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TECENICAL NOTE 2393

FLOW THROUGH CASCADES IN TANDEM.
By William E. Spraglin
SUMMARY
An exact treatment 6f the problem of finding the incompressible,.

inviscid two-dimensional flow around two cascades in tandem is pre-
sented. The analysis includes solutions of both the direct and the

. inverse problems. These problems are solved by conformally mapping

the tandem cascade onto the region between two concentric circles in
which region there are suitably placed flow singularities. Formulas
for the velocity and the potential in the annular region are presented
in a closed form by means of elliptic functions. The equations are
presented in a form suitable for computation.

INTRODUCTION

A theory of the two-dimensional flow of an incompressible inviscid
fluid through two cascades in tandem, which was developed at the NACA
Lewis laboratory, is presented herein. Methods are developed for the
solution of both the direct and the inverse problems for a tandem
cascade. For a single cascade, there have been several solutions of
these problems. A survey of such problems is presented in reference 1.

' The results of this analysis can be applied to a variety of
problems that occur in compressors. The amount of turning that can
be accomplished by a single row of blades without separation of the
blade boundary layer appears to be limited. Criterions for the amount
of circulation attainable around a blade of a cascade without separa-
tion of the boundary layer, with the attendant increased losses,
are given in reference 2. If an amount of turning greater than that
which can be obtained with a single blade row without boundary-layer
separation is desired, this turning may be accomplished by the use of
two rows of blades, which are so designed that blade boundary-layer
‘separation does not take place.

.Another situation to which the results of this analysis are
applicable is the following: In some compressors, there are additional
rows of turning vanes beyond the last row of stator blades. These rows
of turning vanes form a configuration to which the present analysis can
be applied as a two-dimensional approximstion. In particular, indica-
tions of flow for angles of attack other than the design angle of
attack can'be obtained.
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A tandem cascade is composed of two cascades arranged approximately
as shown in figure l(a). The method-employed herein for the study of
this problem is the method of conformal transformation of the tandem
cascade into a standard doubly connected region for which the flow is
known. Various stages of the transformation are sketched in figure 1.
In many respects, the problem of the tandem cascade is similar to that
of the biplane. As is apparent in figure l(b), the first stage of the
transformation renders the tandem cascade into what is essentially a
two-dimensional biplane. The standard doubly connected region chosen
is the same as that used in reference 3 for the biplane problem; that
is, the region contained between two concentric circles.

GENERAL EQUATIONS FOR FLOW THROUGH TANDEM CASCADE

In order to detefmine certain relations between various flow para-
meters of a tandem cascade as shown in figure l(a), the following
procedure 1s used. The lines PPy, and PPz are located far down-

stream and far upstream of the tandem cascade, respectively, (fig. 1(a)).
The streamlines PjP2 and PzP4 are located exactly one cascade

spacing apart; PijP4 and PoPz are parallel to the cascade axes.

From the continuity condition, the net flow from the contour .
P1PpP3P4P; (fig. 1(a)) must be zero. Because P1Pp and P3Py are

streamlines, the flow across them is zero. The flow through PsPz
must therefore equal the flow through PjP4. From this relation

tVy cos Ay = tV, cos A,
where t 1is the cascade spacing (the same for'both cascades) or

Vi cos A} = Vo cos AZ (l)

where V3 and A3 are the limiting values of magnitude and direction

of the velocity far upstream of the tandem cascade, respectively; and
V2 and Ap are the limiting values of the same quantities downstream

of the tandem cascade. (The main symbols used herein are defined in
appendix A.) ' , ' . , .

The circulation around the blades enclosed within thg contour is
given by

I= u ds : (2)
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The integrals along PiPp and PzP,, in equation (2), are equal in
magnitude and opposite in sign. This integral therefore reduces to

uds=1%t(Vy sin Ay - V5, sin A
: f P PyPzP,P; (v sinAp - Vz sin Ap)
or
r .
T=VisinA - Vy sink, (3)

In figuré '(2), Vm and Ay refer, respectively, to the magnitude and
the direction of the vector mean of the upstream and downstream velocities.
By using complex-number notation, the mean velocity can be written as

M irp

C A Vle + Vze ,

Also by using the continuity condition (equation (1)), equation (3)
can be written:

i ia
ir Vle )\l - Vze 2 A )
2t T 2 ()

Solution of equations (4) and (5) together gives

iA iA
1 m I
.Vle = Vpe  +izp (6)

. T '
Vee 7 =Vpe iz . (7)
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FLOW IN REGION BOUNDED BY CONCENTRIC CIRCLES

Derivation of equations for velocity and potential. - The veloci-
ties on the boundaries of an annular region, in which there are placed
two complex sources,mist be found. By means of successive reflections

“of the singularities in the two boundaries, an.expression will be

obtained for these velocities. The details of the process of reflec-
tion will be presented for only one of the singularities inasmuch as
the process will be the same for both. In figure 3, A and C are,
respectively, the radii of the inner and the outer circular boundaries
of the annular region, which is so located that the centers of these
circles are at the origin. The original singularity is located at B.

- For convenience; the real (source) and the imaginary (vortex)
parts of the singularity are considered separately. First to be
considered is the reflection of the source located at B. The bound-
ary condition on the surface of radius A is that there should be no
component of velocity normal to this surface. In order that this
condition be fulfilled, a like source must be added at a point inverse
to B with respect to the circle A and a source of opposite sign
must be added at the center of the circle. The boundary condition on
surface C is the same as on surface A. It is apparent that the
first reflected source now violates the boundary condition on the
outer boundary. This image singularity must therefore be reflected
in the ocuter boundary, which again necessitates a reflection in
the inner boundary and so on indefinitely. If the reflection
process is considered to begin with a reflection in the outer boundary,
another series of images in different positions results. An additional
singularity has to be placed at the center of the eircle for each step
of the reflection process. The total flow across boundaries A--and C
must be zero. The real parts of the two original singularities at
B and B' are therefore equal in magnitude and opposite in sign. The
reflection is carried out in the same manner for the other original

.singularity located at B'.

The reflection scheme for the vortex is similar to the one far the
source except that on each reflection the sign of the reflected vortex
is changed and the singularity added at the center of the circle has a
sign opposite to that of the reflection. The magnitudes of the distance
from the origin to the reflections are shown in figure 3.

Let
X source strength of singularity at B

=Y vortex strength of singularity at B
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X! source strength of singularity at B!
-Y' vortex strength of singularity at B!
As previously digcussed, the following relation must exist:
X = X! : (8)

The potential at a point z due to a source of strength X
located at a point 2zp is, if the potential is to be zero, at a

point 2zj,
22-10 —E:EQ
2x —OBe 21 ~2q

For the vortex ~Y located at zp, the potential at =z 1is, if it is
desired that the: potential be zero at a point 215

The potential due to the source at B and its reflections can be
written (see fig. 3 for locations of reflections)

2ok AT
B CZ n-1
; 1 A2n +

A -. g Cz n-1
-2 Aln 2. 1 C2n ’ 2 CZn
A® " Bem T i‘Az(n-l)} 2P ym

loge| = + loge + loge

; AZn 1 CZn . A CZn
A -B — A -Z= - z
I c2n 1 B Azin-l) T A2n

(9)
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The point A was selected as the point for which the potential is zero.
The potential due to the vortex at B and its reflections is

B 0
iy - z-B
Wiy(z) = ﬁ%loge(m) - ) loge | =
} I
L 1
@ 2n
I [ z - B AT
A C2n
loge z o | T
. pen
— A-B=
G

zZ’ 1 AZn BCzn
£ c2(o-1) Y-
A - 1 A : A-BC n.
B o2(n-1) acn
1
2 . 1 c2n h
Z = -
B AZin-l)
loge > > (10)
‘ 1 ceB
A - =
1 B Azln-lU
, .

There are similar expressions for the complex potential that result
from the source and the vortex at B'. '

For the total potential due to both singularities

@

loge
. A-X

1

z 1 c2n
B AZ(0-D)

X+iY

W(z) = Wypsy(z) + gy (2) = So=loge
hed cen ®
=B =
X'+1Y! z-B! A
e .1oge ( A—-B') + loge Py + loge
‘ L A-B' S
1 L A% 1

(C o

CZn

-:% AZzn-l)

25

LI 1
+X 1Y ;loge z

{

2n
[o
z-B 2B ATn’
(-——-) + log,
A-B e Czn
. A-B =

1 A 1

, AR — 1Al
z=B! =5~ zZ-=
A CZn N X-1Y 1 B E:2 n-1
zZ 2n 2x O8e 7 2n +
A-B' A Aal_A
- 2n § ~2(n-1
c 1 Bc

@
A2n cén *

1
A z f.cﬂn-li
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These series are absolutely convergent in a closed region that excludes
the singularities B and B'. Differentiation of equation (ll) yields
the conjugate velocity

®
= X+iY 1 1 1 1
V) =T Y — = "zt m(t
zZ -B— z - B =7
1 1
X'+iY! 1. 1 1 1
2 z-B'+ B'AZn_E + ‘CZn *
z - Ez-n- zZ -~ B Kéﬁ
1
X-iy I— 1 1 1
+ [P —
Zx 1 _cm z " 1 am "
5 a2(n-1) £ c2(n-1)
1 1
®
TN
Xt -iy? 1 1 1
+ -
2% 1 gén z T 1 A2n (12)
S v = ) ° 7§ 2 )
1 1

Velocity and potential in closed form. - In order to evaluate equa~
tions (11) and (12) more readily, the annular region in the z-plane is
transfarmed into a rectangle in the w-plane. The transformation used is

z = e¥
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By introducing the notation

T(w) = V[z(w)] = V(e¥)

equation (ll) can be written as a function of w

K%y ), [ _K_(w_b)] . cn[ﬂf_l(w'b)],dn [ﬂlf_l(w—b)]

o - (52 o ] - SEE
L Z[—K—(w&za):l + - [‘”—Kl-(waza)] dn [%(W+F+2a)]
21 an " en I:_IS_(W+§+23):| ‘
-t
e X (wvt)|an | X(w-pr)
s gy =Bl
@y
Sy = L(F'z)dn'g(‘_, )
X;:irY & [O'If—l'(w+b'+2a)} + - [‘”l :1 [;1;_?13'4_2%1 W+b +2a]
(13)

The potential can also be written in closed form as a function of w.

X+1iY
2n .

W(w) = w(e¥) = log, © [ﬂ% (w - 1) + 11('} +

X-iyY o K = - X'+iY! K o iviaer]
5— 1og.© |:w_1 (w+b+2a)+1K:’ + = loge © [(D—l (w-b )+1K» +
Xl_iYI K -— .
5 log.© [ﬂ-{ (w+b'+2a) + 1K':] + AW (14)

where A; is an imaginary constant. Equations (13) and (14) are
derived in appendix B. The symbols for elliptic functions are those
defined in reference 4. '
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SOILUTION OF INVERSE PROBLEM

The inverse problem, as considered herein, is to find a pair of
profile shapes that when suitably arranged in a tandem cascade will
have a prescribed turning and surface velocity distribution. The
region external to the tandem cascade is to be conformally transformed
into a standard region through which the flow is known. The annular
region between two concentric circles with suitably placed flow sin-
gularities is chosen as the standard region: . (1) The general form of
the mapping function together with certain .conditions upon it will be
found. (2) A method of computing the values of the mapping function
along the boundaries of the annular region is given. (3) Because the
assigned conditions may not give a closed profile, a method is given
by means of which the initially assigned velocity distributions may
be modified to give closed profiles.

Derivation of mapping function. - The o-plane is the plane of
the original tandem cascade.  In order to transform the tandem cascade
into the standard region, the following series of transformations is
used: '

(1) loge ¢ = 2—30“1 ' (15)
Because of the period properties of the exponential function, equa-
tion (15) transforms the tandem eascade into two closed figures in the
¢-plane (fig. 1(b)). Under this transformation, points for which
Re(o) is very large positively are transformed into points that are
a large distance from the origin in the f-plane. Points having a very
large real part that 1s negative are transformed into points near the
origin. Therefore,

lin ¢ (o)=e
Re(o) =+ . (16)

1i )=
‘ Re(c:r)m—»_ql,g (o)=0 (17)

(2) According to reference 5, it is possible to transform conform-
ally the region exterior to the closed figures in the §-plane into the
area external to two circles., It is convenient to write this trans-
formation in the following form:

ag _ f(ty)

aty
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One circle, the correspondence of one point thereon, and in addition,
the location of the center of the second circle can be specified. If
the point §{ = 1s transformed into some finite point of the
1~-plane, a bilinear transformation can be used to transform this
finite point into the point at infinity in the tz-plane. Under a
bilinear transformation, circles are preserved as circles. A trans-
lation and a rotation can then be used to place the circles as shown
in figure‘l(c) where the point at infinity has been transformed into
the point at infinity in this plane, the Q-plane, and the centers of
the circles lie on the axis of real numbers, equidistant from the axis
of imaginary numbers. This entire series of transformations can be
combined and written as

ef(!)

al . (19)

(3) Ccircles C and D of the {-plane can be transformed into con-
centric circles in the z-plane by

{-k1

Z = T, (19)

where ki and kg -are points such that they are inverse points with
respect to either circle. Therefore, : '

(k1-k) (kp-k) = R%

(k1+k) (kp+k)

2
R%

vwhere Rg and Rp are the radii of the two circles in the {-plane.
These two equations may be solved for kj and ko.

If equation (19) is solved fdr. 4 ih terms of 1z,

kzZ+kl
Zrl

From which

g’.‘ti - (k2+kl)
dz —z;:17§—
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and therefore,

at at al ) (xp + 17) (20)
dz " df & T (5 -1)2

When the notation f(z) is used for f[{(z), equation (20) becomes

f
Z (z - 1)2
If the point to which § = O is transformed is denoted by Relr
ir .
z - Re
t - 5 () (22)
vwhere F(z) is an entire function and
ag _ _Fl2) ir ir .
== EQTTTTEYE [Kz - ReM)(z - 1) F'(z) + (RelV - 1ﬂ (23)
Equating these two expressions for %% and solving for F'(z) _gives
(2) ~(kp + k) eL(z) - F(z) _ (RelY- 1)
F'(z) = -
’ (z - RelV)(z - 1)
This equation can be rewritten as
ks (1 - e8(2)
pi(a) = =31 ) (28)

(2 —vReiY)(z - 1)
where

kg = 1 - Relf
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and
(k1 + kp) ef(2) - F(z)
ii 1 - RelV ’

eg(z) =

(25)

Because F(z) and therefore F'(z) are regular in the annular region,
1 - e8(2) ‘must have zeros at 1 and Rell, Therefore

g(l) =0 : (28)
g(rell) = 0. i (27)
Because ‘ '
loge ¢ = E%E (15)
therefore,
' - 219 .

Therefore, by using equations (22) to (25) and (28)

do o -ths B2
dz  df dz = 2q(z - 1)(z - Re'Y)

(29)

The conditions on g(z) may be more easily applied if the funetion
Q(z) 1is introduced such that

g(z) = (z) n(z) - (30)
where h(z) is analytic in the annular region and Q(1) and Q(Reir)
are both zero. In addition, Q(z) must be real on both boundaries. An
example of a function suitable for Q is presented in appendix C.

Method of computatioh of mapping function. - The o-plane and the
z-plane are related by a conformal transformation

U(o) = W(z)
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where
U(o) potential function in tandem-cascade plane
W(z) potential function in a.nnular_-'region plane .

Differentiation of the preceding equation yields:

du(o) d_&_dW z)
do dz = dz

or

do _ T(z) .

dz ~ 4(o) (31)

Let u(z) = u(o(z)).

Equation (31) can be rewritten as

%f% S | (31a)

From equation (29)

do _ -t e(z) (L L1
dz " 2n © z -1 , _ Rell ’ - (32)

From equations (16) and (17) and the discussion preceding equation (18),

Re(o)w»+
lim z=RelV

Re(0)»-=
From equations (6), (7), and (3la),
iA

oan
lim u(z)=Vpe + ir
Z-»] at
P
. il’
lim  u(z)=Vpe - 3¢

V4 -»Relr
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so that the residues of V(z) at 1 and Rell' are, respectively,

- iA iP)
t ('Vﬁe "- %
i\ iP),
t (Vme m- o

If the points 1 and Rel¥ are identified with the points B and B!
of equations (11) and (12), the source and vortex strengths are

X = -tV cos }‘m

- s
X' = tVp cos Ap
yr = L

Next, an annular region such that the ranges of potential are cor-
rectly matched to the assigned ranges of potential on the two blade
shapes must be found. The following scheme may be used: Let Rell )
equal -1. The radii of the inner and outer boundaries are left to be
determined in a manner such that the ranges of potential have the proper
values. :

A certain amount of control over the relative positions of the two
cascades can be achieved by specifying the difference in the stream
function for the two blades and the potential difference between the
tall stagnation point on one blade and the tail stagnation point on the
other blade. These additional specifications increase the difficulty

of determining the boundary radii and the location of the point RelY.

Once the radii of the boundaries and the locations of the singulari-
ties have been determined, the correspondence between points on the two
blades and points on the circular boundary may be found by matching
points having the same potential (as in reference 6). From this cor-
respondence is known the assigned blade velocity as a function of the
central angle on the corresponding circle.
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From equations (29) and (30)

dg  -tkg eQ(z)n(z)
4z " 21 (z - 1)(z - Rell) (34)

where
' +o
h(z) = (an + iby)z0
2

= p(x,7) + 1a(x,y) | (35)

V(z) do
TTEEY =i (31a)

bn the boundaries of the annular region, Q(z) is real and

|\Z§_>r R N - | |eq(z)n(z) 33_‘ (36)
u(z z -1 z - Rell| 2n
Therefore, on either circular boundary

1 i V(z) i -tkz
Re h(z) = AT |08 |ulz)| * loge [z-1| + loge |z - Re™| - loge |5

(37)

By use of equation (37), Re (h(z)) can be computed on both circular
boundaries. In order to compute the function conjugate to Re (h(z)),
use is made of Villat's analogue; for the annular region, of Poisson's
integral. These equations are derived in reference 7. A form more
convenient for the present purpose is given in reference 3 (p..13,
equations (23) and (24)).
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a (") =b‘o+% pe(®) z (P -®') ap -
d
25
%f 2, (®) 2, (9 - ') ap (38)
0
; . 2n
| qC(q:‘) = bQ + 'i' j\ pC(CP) Zn (Cp - ®') a9
0
2 '
- % f paA(®) 2 (9 - 9') do (39)
0

where

bA(cp) real vpa.rt of h(z) on inner boundary.as function of central
angle @

pC(cp) real part of h(z) on outer boundary as function of central
angle @ ,

qA(QD)‘ imaginary part of h(z) on inner boundary as function of
central angle ® :

qC(cp) imaginary part of h(z) on outer boundary as function of
central gngle P .

| by, -  constant, which may be taken as zero
1 S B .
Z1 (u) %(%%l (see reference 4 for definition of the H function.)

From equation (34)

kg A [P(x,3) + 1a(x,y)
do = - dz - (40)
2n (z - 1)(z - Re*Y)
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Integration of'equation (40) gives the required value of o.

In order to find the position of one cascade relative to the other,

it 1s necessary to 1ntegrate %% along a line from one circular

boundary, across the annular region to the other circular boundary.
This procedure . involves knowing the values of h(z) along this line.
These values can be found by means of the following equation, which -
(with different notation) is found in references 6 and 3:

25
h(z) = (ap + iby) - %j 18 () Z[l log + Q):I dcp +
.
. 2“ 4
% j pA(®) Z[} log + CP:I ae (41)
0]
where
21 - o 25
8o = ?lfj pplp) 4o = % r po(®) ap
0 | 0

Modification of assigned velocity to obtain closed profiles. -
The preceding development does not guarantee that the resulting blade
profiles will be closed curves. In order to modify the initially -
assigned velocity so that closed blade shapes will result, the follow-
ing procedure is used:

The sum of the residues of the derivative of the mapping function
inside the contour indicated in figure 4(a) is .zero; that is, the
integral around the contour will be zero. The contour in the o-plane
corrésponding to the comtour indicated in figure 4(a) therefore will

"be closed, whereas the portions of the contour corresponding to the
bounding circles might not be closed curves. If this part of the con-
tour is open, the opening for one blade will be the negative of the
opening for the second blade because the integration around the outer
circle is in the negative direction (fig. 4(a)).
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The amount by which the profiles fail to close can be reduced to
zero by adding to the derivative of the mapping function, a function
having a pole at the origin such that the residue of this function at
its pole is equal to the negative of the amount of opening divided
by 2n. .

If the amount of 1ack of closure is equal to m,, the modified
mapping-function derivative can be: written as . .

Because the velocity remains undisturbed in the annular region
V'(z) = V(z)

Therefore, the altered velocity is

(z) = —2u(z) V(z) |
ut(z) = z V(z) .- mg u(z) (42)

and the altered arc length is given by

wor =[- 2o . Uella, | (43)

SOLUTION OF DIRECT PROBLEM

The direct problem is that of finding the flow of fluid past blades
of known shape. In addition to the blade profiles, the upstream and
downstream velocities are also known. The Kutta condition of finite
velocities at the trailing edge of the blades is used to” determine the
blade circulations. .

~ As in the section "Solution of Inverse Problem", by the application
of an exponential transformation, the flow through the tandem cascade
is transformed into the flow about two closed profiles with a flow
singularity in the finite part of.the plane; this is essentially the.
problem of the two-dimensional biplane. A method by which the trans-
formation from the region external to the two closed shapes to the
region between two concentric circles can be computed by means of
successive approximations to the solutions of .a pair of integral equa-
tions is given in reference 3.
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In the biplane problem, the flow singularity is a single dipole.
‘In the problem under discussion, there are two singularities in the
flow field. In order to determine the location of the addition singu-
larity, use must be made of a trial-and-error procedure; an equation
similar to equation (41) is used to determine the values of the map-
ping function at points interior to the annular region. From equa-
tions (13) and (14), the velocity and the potential on the annular
region boundary is known. The analysis 1s campleted by transforming
these velocities back to the original tandem cascade configuration.

b

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, February 9, 1951.
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- .APPENDIX A-

- . -MATIN SYMBOLS |
A,C : radii.of bounéaries iﬁ:£-plane
a,c - | o a s - loge:A c = log, C'
A,k Kk Ky, ke complex constan£$ .
B,B! singularity positions in z-plane
b,b! b= log, B b'.= ;oée B' .
£(¢) analytic function of t |
£(z),F(z),g(z), analytic functions of z
h(z),Q(z)
G(w) velocity function in w-plane
hy (w) ,ho(w), arbitrary entire functions
hz(w) ,hy(w)
Mo residue of function added to achieve closure
p(x,y) Re [h(z)] where =z = x + iy
pa(®) Re [h(z)] as function of ® along |z| = A, 2 = Ael®
pc(m) ~ Re [h(z)] as function of ® along |z| =C, z = Cei§
a(x,y) Im [h(z)] where z = x + iy
1, (@) Im [h(z)] as.function of ® élong lz] = A, z = Ael®
qB(¢% Im [h(z)] as function of ® along |z} =C, z = cel®
RelY singularity position in z-plane (Reir = B;)
r loge R
t spacing

U(o),W(z) potential functions
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V(z),u(o),u
V(w)
u(w)

Vlei 1

o-plane
¢'-plane
z-plane

E)glgl)czﬁw

- velocity functions
vV [z(w)]
u[o(w)]

upstream velocity

v (w)

b

u(w)

downstream velocity
.vector mean velocity
source strengths

vortex strengths

circulation

tandem-cascade plane
modified tandem-cascade plane
annular-region plane

auxiliary variables used in transformation

21

Notation used for elliptic functions is that found in reference 4

except for Zq(u), which is defined in text following equation (39).
1\H , e
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APPENDIX B
EXPRESSION OF VELOCITY AND POTENTIAL IN TERMS OF EﬁLIPTIC FUNCTIONS
Velocity expressed in closed form. - In order that equation (12)

may be more readily evaluated, the annular region in the z-plane is
transformed into a rectangle in the w-plane. The transformation used is

z = e¥ (B1)
Let
V(W) = V[z(w)] = V(e¥)

Then equation (12) can be rewritten as a function of w:

oo
= X+iY 1 1 1 1
v( ) T o2n e" - B * A2n - ;;I. + CZn +
\J W
S ¢ -P &
c n ) A n
1 1
X-1Y I' 1 1 1
- =i+ +
on eW ) l A2n eW o - 1 C2n
1 1
X' 4iY? 1 1 1 1
an o - B T A2D | oW can
e¥ - B' = eV - B! —
cen Acn
1 1
[>2] X
X'-1Y' { 1 1 1
o Zn |t Zn (B2)
\ L A e eV - _l_ C
B! CZZn-ls B Az(n_lj
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Let

Further let,.

loge A= -a
loge B=D
;oge C=c

iogé B' = D!

-x < Im(w) < =«

-a <Re(w) < ¢

23

Then, because X = -X', for w contained within this rectangle .. -

(fig. 1(e))

because

Then

and

— A2 —
V(w+2at+2c) = = V(w)
C

Wi _ oW

V(w+2ni) = V(w)

G(w) = e¥ V(w)

G(w+2ni) = G(w).

G(w+2a+2c) = e"t2atae F(yizai2c)’

—_ 2 02
eV V(w) A% Ce G(w)
c2 A

- (83)

(B4

(BSa)

(BSb)

Therefore G(w) 1is a doubly periodic or elliptic function and has a

real period (2a+2c)

plus an imaginary period 2ni.
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Consider one of the terms of G(w)

1. 1
- (B6)
A e :
e¥ - B —
‘CZn

This function has an expansion in terms of [w - b + 2n(a + c)]

= -]
, e¥ ' 1 [ - b+ 2n (a + )
- w-b+2n (a+c) k!

c2n X k=0

i%[w—b+2n(a+c)]k ='w’-b+21n(a+c)+"' -1

k=0
(B7)

where the By are Bernoulli numbers (reference 8, p. 183). The first
Bernoulli number By 1s equal to 1. The residue of the function of
equation (B6) is therefore 1. Similarly, the residues of the functions

e eV and eV
2n’

- 1, and so forth are each 1.

w o “a2n
eV -B y_gC 1A

P, W - =
v S ey

Consider a parallelogram in the w-plane,

-in S Im(w) < =n
Re b + 28 < Re(w) < Re b + 2¢

In this rectangle G('w)v has four poles located at b, - b - 2a, b', and
- b' - 2a. The sum of the residues of G(w) at these poles is
' . .

2LK(X+1Y+X-1Y+X'_+1Y'+X' - 1Y)

]

0 (B8)

because
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The principal part of G(w) at each of these poles is, respectively,

1 X +diY
2w - b

1 X-iY
2t W+ b + 2a

1 X' + iY'
2n w - b!

1l X' - iy’
2n W + b!' + 2a

According to reference 4 (p. 474), if

oy
. Z: A.r,m (,Z - _Br)-'m
m=]

is the principal part of an elliptic function f£(z) at its pole Br,
then : \ .

n | oy . .
— | -1)m-1 gm nz - 1By | ©p
f(z) = Ay + ) é Ao — log.d, |[—5—— | — B9)
vhere A; 1is a constant.
From reference 4 (p: 479),
-2 ®
H(z) =4, (z»\fls ﬁ.)
' "o | C1
-2 _ m
qs3 T 2K
so that, by using the older notation of Jacobi,
n (or :
SN SN m-1 -
* -1) q® K iK'
f(z-)=A1+> =7 Ap.m —7 108 H['—(Z-ﬁr)l—]
=1 {;i A ! | .

T ' (B10) |
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For the present case,

_ X+iY
Al,l - o1
X-1Y
Az:l T 2n.
X'+1iY!
AS,l = 21
L X-dyr
A4:l = 2xn
Bl =D
Bz = -B - _28.
Bz = b’

so that, _ ' '
, ) ' H":—I-{— w-f—,b§l - H' -Ii‘(;r+35+2a)
G(w) = A + a_)Ii- (X;iy) H[(»El v - bﬂ * <X;;Y) Hll;.u)il (w+70+ Za;;II *
A W b L
2n

2n ) H[(T)KI (w - b‘SJ '+.

H[‘%‘l (w + o' + Za)j]

or

G(w) = Al*E}){I {(-)92%) z [‘%_1 (w-B)+iK'] + (XE;Y)Z [51-{—1 (W+3+2a)+iK~'] +

(X_'%}[X-'-) Z[m% (w- ') +.11‘<»] + (X'éjitY') z [f—l (w +.‘1.£" + 28) + 110]}

- (B12)
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where

-in  H'(w + iK')

Z(w) = 5 + HCEETD)

 When Jacobian elliptic functions are introduced into equation (Bl2) and
equation (B4) is used in conjunction,

T A [K .
cn ——»(w—b)] d_nl:—-(w_b):l
- ) = _WG(W)= -v| K [X+iY Z[—Ii( ; )’] ™y 7 o
V(w)=e e Ayt @) \ 2x o bJ + Sn[%(w_bil +
K Y K _
X-iY Z[—K— w43 +2a)} . cn[uq (w + b,+ 2a)} dn[a—l (w+ o+ za)J +
an @y . S sn{}i (w + b+ Za)J
. I'_IS_ L £ L -
e K, )\ (w-1 )] dn[wl (w - b )}
— Z [—-— (w-1b zl + - +
pLS (Dl Sn!ta—{ (W - bl)i]
e Ky £ T 4 28 X _
.wz[i(w+€'+2a)—!+cnl@l( +b +2)j|dn[wl(w+b +2a):l
2n @y J Sn];% (w + '+ Za;!
’ (13)

Let
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Fea) ___4 e.a _ oo { X, a_b) [ﬁbﬁl(igjz(d:k?(ab)] .
X;{Y:Z EX8 “-))] : °n[a% (:ng](:j% (s + 5) .
sgelig . B sl
TN
(313)

For convenience let

— Imb + K' =v
“1 _

X Im b' + X' =.v!

a)l H
-K—Reb+a.=u

— Re b' + a = u'
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Then equation (B13) can be rewritten as

i - ¥ sn(iv) sn2(w) iv) dn(iv)
V(-a) = e8| A + 5{ X [Z(iV) " nilf k;?sigu :Z%(ZV) ( } ’

k2 snz(ivj sn(u) cn(u) dn(u)
t [%(u) ) 1 - k% sn®(u) sn? (iv) ¥

2 sn(iv') sn’(u') en(iv') dn(iv‘)];

1 v k
. [Z(i )+ 1 - k2 an(iv') sn2(u')

' 1Y, . k2 sn(iv') sn(u') cn(u") dniujip o
Y [Z(u ) 1 _vkz snz(u') snz(iy') . 4(314)

The point w = -a corresponds in the z-plane to the point z = A. At
* this point, the velocity, in order to be tangent to the boundary, can-

not have a real component. The coefficient of EE in equation (Bl4)
1

is an imaginary number. Therefore, Aj must be'an'imaginary number.

Re(4;) =0 o (B15)
ggi_z_)_, = V(z) | (B16)
'ﬂ%"‘i%= V(z) (B17)
From equation.(B1)
dz _ ¥ . ‘ (B18)



30

If in equation (11), 2z is replaced by- e",

NACA TN 2393

¥, equation (11) is equiv-

alent to
b _ X+iY CX+iY
, , : Zn“ 2 2n7) 2n
A C
\ a . v o =
W) _J2a | TP (c) = (A>
e =\TT—= 5 T
eV n o 2n
! A-3B (é) A-B (9)
. C \A
X'+iY' X'+iY!
2n 2n 2n 2n
C
e T Eeen g
'TT—G ‘ 2n m 2n
1€ . A k (o] A B (C)
A-B' g - Ty
X-iY ‘ X-iY
. 2n 2 - 2T
| e 1A% w _1_cen
& -~ §2(n-1 © § 2(n-1)
© A B (03 oo A
T 2n T Z2n
1e"|  _1_A 1|, L_¢
" B 2(n-1 B ,2(n-1
X'-iy' X'-iy!
. 2
on 2n on T 7
w 1 _ A% R B
) © B! EZE'—IY ® B! W :
T4 | — (B19)
1e¥ T 1, 1 _¢
A- g ) B' a2(n-1)
Consider the first bracketed term of equation (B19). This

product has zeros of the order of 1 at points congruent to
b modulo 2(j(a + c) + kni), where j and k are integers. The
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function @[G—Ki- (w - D) + 1K‘:| has zeros at the same points. Hence,

according to Weierstrass' factor theorem, the first bracketed term is
equal to the following expression: '

X+iY

2n
@[mﬁ,l (w - b) + iK'] ehl(Wi}

where hl(w) is an arbitrary entire function. When the other bracketed
terms are treated in a similar manner '

X+iY X'4+iY
(W) - { [wl(w - b) + 1K } & { —(w -b') 4+ iK:l Bz (W) 2n
X-1Y X'-1Y'
[‘Dl(w + T + 2a) +11<: } { —(w +b' + 2a) + 11{} h4(w)} -
(BZO)

From equation (B20) it follows that

W) = X+1Y {}Oge @{m_Kl (w - b) + iK':I + hl(v{r§ +
x';‘tY' {]_oge@l;% (w-1") + iK'} + hé(w)} *
X-iY K ™y i "
- {]-Oge 6[50_1 (w+Db+ 2a) + 1K-'] + h3(V§ +

X'-1iY' K - R '
o log, @[J)I (w + D' + 2a) + 1K] + h4(w)} (B21)

- It is now desirable to find the relation among the four arbitrary func-
tions hy(w), hyp(w), hz(w), hy(w), and the constant Aj. Differ-
entiation of equatlon (B21) and use of equations (Bl7) and (B18) give
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(X! +iY! e{al){l_(w’b!) "‘iK'}
55 o Eu-o1) ]

K .
®'| —(w-b) 'K]
) = v 4 £ (K223 [“’é(w " l.x
wy n 2 (- ikt 1
@[wl(w D) +1K]

+

@'[%(w +b' + 2a) +iKE| G)-'l}%(w + b + 2a) +iKEI

g_(x' -iy'> . _(x-m) N
@\ 2% @[—Ii(w + B! + 2a) +iKi|' W\ 2n @{E-(w +D + 2a) +iKE] 3
oy ®
X+iY ., X'+Y' ., X-1Y o, oy . X!-iY!
T M(w) + T H )+ S ng(v) + S By(w) o
(B22)

\] - d’ -

where h‘k(w) = a"{;hk(w), k=1, ..., 4.

From reference 4 (p. 480),

H!'(w) _ in
H(w)

so that on comparing equations (B22) and (13)

A= El?r [h"l(‘-") (%417) ,+ 1 ow) (X14+1YY) #

o) (K-1Y) + () (X1-111 ) (823)
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By using equation (B23), equation (B2l) can be rewritten as

W(w) = W(eV¥) = %—? loge Gli—w% (w'- D) + iK] +

X-iY K oz ] L XY K oy
5 10ge 9[“’1 (w+b+2&)+1K] + = loge @[wl (w-b')+iK'| +

1_3ye —
X z,l[Y loge @l:(—l—)—i (w+b'+2a) + iK'jI + AW (14)
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APPENDIX C
FORMULATION OF FUNCTION Q(Z)
In order to meke certain that the conditions on g(z) (equa-
tions (32) and (33)) are satisfied, a function Q(z) is introduced
as follows: '
Let
g(z) = q(z) n(z) . ‘ (c1)

where h(z) is analytic in the annular region and Q(z) has zeros

at Rel¥ and 1. Furthermore, in order that the real and the imaginary
parts of h(z) may be separated later, Q(z) must be real on the
boundary of the annular region.

Let

and
a(w) = afz(w)] (c2)

Conisider the product

H( %)H[O-%-(w -r - ir)] H[(_DKZ(W + Za)] H[wﬁ(w + 28 + 1 - iyi]

1 1 1

where (reference 8, ch. XXI)

A (w) =Ol(w03'2 | 7) (c3)
and

Ow) = «94’(w«93'2 | 7) (c4)
From reference 4 (p. 487),

8.(v + 20, (v - 29,° = 9,219, %(2) - 2(3)8,°(2) (cs)
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so that if

y= (v +a) —2;:)—
Then

dq (W L)«Sl [(W + lza) -&%] :\942 = '812 [(w + a) _&’;_l.jl :\942(:2_{5 -

oy %)
(-an) 39,2 [(w + a) -—2:)—1-] |

H[.w% (w):l HB% (v + 2a:l ©%(0) = H [ o (v + a)] [wfa] -
| ] ef(E s o]

H[U-If—l (w'- r - ir)} Hl:‘%]_ (w+ 22 +1r - irﬂ e° (O)

= Hzligj- (w+a -~ Zir)] @2[;—;{ (a + r):l-
HZI:(:?K (a + r)jl GZE’{I (w +a- Zir)]

so that for z = Ael® or w=-a + i6 equations (C7) and (C8) are
* both real.

or

Similarly,

35

(ce)

(c7)

(cs)
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Therefore, if

Q(w) = HL‘% (w):lhﬂ[(%(- (w-r1r - ir)] H[(%(- (w + Za{lﬂ[a—lf- (w-1r+ 2a - iy):l

1 1 1
(ca)
Q[ﬁ(zﬂ has zero value at z =1 and =z ='ReiY and takes on real
values on the circle |z|= A.
For computation along |z |= C, write Q(w) in the form
K K | K K
Q(w) = H[—- (wj}H[—— (w-1r-iy)|H|—= (w - ZCﬂ Hi— (w - 2c + r - iY)
! | ! b
- : (c10)

- This equation can be éxpressed in a form similar to that of equa-
tion (C9).
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(a) o-plane.

Figure 1. - Stages of conformal mapping.
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“!ﬂ‘;’l"

(b) E-plane.

Figure 1. - Continued. Stages of conformal mapping.
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(¢) t-plane.

&

»

Reir
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(d) z-

Figure 1. - Continued. Stages of conformal mapping.

plane.

.{

~
N
1



NACA TN 2393
+ni
T
|
|
| .
|
/*\ X-IY ™~
-2a- Lo -
a-c \ﬁ’ 2a a \ﬂiiIY
i X'-IY"' X'+IY!
| ) ),
| -2a-r+ir r+ir
i .
-l

(e) w-plane.

Figure 1. - Concluded. Stages of conformal mapping.
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Vl sin )xl

Vp sin Ay

VlCOS Al - — !

Figure 2. - Vector velocity diagram.
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(a) Path of integration. .

(b) Profile corresponding to figure 4(a).

Figure 4. - Illustration of possible lack of closure.
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