orrelation have shown that, with the exception 
of wings having large values of A(t/c)lI3 
where an erratic variation of the force and moment coefficients with 
Mach number was indicated, it is possible to correlate experimental data 
throughouk the Mach number range using the transonic similarity param- 
eters. The use of the generalized coefficients has permitted the pres- 
entation of experimental data for a wide range of aspect ratios and 
thickness ratios by .a unified method throughout the Mach number range, 
and the formof presentation used has permitted 8 direct comparison of 
the da%a wfth the-known results of theory. 

at high subsonic Mach numbers 

At the sonic Mach number a linear variation of the force and moment 
coefficients with aspect ratio was found to be a universal property for 
wjlngs having values of A(t/c)l/s less than about 1. For increasing 

the sonic speed show a rapid n d  asymptotic approach to constant values, 
indicating that a transition from three-dimensiongl-flow characteristics 
(where the force and moment coefficients vary linearily with aspect 
ratio) to two-dimensional-flow characteristics  ere the force and 
moment coefficients are essentially independent of the aspect ratio) 
occurs near the particular value of A(t/c)l/" equal to 1, 

values of A(t/c)lI3 greater Man 1 the generalized coefficients at .- 

The data correlation was summarized in presentations involving only 
one geometric variable A(t/c) 'Ia. The summary curves may be used as . 
design charts for estimating the transonic characteristics of rectangular 
wings provided the airfoil profile does not differ greatly from the 
NACA 6 3  series. 
possible for the maximum lift-drag ratio and the optbum lift coefficient, 

Although a correlation of experimental data was not 
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8 

the summary c w e s  for minimum pressure drag and drag due to lift may 
be used to estimate these values. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

c 
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t / c  

0.10 

.08 

.06 

.10 

.08 

.06 

.04 

.04 

.10 

.08 

.06 

TABLE I*- VALUES OF THE GEOMETRIC PARAMETER 
A( t/c)l13 FOR THE WING MODELS TlGTEXl 

A( t / c )  

2.784 

2.586. 

2.352 

1.856 

1.724 

1.568 

1.368 

1.026 

.928 

.862 

.784 

- 
A - 

2 

2 

1.5 

1.5 

1 

1 .  

1 

1 

1 

-5 

- 
;/c - 
).04 

.02 

.04 

.02 

.10 

.08 

.06 

.04 

0 0 2  

.04 

.02 
- 

2( t / c )  =I3’ 

0.684 

.542 

513 

0 4 0 7  
.464 

.431 

392 

342 

-271 

.171 

.136 

a 
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TABLE 11.- NLTMERICAL VALUES OF ( t / C ) 1 / 3 ,  

( t / c )  2’3r AND ( t / c )  513 

0.12 

.ll 

.10 

09 

.08 

-07 

.06. 

*05 

.04 

03 

.02 

( t / c )  

0 493 

0479 , 

.464 

448 

.431 

.412 

392 

.368 

.342 

.311 

.271 

( t / c )  2/3 

0.243 

.230 

.216 

.201 

.186 

.170 

.154 

.136 

==7 

097 

8073 

( t / c )  5’3 

0.0293 

.0254 

.0217 

-0181 

.0148 

.0u8 

0-2 

.0068 

.00468 

.00292 

.00147 

25 - 
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TABLE 111.- VALUES OF 'EE ANGLE OF ATTACK (IN D E F E E S )  
FOR VARIOUS VALUES OF THE RATIO (IN RADIANS) 

t / c  
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