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FLOW THROUGH CASCADES IN TAI'IDEM


By William E. Spraglin 

An exact treatment of the problem of finding the incompressible, 
inviscid two-dimensional flow around two cascades in tandem is pre-
sented. The analysis includes solutions of both the direct and the 
inverse problems. These problems are solved by conform11y mapping 
the tandem cascade onto the region between two concentric circles in 
which region there are suitably placed flow singularities. Formulas 
for the velocity and the potential in the annular region are presented 
in a closed form by means of elliptic functions. The equations are 
presented in a form suitable for computation. 

INTRODUCTION 

A theory of the two-dimensional flow of an incompressible inviscid 
fluid through two cascades in tandem, which was developed at the NACA 
Lewis laboratory, is presented herein. Methods are developed for the 
solution of both the direct and the inverse problems for a tandem 
cascade. For a . single cascade, there have been several solutions of 
these problems. A survey of such problems is presented in reference 1. 

The results of this analysis can be applied to a variety of 
problems that occur in compressors. The amount of turning that can 
be accomplished by a single row. of blades without separation of the 
blade boundary layer appears to be limited. Criterions for the amount 
of circulation attainable around a blade of a cascade without separa-
tion of the bouMary layer, with the atteMant increased, losses, 
are given in reference 2. If an amount of turning 'eater than that 
which can be obtained with a single blade row without boundary-layer 
separation is desired, this turning may be accomplished by the use of 
two rows of blades, which are so designed that blade bound.ary-layér 
separation does not take place. 

Another situation to which the results of this analysis are 
applicable is the following: In some compressors, there are additional 
rows of turning vanes beyond the last row of stator blades. These rows 
of turning vanes form a configuration to which the present analysis can 
be applied as a two-dimensional approximation. In particular, indica-
tions of flow for angles of attack other than the design angle of 
attack can'be obtained.
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A tandem cascade is composed of two cascades arranged approximately 
as shown in figure 1(a). The method-employed herein for the study of 
this problem is the method of confoimal transformation o± the tandem 
cascade into a standard doubly connected region for which the flow is 
known. Various stages of the transformation are sketched in figure 1. 
In many respects, the problem of the tandem cascade is similar to that 
of the biplane. As is apparent in figure 1(b), the first stage of the 
transformation renders the tandem cascade into what is essentially a 
two-dimensional biplane. The standard doubly connected region chosen 
is the same as that used in reference 3 for the biplane problem; that 
is, the region contained between two concentric circles. 

GENERAL EQUATIONS FOR FLOW THROUGH TA]DEM CASCADE 

In order to determine certain relations between various flow para-
meters of a tandem cascade as shown in figure 1(a), the following 
procedure is used. The lines P1P4 and P2P3 are located far down-
stream and far upstream of the tandem cascade, respectively, (fig. 1(a)). 
The streamlines P1P2 and P3P4 are located exactly one cascade 
spacing apart; P1P4 and P2P3 are parallel to the cascade axes. 

From the continuity condition, the net, flow from the contour 

P1P2P3P4P1 (fig. 1(a)) must be zero. Because P1P2 and P3P4 are 
streamlines, the flow across them is zero. The flow through P2P3 
must therefore equal the flow through P1P4. From this relation 

	

tV1 cós	 = 

where t is the cascade spacing (the same for both cascades) or 

	

V1 cos	 = V2 cos
	

(1) 

where V1 and 1 are the limiting values of magnitude and. direction 
of the velocity far upstream of the tandem cascade, respectively; and 
V2 and	 are the limiting values of the same quantities downstream' 
of the tandem cascade. (The main synbols used herein are defined in 
appendix A.) ' 

The circulation around the blades enclosed within the contour is 
given by

r=

	

	 uds'	 '	 (2) 
J PlP21'3P4Pl
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The integrals along P1P2 and. P3P4 , in equation (2), are equal in 
magnitude and. opposite in sign. This integral therefore reduces to 

U ds = t (v sin	 - V2 sin '2) 

or

= V1 sin	 - V2 Sill ? 2	 (3) 

In figure (2), Vm and. ? refer, respectively, to the magnitude and 
the direction of the vector mean of the upstream and downstream velocities. 
By using complex-number notation, the mean velocity can be written as 

Vme m = V
1e	 + V2e	

(4) 

Also by using the continuity condition (equation (1)), equation (3) 
can be written:

1r_V1e	 -V2e 

2	
(5) 

Solution of equations (4) and (5) together gives 

i? 
V1e	 = Vme 

mr	
(6) 

i2	 -'m r 
V2e	 = Vme	 -i:E•	 (7)
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FLOW IN REGION BOUNDED BY CONCEWPRIC CIRCLES 

Derivation of equations for velocity and. potential. - The veloci-
ties on the boundaries of an annular region, in which there are placed. 
two complex sources, must be found. By means of successive reflections 
of the singularities in the two boundaries, anexpression will b 
obtained for these velocities. The details of the process of reflec-
tion will be presented. for only one of the singularities inasmuch as 
the process will be the same for both. In figure 3, A and C are, 
respectively, the radii of the inner and. the outer circular boundaries 
of the annular region, which is so located. that the centers of these 
circles are at the origin. The original singularity is located at B.. 

For convenience, the real (source) and. the imaginary (vortex) 
parts of the singularity are considered separately. First to be 
considered. is the reflection of the source located. at B. The bound-
ary condition on the surface of radius A is that there should. be  no 
component of velocity normal to this surface. In ord.er that this 
condition be fulfilled, a like source must be added at a point inverse 
to B' with respect to the circle A and. a source of opposite sign 
must be added. at the center of the circle. The boundary condition on 
surface C is the same as on surface A. It is apparent that the 
first reflected. source now violates the boundary condition on the 
outer boundary. This image singularity must therefore be reflected. 
in the outer boundary, which again necessitates a reflection in 
the inner boundary and. so on indefinitely. If the reflection 
process is considered to begin with a reflection in the outer boundary, 
another series of images in different positions results. An additional 
singularity has to be placed. at the center of the circle for each step 
of the reflection process. The total flow across boundaries A and C 
must be zero. The real parts of the two original singularities at 
B and. B' are therefore equal in magnitude and opposite in sign. The 
reflection is carried out in the same manner for the other original 
singularity located. at B'. 

The reflection scheme for the vortex is similar to the one fca the 
source except that on each reflection the sign of the reflected vortex 
is changed and. the singularity added at the center of the circle has a 
sign opposite to that of the reflection. The magnitudes of the distance 
from the origin to the reflections are shown in figure 3. 

Let 

X	 source strength of singularity at B 

-Y vortex strength of singularity at B
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X' source strength of singularity at B' 

-Y' vortex strength of singularity at Bt 

As previously discussed, the following relation must exist: 

x=-x'	 (8) 

The potential at a point z due to a source of strength X 
located at a point z0 is, if the potential is to be zero, at a 
point z1,

x	 ___ 
— loge 2t 

For the vortex -Y located at zo, the potential at z is, if it is 
desired that the potential be zero at a point z1, 

iY	 (Z-ZO 
—loge 2it 

The potential due to the source at B and its reflections can be 
written (see fig. 3 for locations of reflections) 

	

• r	 A 
- 2(n-l) 

WX(z) =	 loge (H +,> loge .	 A2	 + 

	

L	 A2(1) 

	

A2	 1 C2 

j	 loge [: : ; ::Ei ^> loge [: : : '•fl 
(9)
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The point A was selected as the point for which the potential is zero. 
The potential due to the vortex at B and. its reflections is 

\ -" - 

	

r	

1 A2nl	 r 
Iz-B	 I 

	

A	 !2(fl-1) I	 t ______ 

	

Wjy(z)	

___ LABJ 

I	 2nj loge	
A -	

A2n I +	 loge 

	

L	 1 

	

2n -	 1 C2	 1 

	

'	 -' 

	

A	 C2 I	 A2()l I 

	

[ z - B	
loge	 - - ______ loge	

A2n	 _____ I A-_I>j	 1A-	
C2n	

(10) 

	

L	 c2nJ	
1	 [	 B A21)JJ 1 

There are similar expressions for the complex potential that result 
from the source and. the vortex at B'. 

For the total potential due to both singularities 

	

Iz-B—I	 z-B-1 I 

	

I AI	 A ____ 

r	 c21	

[	

A 

W(z) = Wx+y( z) + %ijyi(z) = X10g () b0ei	 2n'	 A2 
A-B - I 

1	
[A_B2] 1
	

02njJ 

(±)
z-B	

!	 c'I 

	

____	

[zBI	

[	

t	 1 A 1 

	

I	 2n1	 ___ A2f I 	 Iz	 1 A 
2i	 l°	 AB 

Li_	 IA_Bt LJ A-B' - I I 
1	 L	 A2'J	 1	 c2JJ	 1	 L	 1c211)i 

	

______	 loge [

	

1 A2 1	 ______ 
1	

I Z A(n_1) 1 X'-IY'	 A	 ,C2(fl-1) I 

	

1 C2fl	
"R::::—'	 1 ___ 

_______ ____	 _______	
[Z 

A2(fl1)1l 
1	 +	

1 A2	 I ,,/> loge	
1	

(u) 

	

1	 LA2(n-1)JJ 1
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These series are absolutely convergent in a closed region that excludes 
the singularities B and. B'. Differentiation of equation (11) yields 
the conjugate velocity 

	

__ __	 ____	 1 1 -	 X^Yrl\	 1	 11 \' c2 
V(z)= / L_ B A 2 LZ	 / / L	 J / - B 

1 

	

X'+IY'	 1.	
A	

] 
+>	

1	 1 + 
C2n _	 /zB 

2	 z - B'	
- B' -	 -	 ij 

1 1 

	

__	 1	 ii >	 1 c 2 	 1 A2n L ,Lz - 
A2(n-l)1 /_ L 	 -	 c2(n-1)jJ 

1	 1 

	

X?_IY T I\[	 1	 ^\[l^	 1 

	

2t I ,> I	 1	 C2n	 2 I-	 1 A2	 (12) 
L/ [z - A2(n-l). /_ L 	 - c2C-1i. j 1 

Velocity and potential in closed. form. - In order to evaluate equa-
tions (U) and (12) more readily, the annular region in the z-plane is 
transfcn"ined Into a rectangle in the w-plane. The transformation used is 

z = e
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By introducing the notation 

(v) = V[z(w)] = V(ew) 

equation (U) can be written as a function of -w 

(w) = e [Ari x {Z [...(v_b)]	
[(v_b	 [(w_b)] 

	

+	 Sn r(Wb)]	 + 

L° 

	

[-(w++2a)]	
en [(w++2a)] dn [(w++2a)] ^ 

+
r, r(^^8)1 

x t +iY t [ 
2,t	

[(wb	
+ en [(wb t )] dn [&(wb )]1 

[c_]	 J + 

en [--

	

xLiy' r z [(w+t+2a)] 
+	 (w+'+2a dn 

1	 sn

(13) 

The potential can also be written in closed form as a function of w. 

- x+iy 	 r	 (w - b) + iKt] + W(w) = W(eW) - -- loge e 

X'+iY' X-iY	

e° [-- (w++2a)+iKi +	 2i	 loge® [	 (V_bt ) +iKtl + - log 
2it

xt -iY' 

2	 loge® [ (w+'+2a) + iK ? ] + A1w	 (14) 

where A1 is an imaginary constant. Equations (13) and (14) are 
derived in appendix B. The symbols for elliptic functions are those 
defined in reference 4.
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SOLUTION OF INVERSE PROBLEM 

The inverse problem, as considered herein, is to find a pair of 
profile shapes that when suitably arranged in a tandem cascade will 
have a prescribed turning and surface velocity distribution.. The 
region external to the tandem cascade is to be conforinally transform.ed 
into a standard region through which the flow is known. The annular 
region between two concentric circles with suitably placed flow sin-
gularities is chosen as the standard region: . (1) The general form of 
the mapping function together with certain conditions upon it will be 
found. (2) A method of computing the values of the mapping function 
along the boundaries of the annular region is given. (3) Because the 
assigned conditions may not give a closed profile, a method is given 
by means of which the initially assigned velocity distributions may 
be modified to give closed profiles. 

Derivation of mapping function. - The cl-plane is the plane of 
the original tandem cascade. In order to transform the tandem cascade 
into the standard region, the following series of transformations is 
used:

(1)	 loge I	 2mcci --:E--

Because of the period properties of the exponential function, equa-
tion (15) transforms the tandem cascade into two closed figures in the 
I-plane (fig. 1(b)). Under this transformation, points for which 
Re(cl) is very large positively are transformed into points that are 
a large distance from the origin in the I-plane. Points having a very 
large real part that is negative are transformed into points near the 
origin. Therefore,

limmi
(16) 

urn	 I (cl)=O
(17) 

(2) According to reference 5, it is possible to transform conform-
ally the region exterior to the closed figures in the f-plane into the 
area external to two circles. It is convenient to write this trans-
formation in the following form:

(15) 

= e-
d1
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One circle, the correspondence of one point thereon, and in addition, 
the location of the center of the second circle can be specified. If 
the point	 =	 is transformed into some finite point of the 
i-p1ane, a bilinear transformation can be used to transform this 

finite point into the point at infinity in the 2-plane. Under a 
bilinear transformation, circles are preserved as circles. A trans-
lation and a rotation can then be used to place the circles as shown 
in figure 1(c) where the point at infinity has been transformed into 
the point at infinity in this plane, the -p1ane, and the centers of 
the circles lie on the axis of real numbers, equidistant from the axis 
of imaginary numbers. This entire series of transformations can be 
combined and written as

d	 f)
	

(18) 

(3) Circles C and D of the -p1ane can be transformed into con-
centric circles in the z-plane by

=	 (19) 

where k1 and k2 are points such that they are inverse points with 
respect to either circle. Therefore, 

(k1-k) (k2-k) = R2C 

(k1^k) (k2+k) = R% 

where RC and RD are the radii of the two circles in the -plane. 
These two equations may be solved for k1 and k2. 

If equatIon (19) is solved for	 in terms of z, 

k z+k 

z -1 

From which

- ________ 

dz - (z-1)2
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and therefore,

•	 - d i - _e(k2 ^ k1)	 (20) 
dzdz	 (z-1)2 

When the notation f(z) is used for f[(z)], equation (20) beconies 

f(z) = -e	 (k2 + k1)	
(21) az	 (z-1)2 

If the point to which	 = 0 is transformed, is denoted by ReST 

= z-Re1 eF ( z )	 (22) 

where F(z) is an entire function and 

= eF(z) 
- 
1)2 [(z - Re11)(z - 1) F'(z) + (Re11 - 1)]	 (23) 

Equating these two expressIons for	 and solving for F t (z) gives 

+ k1) e(	 - F(z) - (Re11- 1) 
F'.(z) =

(z - Re'T)(z - 1) 

This equation can be rewritten as

Ic3 (i - 
F t (z) =

	

	 (24) 
(z - RehI)(z - 1) 

where

= 1 - Re-T



12	 NACA i 2393 

and

(id + k2) ef ( z ) - F(z)	
(25) 

1-Re 

Because F(z) and therefore F'(z) are regular in the annular region, 
1 - g(z) must have zeros at 1 and Re1T. Therefore 

g(1) = 0
	

(26) 

g(Re-1) = 0 .	 (27) 

Because

loge =	 (15) 

therefore,

- 2it 
dc	 t

(28) 

Therefore, by using equations (22) to (25) and (28) 

-=	 L=	 -tic3 g(z)	
(29) d.z	 d dz	 2t(z - l)(z - Re1T) 

The conditions on g(z) may be more easily applied if the function 
Q(z) is introduced such that 

g(z) = Q(z) h(z)	 (30) 

where. h(z) is analytic in the annular region and Q(1) and Q(Re) 
are both zero. In addition, Q(z) mast be real on both boundaries. An 
example of a function suitable for Q is presented in appendix C. 

Method of computation of mapping function. - The o-plane and. the 
z-plane are related by a conformal transformation 

U(a) = W(z)
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13. 

where 

U(cv) potential function in tandem-cascade plane 

W(z) potential function in annular-region plane 

Differentiation of the preceding equation yields: 

diJ(cr) da - dW(z) 

do dz	 dz 

or

d_(z) 
dz(a) 

Let u(z) = 

Equation (31) can be rewritten as 

dV(z) 
dzu(z) 

From equation (29)

(31) 

(31a) 

=	 g(z) ( 1 -	 1	 32 dz 2ic	 - 1 z - Re1T) 

From equations (16) and (17) and the discussion preceding equation (18), 

	

lim	 z=1 
Re(a)- .+O 	 S 

	

urn	 z=ReIT 

From equations (6), (7), and. (3la),

'rn	 S 

lim u( z ) =Vrne + -	 S 

z -..1

IF 
urn	 u(z)=Vme 

Z--Re'I
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so that the residues of V(z) at 1 and BelT are, respectively, 

(imem - 

- (uimem .-

If the points 1 and ReiT are, identified with the points B and. Bt 
of equations (ii) and (12), the source and vortex strengths are 

X = tVm COS 

+ tV 5i11 

X' = tV cos 

YtVmsiflNit 

Next, an annular region such that the ranges of potential are cor-
rectly matched to the assigned ranges of potential on the two blade 
shapes must be found. The following scheme may be used.: Let Relr 
equal -1. The radii of the inner and outer boundaries are left to be 
determined in a manner such that the ranges of potential have the proper 
values. 

A certain amount of control over the relative positions of the two 
cascades can be achieved by specifying the difference in the stream 
function f or the two blades and the potential difference between the 
tail stagnation point on one blade and the tail stagnation point on the 
other blade. These additional specifications increase the difficulty 
of determining the boundary radii and the location of the point Rehi. 

Once the radii of the boundaries and the locations of the singulari-
ties have been determined, the correspondence between points on the two 
blades and points on the circular boundary may be found by matching 
points having the same potential (as in reference 6). From this cor-
respondence is known the assigned blade velocity as a function of the 
central angle on the corresponding circle.
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From equations (29) and (30) 

dc - -tk3 eQ(z)h(z) 
dz - 2it (z - 1)(z - ReiT)	

(34) 

where

+00 
h(z)	 (a] + ibn)z 

= p(x,y) + ig(x,y)	 (35) 

V(z) da 
u(z) =	 (31a) 

On the boundaries of the annular region, Q(z) is real and. 

Vz)	
-	 I	 1 I	 1	 I	 eQCZ)11(z)	 I'3I	 (36) 

U Z)	 IZ - :iI Iz - ReTI	 2X 

Therefore, on either circular boundary 

	

Re h(z) = Q(z) lOg	 ^ lg z-1 + loge Jz - ReH - loge I2 
(37) 

By use of equation (37), Re (h(z)) can be computed on both circular 
boundaries. In order to compute the function conjugate to Re (h(z)), 
use is made of Villat's analogue; for the annular region, of. Poisson's 
integral. These equations are derived in reference 7. A form more 
convenient for the present purpose is given in reference 3 (p. 13, 
equations (23) and (24)).
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qA (cp') =bo+J
	

PC(CP) Z (-cpt) d - 

z1 (cp - p') dq, 

pC(CP) z1 (cp - P') d 

-	 PA(cP) z (p - pt) p 

where 

PA(CP) real part of h(z) on inner bound.aryas function of central 
angle P 

real part of h(z) on outer boundary as function of central 
angle P 

q (P) imaginary part of h(z) on inner boundary as . function of 
central angle Cl) 

q () imaginary part of h(z) on outer boundary as function of 
central angle Cl) 

constant, which may be taken as zero 

Z1(u)	 (See reference 4 for definition of the if function.) 

From equation (34)

-tk3 e[P(xy) + ig(x,y)J 
dci =

	

	 dz	 (40) 
2it (z - l)(z - Re-1)

(38)' 

(39)
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Integration of equation (40) gives the required value of ci. 

In order to find the position of one cascade relative to the other, 

it is necessary to integrate	 along a line from one circular 

boundary, across the annular region to the other circular boundary. 
This procedure involves knowing the values of h(z) along this line. 
These values can be found by means of the following equation, which 
(with different notation) is found in references 6 and 3: 

h(z) = (ao + ib0) - ILl
	

Z[i lo(.) +
	

ã + 

PA() z[i iog() +
	

d	 (41) 

where

2t 

a =	 PA&P) dcp =	 p0(m) d 

Modification of assigned velocity to obtain closed profiles. - 
The preceding development does not guarantee that the resulting blade 
profiles will be closed curves. In order to modify the initially 
assigned velocity so that closed blade shapes will result, the follow-
ing procedure is used: 

The sum of the residues of the derivative of the mapping function 
inside the contour indicated in figure 4(a) is zero; that is, the 
integral around the contour will be zero. The contour in the a-plane 
corresponding to the contour indicated In figure 4(a) therefore will 
be closed, whereas the portions of the contour corresponding to the 
bounding circles knIght not be closed curves. If this part of the con-
tour is open, the opening for one blade will be the negative of the 
opening for the second blade because the Integration around the outer 
circle is in the negative direction (fig. 4(a)).
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The amount by which the profiles fail to close can be reduced to 
zero by adding to the derivative of the mapping function, a function 
having a pole at the origin such that the residue of this function at 
its pole is equal to the negative of the amount of opening divided; 
by 2it. 

If the amount of lack of closure is equal to m0, the modified 
mapping-function derivative can be written as : 

- da	 ä - V'(z) 
-- -	 -	 - u'(z) 

Because the velocity remains undisturbed in the• aunular region 

= V(z) 

Therefore, the altered velocity is 

u'(z) -
	 z u(z) V(z)	 (42) 
- z(z)-mu(z) 

and the altered arc length is given by 

	

da' =[- -- - vc z )] dz	 (43) 
2itz	 uz) 

SOLUTION OF DIRECT PROBLF} 

The direct problem is that of finding the flow of fluid past blades 
of known shape. In addition, to the blade profiles, the upstream and 
downstream velocities are also known. The Kutta condition of finite 
velocities at the trailing edge of the blades is used to' determine the 
blade circulations. 

As in the section "Solution of Inverse Problem", by the application 
of an exponential transformation, the flow through the tandem cascade 
is transformed into the flow about two closed profiles with a flow 
singularity in the finite part of the plane;, this is essentially the, 
problem of the two-dimensional biplane. A method by which the trans-
formation from the region external to the two closed shapes to the 
region 'between two concentric circles can be computed by means of 
successive approximations to the solutions of :a pair of inteal equa-
tions is given in reference 3.
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In the biplane problem, the flow singularity is a single dipole. 
In the problem under discussion, there are two singularities in the 
flow field. In order to determine the location of the addition singu-
larity, use must be made of a trial-and-error procedure an equation 
similar to equation (41) is used to determine the values of the map-
ping function at points interior to the annular region. From equa-
tions (13) and (14), the velocity and. the potential on the annular 
region boundary is known. The analysis is completed by transforming 
these velocities back to the original tandem cascade configuration. 

Lewis Flight Propulsion Laboratory, 
National Advisory Coimnittee for Aeronautics, 

Cleveland, Ohio, February 9, 1951.
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• APPENDIX A 

MAIN SYMBOLS 

A,C radii of boundaries in z-plane 

a,c a	 - loge A	 c	 loge C 

A1 ,k,k1 ,k2 ,k3 complex constants 

B,B' singularity positions in z-plane 

b,b' b	 log.B	 b'.	 loge B' 

f() analytic function of 

f(z),F(z),g(z), analytic functions of	 z 
h(z) ,Q(z) 

G(w) velocity function in w-plane 

h1(w),h2(w), arbitrary entire functions 
h3 (w) ,h4(w)

residue of function added to achieve closure 

p(x,y) Re [h(z)]	 where	 z = x + iy 

pA(cp) Re [h(z)J	 as function of	 P	 along jzt	 = A,	 z = Ae 

- Re [h(z	 as function of	 along Izi	 = C,	 z = Ce1 

q(x,y) liii [h(z)]	 where	 z = x ^ ly 

Im [h(z)]	 as function of	 alon'g Izi	 = A,	 z = Ae 

liii [h(z)1	 as function of	 along l z	 = C,	 z = Ce' 

Re11 singularity position in z-plane (Re 11 = B') 

r 1ogR 

t spacing 

U(a),W(z) potential functions
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• velocity functions 

V(w)	 V(w) = V[z(w)] 

u(w)	 u(w)	 [a(w)] 

V1e1?l	 upstream velocity 

V2e" 2	 downstream velocity 

Vme	 vector mean velocity 

X,X I	 source strengths 

__t	 vortex strengths 

r	 circulation 

a-plane	 •	 tandem-cascade plane 

a' -plane	 modified tandem-cascade plane 

z-plane	 annular-region plane 

auxiliary variables used in transforniation 

Notation used for elliptic functions is that found in reference 4 
except for Z1(u), which is defined in text following equation (39).
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I4PPEI1DIX B 

EXPRESSION OF VELOCITY MID POTEIffIAL IN TERMS OF ELLIPTIC FUNCTIONS 

Velocity expressed In closed form. - In order that equatIon (12) 
may be more readily evaluated, the annular region in the z-plane is 
transformed into a rectangle in the w-plane. The transformation used is 

z=eW	 (Bi) 

Let

V(rl) = V[z(w)] = V(ew) 

Then equation (12) can be rewritten as a function of w: 

-	 X+iY r	 ________	 _________ 
V(w) =

	
- B	

C2	 /


2i
eW B C	 + 

1	 1 

X-iY	 __________	 __________ 
2	 -	

C ()	 - [ew	

1	 1	 + 

1 A2n	 eW	 eW I ____ 

1 

X'+IY' r 1 +> \[ 1	 11 \	 1 
I	 A2 eW B' 

t 
tW	 ___	 - C2	

j,//>wBt	 + 

1	 1 

___	 1	 1 
2t	 1 A2	 ____ _______	 1 C2	

(B2) 

/ lew	 _____ 
1/ 'L -	 C2l)	 eW - B' A2(n)J 

1



NACA 'JIV 2393
	

23 

Let

lOge A.= -a 

loge B = b 

loge C = C 

loge B' = b' 

Further let,	 .	 ..

-a 5 Re(w) .S c 

Then, because X -X', for w contained within this rectangle 
(fig. 1(e))

A2 
V(w+2a+2c) = - V(w)	 (B3) 

CL 

because	

e2 = eW 

V(w±2i) = V(w) 

If

G(w)	 eW V(w)
	

(B4) 

Then

G(w+27ti) = G(w) .	 (B5a) 

and

G(w-4-2a+2c) = ew+22t V(w-i-2a+2c) 

= eW V(w)	 = G(w)	 (B5b) 

c 2 A2 

Therefore G(w) is a doubly periodic or elliptic function and has a 
real period (2a+2c) plus an imaginary period Eiti.
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Consider one of the terms of G(w)

C2" -

	
(B6) 

eW - B. - 

This function has an expansion in terms of [w - b + 2n(a + c)] 

-1 
eW eW 

2 = -1 

+	

- b + 2n (a +c)	
Lw - b + 2n (a + 

c2	 k=0 

[w - b + 2n (a+ c)])=	
b +	 (a + c) +	

.] 

1

(B7) 

where the Bk are Bernoulli ntmbers (reference 8, P. 183). The first 
Bernoulli number B0 is equal to 1. The residue of the function of 
equation (B6) is therefore 1. Similarly, the residues of the fünct±ons 
eW	 eW	 eW 

,	 , and	 - 1, and. so forth are each 1. 
eW -B	 C2"	 1 A2 

	

eu -B—	 eW_ 

	

A2	 B C2(fl1) 

Consider a parallelogram in the w-plane, 

-iii: ^ Im(w) < 3t 

Re b + 2a Re(w)^ Re b + 2c 

In this rectangle G(w) has four poles locatedat b, - b - .2a, b', and 
- b' - 2a. The sum of the residues of G(w) at these poles is 

(x + iy + x - iy + x'^ yt + xt - iy') = 0	 (Ba) 

because

x = -xt
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The principal part of G(w) at each o± these poles is, respectively, 

I X ± iY 
2ic w - b 

X-iY 
2it w + b + 2a 

1 X' + iY'

w - 

1 X t - iY' 
2twtb! +2a 

According to reference 4 (p. 474), if 

mr
r,m ( 

m=l 

is the principal part of an e1iptic function f(z) at its pole r, 
then

r() = A1 t a1
	

4r,m 
th 

log 1	 (B9) 

where 41 is a constant? 

From reference 4 (p. 479) 

H(z) 41(z43

It 

3	 2K 

so that, by using the older notation of Jacobi, 

nrmr 

f(z) = A1 +	 Ar,m	 1og H [ (z - Pr)

(Blo)
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For the present case,

- X+iY A1 , 1 - ____ 

X-IY 
A2,1 = 2t 

x,+iYt 
,	 2it 

xt-iY, 

=	 - 2a 

133=b' 

-	 p4=-b' -2a 

so that, 

H'['-- (w-b (w +	 + 2a 
K	 X+iY) 

G(w) = A1 +	 2
LL

+
XiY 
___ 

(
L°1 + 

u[ (w - H[ (w +	 + 2a)] 

Hti(w+bt+2afl 
t 

___ 
(x+1Y
_____ _____________ W11

XT	 jy'\ 

___ 
_____

)

Li __________________
(Bu) 

\	 2	
H[	 w - b?)] +	 + 2a)] 
LW1 

or

G(w)=Ai+()Z[	 (w_b)+IKt] + (xiY)z [-- (w++2a)+1Kt] + 

(xt+it) z	 (w bt)	
(xtYt) z [ E (w +' ± 2a) + 1K] 

(B12) 
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where

Hh(w + iK') 
Z(w)=j+ Hw+iK') 

When Jacobian elliptic functions are introduced Into equation (B12) and 
equation (B4) is used in conjunction, 

+	 +1Y z[K(	
cn[cwb)] dn[(wb)]l 

V(w) eG(w) = e[Al	 w-b)j +	 °)1

 sn[(wb	 + 

cnl— (w + b + 2a 

	

___	
1 

dn	 (w+ + 2a)1[1 

	

___	 K	 + +2)] + 1K ,

)]
sn— Tj + b + 2a 

[K	
b')l J-(w-b')l) 

+ X'+iY'	

[	
(- b'	

Cfl[(W -	 ]	 [ 
2ic	 (1	 sn1--(w-b')l 

[01	 I 

1K 
cn—(w + b 

	

X'-iY'	 +	 +	
+ 2a)] dn[(w +	 + 

2it	 L	 sn[ (w +	 + 2a
-i

(13) 
Let

w = -a



= ea [Al +
cn[--(_a-ij)l dn 

	

I	 Li	 I 
+	 [K	 -I	 + 

sni —(-a-b)l 

	

Lwi	 J 
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(a + i] d.n[..	 (a '+ 
XiY[K (a +)] +
	

sn[ (a + ] 

r	 cn[	 (-a - b')l dn[ (-a - b')l 

X'+iY' )Z[--(_a - b'i 
+	 L Di	 J_Lwi	 + 

2it	 LD1	 J	 sn-(-a-bt)j 

X?iY[	
(a+t

cnr-- (a + i)1 dn[-- (a + t)1 
Lwi .	 J	 [wi.	 J 

+	 sn[(a+')j 
L	 J

(B13) 

For convenience let

mi b + K' = v 

Imbt +K' =.v' 

K 
- Re b + a = u 

K 
- Re b' + a = U' 
U1
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Then equation (B13) can be rewritten as 

V(-a) = ea (Ai +	 [ziv + k
2 sn(iv) sn2 (u) cn(iv) dn(iv)] + 

1 - k2 sn2u sn2(iv) 

[z(u) - k

2 sn2 (lv) sn(u) cn(u) dn(u)1 + 

1 - k2 sn2 (u) sn2 (iv) 

xt [Z(1v) + k
2 sn(iv') sn2 (u') cn(iv t ) dn(ivt)1 + 

1 - k2 sn2 (iv') sn2(u') 

[z. - k

2 sn(ivt) sn(ut) cn(u') dn(ut)1j)	
(B14)


1 - k2 sn2(ut) sn2(iv') 

The point w = -a corresponds in the z-plane to the point z = A. At 
this point,.the velocity, in order to be tangent to the boundary, can-

not have a real component. The coefficient of	 in equation (B14) 

is an imaginary number. Therefore, A 1 must be an imaginary number. 

Re(A1) = 0	 (B15) 

dW(z) - = V(z)	 (B16)
dz 

dW[z(w)] dw - ________ - = V(z)	 (Bl7) d.w	 dz 

From equation (Bi)

- eW	 (B18)

dw
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if in equation (U), z is replaced by- eW, equation (U) is equiv-
alent to

X+iY	 X+iY 
2nfl Eic 2xffl 2t 1

c\ 
A[B()_l	 WB() 

= T-	 2n	 liT	 2n e	 o	 - (c\ H L	 [AB)JJ	 L [A-B) jJ 

x' +iyt


	

B'	
2n11 23t 

(A\ H -	 )	 I 
yTT-	 2nI 

(A \	 If L	 [A-B'

XI + jy, 
2n1	 2it


ii 
¼X) H 

7TI	 2n1? 101	 II LL A-B'	 ) jj 
•	 X-iY 

1-	 A2 

I	 A	 -
1A2h1 

L A - c2_1)

X l - jyl 
2t 

r	 r	 A2nul 
le - 
I	 B' 

1 A2n 

L LA - F c2n-1)JJ

X- IY

2it r [ew_1 C2n 1 

ll ___BA2(fl_1)I I 
1 C2 L [A - A21)]J

X' -iY' 
2t 

r 1ew_ C2n 
I	 '	

(B19) 

LA 
1 C2 -	

A2(1)ij 

Consider the first bracketed term of equation (B19). 
product has zerçs of the order of 1 at points congruent to 
b modulo 2(j(a + c) + kiti), where j and k are integers.

This 

The
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function	 (w - b + iK t] has zeros at the same points. Hence, 

according to Weierstrass' factor theorem, the first bracketed term Is 
equal to the foflowing expression:

X-1-iY 

fe [ (w - b) + iK t] ehi(w 
2 

where h1(w) is an arbitrary entire function. When the other bracketed 
terms are treated in a similar manner 

X+iY	 Xt+IYI 

( 2 r 	 h(w 
eW(	 =	

[(w - 

b)	 iKj ehi	 - b') + IK I] e 2 

X-iY	 X'-iY' 

+ + 2a) +icJ eh3	
2it	

[(w +	 + 2a) +1KJ eh4	
2it 

(B20) 

From equation (B20) it follows that 

W(w) = X+iY og ® [ (w - b) + iK ?] + h1(w + 2it 

Xt-F1Y' r 
2	 1oee[ (w - b') ± iK t] + h2(w + 

X-iY r 
2	 1oee[	 (w + + 2a) + iK t] + h3(w ±. 

X t -iY t r 
2	 loe e[	 (w 

+	 + 2a) + iKt] ^ (B21) 

It is now desirable to find the relation among the four arbitrary func-
tions 111(w), h2 (w), h3(w), 114(w), and the constant A1 . Differ-
entiation of equation (B21) and use of equations (B17) and. (B18) give
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[	 etrL(wb) +iK tl 	 et[!(wbt) +iK'1 

-	 -) K (X+IY	 Lwl	 ] K (x'+iy ' \ L°i	 J 
V(w)=e	 2	

er(w-b) +1K	
2t	 e(w-.') +IK!1 + 

+	 + 2a) +iK1	 + ± 2a) 
K(Xt1Y t \	 L Di	 J	 K(X-IY\ L'i 

2t) e[(w+ ! + 2a) +iKi 0)12) e[(++a) +1K 

x+ . Y	 xt+iYt	 x •y 
h(w) +	 2ic	 h'(w) +	 h3(w)

+	 h!4(w)

(B22) 

where ht k(w) =	 k = 1, .	 •, 4. 

From reference 4 (p. 480), 

H!(w) - it	 e!(w + iKt) 
H(w) -	 - e(wt 1K') 

so that on comparing equations (B22) and. (13) 

Ai =	 [h'i(w)(X^IY),+ h!2(w)()!tiY!) + 

	

h'3(w)(X.-iY) + h!4(w)(X !_ lYj	 (B23)
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By using equation (B23), equation (B21) can 'be rerittefl as 

x+ iy W(w) = W(eW) =	 2it	 -°e	 (w '- b) + iKi + 

X-iY JOg	 (w+-2a)+iKt] +	 loge	 (v-b' )+iK t] + 2it 

xt - ly' 
2it	 loge e[ (w+'+2a) + iK t] + A1w	 (14)
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APPENDIX C	 - 

FORMULATION OF FUNCTION Q(z) 

In order to make certain that the conditions on g(z) (equa-
tions (32) and. (33)) are satisfied, a function Q(z) is introduced 
as follows: 

Let

g(z) = Q(z) h(z)	 (ci)


where h(z) is analytic in the annular region and Q(z) has zeros 

at Re11 and 1. Furthermore, in order that the real and the imaginary 
parts of h(z) may be separated later, Q(z) must be real on the 
boundary of the annular region. 

Let

w z= e 

and

Q(w)	 Q[z(w)]
	

(CE)


Consider the product 

tn(w -)H[(w - r - ii)j u[(w + 2a)j n{(w + 2a ^ r -- iijJ. 
where (reference 8, ch. XXI) 

11(w) =i1(wi2 I T)
	

(C3) 

and

G(w) = .J4(wi332 I T)
	

(C4) 

From reference 4 (p. 487), 

+ z)1(y - z)S42 = 1 (y) 4 2 (z) - 42 (y)&12 (z)	 (c5)
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so that if

y = (w + a) - 
1

ic 1	 2 -ait [(w ^ 2a) 2L1	 = 2 [(w + a) 
2uj


• 2-aic2 r( 
1 S2UL) 4 [v + a)	 (c6) 

11L- (w )1 H[ - (w + 2a)] 2 () = 112rK (w + a)1 ®211 - 
J [01	 j[a1

H2rjle2I- (w + a)]	 (c7) [uj	 [(i) 
Similarly, 

11 r (w - r - ii)] H [ - (w + 2a + r -	 2 

Ll	 J 
= 2rK	

-	 )] e2H (a + flI—(w+a 211 

(a + r)] e2[K (w + a - 211)] 

so that for z = Ae19 or w = -a + 10 equations (C7) and. (c8) are 
both real. 

Then 

or
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Therefore, if 

(w)[ 

(w) n- (w - r - ii)] H [ (w + 2a)]H [ (w - r + 2a - 
Li °	 i L'

(C9) 

[w(z )] has zero value at z = 1 arid z = Re'1 and. takes on real 
values on the circle z= A. 

For computation along z = C, write Q(w) in the form 

=	
(w)]H[ (w - r - ii)] H[ (w - 2c)] H[ (w - 2c + r -

(do) 

This equation can be expressed. in a form similar to that of equa-
tion (c9).
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p4

w 
(a)	 -p1ane. 

FIgure 1. - Stages of con±ormal mapping.
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(b)	 -p1ane. 

Figure 1. - Continued. Stages of conformal mapping.



NACA TN 2393 

(c)	 -p1ane. 

(a) z-plane. 

FIgure 1. - Continued. Stages of conformal mapping.
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-2a-c C 

f_i_,	 XIY

-a 0 
I	 X'-IYt X'+Iy'

x+IY 

-2a-r-i-lr r+ir

(e) v-plane.


FIgure 1. - Concluded. Stages of conformal mapping. 
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V1cos1 

Figure 2. - Vector velocity diagram.
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(a) Path of integration. 

(b) Profile corresponding to figure 4(a). 

Figure 4. - Illustration of possible lack of closure. 
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