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NATIONAL ADVISORY COMMITTEE FOR AERONABTICS

RESEARCH MEMORANDUM

A COMPARISON OF TYPICAL NATIONAL GAS TURBINE ESTABLISHMENT -

Bt

AND NACA AXTAL-FLOW COMPRESSOR BLADE SECTIONS
. IN CASCADE AT IOW SPEED

By A. Richard Felix and James C. Emery
SUMMARY

Comparative low-speed cascade tests of the NGTE (National Gas
Turbine Establishment of Great Britain) 10Ck/30C50 and NACA 65-(12)10
axial-flow compressor blade sections were conducted at air-inlet angles
of 30°, 459, and 60° and a solidity of 1.0 by using the porous-wall
technique. These tests indicated that the NGTE 10CL4/30C50 and NACA
65-(12)10 sections have similar performance characteristics, that is,
turning angles, drag coefficients, and operating ranges. Examination
of the blade-surface pressure distributions indicated that the NACA
65-(12)10 section would have a slightly higher critical Mach number than
the NGTE-lOCh/3OC50 section at or near design conditions.

The performance of the NGTE lOCh/3OCSO axial-flow compressor blade
section as given by NGTE design charts was compared with NACA tests of
this section. Significant differences in turning angle were observed.
These differences are attributed to the fact that NGTE tests were con-
ducted in solid-wall tunnels and NACA tests, in porous-wall tunnels.

——

Although there are differences between British and NACA force-
analysis equations, for a given set of test results, the 1lift and drag
coefficients obtained by using these equations agree closely.

‘INTRODUCTION

Since both British and NACA axial-flow compressor blade sections
‘are used in aircraft gas turbines constructed in this country, a per-
formance comparison was desired between a typical NACA 65-series section
having a constant-loading (a = 1.0) mean line and a typical British Ch
section having a circular-arc mean line. For this comparison, the NACA
65-(12)10 and NGTE 10Ck/30C50 sections were chosen since previous tests
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indicated that these sections have similar lift coefficients at the
design angle of attack in cascade; the tests were made in a 5-inch low-

- speed cascade tunnel at the langley lLaboratory by using the porous-wall

technique (ref. 1). The aim of these tests was to determine, within

“the limitations of two-dimensional low-speed cascade tests, the rela-

tive merits of the aforementioned sections as to operating range, sur-:
face pressures, and minimum drag values. A second objective was to
establish any differences between NACA and NGTE results attributable to
different tunnel effects and testing techniques. The test results for
the NGTE lOCh/}OC5O section were obtained from references 2 and 3.

SYMBOLS

All symbols used in this paper are NACA symbols unless otherwise
indicated; however, for convenience both the NACA notation and the NGTE
notation are included in the list of symbols. Figure 1 presents a com-
parison of the notations used.

NACA NGTE

A aspect ratio AR

b : blade span or height, ft | H

c blade chord, ft - c

cq section drag coefficient ' - Cp

cy ' section 1ift coefficient C1,
gap or pitch, ft o S

M -Mach number ‘ Mn

P static pressure, 1b/sq ft P

P - total pressure, lb/sq ft Piot

AP total pressure loss, 1b/sq ft w

&F mean total pressure loss, 1b/sq ft T

q dynsmic pressure, 1b/sq ft q

R Reynélds number . ' Rp

P, -p
S = _l_az_l pressure coefficient
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D
i

B1 - Bz

mI|0

dNStrsRmE,

v

incremental pressure coefficient

blade maximum thickness, percent c 3

. velocity, ft/sec

velocity relative to blades, ft/sec
angle of attack, deé

air angle, deg

blade setting angle or stagger, deg

turning angle or deflection, deg
mess density, slﬁgs/cu ft
solidity

blade mean-line angle, deg
incidence, deg

camber? deg

deviation, deg

camber inlet angle, deg

camber outlet éngle, deg

loading factor
Subscripts
axial component
referred to vector mean velocity
tangential coﬁponent
upstream of blade row

downstream of blade row

UNCLASEIFHY
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d "~ design condition

1 lgcal condition

o] isolated airfoil condition

.8 outside wake, free stream
infinite pitching condition, that L

is, isolated airfoil

optimum condition | opt
stall condition : s

The superscript * indicates the nominal condition.

ATRFOIL SECTION DESIGNATIONS

NACA 65-(12)10

In the designation NACA 65-(12)10, the first two digits, 65, refer
to a particular thickness distribution; the second two digits, 12, indi-
cate the isolated airfoil 1lift coefficient in tenths; and the third pair
of digits, 10, denotes the maximum thickness in percent chord.

NGTE 10Ck/30C50
—

In the designation NGTE lOCh/3OCSO, the first two digits, 10,
denote the maximum thickness in percent chord; Chk indicates a thickness
distribution; 30 indicates camber angle in degrees; C refers to the type
of mean line, in this case, circular arc; and 50 i1s the distance of the
point of maximum camber from the leading edge in percent chord.

TEST APPARATUS

Tunnel Configurations ‘

The equipment used in these tests was a 5-inch low-speed cascade
tunnel at the ILangley Laboratory described in reference 1. A descrip-
tion and layout of a typical NGTE low-speed cascade tunnel is presented
in reference 4. NGTE and NACA low-speed cascade tunnels are similar in
general layout. Almost all of these tunnels discharge to the atmosphere

CONFIDENTIAL
UNCLASS‘?‘ED _
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and are powered by variable-speed centrifugal or axial blowers. Honey-
combs are used to remove any swirl from the air, and screens are
installed in the settling chamber to insure a uniform velocity distri-
bution entering the test section. The NGTE cascades have contraction
ratios entering the test section of between 7/1 and 12/1; whereas the
ratios are between 20/1 and 40/1 in the NACA tunnels. The important .
differences between NGTE and NACA low-speed cascade tunnels are in the
region of the test section. The porous-wall technique is employed in
the NACA low-speed cascade tunnels. The side walls (fig. 2) are porous
in the test section and are fitted with slots 1 chord upstream of the
blades. Flexible porous end walls (fig. 2) are used in the test sec-
tion and rigid porous end walls are used ahead of the blading. Since
the boundary layer on the side walls had a greater distance to travel
near one end wall than the other, a porous triangular inlet-air-angle
plate is installed at inlet air angles of 45° or more. The NGTE tun-
nels use only suction slots between each of the end blades and the end
walls for removing the boundary layer (ref. 4).

A seven-blade cascade is the arrangement usually used at NACA, but
a larger number of blades, usually about 13, is used by NGTE. ' Blade
chords are similar, NACA using 5-inch chords and NGTE, L-inch chords.
It has been shown in reference 1 that, in a porous-wall tunnel, results
independent of aspect ratio can be obtained. Therefore, for conserva-
tion of power and convenience of manufacture, NACA cascade blades
usually have an aspect ratio of 1.0. The NGTE blades ordinarily have
an aspect ratio of k4.0. :

The yaw probes most frequently used in both the NACA and NGTE tun-
nels are of the claw type and, more recently, the prism or arrowhead
type (ref. 5). The common multitube total-pressure rake is used in the

" NACA tunnels for measuring losses, whereas a single total-pressure tube
coupled with an electric pressure recorder is used by NGTE. In both
NACA and NGTE cascade testing, pressures and air angles are ordinarily
measured at midspan. The accuracy of the measured air angles is +0.25°.

Reynolds Number

The Reynolds numbers of most of the NACA and NGTE low-speed cascade
tests, based on blade chords and inlet velocities, fall roughly in the

range from 1.5 X 10° to 5.0 x 10°. Because of the widely varying turbu-
lence levels of various cascade tunnels, effective Reynolds number is
frequently used when data from different tunnels are being compared.
Effective Reynolds number is defined as the measured Reynolds number
based on blade chord and inlet velocity times the turbulence factor
(ref. 6). Recent hot-wire anemometer measurements in the low-speed.
cascade tunnels at the langley lLaboratory indicated turbulence levels

UNDIASSRED.
UNCLASSF IED
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of O.4 percent of the free-stream velocity and less. The corresponding
turbulence factor is about 1.2 (ref. 7). From sphere tests, it was

determined that the turbulence factor of the NGTE low-speed cascades is
near 2.0 (ref. 6). The tests made in the 5-inch low-speed cascade tun-

nel for this report were run at effective Reynolds numbers nesr 2.8 X 105;
whereas the NGTE tests from reference 2 were run at effective Reynolds

numbérs near 4.0 X 105. Déta from reference 8 indicate that cascade
results at a Reynolds number of 5.0 X 10° agree more closely with rotor

tests than results at a Reynolds number of 2.5 X 10°. This would indi-
cate that a higher tumnel turbulence factor is more desirable when
cascades are tested at low Reynolds numbers.

RESULTS AND DISCUSSION
Comparison of Performance Characteristics of the NGTE

and NACA Axial-Flow Compressor Blade Sections

The comparative tests of the NGTE 10C4/30C50 and NACA 65-(12)10
sections were conducted in the 5-inch low-speed cascade tunnel at the
Langley Iaboratory at air-inlet angles of 30°, 45°, and 60° and a
solidity of 1.0 by using the porous-wall technique. Ordinates of the
10Ck/30C50 and 65-(12)10 sections (fig. 3) are shown in tables I and 11,
respectively. The similarity of the 30° circular-arc mean line and the
constant-loading (a = 1.0) mean line cambered for an isolated airfoil
1ift coefficient of 1.2 may be seen in figure 4. The maximum divergence
between the two mean lines is 0.7 percent chord and occurs at the
10-percent- and 90-percent-chord stations. :

, Turning angles and drag coefficients are plotted against angle of
attack for air-inlet angles of 30°, 45°, and 60° in figures 5, 6, and 7.
The angle-of-attack scales for the two blades have been shifted so that
the design angles of attack are alined. These design angles of attack
were chosen by the NACA method of inspecting the blade-surface pressure
distributions (ref. 9). In general, the turning angles and drag coef-
ficients of the two blade sections compare closely st the conditions
tested. Operating range is defined as the angle-of-attack range within
which the drag coefficient is twice the minimum value or less. The drag
‘curves indicate that both sections have a broad operating range of about
23° at B = 30° 20° at By = 45°, and 18° at By = 60°; the low minimum

drag values indicate efficient section operation. The irrégularities in
the drags of both blades near the design angle of attack at By = 30°

and 60° are the results of the separation of a laminar boundary layer on
the convex surface (ref. 9).

ROVFSSRTERL
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Comparison of blade-surface pressure distributions near the design
turning angle at the air-inlet angles of 30°, k5°, and 60° are presented
in figures 8, 9, and 10, respectively. On both the convex and concave
surfaces, the NGTE section has higher peak pressure coefficients than
the NACA section because of the greater thickness of the NGTE section
near the leading edge; this fact indicates that the NACA 65-(12)10 sec-
tion would have a higher critical Mach number than the NGTE lOCh/3OCSO
section. '

As a further comparison, the change in blade-surface pressures with
a change in angle of attack at several chordwise stations was plotted
for both the concave and convex surfaces of the NACA 65-(12)10 and NGTE
10C4/30C50 blade sections. The incremental pressure coefficient AS 1is
defined as the difference in the pressure coefficient S at some angle
of attack and Sy at the design angle of attack. These plots were made

for the same conditions of air-inlet angle and solidity as the preceding
comparisons. Figures 11 to 1l present typical relations between AS

and. o at the 10- and 60-percent-chord stations. The relationship is

. approximately linear and can be represented by a slope AS/A&. The
chordwise variation of this slope on both surfaces of the NACA 65-(12)10
and NGTE 10Ck4/30C50 blade sections is shown in figures 15 and 16. The
data presented in figures 11 to 16 include several points obtained from
cascade tests conducted at an effective Reynolds number near 500,000 as
well as data previously presented. There is no effect of air-inlet
angle on AS/Aa over the first 10 percent of the convex surface of the
NACA 65-(12)10 blade section (fig. 15). Rearward of the 10-percent-
chord station, the effect of air-inlet angle becomes very noticeable

on the convex surface; AS/Ax 1s decreased as the air-inlet angle is
increased. On the convex surface of the NGTE 10CL/30C50 blade section
an effect of air-inlet angle becomes apparent rearward of the 7.5 percent-
chord station; whereas the air-inlet angle changes did not affect AS/Aa.
on the concave surface. A comparison of figures 15 and 16 indicate that,
over the first 40 percent of the convex surface where the highest veloc-
ities occur near design angle of attack, the AS/Aa values of the NGTE
and the NACA sections agree within 10 percent. Thus, the incremental
velocities due to angle-of-attack effects are similar for these sections
despite their differences in leading-edge radius, thickness distribution,
and mean-line shapes. :

Figures 15 and 16 may be used in conjunction with the design blade-
surface pressure distributions in figures 8, 9, and 10 to predict blade-
surface pressure distributions for air-inlet angles between 30° and 60°
at any nonstalled angle of attack. If the desired blade-surface pres-
sure distribution is for an air-inlet angle of 30°, 45°, or 60°, the
AS/Aa values in figures 15 or 16, depending on which blade section is ,
being used, can be applied directly to figures 8, 9, and 10. If, how-
ever, the desired.data are for an air-inlet angle other than 30°, h5°,

uNCIASEHER"
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or 600, en interpolation must be performed to obtain the design blade-
surface pressure distribution. Then the AS/Aa values are applied as
in the former case to find the off-design blade-surface pressure
distributions.

As previously pointed out, the NACA 65-(12)10 and NGTE 10Cck/30C50
blade sections produce like turning angles at their design angles of
attack; this fact indicates the similarity of the effective cambers of
°the NACA constant-loading mean line and the circular-arc mean line.

The agreement of the drag curves shows the similar profile-loss char-
acteristics of the two basic thickness distributions, the NACA 65-series
and the NGTE Ch. Then, since the variation of the incremental pressure
coefficient with angle of attack is similar for the two blade sections,
it appears that, near critical speeds, the design blade-surface pres-
sure distributions show the most important difference between the NACA
65-(12)10 and the NGTE 10CL/30C50 sections.

Comparison of NGTE and NACA Low-Speed Cascade Tests
of the NGTE 10CL/30C50 Section

At NGTE a cascade having one combination of solidity and camber is
tested through a range of angles of attack with the blade setting angle
held constant; whereas in NACA testing the air-inlet angle is held con-
stant. Therefore, in order to compare NGTE data for the NGTE 10Ck/30C50
section, as reported in references 2 and 3, with NACA tests of the same
section at air-inlet angles of 30°, 45°, and 60° and = solidity of 1.0,
the NGTE data were recalculated and replotted in the same manner as the
NACA tests. The methods used in recalculating the data from refer-
ences 2 and 3 are presented in appendix A. (A comparison of the NACA
and British incompressible cascade force-analysis equations is presented
in appendix B.)

Graphs of angle of attack aéainst turning angle and drag coefficient
were plotted for each of the alr-inlet angles tested and are presented in
figures 17, 18, and 19. At an air-inlet angle of 30° (fig. 17) the
slopes of the curves of angle of attack plotted against turning angle
for both sets of data are similar. The turning angles from the NGTE
data are consistently about 2° higher than the NACA test results near
the design angle of attack. The drag curves show fair agreement as to
minimum velues and operating range. The drag curve from the NACA tests
indicates some laminar separation at low angles of attack.

At an air-inlet angle of 45° (fig. 18), the NGTE turning angles are
slightly higher than the NACA angles throughout most of the angle-of-
attack range. The maximum difference near design angle of attack is

; ‘Fﬁ
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about 1.7°. The drag curves have similar minimum values althéugh the
NACA test data indicate a slightly wider operating range than the NGTE
data.

At an air-inlet angle of 60° (fig. 19), the slopes of the curves
of angle of attack plotted against turning angle for both sets of data
became somewhat divergent. As was the case at the other air-inlet
angles, the NGTE turning angles are greater than the NACA turning angles,
but at this condition the differences become exaggerated, particularly
at the higher angles of attack. These differences are corroborated in
reference 1 which indicates that the turning angle in a solid-wall tun-
nel at A = 1.0 agrees well with the porous-wall data but that the
turning angle increases as the aspect ratio increases.  Almost all of
the NGTE low-speed cascade tests are conducted with blades having
A = 2.0 or more; therefore, turning angles greater than the porous-wall
turning angles are to be expected. The drag values from NGTE date indi-
cate a slightly lower minimum drag coefficient than NACA test results.
However, laminar separation has affected the NACA drag values in the
region of the design angle of attack. Test data from reference 1 indi-
cate that, at low speeds, drag decreases with inereasing Reynolds num-
ber; therefore, care must be exercised in comparing drag coefficients
from low-speed cascade tests in various tunnels having different turbu-
lence factors.

CONCLUDING REMARKS

Low-speed cascade tests at air-inlet angles of 30°, h5°, and 60°
and a solidity of 1.0 made by using the porous-wall technique indicate
that the NGTE 10Ck/30C50 and the NACA 65-(12)10 axial-flow compressor
blade sections have similar performance characteristics. Blade-surface
pressure distributions indicated that the NACA 65-(12)10 section would
have a slightly higher critical Mach number than the NGTE lOCh/3OCSO
section.

The performance characteristics of the NGTE lOCh/3OC50 section as
indicated by NACA tests show fair agreement with NGTE data at air-inlet
angles of 30°, 45°, and 60° and a solidity of 1.0. The NGTE turning

-angles are, in general, slightly higher than the NACA angles at the
conditions tested6 with the greatest differences occurring at an air-
inlet angle of 60”. The maximum difference near design angle of attack
is of the order of 3.0°. These differences are attributed to the fact
that NGTE tests.are conducted in solid-wall tunnels and NACA tests in

. porous-wall tunnels. Data comparing NACA porous-wall and solid-wall

e VEO
°Q ;ﬁﬁﬁ%gAL
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low-speed cascade tests show difference similar to those found in the
present tests.

‘Langley Aeronautical ILsboratory,
National Advisory Committee for Aeronautics,
langley Field, Va.
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APPENDIX A
' RECAICULATION OF NGTE DATA

In this appendix, the deflection € and the drag coefficient cq

are to be caleulated from data in references 2 and 3 when the stagger ¢,
the pitch-chord ratio s/c, and the air-inlet angle aj, have been

assumed. NGTE symbols are used throughout appendix A.

Recalculation of Data From Reference 2
The éonditions to be assumed are as follows:

Mrfoll . . . . . .« v v v v e v e e vuws ... NGTE 10CLH/30C50
Stagger, £, deZ . . « ¢ ¢« 4 4 4 e s 4 e e Ne e e e e e ... =26
Pitch-chord ratio, sfc . « « « « « & . . . .\. S o)
Blade inlet angle, By, deZ - « « « « ¢ + 4 4 4 e e 4440 e .. 41

Blade outlet angle, Bo, deg . . . + .« « . o o 000 000 . e 11
Air-inlet angle, aj, €8 + « « + & ¢+ 4 o 4 e e e e e 0 0. .. 45
Incidence, 1, deg . . « « o & ¢ 4 4 4t e e 4 e 0 e e e e 4

The deviation given by

mo\s/c

where m 1s a function of stagger and the position of maximum camber
(fig. 6 of ref. 2) is

. : 3]

5 = 0.255 x 30°x 1.0 = 7.7°

and qzopt is

Q
I

=B, + 0
opt 2

11 + 7.7

18.7°

The next step is to find the optimum incidence iopt by a method
of successive approximations as in appendix II of reference 2.
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First approximation: Iet

1opt = 0°
then
_ 340
_ o
q'zopt = 18.7
€opt = Lopt “2opt
= 41 - 18.7
= 22.30
=1
tan amopt 2(ta.n alopt + tan G‘aopt)
= 2(0.869 + 0.338)
= 0.603
= 10
amop’c 31

from reference 6 c"oPt is

c 28 (tan a - tan cos
opt c ( 1opt Cl'zopt) a’nopt

2 x 1.0(0.869 - 0.338)0.856

2 X 0.531 x 0.856

0.909

(“‘cgggggnﬂﬂ@IAL
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from figure 5 of reference 2 i,

UbtNpABEN TS,

10pt = Al + iOpt

(e

pt is

1 = -4.75°

from figure 2 of reference 2 Al is

and

-

Al

. S7-3

ola

0.151 X 0.909 X 57.3

2 x 1.0

3.91°

iopt = 3-91 - k.75

-0.84°

as compared to the assumed value of O°.

then

Second approximation:

Let

- O
Lopt = -1.0

a = 40.0°
lopt

18.7°

" -

azopt

40.0 - 18.7

fl

opt

21.3°

‘JgﬁﬁgmgsMﬂiﬁi
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‘ 1
tan amopt = 5(0'839 + 0.338)
0.588

mopt = 30.4°

Clopt = 2 % 1.0(0.839 - 0.338)0.862
= 2 X 0.501 x 0.862

= 0.86L
1opty, = - 4 75°
0.151 x 0.864 x 57.3

2 X 1.0
3.75°

Al =

and

opt = 3-75 = L.75

-1.0°

as compared to the assumed value of -1.0°.

The loading or lift coefficient based on outlet velocity is desig-

cos

2
> (ref. 10). Therefore,
cos ay, .

nated | and is equal to cz<

2
v ~ /fcos Gazopt
OPt =¢cC lopt cos q'mop-t

2
o.9h7)
0. 861&(0. 2L

1.04k

CONFIDEN
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from reference 2 Wopt
[e o]

from figure 19 of reference 2 ig

i

s - 1o

i- iopt

- iOpt kiS

Pt = 6. 80

_ b - (-1.0)

i, -1

opt

from figure 20 of reference 2

G-Eo

is

€ - 21.3

6.8

Pt _ 5.610

opt

0.610 x 6.8
21.3 + 4.1

25.4
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45 - 25.4

"

19.6°

from figure 14 of reference 2 (I/D)opt for the values of s + and
_ op
t Previously calculated 1is

(%)opt =60

Gop

ey ) ®lopt
"
D

opt

_ 0.86
60

0.01hkh

tan o = %(tan ay + tan op)
= %(1.000 + 0.356)

0.678 .

Oy = 34.1°

from figure 20 of reference 2 the ratio of @ to @® at 1

Lopt is

® -1.330

(m)iopt

e
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cq  _ m cos ay
Cdopt (w)iopt cos amopt
- 0.828
’ = 1.330 X
33 0.862
= 1.278

c, = 1.278 x 0.01kk4

d
= 0.0184
and

(:O'.‘}C!:l2

cd1 B cd(cos “m)
/ ) . z
= 0.018h<0'707>

0.828
= 0.0134

Recalculation of Data From Reference 3
The conditions to be assumed are as follows:

Mrfoil . . . . .. .. ... ... ..........NGTE 10Ck/30C50
Stagger, deg . . ¢« ¢ ¢ i o ittt e e e e e e e e e e e e e e -51
Pitch-chord ratio, s/c . . . v v ¢ ¢ v v v v 4 v b i e e e e e . 1.0
Blade inlet angle, B,, deg . . . . o . . . oo ..t 66

Blade outlet angle, Bo, d€Z . + « « v 4 v 4 e e e e 4 e 0. .. 36
AMir-inlet angle, aj, deg . . . . ¢« . 4 v . 4 u v e e 4w 0. .. 60
- Incidence "1, €8 . « . 4 v i 4 et e e e e e e e e e e e e e .

It was necessary to cross-plot the data from reference.3 in order to
obtain nominal incidences and nominal turning angles at intermediate air-:
outlet angles. Figure 20 is a plot of nominal incidence against air-
outlet angle and figure 21 is a plot of nominal deflection against air-
outlet angle. - '

(¢ TIAL
A ":u_-D
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First approximation: Let

ap = 46.0°
then from figure 20 i* ié

i* = -0.7°
from figure 21 €* is

€* = 19.5°

1 - 1% -6 - (-0.7)

€ 19.5

-5.3

T cm—

19.5

= -0.272

from figure 9 of reference 11 ¢/¢* 1is

i§ = 0.740
¢ = 0.740 x 19.5
= 14.4°
and
Uy =Qy = €
= 60 - 1h.4
= 45.6°

as compared to the assumed value of 46.0°.

e

NACA RM 153B26s.
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Second epproximation: Iet

|
&
:O

%2
then

-0.8°

[N
E'3
I

* = 19,59

m
|

1o 1% _ -6 - (-0.8)
e* 19.5

_ 5.2

= - ——

19.5

-0.267

€
?(_- = 0-7)4‘5

0.745 x 19.5

m
"

14.5°

and

g =@ ~ €

60 - 1k4.5

45,59

]

as compared to the assumed value of 45.5°.

UNOEABSIFIER:
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Then,

‘tan o = %(tan ay + tan 02)
%(1.732 + 1.016)

il
=
w
e
=

oy = 54.0°

from figure 9 of reference 11 c45 1is

cq = 0.0213

and

cos @y
= 0.0213
cos ay

2

01,0213( 0.5 ) |
0.588

(2]
o)
=
I

0.0213-x 0.724

0.0154

NACA RM 153B26a
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APPENDIX B
INCOMPRESSIBLE CASCADE FORCE-ANALYSIS EQUATIONS

The two-dimensional resultant force on a blade in cascade is the
vector sum of all the pressure and momentum forces exerted by the fluid.
The NACA force equations consider two forces to act on a blade in the
axial direction - the pressure force due to the pressure rise across the
cascade and the momentum force due to the axial-velocity change. These
equations as obtained from reference 9 are

Fp = (P, - Pp)be (1)

F, = V. b/V. -V. \dg + oV. (V. -7V.\b | 2
Me, Lp%(az azs)g "*5‘1('32s 31>g (@)

The momentum force is the sum of momentum changes measured in the
wake and in the free stream. In the axial direction the British system
(ref. 6) shows a pressure force computed from the measured air angles
and the mean total pressure loss across the passage AP. Since the axial
velocity Vé is assumed to be constant, there is no momentum force in

the axial direction and (from ref. 6)

B, (vz - »1)ve

‘ = :% O(le - sz) - A_.Elbg
= %pvaz(ta.nzﬁl - tanzﬁz) - A—{]bg - (3)

In the tangential direction, the NACA equation shows & momentum
force which is the sum of the momentum forces in the wake and free stream
due to the change in tangential velocity, and is (from ref. 9)

SSIFIER
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zs)bg ()

-

In the British system the tangential force is derived from the
measured air angles and is (from ref. 6)

FMt = pVa(Wul - Wuz)bg = pVa2 tan(Bl - tan Bz)bg : (5)

When the axial and. tangential forces are known, the resultant blade
force may be found and, subsequently, the lift and drag forces. In both
systems the lift and drag forces are the components of the resultant
blade force perpendicular and parallel to the vector mean velocity,
respectively (ref. 9). It is also to be noted that the British 1ift
and drag coefficients are based on qn; whereas the NACA coefficients
are based on q;. In order to check the agreement of the forces com-

puted by the British and NACA equations, several sets of cascade condi-
tions including turning angles and wake shapes were assumed. For the
assumed values, 1lift and drag coefficients based on q, were computed

by both British and NACA equations with the results presented in the
following table:

B, = 45° B = 60°

Cl Cd Cz Cd

o=1.0; 6 =20°

NACA 0.627 0.0440 0.708 0.0122
NGTE 627 .0k69 .T711 .0132

o=1.0; 6=25°

NACA 0.742 0.0350 0.79% 0.0152
NGTE .Th5 .0383 .792 .0160

The British equations indicate slightly higher drag coefficients than
the NACA equations (by 5 to 10 percent) with the 1ift coefficients being
in good agreement.
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TABLE I
ORDINATES FOR NGTE 10Ck4/30C50 SECTION

LY

[étations and ordinates in percent of choré]

Convex surface Concave surface
Station x Ordinate y Station x Ordinate y
0 0 0 0
.834 1.925 1.666 -1.268
1.942 2.858 3.058 ) -1.543
4.283 4.265 5.717 -1.726
6.707 5.428 8.293 -1.637
9.168 6.330 10.832 -1.535
14.175 7.862 - 15.825 -1.088
19.250 9.014 20.750 -.529
29.483 10.520 30.517 .573
39.747 11.209 40.253 1,442
50.000 11.154 50.000 2.01k4
60.210 10.370 59.790 2.281
70.349 8.899 69.651 2.195
80.394 6.752 79.606 1.733
90.331 3.963 89.669 .832
95.247 - 2.300 ok.753 .239
100.000 0 ' 100.000 0 :
L.E. radius = 1.200 Slope through L.E. radius = 0.2680
T.E. radius = 0.600 Slope through T.E. radius = -0.2680
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TABLE II

ORDINATES FOR NACA 65-(12)10 SECTION

[étationé\and ordinates in percent of.choré]

25

Convex surface Concave surface
Station x Ordinate y Station x Ordinate y
0 0 0 o .

.161 971 .839 -.371
374 1.227 1.126 -.387
817 1.679 1.683 -.395
1.981 2.599 3.019 -.367
L.399 4.035 5.601 -.243
6.868 5.178 8.132 ' -.090
9.361 6.147 10.639 .057
14.388 7.734 15.612 .3k2-
19.477 8.958 20.553 594
24.523 9.915 25.477 .825
29.611 10.640 30.389 1.024
34.706 11.153 35.294 1.207
39.804 11.479 40.196 1.373
L. 90k 11.598 45.096 1.542
50.000 11.488 50.000 1.748
55.087 11.139 54.913 2.001
1 60.161 10.57h4 59.839 - 2.278
65.214 9.801 64.786 2.559
70.245 8.860 69.755 2.804
75.256 -7.808 Th.Thh 2.932
80.242 6.607 79.758 2.945
85.204 5.272 8L.796 2.804
90.154 3.835 89.846 2.369
95.096 2.237 94. 90k 1.555
100.068 .134 99.932 -.134
L.E. radius = 0.666

Slope through L.E. radius = 0.505

"‘H‘;’F’
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Figure 5.- Comparison of the characteristics of the NACA 65-(12)10 and
NGTE 10C4/30C50 sections at B; = 30° and o = 1.0. Arrow indicates

design angle of attack. :
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Figure 6.- Comparison of the characteristics of the NACA 65-(12)10 and
NGTE lOCh/3OCSO sections at Bl = 45° and o = 1.0. Arrow indicates

design angle of attack.
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Figure 8.- Comparison of blade-surface pressure distributions of the
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Figure 9.~ Comparison of blade-surface pressure distributions of the
NACA 65-(12)10 and NGTE 10C4/30C50 sections at By = 45° and o = 1.0.
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Figure 12.- Variation of the incremental pressure coefficient AS with
angle of attack a for the NACA 65-(12)10 and NGTE 10Ck4/30C50 blade
sections at the lO-percent-chord station on the concave surface.

= 1.0.

UNCrAGer..
CONFI



NACA RM L53B26a

o

" 38

Ny JVEY Y TS A s .
vy W DAY s NIEN VUVC@N.L rrméwaw,.wll_lp W.fag

‘O°T = 0 °90BJJNS XIAUOD UO UOTYBIS paoyo-jussIsd-09 38 SUOTFO9S

3P8TA 0SGDOE /H00T WION Pue OT(2T)-S9 VOVN 40 © 08338 JO ST3uB
U3TM GV JUSTO0TJJF200 aanssaad TejUSWSIOUT 3Y3 JO UOTIBTIBA - €1 2Jan3T4d

Bap ‘D‘yoo}0 Jo 8)buy

2 02 o , el 8 b
T
3 02 ol 4l 8 v
— ‘. T T T T 1 9-
VNS Bop/ofo*- | Bep/0f0°- O o009
. 8ep/120°- | 3°p/910°- 0 oSN B
Bop/€10°~ | 30P/900°-| V |o0f |-
0500€/%100T | OT(21)~S9 .
ud\m< Toquig LT ]
AN
,zp/d// ///_._:/ 2-
O ™ .
e ;a,,,,d/m/. — AN
I~ — .
o —— . A]_/VT.A@ o)
0S00£/5001 | ] 0I(21)-59 ~ "
~— : [~ B
m/_/ H = J//// <<
~— (]
N

|D}UBWALOU|

ainssaud

SV ‘1ua10143900

CONFIDERER.



39

NACA RM L53B26a

* 30BN 2ABOUOD 373 UO UOT38IS pIoyd-quadgad-09 ay3} 38

‘0°T

=0
gU0T109S

2PBTq 0SO0E /MD0T ZION Pus OT(ZT)~S9 VOVN J0F P 08338 JOo oT3us

TITM SV JUITOTIFS0D 8anssaad TBIUSWSIOUT SU3F JO UOTETIBA -'#T oIMITg
Bap ‘0 *yoDy0 jo 9jbuy
b2 02 9l 2! 8 t
: e 02 9l el 8 b

T =T T T 1 : ki 1 T
IR Sep/MI0°- | Bop/gTo°-| O | 009
8ep/NT0°~ | Bep/NTO°-| O | oSN
3ep/NT0°~ | BeP/0TO-| ¥ | oOf

T~ 0S00€/M00T _ OT(21)-59
— T j/A 09/59 Toqués | ¢
_ o NS ,
0G00€ /00! T~ RS

oI@N-g9| I~

(JUENTEYEIN

et ACSIFIED
x c@ﬁﬁ?%ﬁﬁ%%ii

oV 'jualdiyye0o  aunssaud



40 SWM&KP NACA RM L53B26a

10— l
W . ’ ) Bhdeg
A 30
.08 X 0 45
) o 60
.06 \\\
R
.02 N&
1 \\
AS ° \\\::}\\\\\\AFr \\\7}\“““—1 4
-z; _ ]\ \',\ A= ]
i S o Cy
-.02 % g . s e L — 1 —
P i —
/l!f‘/—"[- —— \CJ\ / ]
[3// ]
-04
4
06 {
L Convex surface
| — — — Concave surface
-08 | )
4
10 | '
“Fo i0 20 30 30 50 60 70

Percent chord

Figure 15.- Chordwise variation of the slope AS/An for the NACA 65-(12)10
| ‘ blade section at B3 = 30°, 45°, and 60°. o = 1.0.
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