FILE COPY

To be retaroce to tie riles of A mes Acton s ina Laboratory National: Alviasty Committee

For Aeronautics
Moffett Field, Calif,

No. 24.

DEVELOPMENT OF THE INFLOW THEORY OF THE PROPELLER.

By
A. Betz

Rosumo translated from tho German by Paris Office, N.A.C.A.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 24.

DEVELOPMENT OF THE INFLOW THEORY OF THE FROPELLER.*
By
A. Betz.

Resume translated from the German by Paris Oifice, N.A.C.A.

The following resume of Mr . Betz' paper on the "Development of the Inflow Theory of the Propeller" was made by the teobnical staff of the Paris Office of the National Advisory comittee for Aeronautics. The problem is discussed in a very interesting way, and it was felt that considerable interest would be evidenced in the value of the conclusions arrived at by Mr. Betz.

RESUME
v - the spoed of advance of a propeller.
$\omega=2 \pi n-$ speed of rotation.
∇^{\prime} - the additional axial velocity of the air after its passage in the plane of rotation of the propeller at the radial distance r.
ω^{\prime} - tha additional speed of rotation of the air after its passage in the plane of rotation of the propeller at the radial distance r.
S - thrust of the propeller.
R - its radius.
M - the propeller torque.
δ - the density of the air.
The units employed are the kilogrem, meter and second.

[^0]We know that the theory of inflow of the propaller assumes that in a space limited by two concentric cylinders baving as axis the axis of the propeller, the axial and tangential velocity of the air is constant. If, as is of ten done, we consider only the suctional axial velocity of the air, it can easily be shown that maximum efficiency is obtained on condition of having constant speed along the radius of the propeller.

But it is not so if wo introduce the suctional tangential velocity.
The author, assuming that the stream does not contract and neglecting the effect of rotation after the passage in the plane of rotation of the propeller, shows that the axial velocity in the plane of rotation of the propeller is equal to $\nabla^{\prime} / 2$ and that the speed of rotation in this same plano is $\omega^{1 / 2}$.

The loss of energy, E_{1}, due to the fact that the axial velocity in the plane of rotation of the propeller is $v+\frac{v}{2}$, is:

$$
\begin{equation*}
E_{1}=\pi \rho \int_{0}^{R} \frac{v}{2}^{R} d S \tag{1}
\end{equation*}
$$

But

$$
S=2 \pi \rho_{0}^{R} r\left(v+\frac{v^{\prime}}{2}\right) v^{\prime} d r
$$

whence

$$
\begin{equation*}
E_{1}=\pi \rho_{0}^{R} r\left(v+\frac{\nabla^{\prime}}{2}\right) \quad v^{\prime} d r \tag{3}
\end{equation*}
$$

The loss of enorgy E_{2} due to the fact that the speed of rotation in the plane of the propelier is $\omega 1 / 2$, has the value

$$
\begin{equation*}
H_{2}=\int_{0}^{R} \frac{\omega_{1}}{2} d M \tag{4}
\end{equation*}
$$

But

$$
\begin{equation*}
M=2 \pi \rho_{c} \int_{0}^{R} r^{3}\left(\nabla+\frac{r^{\prime}}{2}\right) \omega^{\prime} d r \tag{5}
\end{equation*}
$$

whence

$$
\begin{equation*}
E_{2}=\pi \rho_{0}^{\rho} r^{R}\left(\nabla+\frac{v^{\prime}}{2}\right) \omega^{2} d r \tag{6}
\end{equation*}
$$

On the other hand, between the values of v^{\prime} and ' there exists the following relation

$$
\begin{equation*}
\frac{\omega^{\prime}}{\omega}=1-\sqrt{1-\frac{\nabla^{\prime}\left(2 v+v^{\prime}\right)}{r^{2} \omega^{2}}} \tag{7}
\end{equation*}
$$

In the expression of S, E_{1} and E_{2}, we introduce the values:

$$
\begin{align*}
& \mathbf{x}=\frac{\omega r}{\nabla} \tag{8}\\
& \mathbf{y}={\frac{\nabla^{\prime}}{}}_{\nabla} \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=\frac{\nabla}{R w} \tag{10}
\end{equation*}
$$

We then get the total loss of energy:

$$
\begin{equation*}
\mathbb{I}=E_{1}+E_{2}=F \rho_{v^{3}} \lambda^{2} \int_{0}^{x=1 / \lambda}(2+y) x\left[x^{2}-y-x \sqrt{x^{2}-y(2+y)}\right] d x \tag{11}
\end{equation*}
$$

and the thrust

$$
\begin{equation*}
s=F \rho \nabla^{2} \lambda^{2} \int_{0}^{x=1 / \lambda} x y(2+y) d x \tag{12}
\end{equation*}
$$

The author seeks to determine the function $y=f(x)$ such that for given values of S,F, ∇, and n, the total loss of energy shall be minimum. The calculation of the variations gives the following ivelations between y and x, satisfying these conditions:

$$
\begin{equation*}
\left[x^{2}-2(\theta+1)(y+1)\right] \sqrt{x^{2}-y(2+y)}+x\left(2 y^{2}+5 y+2-x^{2}\right)=0 \tag{13}
\end{equation*}
$$

where θ is a constant corresponding in each particular case to a set of values of S, F, V, and n, and is determined by introducing into equation (12) the value of $y=f(\theta, x)$ deduced from equation (13).

Fig. 1, PI.B.19, gives the curves $y=f(x)$, that is, the distribution of the additional axial velocity along the radius for various values of θ.

But θ, according to equation (12), is a function of the "propeller load"

$$
\mathrm{q}=\mathrm{S} / \rho \pi \quad \mathrm{R}^{2} \mathrm{v}^{2}
$$

and of $\lambda=v / R \omega$. Thus, assuming $x=1 / \lambda$, we may plot on Fig. 1 , a sheaf of iso φ curves which will enable us to estimate the iso- θ that is, the curve $v^{\prime} / v=f(r \omega / v)$, corresponding to given values of φ and λ.

For this purpose (see Fig.3, Pl.B.19) we seok on Fig. 1 the intersection of the ordinate $x=1 / \lambda$ with the given iso- φ : the iso- θ passing through this point of intersection is the desired curve giving the distribution of additional axial velocity along the radius.

Fig. 2, PI.B. 19 gives the sheaf of iso- λ in the systom of axes of coordinates φ and θ which served for plotting the shoaf of ino- 4 in Fig. 1.

Fig. 4, P1.B.20, represents the variation of the value $\frac{r \omega r}{\nabla}$
along the radius of the optimum propeller. The iso- θ corresponding to given values of φ and λ is determined in the same way as in.Fig. 1.

Fig. 6, Pl.B.20, gives the variation of the angle of deviation \mathcal{E} (see Fig. 5, P1.B.19) as a function of x and θ : here again, the iso- θ representing this variation along the radius for given values of $C D$ and λ, must pass through the point of intersection pf the iso- $\lambda=$ $1 / x$ with the iso- ρ.

Lastly, Fig. 7, Pl.B.20, gives tho valuos of maximum efficiency as a function of φ and λ. It shows that for a given value of φ, maximum efficiency is reached with $\lambda=0$, that is, with a propeller of very low power, and that, for a given value of λ, the "load of the propeller" and consequently, the thrust, reachas a maximum.

[^0]: *Zeitschrift für Flugtechnik und Motorluftschiffahrt, aw $30,100, \mathrm{f}$ 10§ 110

