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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDlM: 

EXPERIMENTAL AND THEORETICAL AERODYNAMIC CHARACTERISTICS 

OF TWO LOW-ASPECT-RATIO DELTA WINGS AT ANGLES OF 

ATTACK TO 500 AT A MACH NlMBER OF 4 .07 

By Fred M. Smith 

SlMMARY 

An investigation has been conducted in the Langley 9- by 9- inch 
Mach number 4 blowdown jet to determine the aerodynamic characteristics 
of two double-wedge-section delta wings of aspect ratio 1.3 and 2.3 to 
angles of attack of 500 at a Mach number of 4 .07 and Reynolds numbers 
of 6 .0 and 5.3 x 106 , respectively . The results of the investigation 
are compared with the predictions of linear theory, two-dimensional 
shock-expansion theory, Newtonian-impact theory, and a method which 
utilizes the shock-wave and expansion-wave equations expanded by the 
two -dimensional hypersonic-flow similarit y parameter. Linear theory, 
although fortuitously, generall y gives the best predictions for all 
components . 

The results of this investigation extend a trend established in 
lower Mach number tests that the maximum lift coefficient for low­
aspect-ratio delta wings decreases with increasing Mach number . The 
results also extend to a Mach number of 4.07 the trend indicated by 
lower Mach number tests that the angle of attack for maximum lift coef­
ficient increases with increasing Mach number . 

INTRODOCTION 

Numerous experiments have been made to determine the supersonic 
aerodynamic characteristics of low-aspect-ratio delta wings at low and 
moderate angles of attack (for example, refs . 1 to 5). Relatively few 
tests have been made, however, at high angles of attack (above an angle 
of attack of 300 ) and these data are limited to a maximum Mach number 
of 3 .36 (refs. 6 to 8 and unpublished data obtained at the Ames 
Aeronautical Laboratory) . This shortage of high-angle supersonic data 
leaves the designer with no empirical results upon which to base his 
predictions of the maximum lift and other wing characteristics at high 
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angles. It also precludes a comparison of theoretical methods with 
experimental results to determine which theoretical methods best predict 
the high-angle-of-attack and high Mach number wing characteristics. 

The present investigation, instigated by the lack of experimental 
data, was conducted on two low-aspect-ratio (1.33 and 2.31) double-wedge­
section delta wings in the Langley 9- by 9-inch Mach number 4 b~owdown 
jet . In this investigation, normal force, chord force, pitching moment, 
and wing-root bending moment were obtained for angles of attack from -4 0 

to 500 at a Mach number of 4.07 and Reynolds numbers of 5 .3 x 106 and 
6 .0 x 106 based on the wing mean aerodynamic chords. 

The experimental results were compared with the predictions of 
linear theory, two-dimensional shock-expansion theory, Newtonian-impact 
theory, and a method by Dorrance (ref. 9) wherein the shock-wave and 
eXpansion-wave equations are expanded by the two-dimensional hypersonic 
flow similarity parameter. 

A 

B 

b 

c 

CImax 

Cm 

SYMIDLS 

aspect ratio 

wing-root bending moment, positive with positive lift 

wing span, twice semispan 

Wing-root chord 

wing mean aerodynamic chord, 2/3 c 

wing-root bending-moment coefficient, 2B/qSb 

drag coefficient, D/qS 

drag coefficient at zero angle of attack 

lift coefficient, L/qS 

maximum lift coefficient 

lift-curve slope, a = 00 

pitching-moment coefficient, M/qSc 

• 

• 
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normal - force coefficient, N/qS 

D drag force 

K hypersonic s imilari ty parameter, MooQ 

L lift force 

m Mach angle 

M pitching moment about 0.5c 

free - stream Mach number 

N normal force 

q free-stream dynamic pressure 

-
R Reynolds number based on wing c 

S area of semispan wing 

t wing thickness 

angle of attack 

angle of attack for maximum lift 

thickness ratio, t/c 

€ wing semiapex angle 

APPARATUS AND TESTS 

The tests were conducted in the Langley 9- by 9- inch Mach number 4 
blowdown jet . A description of the jet along with a test - section flow 
calibration is presented in reference 10 . The settling- chamber pressure, 
which was held constant by a pressure regulating valve at approximately 
13 atmospheres, and the corresponding air temperature, which dropped 
from 750 F to approximately 300 F, were both continuously recorded during 
each test . This pressure and temperature range resulted in average test 
Reynolds numbers, based on wing mean aerodynamic chords, of 5.3 x 106 

and 6 .0 X 106 . 
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An external sidewall-mounted strain-gage balance was used to measure 
the normal force, chord force, pitching moment, and wing-root bending 
moment of the two wings. ~1e models were mounted as shown schematically 
in figure 1 to eliminate the effects of the tunnel-wall boundary layer 
and to minimize the gap around the root of the model. Surveys have indi­
cated that the sharp-leading-edge boundary-layer scoop-off plate has 
almost negligible effects on the air stream in the tunnel. Such effects 
have been computed to fall easily within the accuracy of the experimental 
data. The tests were made for an angle-of-attack range of _40 to 500 at 
a Mach number of 4.07. 

The tests were made at humidities below 5 x 10-6 pounds of water vapor 
per pound of dry air; these humidities should be low enough to eliminate 
water-condensation effects. The test-section static temperature and 
pressure did not reach values for which liquefaction of the air would 
occur. 

MODELS 

The models consisted of two steel semispan delta wings having, 
respectively, semiapex angles of 18.40 and 300 , aspect ratios of 1.33 
and 2.31, and double-wedge sections 8 percent and 5 percent thick. The 
wings are shown in schematic form as figure 2. 

PRECISION OF DATA 

The maximum inaccuracies of the experimental angles, forces, and 
moments due to balance and recording equipment limitations, and the 
average repeatability of the system have been estimated and are presented 
in the following table: 

Value 

. . 
Accuracy 

±O.l 
±O.OlO 
±0.010 
±O.OOl 

±0.OO5 
±o.o16 
±O.02 

The data are generally felt to be more accurate than the given values. 

• 
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THIDRETICAL METHODS 

Predictions of lift, drag, and centers of pressure were made for the 
two wings by linear theory (as in ref. 1), two-dimensional shock-expansion 
theory (ref. 11), Newtonian-impact theory (as applied in ref. 12), and 
Dorrance's method (ref. 9). Each of the drag predictions contains the 
same friction drag coefficient est~ated from references 13 and 14. 

Linear Theory 

It is realized that, for the Mach number and angles of attack of the 
present tests, linear theory is not strictly applicable because linear 
theory applies to slender wings at small angles. It has been shown in 
other high Mach number, high-angle investigations, however, that certain 
compensating factors are present so that, when the linear-theory slopes 
are extended to high angles, good resultant-force agreement is obtained 
from poor distribution agreement (refs. 6, 7, 8, and 15). It was to 
see whether the same compensating factors were present at higher Mach 
numbers and angles of attack that comparisons of linear-theory predic­
tions are made with the present experimental results. 

Shock-Expansion Theory 

Predictions of the two-dimensional shock-expansion theory have been 
shown to give good agreement with the lift-curve slope and wave drag for 
sharp-leading-edge delta wings having attached leading-edge shock waves. 
(See refs. 16 and 17.) The wings of the present investigation do not 
fall within the restriction of the theory that the leading-edge shock 
waves must be attached because the lower aspect-ratio wing, designated 
as wing 1, has such a large effective thickness that the leading-edge 
shock wave is detached even at ~ = 00 , and the leading-edge shock for 
wing 2 becomes detached at ~ = 100 • The shock-expansion predictions 
are given, nevertheless, for both wings to the angle for two-dimensional 
shock detachment to determine whether, as with the linear-theory predic­
tions, compensating factors exist that give a reasonable approximation 
of the resultant forces or slopes of the force curves outside the region 
of applicability of the theory. 

Newtonian-Impact Theory 

Bertram and McCauley (ref. 12) found that Newtonian theory (2 sin2~) 
gave fairly good lift predictions for low-aspect-ratio delta wings 
(E < 220 ) with rather large thicknesses having detached leading-edge 
shock waves between Mach mnnbers of 1. 6 and 6.9. For higher as.pect-ratio 
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wings with either attached or detached leading-edge shock waves, Bertram 
and McCauley found that two-dimensional shock-expansion theory gave 
better predictions. Since one wing of the present tests fell in each 
category, it was desirable to obtain theoretical predictions by both 
methods for the two wings. 

Dorrance's Method 

In reference 9 Dorrance derives aerodynamic coefficient expressions 
for airfoil sections in two-dimensional hypersonic flow which gave good 
agreement with experimental results for some three -dimensional wings 
having sections similar to those of the present test wings. The method 
employs the shock-wave and expansion-wave equations which are ordinarily 
used to determine the pressure ratios across the waves and expands them 
in terms of the two-dimensional hypersonic-flow similarity parameter K 
(K = Moo5) . This method is restricted to Moo ~ 3.19 and maximum angles 

of attack of approximately l/Moo • 

The method strictly applies only for the higher aspect-ratio wing 2 
to the angle for shock detachment but, for comparison purposes, it is 
presented for both wings to the angle for two-dimensional-shock detachment. 

Van Driest's Skin-Friction Method 

A skin-fr iction drag from Van Driest's theoretical methods for 
obtaining laminar and turbulent skin-friction coefficients (refs. 13 
and 14) is combined with each of the pressure-drag predictions presented 
in this discussion to obtain total-drag predictions. In applying 
Van Driest's methods, the turbulent boundary layer after transition from 
laminar flow was assumed to be the same as if the boundary layer had 
been turbulent the entire distance up to the transition points. These 
transition points for the two wings were determined experimentally from 
fluorescent-lacquer boundary-layer-visualization tests. (See fig . 3. ) 
The skin friction for t he laminar boundary layer ahead of this transi­
tion point and the turbulent boundary layer behind it were then combined 
according to equation (6) of reference 2. This total skin-friction drag, 
when applied, was assumed to be constant throughout the angle-of-attack 
range. 

RESULTS AND DISCUSSION 

The aerodynamic data for the two test wings are presented as func ­
tions of angle of attack in figures 4 to 9. The data were obtained at 

, 
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Reynolds numbers of 6.0 X 106 and 5 .3 X 106 for the aspect-ratio-l.33 
wing (designated as wing 1) and the aspect-ratio-2.31 wing (designated 
as wing 2), respectively. 

Normal-Force and Lift Results 

7 

The normal-force and lift results for the two wings, shown in fig­
ures 4 and 5, were almost as would be expected from lower Mach number 
tests. The one unanticipated variation from previous tests was that 
CLmax was not attained even at a = 500 • In order to obtain an indica-

tion of CLmax' the normal-force curves were first extrapolated about 
10 percent as shown in figure 4. The lift components of these normal­
force curves (CN cos ~) were then plotted as the solid lines in fig-
ure 5; by the proximity of these lines to the actual lift points, the 
normal-force component of the lift is shown to be significant and the 
chord-force component insignificant. This result, together with the 
approximate linearity of the normal-force curves at the high angles of 
attack, was the justification for using the extrapolated CN cos ~ for 

an indication of C for both wings. 
Imax 

References 6 and 18 present trends showing that CImax for low-

aspect-ratio delta wings decreases with increasing Mach number. The 
present results conform with this trend and extend it to M = 4.07 
(see fig. 10(a)). 

Another trend indicated by the present test data in conjunction 
with lower Mach number data is that the angle of attack at which CLmax 

is obtained (acLmax) increases with increasing Mach number from about 

410 at M = 1.5 to 540 at M = 4 .0. (See fig. 10(b).) 

Of the theoretical methods used for comparison, it is seen in figure 5 
that linear theory gives the best overall lift prediction to the point of 
maximum lift for both wings. This agreement indicates that linear theory 
may be useful in predicting lift up to M = 4.07. It should be remem­
bered, however, as pointed out in the "Theoretical Methods" section that 
comparisons of linear theory with experimental data up to M = 3.36 
(refs. 6, 7, 8, and 15) showed that, although lift predictions were good, 
the pressure distributions were usually very poor. 

The Newtonian-impact theory, although low in its lift predictions, 
does predict the trends of the lift curves including ac . With the 

lmax 
exception of Newtonian-impact theory, all the theoretical methods predicted 
the experimental C~ within 26 percent for wing 1 and within 4 percent 

for wing 2 . (See table I.) The poorer predictions for wing 1 no doubt 
occurred because the l eading- edge shock was detached even at ~ = 00 • 
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Drag Results 

The drag results are presented in figure 6 as a function of angle 
of attack. If the Newtonian-impact theory once more be excepted, because 
of its very low prediction, the remaining tbeoretical methods are shown 
in table I to predict the experimental minimum drag within 26 percent for 
wing 1 and within 7 percent for wing 2. It may also be seen from table I 
that the linear theory Cno for wing 1 shows the greatest disagreement 

of the remaining methods. This disagreement is in accordance with refer­
ence 16 which shows that, for double-wedge delta wings with tan € < 1.5, 

tan m 
the experimental CDO is much lower than the unrealistic peaks of the 

linear-theory curve. For both wings the drag is best predicted by linear 
theory throughout the angle-of-attack range. 

Moment and Centers-of-Pressure Results 

The chordwise center of pressure and pitching moment for both wings 
are shown in figure 7. The chordwise center of pressure for both wings 
moves rearward with increasing angle of attack as predicted by all methods 
except linear theory which does not predict any shift with angle of attack. 
It is shown in the pitching-moment plots that 4- or 5-percent root -chord 
disagreement in the center-of-pressure predictions makes a large discrep ­
ancy in the pitching-moment predictions as the experimental center of 
pressure is so near the pitching-moment reference (O.5c). Even though 
the linear theory predicts no center-of-pressure shift with change in 
angle of attack, the linear-theory predictions give the closest approxi­
mation to experimental results which show a movement of only ±4 percent 
of the wing-root chord. 

The spanwise center of pressure and the wing-root bending moment 
are shown in figure 8 for both wings. The experimental center of pressure 
shows a general inboard movement with increasing angle of attack; as all 
of the theoretical methods make no allowance for spanwise center of pres­
sure shift with change in angle of attack, they are all equally limited 
in their usefulness. For this investigation the predictions are within 
±7 percent wing semispan of the experimental centers of pressure . 

A plot of the two-dimensional center-of-pressure travel for both 
wings is shown as figure 9. Here the inboard, rearward movement of the 
center of pressure with increasing angle of attack is clearly shown . 
For wing 1 at the higher angles, the center of pressure begins to return 
outboard. This indication is the same as that shown for very low-aspect­
ratio wings at lower Mach numbers. (See refs. 7 and 8.) 

• 
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Lift -Drag-Ratio Results 

Plots of lift-drag ratio are shown for both wings as figure 11 . 
Maximum LID occurs at approximately ~ = 60 for wing 1 and at ~ = 40 
for wing 2 . Despite the limitations being exceeded for the lift and 
drag predictions, all the theoretical methods except the Newtonian- impact 
theory give very good predictions of the lift-drag ratio . 

CONCLUSIONS 

Wind - tunnel tests of two low-aspect -ratio double -wedge del ta wings 
in the Langley 9- by 9- inch Mach number 4 blowdown jet at a Mach number 
of 4 .07 and comparisons of the experimental data with lower Mach number 
tests and with several theoretical methods indicate the following 
conclusions : 

1 . The maximum lift coefficient CLmax for low- aspect -ratio delta 

wings decreases with increasing Mach number . 

2. The angle of attack for the maximum lift coefficient 

for low- aspect-ratio delta wings increases with increasing Mach number 
to at least a Mach number of 4 .07 . 

3. Although probably fortuitously, linear theory gives generally 
the best predictions for all the aerodynamic data obtained in the 
present tests . 

4 . The center of pressure for delta wings moves inboard and rearward 
with increasing angle of attack, and for very low- aspect -ratio (A < 2) 
delta wings at high angles of attack (~ > 350 ) begins to return outboar d 
while still moving rearward . 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va . , April 12, 1957 . 
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TABLE I 

EXPERJMENTAL AND THIDRETICAL WING PARAMETERS 

Wing 1; aspect -ratio- l .33 delta wing ; E = 18 . 40 

CLa, CDo (L/D)max 
(1) 

Experiment 0 . 0150 0 .0093 4 .78 
Linear theory .0177 . 0117 4 . 65 
Shock-expansion theory .0185 .0108 4 . 95 
Newtonian- impact theory . 0050 . 0052 3 . 35 
Dorrance ' s method (ref . 9) .0189 . 0107 4 . 57 

Wing 2 ' , aspect - ratio- 2 .31 delta wing ; E = 300 

Experiment 0 .0184 0 .0061 6 . 57 
Linear theory . 0177 . 0065 6 .16 
Shock-expansion theory . 0177 . 0064 6 . 31 
Newtonian- impact theory .0029 . 0040 3 . 81 
Dorrance ' s method (ref . 9) . 0180 . 0060 6 . 25 

l All theoretical predictions for Cno contain a skin­

friction drag coefficient computed from references 13 and 14 
(0 .0043 for wing 1 and 0 .0038 for wing 2) . 
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Section A - A 

---+---~=---

A 

-----

Cover plate 

Sliding plate 

~ Rotating parts 

fZ;I Stationary parts 

Air now -

Enlarged section B-B 

Figure 1.- Schematic diagram of Langley 9- by 9-inch Mach number 4 blow­
down jet showing model and balance arrangement. 

• 
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