$4-8$

NATIONAL ADVISCRY COMITTEE FOR AERUNAUTICS

$$
\text { Yo. } 255
$$

PRECISION OF UING SECTIONS AND CONSEQUENT AERODYNAMIC EFFECTS
By Frank Rizzo
Langley Memorial Aeronautical Laboratory

> FAE COPY Tis bo monturt:
finmorial Apthan iod
Laborintuy

\author{

- Washington
} Jamuary, 1927

NATIONAL ADVISORY COMITTEE FOR AEROMAUTICS.
\qquad

TEOHNTCAI NCTE MO. 255.

PRECISION OF HING SFCTIOLS ATM OONETQUTH AEROCYNAMC EFTECTS. By Frank Rizzo.

Summary

This investigation wes cairied out by the National Advisory Committee for Aeronautice at the Langisy Memorial Aeronautical Laboratory to determine the precision of ming sections of wood fabric construction used on a mribet of airplanes. It was found that all wing sections deviated more or less from their respective prototypes. The mean thickness of the section was computed for those wings with a noticeable sag. The aerodynamio effects resulting from consideration of thickness variation are then estimated from existing empirical information. The rib, sag and specified measurements of fourteen sections investigated are given in Fig. 2.

Introduction

In the present airplane wings constructed of wood and fabIfo a certain imperfection is inevitable, whioh gives an airfoil section differing more or less fron that intended. It was decided, therefore, to measure all the aimplane wings available at the Langley Memorial Aeronautical Laboratory (Table I) in order to detemine how much this variation might $b e$, and further-
N.A.C.A. Technical Note No. 255
more, to $\dot{\text { ectermine }}$ what may be consicered as being the mean airfoil seotion of such wings invoiving sag.

If any considerable physical. variation is found in tiese sections, not orly will it frejiccte that it would be unnecessary to use-extreme care in making a model for rind tunnel tests of a lying used unless the variation is elso incorporated, but it may be considered of sufficjent importance to justify wind tunnel tests of such wing mociels incorporating the varlations. An example of this nature is found in the determination of the comparative value of veneer and linen wing covering:

Besides those irregularities bropgit about by poor workmanship in the assembling of a rib, or by diatcrtion due to aging, by far the largest apparent imperfection on existing wings is that introduced by sagging of the fabric covering between consecutive ribs as a result of the flextibility of the trailing edge and by the desirability of a certain amount of tautness of the covering.

The undoped fabric when properly stretched along the wing span gives a continuous surface over the ribs, but as soon as each coat of dope is applied contraction takes place along both dimensions. The result is, ${ }^{\text {with the exception of the veneer }}$ covered leading edge, a contour which is far from being uniform. The sag obviously depends on the rib spacing, on the flexibility of the trailing eage, and on the tautiness of the fabric; the deepest sag occurs invariably at the section of greatest curva-
N.A.C.A. Technical Note ilo. 255
ture, namely at the top forward third, and ends at the edges of the veneer reinforcements.

Undoubtedly the form and extent of this sag are considerably altered in flight under various stress conditions. This being, however, the subject for a future investigation, it will be taken up in another publication.

Apparatus Used and Method of Measuring IIng Sections

Fig. 1 illustrates the apoaratus used in this investigation; a parallelogram frame, standing on adjustable legs and carrying a number of extension pointers. The upper beam of this frame can be detached so that the apparatus can be assembled around any ming section along the span of a rigged airplane.

The measurements consisted in setting a sufficient number of the slotted pointers normally to the section. From these an exact duplicate of the contour can be traced by transferring the points on a piece of drawing paper. In spite of its simple form the above apparatus gave satisfactory results with but little effort.

In all wings investigated, two sections were measured, one at the rib and another at the sag. The morst cases of each wing, together with the relative specified section, arranged in the most plausible order, are given in Fig. 2, while the respeotive specified and actual thicknesses are given in Table I. In each case the full line represents the original intended section as
plotted from data of technical reports (Reference 1). The dotted In e represents the scntoum taken at the rib and the dot and dash line that taken at the ag, mixuey doreen two consedutive ribs. Several wan ce with stifftyaling edges offered very little sag, at times hardly measurarif and at others entire= If negligible; in the latter tiu cases the dotted line stands for both rib and sag contours.

The results given in Table II need a few words of explanatimon. The mean ordinate of the variclis wing sections is obtaino as follows, from the conbinesion of rio and sag contours. Let the transverse section included between two consecutive ribs and the upper and lower surfaces be given by Fig. 3; A-B and $A^{\prime}-B^{\prime}$ being very nearly parabolas, the ordinate at any point on the curve is:

$$
\begin{equation*}
y=k x^{2}+c \tag{I}
\end{equation*}
$$

The mean ordinate between the x axis and either line of the fabric is therefore,

$$
\begin{align*}
y_{m} & =\int_{-a}^{a} \frac{y d x}{2 a} \tag{2}\\
& =\frac{1}{2 a} \int_{=a}^{a}\left(k x^{2}+c\right) d x \tag{3}\\
y_{m} & =\frac{k a^{2}+3 c}{3} \tag{4}
\end{align*}
$$

At $x=a, b=k a^{2}+c$, and $k=(b-c) / a^{2}$

Substituting tinees valuss in equation (1) we obtain the mean ordinete for the top ard notjow Eag: The sur of the two gives the diatarce jetweer tho two curves, of ohe minn thavinass of the airfoil bection, nemely, y_{3}

$$
t_{m}=y_{m}+y_{m}^{\prime}=\frac{2}{3}\left\{b+b^{1}+2\left(c+c^{1}\right)\right\}
$$

Strictly speaking, the cirves $A-B$ and $A^{\prime}-B^{\prime}$ can be anything betmeen arcs of circles ard catentries, depending on the load distribution or stresses in the fabric. The choice of the parabola in this case is justified paitly by the linfoim road distribution along $x-x$, but to a grocter extent by the fact that these curves are very flat and no apprectable error is introauced by such assumption.

Discussion

As mentioned befare, the most inpcritarit question of this investigation is the aerstynamic effect of eag entering in varying degrees into all dirfoils of wood-fabric construction. The \#riter proposes to considur the sag as producing a reduction in section throkness.

From this point of view, and the help of wind tunnel data (Fig. 4) it can be safely concluded that only in the worst case, of the U.S.A.-35B section (Fig. 2), is this reauction of any consequence. It amiounts to 0.3 per cent of thickness, corresponding to a drop of nearly 0.07 in the maximum value of its
absolute lift coefficient. .
The above reduction ${ }^{\text {in }}$ section thickness produces no appreciable difference in the drag, as con be verifisel by Fig. 4, rep-
 camber of the median Ine.

The eame general conclusion was arrived at with reference to sag, by the R.A.F. staff afler an investigation on their section No. 14, modified to represent the saje in the febric (Heference 2).
 foils for the purpose of deterrining the effect of sag, Kumoruch (Reference 3) gave similar results, es given in Fig. 5. It will be seen from these polar aizgrams that the greatest aerodynamic effect experimentally detemnined for Keynclas Number of 12000 , is in accord with the value found in thla note by consleeration of the mean thiciriess, although at couble the value of Reynolds Number Kumbruck's results show a still smaller effect.

No other section measured exnibits enough reduction cue to sag to be considered of serious.consequence to the aerodynemic characteristics of the wing. There are, however, a number of variations to which the attention of the reader is called, by reference to Fig. 2

Investigations on the relative merits of various airfoil coverings, systematic inauiries on the effecte of variation in thickness, in lower, uppor and mean camber, position of maximum ordinate, mocifications of leading edge, reversal of tail angle,
etc., have been successfully carried out on models by British (Reference 4) and German (Reference 5) aerodynanic Inetitutions and very valuible information can be derived thersfrom of the careful enginecr.

Conclusi:ms

As far as sag is concemoci, the aeronymamic effect, considered as being caused by a recuotion ir thiokness, is negligible. In the worst case measurad, that of a U.S.s.-35B, the effect due to a reduction of 0.3 per cent of the maximum thickness produces a drop of only .07 in the maximum value of its lift coefficient, but no appreojable difsexence in the drag.

It should be noted also thet this aerodynamic discrepanoy tares place only at the hignest angles of attack, and that for ordinary flying attitude the seg effect, even for the above case, is of no appreciable consequence.

These considerations lead to the conclusion that the aerodynamic effect due to sag in airfoils of wood-fabric construction does not warrant the incorporation of sag in a model wing, such error being in most cases within the limits of experimental accuracy.

References

1. National Advisory Comittee for Aeronautics
2. Comley, W. I. and
Simmons, L. F. Ge
3. Kumbruch, H.
4. Bairstow, L. and
Jones, Melvill
Aeronautics Staff in the Engineering Dept. of the Mational Physical Laboratory

Aerodrramic Characteristics of Airfoils - Pzirts T, IT anci ITC. N. A.G.A. T tothnical Mepot No. 93
 Repont No. is 4 (Fart IT), 19द4; M. A. O. i. 'rechnical Reroort No. 182 (Part III), I933.

Tests on Rodel Aerofoil of R.A.E. 14
: Sectior, to Úmpare an Aerofoil of Unifura Section tith Sme Monifiec to Represent rhe Sag in the Eabric of an Actal Zing. Britisin Eeports ana "emorenda ivi. 323, i916.
: Similitude Teste on Fing Sections. N.A.C. A. Tecmical Note No. 53, 1921. Abstract from "\%eitschrift fur Fiugtechnik und Riotorluftschiffahrt," 1919 - Parue 2id $^{x+}$ and .

Experiments on Nodels of Aeroplane
: Fings. British Repoxts and Fenoranda No. 60 - Parts I, II and III, 1912.
; Experiments on models of aeroplane Fings. British Reports and Memoranda No. 72 - Parts I, II and IV, 1913.

Experiments on Models of Airplane Nings at the National Physical Laboratory. British Reporis and Kemoranda No. 110 - Parts I, II, III, IV and V, 1914.

Experiments on Aerofoils. British Reports and Memoranda No. 195-1916.

Gitiffiths, \quad.
Powell, C. H. : and
Hoogford, F.

Experiments on mociels of Aeroplane
: Wings. British Reports and Memoranda No. 248 - Parts I, II, III, IV and V, 1916.

References (Cont.)

Nayler, J. L. and $\quad: \quad$ axpermints on aerofone Sultable for Griffiths, E. A. aid inorania No. 5e3, iel8
5. Junkers, Prof. H.: Metal reroplane Conetmiction. Lecture given at tha Roy.j. Society of Arts, January 4, 35z3. (Eeprint from Journai of Foryin atronautical Society, Scptember, 1923.)

Table I.
List of Wing Sections Measured.

Scotion	Chord ft.	$\begin{aligned} & \text { Pib Dist. } \\ & \text { in. } \\ & \hline \end{aligned}$	- $/$ / c	$t / 0$	R emarks		
Gottingen 298	4.00	11.5	24.2	12.7	Saggea	Used on	Fokrer
GÖttingen 387	4.00	12.5	26.1	15.1	!	$1{ }^{\prime \prime}$	Sperry
Olark Y	4.00	11.5	23.9	5.10	"	"	"
U.S.sit-27	4.00	11.75	24.0	11.0	"	11	${ }^{\prime \prime}$
U.S.A.-27	4.72	12.0	21.3	11.0	"	" 1	T.S.
U.S.A.-27	7.52	11.5	12.7	11.0	Iittle	11	DT
U.S.A.35B	4.00	11.5	23.9	11.6	Sagged	"	Sperry
Fage \& Coll. 2	7.12	12.75	14.9	8.2	ITone	" "	Amphib
Eiffel - 36	5.00	13.0	21.9	6.9	Littie	11	JN
U.S.D.-9A	5.50	12.5	19.1	6.3	None	11	DH
U.S.A.-5	4.00	12.0	25.0	6.3	Sagged	11	Sperry
R.A.F. -15	4.00	12.0	25.0	5.7	18	11	"
R.A.F.-I5	5.00	13.5	22.4	5.7	None	11	SE-5
R.A.F.-15	4.64	12.0	21.8	5.7	"	"	VE= ${ }^{\text {a }}$
Spad	4.18	4.9	9.8	5.4	Sagged	"	Spac.

Table II.
Specified and Computed Thickness Due to Sag in Fabric.

Section	Sta. ${ }^{\circ}$ of 0	0	10	20	30	40	
Göttingen 298	Spec. t_{m}	0	12".55	13.60	13.28	12.34	7
($\mathrm{c}=122 \mathrm{~cm}$)	Comp. t_{m}	0	12.30	14.00	14.05	13.11	,
GXttingen 387	Spec. t_{m}	0	12.41	14.69	15.12	14.47	
($c=1220 \mathrm{~cm}$)	Comp. t_{m}	0	12.28.	14.38	14.90	14.25	
Clark Y	Spec. t_{m}	0	9.10	11.26	11.73	11.44	
($\mathrm{c}=1.220 \mathrm{~cm}$)	Comp. t_{m}	0	9.30	11.10	11.54	11.25	
U.S.A.-27	Spec. t_{m}	0	9.34	11. 30	10.95	10.36	
$(\mathrm{c}=1220 \mathrm{~cm})$	Comp. t_{m}	0	9.34	10.70	10.75	10.37	
U.S.A.-27	Spec. t_{m}	0	8.98	10.90	10.90	10.34	
$(\mathrm{c}=1440 \mathrm{~cm})$	Comp. t_{m}	0	8.85	10.63	10.74	10.22	
U.S.A.-35B	Spec. $\mathrm{tm}_{\text {m }}$	0	9,34	11.30	11.56	11.06	
$(\mathrm{c}=1220 \mathrm{~cm})$	Comp. t_{m}	0	9×36	10.94	11.26	10.84	
		0	5.52	6.56	6.87	6.70	
$(\mathrm{c}=1523 \mathrm{~cm})$	Comp. t_{m}	0	5.71	6.83	7.00	6.77	
U.S.A.-5	Spec. t_{m}	0	5.45	6.35	6.27	5.86	
($\mathrm{c}=1220 \mathrm{~cm}$)	Comp. t_{m}	0	5.64	6.46	6.50	6.27	
R.A.F.-15	Spec. t_{m}	0	6.19	6.19	5.82	5.57	
$(0=1220 \mathrm{~cm})$	Comp. t_{m}	0	6.08	6.04	5.76	5.51	
Spad		0	4.15	5.10	5.33	5.37	
$(\mathrm{c}=1275 \mathrm{~cm})$	Comp. t_{m}	0	3.91	4.94	5.24	5.84	

Specified and Computed Thickness Due to Sag in Fabric.

Section	Sta.- ${ }^{\text {a }}$ of	0	60	70	30	90	100
G'Ottingen 298	Spee. $\mathrm{t}_{\text {m }}$.	12.11	9.42	7.45	5.00	2.58	0
($\mathrm{c}=1230 \mathrm{~cm}$)	Comp. t_{m}	${ }^{11.84}$	10.25	8.03	5.53	2.87	0
Gottingen 387	Spec. t_{m}	12.90	11.00	8.68	6.03	3.32	0
($0=1 \mathrm{~L} 20 \mathrm{~cm}$)	Comp. t_{m}	12.74.	10.83	8.50	5.90	3.16	0
Olark Y	Spec. t_{m}	10.66	9.26	7.42	5.45	3.03	0
($\mathrm{c}=1220 \mathrm{~cm}$)	Comp. $t_{\text {m }}$	10. 23	9.05	7.27	5.25	4.12	0
U.S.̇--27	Spec. t_{m}	9.94	9.29	7.86	5.90	3.40	0
($\mathrm{c}=1220 \mathrm{~cm}$)	Comp. tm_{m}	0.82	0.13	7.75	5.75	3.25	0
U.S.A.-27	Spec. t_{m}	9.85	9.13	7.80	5.93	3.19	0
($\mathrm{c}=1440 \mathrm{~cm}$)	Comp. t_{m}	9.77	9.08	7.75	5.82	3.04	0
J.S.A.-35B	Spec. t_{m}	9.91	8.48	6.72	4.83	2.54	0
($\mathrm{c}=1220 \mathrm{~cm}$)	Comp. t_{m}	9.78	8.46	6.70	4.86	3.56	0
Eiffel 36	Spec. t_{m}	6.10	5.25	4.07	2.85	1.64	0
($\mathrm{c}=1523 \mathrm{~cm}$)	Comp. t_{m}	-6.28	5.46	4.55	3.41	2.09	0
U.S.A.-5	Spec. t_{m}	5.57	5.13	4.55	3.61	2.38	0
($\mathrm{c}=1320 \mathrm{~cm}$)	Comp. t_{m}	- 5.85	5.28	4.55	3.61	2.24	0
R.A:F.-15		5.41	5.12	4.63	3.89	2.38	0
($0=1230 \mathrm{~cm}$)	Comp. $t_{\text {m }}$	5.26	4.94	4.41	3.61	2.25	0
Spad	Spec. t_{m}	5.22	4.70	4.00	2.94	1.61	0
$(0=1275 \mathrm{~cm})$	Comp. t_{m}	5.08	4.56	3.92	2.86	1.54	0

Fage \＆Collins－2．

R．A．F－15．

Spad．

Fこことざiey saction

Fig. 3 Saction showing sag of fabric batween two ribs.

Fig. 4 Data showing the effect of changing the thickness ratio with a constant cambor of the median line.

Fig. 5 Polar diagram for venaer ant fabric coverod Einge.

