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NATIONAL ADVI.SORY COMMITTEE FOR AERONAUTICS.

TECHNICAL MEMORANDUM NO. 325.

COMPUTATION OF UANTILEVER AIRPLANE YJINGSO*

By K. Thalau.

The so-called cantilever wings, often preferred in recent

times, introduce, in conjunction with braced girder construc-

tion, high-grade statically indeterminate systems into the com-

putation. We will first consider a cantilever wing with two

spars and then a similar wing with three spars in an approxi-

mate computation.

The purpose of this treatise is, first of all, the deter-

mi-nationof the effect of variously loaded spars on one an-

other, since the neglect of this effect would present an eco-

nomically very unfavorable computation method (See also the

article by L. Ballenstedt, Technische Berichte, Vol. III, No. 4).

The system of spars and cross-bars alone (whether solid or

built-up) does not matter at first, the original assumption

being that.the spars are rigidly braced by the cross–bars.

Two-Spar Wing

OUr system can be regarded as a one-sided Vierendeel gird-

er,-on which the principal vertical components of the air

forces act perpendicularly to the plane passing through the axes

of the spars at the junction points (Fig. 1).

* From “Zeitschrift f~r Flugtechnik und Motorluftschiffahrt,”
my 26, 1924, pp. 103-109.
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The magnitude and direction of the forces F and F’ change

according to the ma.n-n.s~of loading, but are to be regarded as

constant for a

forces in this

over the Width

given load. Hence the load-diagram of the air

dizection, contrary to their actual distribution

of tb.ewing, is assumed to be’rectangul-ar~ This ,

assu~tion corresponds to the method of computation often em-

ployed. We are independent of variations in the dynamic pres–

sure distribution,. when we make the computation for the general

case of a spar loaded with unit forces at its junction,points.

This produces certain TT forces or moments, which we will desig-

nate by Al. An m-fold load (m x 1 = F)

duce an rif force or moment. An n-fold

spar (n x 1 :,X’) gives a corresponding

the form A = mAf + rult.

We will now give the computation for

would accordingly pro–

loading of the rear

symmetrical result of

a system with five

fields of constant width k and constant height 2h. We get our

statically determinate i-%~n system in the form of two fixed gird-

ers by cutting through the cross-bars (ribs) and obtain, accord-

ing to Vierendeel (Fig. 2), by combining the unknown lateral

forces, the following new un7known quantities:

X* = .TT1 1! ““”HI= xl

x2=n1+TT2
I

.TT2=.X2 - xl

x3=n1+n2+TT3 L TT3= X3 -“ X2.

1[

(1)

x4= Tr1+TT2+113+n”4 Tr4= X4 - X3

X5’=TT3* TT2+TT3+7T4+ n~
J “n’=x’ -x’

———
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In the ca,se .XX“= O; the front spar is acted on only by

the external loads ‘n!!..

In the case Xl= - 1,. all other X values (in the compar-

ative group 1) equal O and we obtain ~1 = - 1, Hz = + 1.

On following up the different cases of X = - 1, we accord-

ingly find that always two of the n forces are effective, which

together give simple bending and torsion moment surfaces. An

exception is formed by the case X5 = - 1, through which only

Tr5=-1.

AS follows from the subsequent figures, bending and torsional

moments for the spars ani bending moments for the cross-bars

(ribs) are the most important in the elasticity equations.

Disregarding, therefore, the perpendicular and lateral

forces} the general expression for the bending deflections is

in which signify:

Mi3Mk, -bending moments

II II

torsion II

.

for the spars;

I!fl!1 ribs;~

II II spars;

elasticity modulus of a spar (same for all spars);

II” II
“ “ rib ( “ “ “ ribs );

inertia moment of a spar ( “ “ “ spars);

gliding modulus of a spar (same for all spars);

polar moment of inertia for a spar with reference
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to the deviation of :.tscross-section from the circular shape

(same for all spars).

The relatively small angle of torsion of two cross-sections

1 cm apart (H~tte”,Edition 22, Vol. I, p. 570) is, according to

Grashof,

e=~
ImH % ‘d ,; ~—= 2 192

4 IXH’IYH GH IPHI GH

If, starting from constructions at hand, we express lyH .

by IXH, then,
* and

with lyH = a = Ix + Iy, we obtain1P .

,

~H
k==IXH+ a

1 )
IXH(l + ~,

We then obtain

lPH’=a; ‘X:;;lXH=‘“2a:1+:) lXH;
3*33 .J

lpHt= a + 1 ,xH= b IXH

in which b is mostly a true fraction,

Moreover, if we put

Xs = c IH;

GH = d EH;

Es = e EH; “

so that.,after substituting these values in equation (2).,we find

for Sik only the elasticity modulus and the inertia moment of

the spar
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The elasticity equations of our system noirread

By multiplying both,sides of tineela~ticity equations by

EH X IH, these denom.ii~atorsare entirely eliminated.

We will now take up the rc-presentation of t’nemoment areas

and ‘their evaluation for the different cases.

Case XX = O.- Only the cxtsrnal forces ‘1111act on the

front spar (Fig. 3).
\

ments whic~ generate pressure in the upper fibers of the girder

are positive. The

equals Ixh. At

bending moment

the same time,

is the same for all

there is a constant

ribs and

torsional



,
.

. .

N.”A.C.A. Technical Memorandum No. 325 .

moment for the sparsy

with the exception of

fieldi- with the case-.-

whereby it shduld be

the case X5 = – 1,

X1=-15 only for

2; with case X2 = – 1, only in field 3, etc.

6

noted””that’the latter,

only acts within one

spar sections in fi’eld

The torsional moment areas, on a’ccount of their simplicity, “

were not plotted and are easy to follow.?

Case X. = – 1:

* Cases X. = - 1

Case XS = - l.-

lf2 = - 1; TT3 = + 1 (“Fig.5).

and X4 = - 1 give analogous moment areas.

This gives m~= - 1 (Fig. 6). Here the

influence of the torsional moment extends over the whole spar

length with the magnitude 1 x h.

Regarding the evaluation of the simple moment areas, see

Mi!ller-Breslau, Vol. II, Chapter I, as also the handy formulas

* Richard Schadek von Degcnbur.g and Karl Demel l“Hilfsmittel,” etc.,
Berlin, 1915, p.7 - Published by Wilhelm Ernst and Sohn.

If, e~g:, we mish to find the value of

6’f Itilllzdx+cty – T1 Tz dxal ~2 dx + cl! f
12 =

‘H lE 3H IH EH IH

the moment areas for the cases Xl = – 1 and Xz = - 1 are to be
combined. (Figs: 4-5): The integials are to be extended o,nlyover
the portions of the bars which are simultaneously subjected to mo-
mentsg Hence

J’tilM2 dx =mfX (;A) (+~)dx +OJ~-(-k) (-A) dx +
,_.___Field l,_,,%_ Field 1>~

behind par.
f

fr~nt of spar.
“,+# ~x dx +O.f (-~ (-x) dx

.,. .‘~Field 2,_~\_. Field 2,—I
behind spar. front of spar.

(Continued bottom Page 7)



N.A.C-AS Technical Memorandum

Demel~,s formulas give:

For the load magnitudes -.

NO. 325 7“

.

E I-Q05 = + 100 A3 =
J

z.

For the form magnitudes -

(Continuation of footnote from Page ‘6)

~11 y TI % ‘x here equals zero., Hence

The work of integration is rendered unnecessary by employing ‘
the above formulas. The moment areas are, due to the arrangement
of the unknowns, alrnost all rectangular or triangular surfaces,
the torsional moment areas being also rectangular surfaces. Trap-
ezoidal surfaces are divided into triangles by means of diagonals.
The signs must be given attention.
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We designate the load

E16~4=E1545

2+ —
3

c1 h’ -1-10 Cfff ?b

magnitudes by Z1 to.z~ and writ e

the elasticity equations in the form of a watrix:

,, ..

_..
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xl
.,

4X2 X3..

9

I
664 6 55

If we wish to follow the effect of the loads on the differ-

ent unknowns; we thus obtain, fo~ allypjiVenunknown, the form

xi=@~iz~+~iz~+ Qiz3+P4iz4+l%iz5

For this purpose the corresponding matrix reads:

Z1
.

!311

P21

%1

P41

1%1

Z2 / Z3 ! Z*

I

P,1,2,

P 22

P32

P42

$52

Since !ik = bki>

~ matrix, like the 6

then ~ik must equal @ki, i.e., the

matrix, is symmetrical to the main diag-

onals (underlined). The p values may be found simplylxy the

methods of Ufiller-Breslau, Vol. II, Chapter I, p. 178.

●

As a summary, we will give the solution diagram for this .
.

special case of five elasticity equations with five unknowns ~n

——.—
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in each equation.
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From the general case of the nitiemembered

elasticity equations, we obtain the following:

r

1

2

3

4

5

Taken in

3*t

-

612

523

64

64s

Crl

613

624

&s

order, the coefficients

.6eIl= IL

L.
f%=-+ ;-%=-6 ,

11 11

’12 = Q2 + dz= Pl, in

514

“825

are:

art

615

%=+; %=
11

which

dlz = &~.

d ‘1 + 623
lJ2=- *2 .

eX2 >

-k

i%

P2

lJJ3
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in which

Beginning with the last ~ values, we proceed to make out

the ~ tables.

. . . . . . . . . . . . ,,

... ---- ..-
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...

,.

i
“04 P54+q

. . . ..
= P..

lJ3 B43 +

i33’4

P35

VI

V2

7J
3

.

1
P—52 + e12

4

indicate the order of the solutions. The unknowns

can now be computed from 8, whereby no further difficulties iizter-

fere with following, in the manner indicated at the beginning,

. - ., . .. ... . ... .,— .- . .. . .. . .. . ..—-—
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.

the e$fect of the variously loaded sPar~ on ~ch other”-.

Three-Spar Wing

From what has been said, the investigation of the three-

spar syst’emis now simple (Fig. 7). As before

The n forces are at first assumed to be produced by loading

the.front spar alone with the junction–point loads 11ll!. The’ef-

fect of the forces” F = m x 1 then equal mAl. The forces

FI=n Xl in the rear-spar junction points again produce a sym-

metrical or bj.symmetrical resul”t.

‘Ifwe now cause the loads Ill!!to act in like tinner on the

middle spar, then, because of the symmetry of the system, the un-

knowns, thereby produced, are TT== n~, na = TTv,etc. This will

be manifested by the production “of10 correspondingly symmetrical

5 values.
3
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Since Xl = X=, Xz = Xv, etc., only one of the two equatio”n

groups is necessary for m~.kin~ this part of the computation,

whereby this part is immediately carried back to the case of the

five equations with the five unknown quantities. If this last ‘

loading case, with “the junctiori-point loads r X 1 = F“, &s an

effect r x Alkt on oar system, then the total effect, when the

forces F, F! and F!l act simultaneously and respectively on the

front, middle and rear spars, will be

We now have at our disposal 10 elasticity equations with 10

unknowns, as follows:

.

.
. . . . ..*. . . . . . . . . . . . . . . . . .

““?-X6 610G -1- X7 ~lov + x~ tjlo~+ X9 6109 + Xlo 51010.

The general structure of the form magnitudes ~k is the

same as already given on a previous page. As Fig. 8 shows, the

load magnitudes 603 to 605 equal zero, while 50~ to %10 ‘ul-

ly agree with the values of 50= to 505 already given.

The combination of the M. surfaces with the Ml - M5 sur-

faces make, as already mentioned, 601 to 505 equal to zero

(Figs. 9-11).



N.A.C.A.. Technical

We then have

The form

... .. .

E

E

E

E

E

..
1

x

I

I

I.

Memnyandurn No. 325 15

83G=-

&07 =.-

60*= -

6.9= -
.

5U 10 =+100A3;

magnitudes read:

E

E

E

E

E

E

E

E

E

E

E

I

I

I

I

I

I

I

I

I

I

I

I

538 =-+

—.
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E I 610.1 = E ~ %10

610z = &10

6“103 = &10

6104= 6410

,,. ,, ,, ,, , , ,,, ,, .,-,..,,,. - ,-—-.,--.—--,,... ..... .,, ....-
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‘Ifwe again use a matrix for summarizing the ten elasticity,.

equations, we then obtain, on designating the load magnitudes

by Zlto ZIO,

‘) o

2, 0

3, 0

4) o

‘) o

6, Z6

‘) z,

8)” Z8

‘) Z9
loj ~lo

X2

6.1.2

622—

X3

6?.3

62,3

&s—

x=

616

%6

536

546

6,5,6

6 66

527

637

b47

6,6,7

610

&s

638
648

558

&Q

x 10

6110

6230

6310

5410

6710

%?8

61010

“Herein it is now worth-noting that (as the computation of

the ~k’ values demonstrated) there isasymmetry insofar.as

611 = 566; 6 677 etc.22=

,
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Hereby it is also possible for us tb Yeduce the

elasticity equations to two groups of five equatibtih

knawns. We first add equations 1 and 6, 2 and 7>

4 and 9, 5 and 10, and then subtract them from one

The resulting members are then designated briefly as

XI+ X==SI XI- X6=DI

t“
X2+XV=S2XZ -X7= Da

~~””+”x;o; S5 ‘ ~5”_”x;o: ;5

811+ ~le= ~11+ ~11- 616= %1-

q2+ 61,= 61.+ ~~.- 6.,= 512-

i:+”im~ L+ u-“ %’101 i5-

19

tlm~membered

tfith 5.un-

3 and 8,

another.

follows:.

and both groups of the,elasticity equations are obtained in the

form

ZG

z,

z*

-y

- “&

–&

-“ Z=o

. ..—— ..— .—--—--—. —.--—.—..———--———
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The solution of these equations has already been discus seal.”

After obtaining the values S or D, wc

knowns X and from them, in turn, the

section points of the ribs. The latter

least work,,

quickly find the un-

TT forces at the inter-

computations mke the

We will now consider briefly the loading case of the middle

spar. Here,,as already stated, there are ten symmetrical load

magnitudes (Fig. 14). We will also choose a symmetrical direc–

tion of the m forces (Fig. 15) corresponding to the bending

of the system.

Hereby, in the cases X~ to X%o = - 1, the signs of the

M~ to MIO surfaces alternate, so t-hatthe combinations of the

Mo surfaces with the MG to Mlo. surfaces all have the same

sign,.negative in this case.. The first five equations are all

correspondingly to be provided also with a Z’ member.

In conclusion, we note that the computation difficulties

lie almost exclusively in the solution of the many-membered equa-

tions.. From this side also, attention is called to the fact that

only work with the calculating machine offers, in many places,.

promise of good results..

The usual utilization of determinants is inexpedient in the

pres,ent instance, ,where the number of equations and unknown

quantities exceeds four (Compare ~ller-Bresl-au, Vol. 11,, Chap-

ter 1).

After the decisive forces have been determined, they natur-



ally give the bending moments along with the torsional moments,’
-.;.

which now, howeve~, extend their ~effect over the who-le leng=ch

of the spars. For s-hong tGrsimal effects, such as may be pro-

duced a,ithe base Gf long spars, the stresses produced in the

longitudinal d.i]~ecti.onof the ti@arsmust ke considered (See

Goetzke, Z.d.V.d.I. , 1909, p.93~).

This treatise is intended, first of all, to combine, .in

the example discussed, the most essential “theoretical consider-

ations with the practical viewpoints so decisive in airplane

construction. It is, of course, possible to employ more refined

methods of calculations such as, e.g., the introduction of the

torsional moments and the transverse forces in the girder plane

at the intersection points of the ribs, as further independent

unknowns, but the work of computation would then be entirely

disproportionate to the practical advantages gained.

A numerical evaluation of the above may be given in a future

article.

Translation by .Dwight M. Miner,
National Advisory Committee
for Aeronautics.
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Figs .5&6

Fig. 5.
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Fig.12.

Fig,13. .
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