

H58D29

3

RESEARCH MEMORANDUM

EFFECT OF LEADING-EDGE-FLAP DEFLECTION ON THE WING

LOADS, LOAD DISTRIBUTIONS, AND FLAP HINGE

MOMENTS OF THE DOUGLAS X-3 RESEARCH

AIRPLANE AT TRANSONIC SPEEDS

By Earl R. Keener, Norman J. McLeod, and Norman V. Taillon

> High-Speed Flight Station Edwards, Calif.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON July 15, 1958 Declassified October 28, 1960

NACA RM H58D29

S

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EFFECT OF LEADING-EDGE-FLAP DEFLECTION ON THE WING

LOADS, LOAD DISTRIBUTIONS, AND FLAP HINGE

MOMENTS OF THE DOUGLAS X-3 RESEARCH

AIRPLANE AT TRANSONIC SPEEDS*

By Earl R. Keener, Norman J. McLeod, and Norman V. Taillon

SUMMARY

Wing loads and load distributions were obtained by differentialpressure measurements between the upper and lower surfaces of the wing of the Douglas X-3 research airplane with various leading-edge-flap deflections. An analysis is presented showing the effect of deflecting the leading-edge flap on the wing characteristics at Mach numbers from 0.55 to 0.9. In addition, the load and hinge-moment characteristics of the leading-edge flap are presented for Mach numbers up to 1.15 with the flap undeflected and for Mach numbers up to 0.9 with the flap deflected.

Deflecting the leading-edge flap affects the chordwise load distribution over about 75-percent chord, and the effects are generally similar at each wing station. The deflected flap delays leading-edge-flow separation to higher angles of attack, and, as a result, the maximum normal-force coefficient is 0.05 to 0.1 greater with flap deflected a nominal 7° at Mach numbers up to 0.76 and about 0.3 greater with the flap deflected a nominal 27° at a Mach number of about 0.55. Below maximum lift, deflecting the flap about 7° does not change the normal-force coefficient appreciably at a given angle of attack; however, the center of pressure is moved rearward over most of the lift range, the rearward displacement increasing with increasing Mach number. No change occurs in the spanwise location of the center of pressure with flap deflection.

Deflecting the flap decreases the flap normal-force and hingemoment coefficients considerably at a particular angle of attack; however, the maximum normal-force and hinge-moment coefficients increase with flap deflection as a result of the delay in leading-edge-flow separation. The hinge-moment coefficient of the leading-edge flap is an approximately linear function of the normal-force coefficient of the flap.

Title, Unclassified.

Wind-tunnel results from an X-3 model and from models of similar wings show the same effects on the load and pitching-moment characteristics of deflecting the leading-edge flap as are shown by the flight results. The chordwise load distributions from wind tunnel and flight are similar, although at the higher angles of attack the peak loads at the leading edge and flap hinge line are higher for the flight data.

INTRODUCTION

Thin wings used on supersonic aircraft present aerodynamic problems at subsonic speeds as a result of early separation of the flow on the upper surface, beginning at the leading edge (ref. 1). Leading-edge flaps have been shown to improve the landing characteristics of these wings by delaying the leading-edge separation to higher angles of attack, thus increasing the maximum lift (ref. 2). In addition, wind-tunnel tests have shown that a cambered leading edge, such as a deflected leading-edge flap, improves the cruising characteristics of these wings because of an increase in lift-drag ratio for moderate angles of attack (refs. 2 to 4).

As a result of the probable use of leading-edge flaps and cambered leading edges on thin wings, a flight investigation was conducted to determine the effect of deflecting the leading-edge flap on the wing and flap loads and on the detailed load distributions. Utilizing the Douglas X-3 research airplane, the investigation was conducted at the NACA High-Speed Flight Station at Edwards, Calif. The X-3 is a thin wing airplane designed to explore the subsonic and low supersonic Mach number range. The wing is unswept at the 75-percent chord line and has an aspect ratio of 3.09, a taper ratio of 0.39, and a modified 4.5percent-thick hexagonal section. The leading-edge flap is a plain, constant-chord, full-span flap. References 5 and 6 present an analysis of the wing and flap loads and load distributions obtained by differential-pressure measurements between the upper and lower surfaces of the wing with leading-edge flap undeflected and some preliminary results with leading-edge flap deflected. The data herein supplement the previous data by presenting a more complete analysis of the effects of deflecting the leading-edge flap over a Mach number range of 0.5 to 0.9. In addition, the load and hinge-moment characteristics of the leading-edge flap are presented for Mach numbers up to 1.15 with flap undeflected and for Mach numbers up to 0.90 with the flap deflected. For these tests the flaps were deflected down a nominal 7° at Mach numbers up to 0.9 and a nominal 27° at Mach numbers up to 0.7. A brief comparison with wind-tunnel results is presented.

CNA

SYMBOLS

- b/2 wing semispan, ft
- b'/2 wing-panel span, spanwise distance from first row of orifices (0.301b/2) to wing tip, ft
- C_{b}' wing-panel bending-moment coefficient about Ob'/2, $\int_{0}^{1} c_{n} \frac{c}{c'_{ov}} \frac{2y'}{b'} d \frac{2y'}{b'}$
- $C_{h_{f}}$ leading-edge-flap hinge-moment coefficient, $\int_{0}^{1} c_{h_{f}} d \frac{2y'}{b'}$

C_m' wing-panel pitching-moment coefficient about 0.25°,

$$\frac{c'av}{\bar{c}'} \int_0^1 c_m' \left(\frac{c}{c'av}\right)^2 d\frac{2y'}{b'}$$

airplane normal-force coefficient, Wn/qS

$$c_{\rm N}'$$
 wing-panel normal-force coefficient, $\int_0^{'l} c_{\rm n} \frac{c}{c'_{\rm av}} d\frac{2y'}{b'}$

 $C_{N_{f}}$ leading-edge-flap normal-force coefficient, $\int_{0}^{1} c_{n_{f}} d \frac{2y^{\dagger}}{b^{\dagger}}$

$$C_p$$
 differential-pressure coefficient, $\frac{p_l - p_u}{q}$

c local wing chord, streamwise, ft

$$\bar{c}'$$
 mean aerodynamic chord of wing panel, 2/S' $\int_0^{b'/2} c^2 dy'$, ft

c'av average chord of wing panel, ft

cf local leading-edge-flap chord, streamwise, ft

leading-edge-flap section hinge-moment coefficient,

$$\int_0^1 C_p \left(1 - \frac{x}{c_f}\right) d \frac{x}{c_f}$$

cm

wing-section pitching-moment coefficient about 0.25c, $\int_{0}^{1} C_{p} \left(0.25 - \frac{x}{c}\right) d \frac{x}{c}$

c_m'

section pitching-moment coefficient about line perpendicular to longitudinal axis of airplane, passing through $0.25\bar{c}'$, $c_m + 0.50(1 - \bar{c}'/c)c_n$

$$c_n$$
 wing-section normal-force coefficient, $\int_0^1 c_p d \frac{x}{c}$

 $c_{n_{f}}$ leading-edge-flap section normal-force coefficient, $\int_{c_{f}}^{c_{p}} d \frac{x}{c_{f}}$

g acceleration due to gravity, ft/sec²

M free-stream Mach number

n normal-load factor, g units

p1 local static pressure on lower wing surface, lb/sq ft

pullocal static pressure on upper wing surface, lb/sq ft

q free-stream dynamic pressure, lb/sq ft

S total wing area, including area projected through fuselage, sq ft

S'/2 area of wing panel (outboard of 0.301b/2), sq ft

W airplane weight, lb

x chordwise distance rearward of leading edge of local chord, ft

 x_{cp} chordwise location of center of pressure of wing section, (0.25 - c_m/c_n)100, percent c

chf

x'cp	chordwise location of center of pressure of wing panel from leading edge of \bar{c} ', (0.25 - $C_{\rm m}$ '/ $C_{\rm N}$ ')100, percent \bar{c} '
у'	spanwise distance outboard of Ob'/2, ft
у'ср	spanwise location of center of pressure of wing panel, $(C_{\rm b}'/C_{\rm N}')100$, percent b'/2
a	measured airplane angle of attack, deg
δaL	left aileron position, deg
δf	leading-edge-flap position, deg

DESCRIPTION OF AIRPLANE AND WING PANEL

A three-view drawing presenting the overall dimensions of the Douglas X-3 research airplane is shown in figure 1. Photographs of the airplane, including several views of the wing with the leading-edge flap deflected, are shown in figure 2. The physical characteristics of the airplane, wing panel, and leading-edge flap are given in table I. The leading-edge flap is normally used during the landing approach in the full-down position in combination with the trailing-edge flaps.

A drawing of the wing and leading-edge flap is shown in figure 3. The wing has an aspect ratio of 3.09, a taper ratio of 0.39, and zero incidence, dihedral, and twist. The common-chord line at 75-percent local chord is unswept. The wing section is a 4.5-percent-thick modified hexagonal airfoil with vertices at 30- and 70-percent chord. Modifications to the airfoil consisted of a 188-inch radius at 30- and 70-percent chord and a small radius at the leading and trailing edges, as shown in table II. As a result, the wing-section ordinates vary along the span. Table II includes the ordinates of the wing section at five spanwise stations corresponding to the location of the rows of static-pressure orifices. The test panel of the wing over which pressures were measured consists of the portion of the left wing outboard of the first row of orifices (0.301b/2).

The leading-edge flap has a constant streamwise chord of 12.5 inches and extends from the fuselage to the wing tip. Two control-actuator fairings are located on the bottom surface of each wing, as shown in figures 1 and 3. The flap may be deflected to either of two nominal positions; the actual deflection in each position varies slightly under load. generally less than $\pm 2^{\circ}$. During these tests the average deflections for the two positions were 7° and 27°, respectively. Twist in the leading-edge flap is estimated from static tests to be less than 1° with flap undeflected and less than 2° with flap deflected. Structural limitations prohibited the deflection of the leading-edge flap at Mach numbers above 0.7 for 27° deflection and 0.9 for 7° deflection.

INSTRUMENTATION AND ACCURACY

Standard NACA film-recording instruments were used to record the wing differential pressures, indicated free-stream static and dynamic pressures, normal acceleration, angle of attack, angle of sideslip, aileron position, leading-edge-flap position, and rolling and pitching angular velocities and accelerations. The indicated free-stream static and dynamic pressures were obtained from a standard NACA airspeed head mounted on a nose boom, and the static-pressure error was determined in flight. Angles of attack and sideslip were measured by vanes mounted on the nose boom. Leading-edge-flap position was measured at the inboard control actuator. All instruments were correlated by a common timer.

Flush-type static-pressure orifices installed in the left wing were arranged in five streamwise rows. The chordwise locations of the orifices are given in table III, and the spanwise locations are shown in figure 3. The orifices were connected by tubing through the wing to multicell mechanical manometers in the instrument compartment. Lag in the pressure-recording system was determined by the method for photographic instruments presented in reference 7 and was checked in flight by comparing pressure measurements from abrupt and gradual maneuvers. The lag was found to be negligible for the data presented in this paper.

Estimated maximum errors of the pertinent recorded quantities and the resulting coefficients are:

M . Diff	Ter	rer	nti	al	I	ore	ss	ur	·e	me	as	sur	en	ner	nts	•	I	7	•	p _l	•	11		9q	ft	•	•	:	•	•	±0.01 ±7
n. _{δf}	ar	nd	•	ba _I	•	de	·	•	•	•	•	•		•	:	•	•	•	•	•	:	•	:	•	•	•	•	•	•	•	±0.05 ±0.2
Cp cn	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	±0.02 ±0.03
cm		•	•	•		•	•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	۰	•	•	٠		•	±0.01
cnf					•										٩						•		•	۰	•	•		•		٠	±0.05

chf	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±0.03
CNA	•															•	•	•	•	•		•		•		•	•		•	•	±0.02
C _N '																															±0.04
Cm'																													•		±0.02
CNF															•			•	•		•	•	•		•	•			•		±0.07
Chf																															±0.05

TESTS

The data presented were obtained from wind-up turns at Mach numbers from 0.71 to 1.14 at an altitude of about 30,000 feet and from levelflight stall approaches at an altitude of about 20,000 feet during which the Mach number decreased from 0.65 to 0.45. Tests with the leadingedge flap deflected were conducted to the maximum Mach number prescribed by structural limitations. Reynolds number based on the mean aerodynamic chord of the wing varied between 16×10^6 and 26×10^6 .

DATA REDUCTION AND PRESENTATION

Automatic digital computing equipment was used to obtain pressure coefficients from the recorded data and to perform the chordwise and spanwise integrations necessary to obtain the normal-force and pitchingmoment coefficients. The leading-edge-flap normal-force and hingemoment coefficients were obtained by integrating the load distributions ahead of the hinge line. Since the orifice rows are streamwise, the flap section characteristics are for sections that are not normal to the hinge line as is usually desired; however, the differences between the values obtained for the streamwise sections and the values that would be obtained for normal sections are considered to be negligible. Finally, it should be noted that for $\delta_f \approx 27^{\circ}$ an appreciable error occurred in the wing-section normal-force coefficient obtained by integrating the differential pressures. As a result, a correction was made by resolving the normal force of the flap to its component normal to the wing chord. A similar correction was made to the wing-section pitching-moment coefficient. The error for $\delta_f \approx 7^\circ$ was considered to

be negligible.

The pressure coefficients and aerodynamic characteristics obtained from the wing differential-pressure measurements are tabulated in

1

tables IV to VI for $\delta_{\rm f} = 0^{\circ}$, 7°, and 27° at M ≈ 0.55 . These data were obtained from stall approaches in which the actual Mach number decreased from about 0.65 to 0.45. Tables VII and VIII present the data for $\delta_{\rm f} \approx 7^{\circ}$ at M ≈ 0.85 and 0.90, respectively. Data for $\delta_{\rm f} = 0^{\circ}$ at Mach numbers of 0.71 to 1.15 and for $\delta_{\rm f} \approx 7^{\circ}$ at M ≈ 0.71 , 0.76, and 0.80 are tabulated in reference 6. The leading-edge-flap normal-force and hinge-moment coefficients are presented in tables IX to XI.

RESULTS AND DISCUSSION

Chordwise Load Distributions

Representative chordwise load distributions selected from the tabulated data for leading-edge flap deflected are presented as oblique projections in figure 4. This figure will be used throughout the discussion to explain some of the results. Included in figure 4 are the load distributions for $\delta_{\rm f} = 0^{\circ}$ to show the effect of deflecting the leading-edge flap.

 $\delta_{f} \approx 7^{\circ}$. At Mach numbers of approximately 0.55 and 0.71 (figs. 4(a) and (b)) only a moderate change is evident in the chordwise load distributions over most of the lift range when the leading-edge flap is deflected about 7°. However, at $\alpha \approx 3^{\circ}$ (M \approx 0.71) the loading at the leading edge is noticeably reduced when the flap is deflected, and the loading at the hinge is increased. Deflecting the flap produces similar results at all wing stations, except for some flap end effect at the leading edge of the inboard station. The deflected flap affects the pressures over about 75 percent of the local chord.

At $M \approx 0.90$ (fig. 4(c)) deflecting the flap causes a larger change in the leading-edge loading at the lower angles of attack; however, at $\alpha = 9^{\circ}$ the effect is greatly reduced. Data for $\delta_{f} \approx 7^{\circ}$ were not obtained above $\alpha = 9^{\circ}$ at $M \approx 0.90$.

 $\delta_{\rm f}\approx 27^{\rm o}$.- When the leading-edge flap is deflected about 27° at $M\approx 0.55$ (fig. 4(a)), a larger change occurs in the chordwise load distributions than for $\delta_{\rm f}\approx 7^{\rm o}$. At the lower angles of attack a large negative load occurs at the leading edge, changing rapidly to a large positive load as a result of the expansion of the flow over the hinge line. As the angle of attack increases, the loading near the leading edge becomes positive and increases continuously to the maximum angles of attack measured. As for $\delta_{\rm f}\approx 7^{\rm o}$, the result of deflecting the flap

NACA RM H58D29

S

is similar at all wing stations, and the deflected flap affects the pressures over about 75 percent of the local chord.

Leading-edge-separation boundary.- The effects of leading-edgeflow separation on the characteristics of the X-3 wing are discussed in reference 6, and an approximate boundary for separation with leadingedge flap undeflected is presented. It is shown that the leading-edgeflow separation starts at low angles of attack and results in low values of maximum lift at Mach numbers up to about 0.9; however, above this Mach number the flow around the leading edge remains attached up to high angles of attack and results in high values of maximum lift.

A similar boundary illustrating the effect of leading-edge-flap deflection on leading-edge separation is presented herein. In determining the boundary, the resulting loss in local lift at the leading edge was used to determine the approximate angle of attack for leading-edge-flow separation. Figure 5 shows representative plots of C_p against α at three wing stations for the orifice closest to the leading edge for both flap undeflected and flap deflected. The angle of attack was taken to be indicative of leading-edge-flow separation. At $M \approx 0.55$ with flap undeflected, separation had already occurred at the lowest angle of attack for these tests, and at M = 0.85 the angle of attack reached with flap deflected in these tests was not sufficient to cause separation.

In all cases shown in figure 5, deflecting the leading-edge flap results in a higher angle of attack being reached before separation; the effects of this on the chordwise load distributions may be seen in figure 4. The delay in separation explains the larger loading at the leading edge for $\delta_f \approx 7^\circ$ than for $\delta_f = 0^\circ$ at moderate angles of attack and Mach numbers of about 0.55 and 0.71.

Figure 6 shows the resulting boundaries for leading-edge-flow separation for the root, midsemispan, and tip orifice stations determined from data typical of those shown in figure 5. Deflecting the leading-edge flap about 7° at Mach numbers between 0.7 and 0.8 delays the onset of leading-edge-flow separation to an angle of attack about 4° greater than for $\delta_{\rm f} = 0^{\circ}$. Deflecting the flap 27° results in a still larger increase in angle of attack before separation at the midsemispan and tip stations; no separation was indicated at the root station. It may be noted that separation did not occur simultaneously at all spanwise stations across the wing for either flap undeflected or deflected. The effect of Mach number is large; for $\delta_{\rm f} \approx 7^{\circ}$ the minimum angle of attack for separation occurs at a Mach number near 0.7. At $\delta_{\rm f} = 0^{\circ}$ and Mach numbers below 0.7 the boundary for leading-edge separation could not be established because separation had already occurred at the lowest angle of attack of these tests.

Wing-Section and Wing-Panel Characteristics

The effect of deflecting the leading-edge flap on the normal-force coefficient, pitching-moment coefficient, and center of pressure of the wing section at root, midsemispan, and tip orifice stations is shown in figure 7. The effect of flap deflection on the wing-panel characteristics for the same conditions is presented in figure 8.

<u>Normal-force coefficient</u>.- Deflecting the leading-edge flap about 7° has little effect on the section and panel normal-force curves except at angles of attack near the stall. This is explained by the chordwise load distributions of figure 4 which show that when the flap is deflected 7° at low angles of attack the load decreases near the leading edge, but increases over the hinge line. Conversely, at the higher angles of attack the load increases near the leading edge as a result of the delay in leading-edge-flow separation, but decreases behind the hinge line. In either case, total load changes only slightly; however, the maximum C_N' (fig. 8(a)) is increased about 0.05 to 0.1 in the Mach number range up to 0.76 as a result of the delay in leading-edge-flow separation. At the higher Mach numbers no conclusions can be drawn from the data obtained concerning maximum C_N' in figure 8(a), since maximum C_N' was not reached with either flap undeflected or deflected.

Deflecting the leading-edge flap 27° at $M\approx 0.55$ decreases the normal-force coefficient slightly at the root and tip wing sections throughout most of the angle-of-attack range; however, a large increase in the maximum normal-force coefficient that is obtainable is realized as a result of the delay in leading-edge-flow separation. Maximum obtainable $C_{\rm N}'$ increases from about 0.67 for $\delta_{\rm f}=0^{\circ}$ to about 0.95 for $\delta_{\rm f}\approx 27^{\circ}.$

<u>Pitching-moment coefficient</u>.- As a result of the change in chordwise load distribution when the leading-edge flap is deflected about 7°, the section and panel pitching-moment curves are shifted in the negative direction over most of the lift range as the center of pressure is moved rearward by the deflected flap (figs. 7 and 8(b)). Flap deflection also delays to a higher normal-force coefficient the strong nose-down moment that occurs near maximum lift. Increasing the flap deflection to 27° at $M \approx 0.55$ increases the effects noted for $\delta_f \approx 7^\circ$. Bending-moment coefficient. - The bending-moment coefficient of the wing panel experiences no change when the leading-edge flap is deflected (fig. 8(c)).

Center of pressure.- As a result of the change in chordwise load distribution when the leading-edge flap is deflected, the chordwise position of the center of pressure is rearward of that for $\delta_f = 0^\circ$ over most of the lift range (figs. 7 and 8(d)). The effect of Mach number for $\delta_f \approx 7^\circ$ is to increase the rearward displacement. At high lift the center of pressure with the flap deflected is slightly forward of that for $\delta_f = 0^\circ$. The spanwise position of the center of pressure is unaffected by flap deflection (fig. 8(e)).

Span Load and Pitching-Moment Distributions

Reference 6 shows that the span load distribution with leading-edge flap undeflected is nearly elliptic for most of the lift range. Figure 9 shows that deflecting the leading-edge flap has little effect on the span load distribution below wing stall. This results, of course, from the previously noted fact that deflecting the flap has little effect on the wing-section normal-force coefficient or the spanwise position of the center of pressure.

Figure 10 shows that deflecting the leading-edge flap has little effect on the shape of the pitching-moment distribution, because the previously mentioned change in the pitching moment at each wing section occurs almost uniformly over the span.

Leading-Edge-Flap Characteristics

The variation of the flap normal-force coefficient and hinge-moment coefficient with angle of attack for leading-edge flap undeflected and deflected is presented for the root, midsemispan, and tip sections in figure 11 and for the total flap in figure 12. In addition, the variation of $C_{\rm hf}$ with $C_{\rm Nf}$ is shown in figure 13. The data cover the Mach number range from 0.55 to 1.15. When the leading-edge flap is undeflected, the variation of the section and total normal-force and hingemoment coefficients with angle of attack is approximately linear up to maximum normal-force coefficient at the lower Mach numbers. As the Mach number increases, the curves become increasingly nonlinear. As would be expected, the angle of attack for maximum flap-section normal-force coefficient correlates closely with the leading-edge-separation boundary

shown in figure 6. Above M = 0.9 no leading-edge separation is indicated and a maximum normal-force coefficient is not reached. The magnitudes of c_{n_f} and C_{N_f} are naturally much larger than the corresponding magnitudes of c_n and $C_{N'}$, since the forward portion of the wing carries the greater percentage of the load. Also, at the lower Mach numbers, the flap loading is noticeably greater inboard than at the tip.

In general, deflecting the flap decreases the load and hinge moment at a given angle of attack, but noticeably increases the maximum load and hinge moment as a result of the delay in the leading-edge-flow separation.

The direct dependence of hinge moment on normal force is shown in figure 13 in which $C_{h_{f}}$ is an approximately linear function of $C_{N_{f}}$ for both flap undeflected and flap deflected, indicating very little

change in center of pressure for the flap.

Comparison With Wind-Tunnel Data

A comparison of the flight data with the wind-tunnel data of reference 8 for a 0.16-scale model of the X-3 is presented in figures 14 to 16 for M = 0.55 to 0.90 with the leading-edge flap deflected. A comparison of similar data for $\delta_f = 0^\circ$ was made in reference 6, where good agreement was obtained at Mach numbers below 0.90. Figure 14 presents chordwise load distributions for midsemispan stations of the wing for both flight and wind-tunnel data. In general, the chordwise load distributions from wind-tunnel and flight are similar for both $\delta_f \approx 7^\circ$ and $\delta_f \approx 27^\circ$, although at the higher angles of attack the peak pressures at the leading edge and at the flap hinge line are higher for the flight data than predicted by the wind-tunnel tests, and the pressures rearward of 40-percent chord are lower than predicted. Figures 15 and 16 present the variation of c_n , c_{nf} , and c_{hf} with angle of attack

for the midsemispan stations of the wing for both flight and wind-tunnel data. The wind-tunnel data were obtained by integrating the pressure distributions presented in reference 8.

Other wind-tunnel results from an X-3 model (ref. 9) and from models of thin wings similar to the X-3 (refs. 2 to 4) show the same effects on the load and pitching-moment characteristics of deflecting the leadingedge flap as discussed herein, although maximum lift coefficient is about 0.1 higher for the wind-tunnel models.

CONCLUDING REMARKS

Wing loads and load distributions were obtained by pressure measurements over the wing of the Douglas X-3 research airplane with leadingedge flap deflected. The data cover the angle-of-attack range of the airplane at Mach numbers up to 0.90 with the flap deflected. In addition, the normal-force and hinge-moment characteristics of the leadingedge flap are presented for Mach numbers up to 1.15 with flap undeflected, as well as for Mach numbers up to 0.90 with flap deflected.

Deflecting the leading-edge flap affects the chordwise load distribution over about 75-percent chord, and the effects are generally similar at each wing station. The deflected flap delays leading-edgeflow separation to higher angles of attack, and, as a result, the maximum normal-force coefficient is 0.05 to 0.1 greater with flap deflected a nominal 7° at Mach numbers up to 0.76 and about 0.3greater with the flap deflected a nominal 27° at a Mach number of about 0.55. Below maximum lift, deflecting the flap about 7° does not change the normal-force coefficient appreciably at a given angle of attack; however, the center of pressure is moved rearward over most of the lift range, the rearward displacement increasing with increasing Mach number. No change occurs in the spanwise location of the center of pressure with flap deflection.

Deflecting the flap decreases the flap normal-force and hingemoment coefficients considerably at a particular angle of attack; however, the maximum normal-force and hinge-moment coefficients increase with flap deflection as a result of the delay in leading-edge-flow separation. The hinge-moment coefficient of the leading-edge flap is an approximately linear function of the normal-force coefficient of the flap.

Wind-tunnel results from an X-3 model and from models of similar wings show the same effects on the load and pitching-moment characteristics of deflecting the leading-edge flap as are shown by the flight results. The chordwise load distributions from wind tunnel and flight are similar, although at the higher angles of attack the peak loads at the leading edge and flap hinge line are higher for the flight data.

High-Speed Flight Station, National Advisory Committee for Aeronautics, Edwards, Calif., April 14, 1958.

REFERENCES

- McCullough, George B., and Gault, Donald E.: Examples of Three Representative Types of Airfoil-Section Stall at Low Speed. NACA TN 2502, 1951.
- Johnson, Ben H., Jr., and Reed, Verlin D.: Investigation of a Thin Wing of Aspect Ratio 4 in the Ames 12-Foot Pressure Wind Tunnel. IV - The Effect of a Constant-Chord Leading-Edge Flap at High Subsonic Speeds. NACA RM A8K19, 1949.
- Heitmeyer, John C.: Effect of a Leading-Edge Flap Upon the Lift, Drag, and Pitching Moment of an Airplane Employing a Thin, Unswept, Wing. NACA RM A54B16, 1954.
- 4. Schmeer, James W.: Effect of Leading-Edge Droop on the Aerodynamic and Loading Characteristics of a 4-Percent-Thick Unswept-Wing-Fuselage Combination at Transonic Speeds. NACA RM L56C14, 1956.
- Jordan, Gareth H., and Hutchins, C. Kenneth, Jr.: Preliminary Flight-Determined Pressure Distributions Over the Wing of the Douglas X-3 Research Airplane at Subsonic and Transonic Mach Numbers. NACA RM H55ALO, 1955.
- 6. Keener, Earl R., and Jordan, Gareth H.: Wing Loads and Load Distributions Throughout the Lift Range of the Douglas X-3 Research Airplane at Transonic Speeds. NACA RM H56G13, 1956.
- 7. Huston, Wilber B.: Accuracy of Airspeed Measurements and Flight Calibration Procedures. NACA Rep. 919, 1948.
- Cleary, Joseph W., and Mellenthin, Jack A.: Wind-Tunnel Tests of a 0.16-Scale Model of the X-3 Airplane at High Subsonic Speeds -Wing and Fuselage Pressure Distribution. NACA RM A50D07, 1950.
- Hamilton, William T., and Cleary, Joseph W.: Wind-Tunnel Tests of a 0.16-Scale Model of the X-3 Airplane at High Subsonic Speeds -Stability and Control Characteristics. NACA RM A50A03, 1950.

TABLE I.- PHYSICAL CHARACTERISTICS OF THE DOUGLAS X-3 AIRPLANE

wing:	
Airfoil section	a nexagon
Airfoil thickness ratio, percent chord	4.7
Total area, sq ft	22.69
Span, ft	7 84
Mean aerodynamic chora (Wing station 4.01 it), it	10.58
Root chord, It	4.11
The chora (extended), it	0.39
Taper Fablo	3.09
Aspect ratio	0
Sweep at 0.() chord the, deg	23.16
Sweep at leading edge, deg	-8.12
Tradiance der	0
Dihadral dag	0
Differential, ueg	0
Leading along flat.	
Reading-coge flap:	Plain
Area (arch) co.ft	8.38
Gran at hings line (each) ft	8.916
Chord normal to hinge line (ach), 10	11.49
Traval leading edge down, deg	30
ITaver, reading cuge down, deg	
Wing name (outboard of wing station 3.415 ft):	
Area (one nanal) so ft	50.42
And (one panel), by to the	7.93
Non conductive failed, the station 6.85 ft) ft	6.68
Mean act obymanic chord (wing Station 0.0) 10/, 10	6.37
Average chora, it	
Tendentel tedle	
Horizontal tall: Modifi	d hexagon
Airfold Stellerer while at west shard report shard	8.01
Africial thickness ratio authority, percent chord	4.50
Airioi thickness ratio bubbard of station 20, percent chord	43.24
Total area, sq It	13.77
Span, It	3.34
Mean aerodynamic chord, it	4.475
Root chord, it	1.814
Tip chora, it	0.405
laper ratio	4.38
Aspect ratio	21.14
Sweep at leading edge, deg	0
Sweep at trailing edge, deg	0
Dinedral, deg	0
l'ravel:	
	. 6
Leading edge up, deg	- 6
Leading edge up, deg	6 17 46.46
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord	6 17 46.46
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord .	6 17 46.46
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord	6 17 46.46
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord . Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil thickness ratio, percent chord Area, sq ft .	6 17 46.46 ed hexagon 4.5 23.73 5.59
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Modifi Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Area, sq ft . Span, (from horizontal-tail hinge line), ft . Mean aerodynamic chord, ft . Root chord, ft . Tip chord, ft .	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Modifi Airfoil thickness ratio, percent chord Area, aq ft . Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio	6 17 46.46 ed hexagon 4.5 5.59 4.69 6.508 1.93 0.292 1.315
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Modifi Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Text	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 45 9,30
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 45 9.39
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Modifi Airfoil thickness ratio, percent chord Area, sq ft . Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Sweep at trailing edge, deg Rudder: Area reservered of hinge line, sq ft	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 9.39 5.441
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.55 23.75 5.59 4.69 6.508 1.93 0.292 1.315 45 9.39 9.39 5.441 3.535
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 9.39 5.441 3.535 1.98
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 45 9.39 5.441 3.535 1.98 1.097 ±20
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Modifi Airfoil thickness ratio, percent chord Area, sq ft . Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Travel, deg	6 17 46.46 ed hexagon 4.55 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Wertical tail: Airfoil section Airfoil sizetion Modifi Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft The chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at leading edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Travel, deg Fuselage: Image: Image:	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 9.39 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section . Airfoil section . Modifi Airfoil thickness ratio, percent chord Area, sq ft . Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Tip chord, ft . Taper ratio . Aspect ratio . Sweep at leading edge, deg Sweep at leading edge, deg Rudder: Area, rearward of hinge line, sq ft . Span at hinge line, ft . Tip chord, ft . Travel, deg .	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Modifi Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft <	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 45 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Modifi Airfoil thickness ratio, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Travel, deg Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Maximum height, ft Maximum height, ft Base area, sq ft	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 45 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tall: Airfoil section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.53 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Marca, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Travel, deg Fuselage: Length including boom, ft Maximum width, ft Maximum height, ft Base area, sq ft Powerplant: Engines	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.555 1.98 1.097 ±20 66.75 6.08 4.81 7.94
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Wertical tail: Airfoil section . Airfoil section . Airfoil thickness ratio, percent chord Area, sq ft . Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Taper ratio Aspect ratio Aspect ratio Sweep at leading edge, deg Sweep at trailing edge, deg Rodte: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Travel, deg Puselage: Length including boom, ft Maximum width, ft Maximum height, ft Base area, sq ft Powerplant: Rating, each engine: Top is and honge:	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Marca, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Root chord, ft Tip chord, ft Taper ratio Aspect ratio Sweep at trailing edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span thinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Travel, deg Puselage: Length including boom, ft Maximum width, ft Base area, sq ft Powerplant: Engines Static sea-level maximum thrust, lb Christe were level maximum thrust, lb	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4.850 3.370
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Wertical tail: Airfoil section Airfoil thickness ratio, percent chord Area, ag ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft The phord, ft The phord, ft The phord, ft Root chord, ft The phord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at leading edge, deg Rudder: Arca, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Travel, deg Fuselage: Length including boom, ft Maximum width, ft Maximum width, ft Maximum height, ft Base area, sq ft Base area, sq ft Static sea-level minitum thrust, lb Static sea-level minitum thrust, lb	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.29 0.395 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370
Leading edge up, deg Lading edge down, deg Hinge-line location, percent root chord Vertical tail: Airfoil section Airfoil section Marge Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Thy chord, ft The phord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at leading edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft The chord, ft The chord, ft Span at hinge line, ft Root chord, ft Thavel, deg Fuselage: Length including boom, ft Maximum width, ft Base area, sq ft Powerplant: Ragines Two Westinghouse J34-WE-17 with a Ratic sea-level maximum thrust, lb Static sea-level military thrust, lb	6 17 46.46 ed hexagon 4.5 23.73 5.59 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Vertical tail: Afroil section Minge line location, percent chord Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span thing line, ft Root chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Tip chord, ft Travel, deg Fuselage: Length including boom, ft Maximum width, ft Maximum helpht, ft Base area, sq ft Powerplant: Maximum edge: Powerplant: Static sea-level maximum thrust, lb Static sea-level maximum thrust, lb Static sea-level military thrust, lb	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4.850 3.370 16.120
Leading edge down, deg Leading edge down, percent root chord Hinge-line location, percent root chord Wertical tail: Airfoil section Airfoil section Marce, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft The chord, ft The chord, ft Taper ratio Aspect ratio Sweep at leading edge, deg Sweep at leading edge, deg Rudder: Area, rearward of hinge line, sq ft Span at hinge line, ft Root chord, ft Tip chord, ft Tip chord, ft The chord, ft <tr< td=""><td>6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370</td></tr<>	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370
Leading edge up, deg . Leading edge down, deg . Hinge-line location, percent root chord . Vertical tail: Airfoil section . Airfoil thickness ratio, percent chord . Area, sq ft	6 17 46.46 ed hexagon 4.5 23.73 5.59 6.508 1.93 0.292 1.315 45 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370 16,120 21,900
Leading edge up, deg Leading edge down, deg Hinge-line location, percent root chord Arfoil section Afroil thickness ratio, percent chord Area, sq ft Area, sq ft Span, (from horizontal-tail hinge line), ft Mean aerodynamic chord, ft Thy chord, ft Thy chord, ft Thy chord, ft Sweep at leading edge, deg Sweep at trailing edge, deg Rudder: Area, rearward of hinge line, sq ft Span thinge line, ft Root chord, ft The chord, ft <	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.555 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370 16,120 21,900
Leading edge up, deg Leading edge down, deg Hinge-Line location, percent root chord Vertical tail: Airfoll section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.53 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370 16,120 21,900
Leading edge down, deg Hinge-line location, percent root chord. Vertical tail: Airfoll section	6 17 46.46 ed hexagon 4.5 23.73 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.535 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4,850 3,370 16,120 21,900 2.633 4.59
Leading edge down, deg Hinge-line location, percent root chord. Vertical tail: Airfoll section	6 17 46.46 ed hexagon 4.5 23.75 5.59 4.69 6.508 1.93 0.292 1.315 4.5 9.39 5.441 3.555 1.98 1.097 ±20 66.75 6.08 4.81 7.94 fterburner 4.850 3.370 16,120 21,900 2.63 4.59 3.31

TABLE II

PROFILE AND ORDINATES OF THE WING SECTIONS AT THE ORIFICE STATIONS

[Modified 4.5-percent-thick hexagonal airfoil]

Stations and ordinates in percent of local choi	of local chor	of	percent	in	ordinates	and	Stations
---	---------------	----	---------	----	-----------	-----	----------

Station	Row	1	Ro	w 2	Ro	w 3	Ro	w 4	Ro	w 5
number	Station	Ordinate	Station	Ordinate	Station	Ordinate	Station	Ordinate	Station	Ordinate
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0 028 22.382 25.990 29.604 33.219 36.836 63.602 67.000 70.397 73.791 77.183 99.972 100.000	$\begin{array}{c} \pm 0.002 \\ \pm .032 \\ \pm 1.709 \\ \pm 1.946 \\ \pm 2.115 \\ \pm 2.216 \\ \pm 2.250 \\ \pm 2.250 \\ \pm 2.218 \\ \pm 2.123 \\ \pm 1.964 \\ \pm 1.741 \\ \pm .032 \\ \pm .002 \end{array}$	0 .032 21.333 25.438 29.549 33.663 37.779 62.721 66.587 70.451 74.314 78.172 99.968 100.000	± 0.002 $\pm .036$ ± 1.634 ± 2.096 ± 2.212 ± 2.250 ± 2.250 ± 2.214 ± 2.105 ± 1.671 ± 1.036 $\pm .036$	0 037 19.948 24.709 29.477 34.248 39.023 61.558 66.043 70.526 75.005 79.480 99.962 100.000	± 0.003 $\pm .042$ ± 1.536 ± 1.848 ± 2.072 ± 2.206 ± 2.206 ± 2.208 ± 2.208 ± 2.082 ± 1.872 ± 1.579 $\pm .042$ $\pm .042$	$\begin{array}{c} 0\\ .043\\ 18.238\\ 23.812\\ 29.466\\ 34.969\\ 40.554\\ 60.120\\ 65.365\\ 70.610\\ 75.850\\ 81.116\\ 99.953\\ 100.000\\ \end{array}$	±0.003 ±.049 ±1.414 ±1.781 ±2.041 ±2.198 ±2.250 ±2.250 ±2.201 ±2.201 ±2.053 ±1.809 ±1.465 ±.049 ±.003	0 .052 15.998 22.643 29.300 35.960 42.625 58.264 64.524 77.035 83.282 99.998 100.000	± 0.004 $\pm .059$ ± 1.255 ± 1.691 ± 2.002 ± 2.189 ± 2.251 ± 2.251 ± 2.251 ± 2.016 ± 1.725 ± 1.314 $\pm .059$ $\pm .004$

x

.

×

.

1

.

38

.

TABLE III

x

CHORDWISE LOCATIONS OF THE STATIC PRESSURE ORIFICES

[Percent local chord]

Row		1			2			3			4			5	
Orifice	Upper	Lower	Average	Upper	Lower	Average	Upper	Lower	Average	Upper	Lower	Average	Upper	Lower	Average
1234567890123456789 1123456789	2.1 5.08 7.95 25.0 29 7.7 52 50 29 7.7 52 94 0.2 0 20 5 0 29 7.52 94 0.5 0 20 5 0 20 5 0 20 5 29 5 7.52 5 0 20 5 20 5 20 5 20 5 20 5 20 5 20	2.1 5.6 95.1 19.9 24.9 29.6 4 52.0 0 7.6 92.1 24.9 29.6 4 52.0 0 74.0 0 74.0 0 74.0 0 74.0 0 74.0 92.5 1 85.0 0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 85.0 92.5 1 9 92.5 1 9 92.5 1 9 92.5 1 9 92.5 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.10 7.72 150.00 2.5.00 2.29 7.7.52 2.00 2.29 7.7.55 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	2.6 4.9 7.6 15.3 24.9 3.8 7.5 24.9 3.8 7.5 24.9 3.8 7.5 68.4 85.0 90.6 97.9 97.9	2.2 7.5 9 1 1 2 2 2 2 2 2 2 2 2 2	2.4 4.8 7.6 1.5 2.4 9.9 3.8 0.4 5.1 2.4 3.8 0.4 5.1 2.4 3.8 0.4 5.1 5.1 2.4 3.8 0.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.51.5 1.51.51.51.51.51.51.51.5	2.58 7070245940671000057	2.59 4.94 18.34 29.44.69 229.74.05 5648.70 884.00 992.77 97.7	2.5 4.9 1.7 2.4 9 7.1 1.7 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 2.4 9 7.5 4 6 8 9 4 9 7.5 4 8 8 7.5 6 8 7.5 6 8 7.5 6 8 7.5 6 8 7.5 6 8 7.5 6 8 7.5 6 8 7.5 7.5 6 8 7.7 7.5 6 8 7.7 7.5 6 8 7.7 7.5 6 8 7.7 7.5 6 8 7.7 7.5 6 8 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5	25042951293884388044 122223774185594027 122223456677899999	2.05 7.03 1.130 2.05 1.130 2.29 2.29 2.29 2.29 2.29 2.29 2.29 3.45 4.68 750 0.00 4.4 9.5 9.0 9.7	2.5053952394995499044 122223774185594027 12223774185594027	5.244 7.44.60 237.9 347.9 688.69 90.44 668.69 992.4 97.4	5.25.2 7.52 2.25.50.50 3.7.2 3.7.2 3.7.2 3.7.2 3.7.2 7.0 4.4 9.92.4	5.2 7.5 14.8 29.3 38.4 68.3 75.1 84.6 90.4 97.4

Note: Orifices above dashed line are on the leading-edge flap.

.

.

TABLE IV. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE DOUGLAS X-3 WING

$$\left[M \approx 0.55; \delta_{f} \approx 0^{\circ}\right]$$

.

(a) M = 0.64 $C_{NA} = 0.40$

2

α	= 7.60
δaT.	=.1° up
$\delta_{\mathbf{f}}$	= 0 °

(b) M = 0.59 $C_{NA} = 0.47$

α	= 8.5°
$\delta_{a_{L}}$	= .4° up
δr	= 0 °

Omifica			Row		
OFIIICe	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2.310 1.800 1.385 1.288 .764 .621 .501 .437 .343 .257 .203 .156 .113 .153 .034 .035 .022 -014 .041	2 • 385 2 • 265 1 • 834 1 • 210 • 725 • 559 • 514 • 383 • 345 • 296 • 218 • 176 • 106 • 113 • 063 • 061 • 056	1 • 500 1 • 385 1 • 320 1 • 212 1 • 044 1 • 008 • 831 • 805 • 524 • 361 • 253 • 070 • 049 • 045 • 021 • 028 • 042 - 021 • 065	1.368 1.271 1.258 1.169 1.061 .861 .751 .758 .506 .372 .286 .152 .042 -056 -036 -021 .049 -014 .014	1.096 1.054 .884 .663 .590 .390 .263 .083 .042 - 056 .014 .043 - 027 .042 - 029
cn	0.433	0.458	0.479	0.444	0.358
cm	.0174	.0179	.0073	.0137	.0140
C _N C _m C _b	! = 0.429 ! = .0177 ! = .180		:	$x^{\dagger}_{cp} = 20$. $y^{\dagger}_{cp} = 42$.	9 0

Omifica	2		Row		
OLTITCe	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2.298 2.132 1.781 1.628 .959 .693 .571 .463 .371 .296 .214 .201 .126 .165 .049 .034 .000 .033	2 • 275 2 • 226 1 • 933 1 • 620 • 979 • 740 • 620 • 443 • 409 • 342 • 258 • 184 • 109 • 117 • 058 • 073 • 041 • 025 • 041	1 • 548 1 • 416 1 • 389 1 • 251 1 • 109 1 • 066 • 940 • 900 • 654 • 476 • 316 • 125 • 075 • 069 • 042 • 074 • 008 • 033 • 086	1.447 1.363 1.283 1.296 1.129 .911 .846 .853 .599 .490 .373 .213 .059 -033 -051 .000 .041 .025 .000	1 • 125 1 • 097 • 938 • 721 • 683 • 486 • 378 • 123 • 083 • 058 • 042 • 042 • 042 • 033 • 026
cn	0.500	0.522	0.541	0.506	0.419
cm	.0198	.0186	0053	.0059	.0017
C _N ^r C _m ^r C _b ^r	= 0.490 = .0144 = .206		x I y I	cp = 22.1 cp = 42.1	

NACA RM H58D29

1

×

TABLE IV. - Continued. $\left[M \approx 0.55; \delta_{f} \approx 0^{\circ}\right]$

.

x.

c)	Μ	-	0.55	
C	NΔ	=	0.54	

-

.

	α	=	9.40	
δ	a _{T.}	=	0	
	δr	=	0°	

(d)	М	=	0.52	
C	NA	=	0.57	

α	=	10.1	0
δ _{ar}	=	· 30	up
δr		0°	

2

.

Orifica			Row		
OI II ICE	1	2	3	4	5
1	2.192	1.771	1.485	1.419	1.164
2	2.107	1.740	1.351	1.359	1.170
3	1.951	1.603	1.339	1.282	1.023
4	1.903	1.603	1.245	1.319	.797
5	1.209	1.394	1.123	1.145	.734
6	.830	1.239	1.086	.968	.612
7	.691	1.021	•951	.931	•462
8	•530	•747	• 969	.900	.216
9	.494	°601	• 700	•676	0142
10	• 321	• 420	• 573	•599	e048
11	0294	• 304	•438	•436	.106
12	•203	.172	e200	·281	.115
13	0155	e115	•123	•125	•037
14	•170	•086	e115	•141	•086
15	e031	.076	e067	- •010	.010
10	.000	.056	e132	•105	
10	.049	• 057	•028	•047	
10	.000	.038	•056	•087	
17	0037	•038	•079	- 029	
cn	0.555	0.596	0.584	0.571	0.485
cm	.0176	.0091	0203	0154	0111
C _N	= 0.552		X	cp = 24.4	
Chi	= .0031		y*	cp = 42.1	

Orifice			Row		
	1	2	3	64	5
1	2.058	1.758	1.585	1.432	1.180
2	1.917	1.797	1.409	1.350	1.160
3	1.797	1.634	1.371	1.268	.998
4	1.856	1.633	1.323	1.306	.812
5	1.540	1.445	1.203	1.188	.804
6	1.180	1.329	1.163	.925	.680
7	.946	1.173	1.028	1.006	.601
8	.730	• 930	1.008	.972	.330
9	.552	.753	· 820	•751	.280
10	.391	.564	e659	.708	.052
11	• 312	• 353	.605	.542	.180
12	•222	.210	.239	.421	.190
13	.140	.116	.208	.231	.061
14	.166	.126	.125	.134	.115
15	.031	.093	.105	.107	.032
16	.082	.071	e145	.083	
17	.075	• 041	.083	.134	
18	020	.021	.113	.074	
19	•031	•010	•097	•064	
cn	0.615	0.661	0.648	0.622	0.548
cm	.0141	.0017	0315	0310	0323
CN ¹	= 0.610		x° c	p = 26.0	
Cb	= .257		У°с	p = 42.1	

TABLE IV. - Concluded.

	$M \approx 0.55;$	$S_{f} \approx 0^{\circ}$
(e) $M = 0.50$ $C_{N_A} = 0.63$		$a = 11.5^{\circ}$ $\delta_{a_{L}} = .2^{\circ} \text{ down}$ $\delta_{f} = 0^{\circ}$

Orifice			Row		
01 11 100	1	2	3	4	5
1	2.000	1.787	1.585	1.494	1.140
2	1.709	1.657	1.415	1.334	10105
4	1.807	1,591	1.306	1.786	.779
5	1.467	1.436	1,209	1.264	.766
6	1.256	1.370	1,195	955	-680
7	1.093	1.219	1.036	955	673
8	.891	1.034	1.072	.976	.472
9	.691	.912	.872	.810	.375
10	.523	.723	.767	.764	.200
11	.377	• 490	.677	.622	.270
12	.268	•357	.377	.525	.213
13	.139	•191	•342	• 335	.163
14	.176	.168	•267	•263	0144
15	•087	• 0 9 9	•211	.137	.136
16	•099	•097	•209	• 244	
17	• 0 9 2	• 099	•099	·132	
18	•021	• 067	.164	•202	
19	•000	•033	e115	•011	
cn	0,668	0.729	0.713	0.685	0.593
cm	.0019	0183	0557	0541	0586
C _N t	= 0.670		xt	cp = 28.9	
C _m C _b	=0261 = .282		Υ ^t	cp = 42.1	

NACA RM H58D29

2

5

TABLE V. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE DOUGLAS X-3 WING

 $\left[M \approx 0.55; \delta_{\rm f} \approx 7^{\circ} \right]$

.

(a) M = 0.65 $C_{NA} = 0.38$

1

4

α	=	7.40	
SaT.	=	0	
δr	=	7.80	

Orifice			Row		
	1	2	3	4	5
1	1.131	1.874	1.958	1.632	1.233
2	1.236	1.844	1.622	1.541	1.121
3	1.033	1.211	1.202	1.391	-617
4	1.167	•772	•723	1.245	.611
5	.875	.821	.848	.908	.485
6	•710	•643	.770	.765	.312
7	•530	.580	.655	.667	.255
8	•460	•436	.607	.618	.108
9	• 376	• 356	•412	.362	.088
10	•276	• 301	.303	.293	.027
11	•197	•224	.253	.209	.083
12	•178	•178	.136	.134	.028
13	•116	•131	•122	.076	.027
14	•176	•137	.133	.040	.034
15	•047	•047	•048	.000	.007
10	•054	• 060	•081	.007	
11	•014	• 054	•020	.040	
10	007	•014	•034	007	
19	•040	•054	•077	- •014	
cn	0.395	0.417	0.425	0.427	0.340
cm	.0009	.0055	0023	.0176	.0054
CN'	= 0.396		xt	ep = 22.9	
Cb	= .168		y	cp = 42.5	

(b) $M = 0.65$ $C_{NA} = 0.42$	1 5	$\begin{array}{c} \alpha = \\ \delta_{aL} = \\ \delta_{f} = \end{array}$	8.4° 0 7.7°	
Orifice			Row		
01 11 100	1	2	3	4	5
1	1.328	2.265	2.057	1.897	1.364
2	1.714	2.255	1.939	1.782	1.316
3	1.277	1.709	1.648	1.639	.930
4	1.425	• 986	1.299	1.513	.606
5	•991	.969	.981	1.221	.513
6	.790	.639	.869	.864	.353
7	.613	.722	•653	.730	.287
8	.542	•409	•711	.641	.140
9	• 426	•411	•493	•402	.117
10	•311	• 332	•311	.338	.047
11	.244	.200	.292	.249	.104
12	.198	.262	.165	.171	.048
13	.162	.112	.141	.095	.046
14	.180	.191	.131	.070	.032
15	•077	.039	.055	008	.016
16	.062	.138	.102	.016	
17	•041	.023	.024	.031	
18	.008	.079	.047	.000	
19	.031	.016	•073	016	
cn	0.470	0.492	0.521	0.499	0.410
cm	.0035	.0048	.0017	.0200	.0054
C _N '	= 0.470		x	cp = 22.9	
Cm	= .0096				
Ch	= .200		У	cp = 42.0	

TABLE V.- Continued. [$M \approx 0.55$; $\delta_{f} \approx 7^{\circ}$]

• ×

(c)	М	=	0	.57	
	CNA	=	0	.51	

.

*

α	= 9.5°
δaT.	=.2° up
δf	= 7.70

Orifice			Row		
OI II ICE	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	<pre>1 • 481 1 • 990 1 • 563 1 • 688 1 • 111</pre>	2:498 2:519 2:064 1:446 1:028 :806 :713 :535 :475 :394 :269 :180 :171 :098 :104 :071 :054 :035	<pre>1 • 768 1 • 629 1 • 632 1 • 542 1 • 260 1 • 180</pre>	2 • 103 1 • 971 1 • 822 1 • 702 1 • 464 • 967 • 851 • 726 • 456 • 357 • 282 • 167 • 099 • 062 • 009 • 027 • 044 • 009 • 000	1.464 1.398 1.159 .730 .572 .409 .307 .177 .124 .063 .127 .090 .035 .072 .018
cn	0.525	0.579	0.578	0.557	0.467
cm	.0083	.0092	0001	.0231	.0049
Cn [†] Cm [†] Cb [†]	= 0.536 = .0133 = .227		λi X i	cp = 22.5 cp = 42.2	

(d	M = 0.5 $C_{N_A} = 0.5$	3 7	α == δ _{al} = δ _f =	10.7° 0 7.7°	
Orifice			Row		
	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.783 2.235 1.837 1.954 1.314 .969 .777 .670 .569 .358 .320 .260 .166 .205 .081 .082 .075 .010 .020	2 • 441 2 • 418 2 • 229 1 • 838 1 • 244 • 975 • 825 • 675 • 601 • 436 • 350 • 239 • 199 • 136 • 123 • 080 • 082 • 042 • 041	1.695 1.607 1.550 1.542 1.366 1.366 1.074 1.093 .740 .552 .435 .155 .165 .105 .093 .123 .041 .112 .096	1 • 569 1 • 490 1 • 447 1 • 502 1 • 430 1 • 174 1 • 120 1 • 006 • 693 • 558 • 390 • 265 • 156 • 072 • 042 • 041 • 082 • 031 • 021	1.655 1.525 1.193 .836 .663 .524 .408 .235 .175 .114 .126 .178 .051 .093 .011
cn	0.602	0.642	0.660	0.615	0.537
cm	.0093	.0121	0143	0038	0034
C _M ⁸ C _b ⁸	= 0.601 = .0070 = .254	с.	Δ ⁸ c	= 23.8 = 42.2	

. .

NACA RM H58D29

TABL	E V	Con	nti	nued
$M \approx$	0.55;	δ_{f}	~	7°]

(e)	М	=	0.50	
C	NA	=	0.65	

.

.

(e) $M = 0.50$ $C_{N_{A}} = 0.65$			α = δ _{aL} = δ _f =	11.5 [°] .2 [°] up 7.7 [°]	
Orifice			Row		
	1	2	3	4	5
1	2.604	2.035	1.663	1.538	1.514
2	2.343	1.991	1.557	1.538	1.476
3	2.037	1.931	1.515	1.476	1.267
4	2.056	1.915	1.477	1.598	.873
5	1.448	1.675	1.373	1.431	•769
6	1.060	1.391	1.343	1.169	.544
-	.875	1.096	1.117	1.109	•459
8	•739	.837	1.125	•962	.276
10	•641	•700	•798	•734	.197
10	•403	.502	•678	•604	.151
11	• 348	• 383	•478	•534	.224
12	•248	• 234	•267	•367	•247
15	.208	•212	.232	.199	•057
15	.190	• 153	•162	.115	.186
15	0210	•139	•117	•060	.000
17	.081	•102	•150	.105	A TRACK
18	012	.110	•046	.127	1
10	.011	•047	•103	•130	
1.7	.023	•046	•096	•047	
cn	0.669	0.706	0.695	0.657	0.574
cm	.0143	.0028	0286	0201	0157
C _N [*]	= 0.650		x'c	p = 25.2	
Cb	= .272		У'с	p = 41.8	- 1 <u>-</u>

(f) M	=	0.48	
CNA	=	0.69	

α	=	12.40
Sar.	=	0
$\delta_{\mathbf{f}}$	=	7.7°

Orifice	Row						
01 11 100	1	2	3	4	5		
1	2.874	1.917	1.718	1.436	1.396		
2	2.445	1.956	1.501	1.402	1.405		
3	2.102	1.793	1.493	1.322	1.260		
4	2.170	1.872	1.502	1.397	.923		
5	1.520	1.616	1.392	1.342	.825		
6	1.251	1.425	1.328	1.172	.607		
7	1.019	1.289	1.132	1.156	.606		
8	.890	•914	1.206	1.098	.296		
9	.700	.826	.906	.824	.310		
10	•480	.626	.727	.735	.175		
11	• 360	• 446	.599	• 598	.291		
12	.290	.289	.262	• 406	.215		
13	.178	•189	.298	.251	.147		
14	.235	.164	.196	.148	.175		
15	.073	.173	.200	.103	.089		
16	.123	•097	•185	.087			
17	•077	.149	•087	.173			
18	• 024	.100	.123	.063			
19	•037	.000	•090	•038			
cn	0.742	0.742	0.734	0.677	0.626		
cm	.0119	0082	0386	0307	0382		
C _N	= 0.687		x'c	p = 26.6			
C _b '	= .286		y'c	p = 41.6			

	TABLE V Concl	uded.
	$M \approx 0.55; \delta_{f} \approx$	= 7°]
(g) $M = 0$	•45	$a = 13.4^{\circ}$
$C_{NA} = 0$	•71	$\delta_{aL} = .4^{\circ} up$
		$\delta_{f} = 7.5^{\circ}$

Orifice	Row				
	1	2	3	4	5
1	3.035	1.853	1.697	1.464	1.333
2	2.425	1.656	1.586	1.390	1.361
3	2.043	1.744	1.560	1.305	1.185
4	2.197	1.597	1.482	1.402	• 985
5	1.573	1.517	1.435	1.330	• 945
6	1.316	1.451	1.349	1.108	•788
7	1.224	1.288	1.206	1.179	.696
8	1.049	1.095	1.147	1.150	• 493
9	.897	• 974	.979	•931	• 469
10	• 5 9 7	• 798	.839	• 821	•284
11	• 500	•609	•702	• 756	• 328
12	0)10	•4/5	• 4 3 1	.598	e 368
15	0233	• 2 5 9	• 389	• 421	.198
14	0241	e 2 3 8	0325	• 293	.270
15	0117	0204	• 2 4 4	• 2 2 2	0124
10	.125	174	6294	0 3 2 4	50 C
18	.052	.149	.226	010/	
10	013	.027	152	020	
1,	.013	• U Z 1	•195	009	
			· .		
°n	0.824	0.801	0.803	0.774	0.699
cm	0008	0415	0676	0748	0675
C _N '	= 0.759		x°c	p = 30.5	
Cm Cb	=0420 = .319	2	Δ, C	p = 42.0	

TABLE VI. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE DOUGLAS X-3 WING

M	\approx	0.55;	δ_{f}	\approx	27°
L			Т		-

(a) M = 0.71 $C_{N_A} = 0.28$

4

4

	α	=	6.7	-	
δa	L	=	.20	up	
δ	f	=	29.0	00	
the second s					

(b)	М	=	0.65	
C	NA	=	0.50	

 $a = 10.0^{\circ}$ $\delta_{a_{\rm L}} = .5^{\circ} \text{ down}$ $\delta_{f} = 28.0^{\circ}$

Orifica			Row		
01 11 106	1	2	3	4	5
1	-1.344	-1.134	-1.890	-0.742	-1.520
2	806	724	-1.110	574	-1.417
3	366	174	298	- 0445	411
4	165	.062	087	356	1.046
5	1.367	1.694	1.413	- 0214	1.003
6	.930	1.436	1.353	• 601	.871
7	.813	1.144	1.167	.575	.689
8	.684	•684	1.127	.712	. 383
9	• 520	.529	.841	.702	.292
10	e411	•415	•659	.700	0174
11	•289	.308	e 501	.585	.162
12	.232	.262	.240	• 441	.135
13	0149	.169	.186	• 302	0124
14	•212	•175	.148	.165	.120
15	.105	•073	•094	.137	.062
16	•046	•104	.099	•127	
17	•028	.080	.066	.145	
18	.013	• 047	.059	.095	
19	.052	•066	•083	•075	
cn	0.587	0.653	0.649	0.637	0.522
					COJER
cm	0324	0378	0564	0508	0650
C _N [*] =	= 0.605		x1	n = 31.6	
Cm [*] =	=0397		w1.	- 12 2	- A Profession
Uh =	= .250		y 0	D - 4203	

Orifice	Row				
	1	2	3	4	5
1	-0.198	-0.049	-0.186	-0.413	-0.884
2	.180	.289	.043	261	603
3	•629	• 536	.280	010	.435
4	·811	• 769	.506	.284	1.307
5	1.966	2.469	1.702	.637	1.155
6	1.398	1.846	1.601	1.484	1.007
7	1.259	1.405	1.433	1.371	.775
8	1.106	.862	1.303	1.263	.445
9	0714	•713	1.067	.957	.330
10	• 449	• 539	.811	. 844	.214
11	•309	•416	.656	.628	.232
12	e267	• 326	.308	• 467	.240
13	.190	•215	.267	.294	.139
14	•243	•183	.197	.195	.182
15	e093	•141	.166	.154	.073
16	e 0 9 4	• 0 92	.164	•119	
17	.057	•118	.079	.125	
18	•030	• 0 9 5	.140	.080	
19	•046	•039	•106	•072	
cn	0.520	0.593	0.615	0.541	0.436
cm	0371	0408	0733	0815	1003
C _N [*] C _m [*] C _b [*]	= 0.539 =0521 = .225		x ¹ y ¹	$p_{p} = 34.7$ $p_{p} = 41.7$	

NACA RM H58D29

4S

TABLE VI. - Continued. $\left[M \approx 0.55; \delta_{f} \approx 27^{\circ}\right]$

.

T

c)	М	=	0.56	
(CNA	=	0.64	

*

1

α	=	12.0)°
δ	=	.4°	down
δf	=	27.	4 ⁰

(d) C]	M N A	11 11	0.55
	•		

 $a = 13.4^{\circ}$ $\delta_{a_{L}} = .2^{\circ} up$ $\delta_{f} = 27.2^{\circ}$

			Row		
Orifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.297 .735 1.151 1.398 2.061 1.734 1.351 1.198 .726 .476 .343 .291 .221 .256 .137 .096 .100 .041 .053	0.577 .758 .968 1.216 2.712 1.926 1.209 .873 .733 .636 .455 .389 .239 .206 .171 .105 .160 .119 .011	0.578 .581 .721 .899 2.356 2.205 1.837 1.510 .975 .605 .495 .279 .225 .189 .108 .160 .032 .138 .144	0.379 .483 .646 .830 1.087 1.766 1.682 1.503 1.097 .826 .526 .339 .270 .181 .088 .086 .127 .022 .066	0.168 .292 .676 1.914 1.506 .962 .576 .351 .224 .204 .207 .163 .116 .129 .044
cn	0.635	0.687	0.701	0.660	0.541
cm	0280	0371	0522	0560	0627
C _N [*] C _m [*] C _b [*]	= 0.638 =0383 = .268		x" y'	cp = 31.0 cp = 42.1	

			Row		
Urilice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.512 .985 1.379 1.675 2.219 1.838 1.455 1.196 .785 .524 .355 .333 .218 .287 .142 .132 .103 .064 .044	1.389 .857 1.089 1.317 2.777 1.905 1.381 .903 .769 .635 .502 .391 .270 .213 .199 .108 .199 .145 011	1.341 .721 .906 1.003 2.338 2.167 1.783 1.490 1.087 .703 .612 .311 .255 .196 .123 .187 .066 .153 .149	0.814 .676 .771 .948 1.224 1.842 1.654 1.452 1.090 .877 .646 .471 .302 .209 .126 .134 .132 .056 .057	0.347 .403 .758 1.537 1.313 1.093 .832 .440 .309 .189 .237 .259 .120 .211 .046
			(
cn	0.701	0.736	0.762	0.722	0.597
cm	0276	0343	0561	0628	0803
C _N [*] C _m [*]	= 0.693 =0403 = .292		x ¹ y ¹	$c_p = 30.8$ $c_p = 42.2$	

1

.

TABLE VI. - Continued.

[M ≈	0.55;	$\delta_{\rm f} \approx$	27°]	
------	-------	--------------------------	------	--

1

.

(e)	M	=	0.51	
	CNA	=	0.77	

1 4

α	-	14.00
δат	=	.70 up
Se	-	27.00

(f) $M = 0.50$	$\alpha = 15.2^{\circ}$
$C_{NA} = 0.80$	$\delta_{er} = 1.4^{\circ}$ up
"A	$\delta_{f} = 27.0^{\circ}$

milia			Row		
Urilice	1	2	3	4	5
1	0.756	2.020	1.980	1.643	0.556
2	1.184	1.554	1.481	1.290	.640
3	1.606	1.239	1.160	.979	.946
4	1.885	1.513	1.206	1.140	1.835
5	2.339	2.780	2.708	1.420	1.632
6	1.826	1.651	2.160	2 . 5 4 5	1.197
7	1.421	1.346	1:564	1.883	.730
8	1.213	.943	1.327	1.460	0344
9	.833	.791	e957	.976	.279
10	.579	· 684	e647	•734	.187
11	.399	•490	.602	.545	.244
12	.349	• 390	.334	.382	.203
13	.227	.270	.306	.256	0144
14	.265	•216	.198	.185	0147
15	.131	.212	.134	e082	.068
16	e119	0117	e172	067	
17	.083	.186	.080	.119	
18	.051	.161	.105	.014	
19	•052	- •027	•124	•082	
c _n	0.740	0.779	0.791	0.790	0.657
cm	0232	0276	0405	0337	0688
C _N * =	= 0.740		x"	= 28.9	
C ^b ^s	0286		У" с	p = 42.6	

0.101	Row						
Orliice	1	2	3	4	5		
1	0.778	2.165	2.149	1.810	0.612		
2	1.263	1.843	1.780	1.563	.661		
3	1.650	1.334	1.290	1.230	1.004		
4	1.987	1.574	1.283	1.200	1.936		
5	2.299	2.689	2.671	1.428	1.695		
6	1.889	1.624	2.120	2.524	1.178		
7	1.428	1.336	1.573	1.823	e707		
8	1.254	.966	1.299	1.433	•372		
9	e 852	.836	.962	.955	•307		
10	.556	0674	.690	.751	.161		
11	e416	.505	.578	.534	.191		
12	•351	•432	• 309	.384	.177		
13	e240	.285	.268	.216	0171		
14	.254	•217	.211	.106	.135		
15	.145	.213	e148	•041	.069		
16	e106	e118	•173	.081			
17	•097	•173	•067	.120			
18	•078	•135	.133	e068			
19	013	.000	•125	e055			
c _n	0.755	0.796	0.809	0.799	0.672		
cm	0208	0268	0384	0276	0669		
C _N ⁱ C _m ⁱ	= 0.754 =0260		x ¹	p = 28.5 = 42.5			
C,	= .321		у (cp - 4000			

1

.

[M \approx 0.55; $s_{\rm f} \approx 27^{\circ}$]

10

(h) M = 0.48 $C_{NA} = 0.95$

	(g) $M = 0.$ $C_{NA} = 0.$	50 87	$a = b_{a_{L}}$	16.0 ⁰ .2 ⁰ down 27.0 ⁰	
Orifice			Row		
	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.091 1.521 2.075 2.422 2.436 1.942 1.451 1.308 .904 .598 .442 .388 .259 .288 .163 .137 .100 .066 .014	2.641 2.635 1.769 1.546 2.657 1.652 1.356 .993 .887 .734 .559 .458 .321 .251 .233 .188 .192 .167 014	2 • 735 2 • 316 1 • 762 1 • 500 2 • 605 2 • 020 1 • 599 1 • 282 • 989 • 737 • 636 • 373 • 358 • 243 • 208 • 178 • 096 • 136 • 128	2 • 1 33 2 • 0 27 1 • 952 1 • 657 1 • 610 2 • 343 1 • 695 1 • 399 • 940 • 814 • 591 • 422 • 348 • 260 • 184 • 125 • 178 • 056 • 099	1 • 3 8 4 • 965 2 • 2 3 2 1 • 6 8 8 1 • 0 2 2 • 6 9 9 • 3 8 4 • 3 6 0 • 3 0 8 • 2 9 3 • 2 1 6 • 2 4 9 • 0 4 2
cn	0.830	0.865	0.873	0.877	0.760
cm	0186	0281	0397	0363	076
C _N [*] C _D [*]	= 0.825 =0289 = .352		x [†] c	p = 28.5 p = 42.7	

×

1

	$\delta_{f} = 26.8^{\circ}$							
Orifice		Row						
01 11 100	1	2	3	4	5			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.349 1.814 2.503 2.930 2.580 2.050 1.579 1.406 1.034 .758 .521 .446 .292 .310 .219 .147 .138 .114 015	3.080 3.163 2.658 1.936 2.254 1.677 1.516 1.266 1.132 .834 .601 .478 .315 .300 .251 .231 .221 .194 - 015	3.136 2.751 2.442 1.924 2.210 1.867 1.582 1.398 1.168 .895 .743 .445 .399 .303 .268 .265 .178 .220 .138	2.585 2.494 2.487 2.356 2.093 2.112 1.6667 1.386 1.011 .816 .591 .469 .314 .279 .153 .193 .176 .136 .076	1 • 972 1 • 807 1 • 208 2 • 445 1 • 502 1 • 041 • 751 • 544 • 384 • 342 • 361 • 316 • 218 • 268 • 107			
cn	0.946	0.971	0.983	0.953	0.852			
cm	0224	0317	0561	0321	0678			
C _N [†] C _m [†]	= 0.920 =0307		X,	cp = 28.3				
Cb.	= .390		y	cn = 42.4				

 $a = 17.5^{\circ}$ $\delta_{a_{\rm L}} = .5^{\circ}$ up

5

×

TABLE VI. - Concluded.

[M \approx 0.55; $\delta_{f} \approx 27^{\circ}$]

(i)	М	=	0.48
(CNA	=	1.04

α	=	18.3°
δ _{at}	=	.4° up
δf	=	26.60

Orifice	Row				
	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.570 2.042 2.649 3.186 2.687 2.154 1.546 1.450 1.100 .761 .615 .447 .346 .341 .322 .177 .170 .129 .000	2.813 2.863 2.630 2.395 1.951 1.683 1.561 1.290 1.152 .912 .715 .645 .407 .406 .370 .319 .266 .285 .000	3.167 2.802 2.588 1.990 1.893 1.683 1.490 1.403 1.203 .869 .776 .521 .475 .400 .329 .384 .208 .294 .154	2.614 2.503 2.574 2.405 1.967 1.809 1.459 1.332 .940 .819 .608 .544 .435 .383 .276 .284 .295 .166 .137	1.979 1.910 1.271 1.946 1.269 .857 .679 .560 .415 .388 .393 .407 .277 .328 .183
cn	1.012	1.030	1.004	0.956	0.820
cm	0247	0585	0737	0511	0738
C _N [†] = C _m [†] = C _b [†] =	= 0.949 =0461 = .394		x'c y'c	p = 29.9 p = 41.6	

TABLE VII. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE DOUGLAS X-3 WING

.

.

(a) M C _{NA}	=	0.85 0.10	

+

 $\begin{bmatrix} M \approx 0.85; \delta_{f} \approx 7^{\circ} \end{bmatrix}$ $a = 2.7^{\circ}$ $\delta_{a_{L}} = .2^{\circ} up$ $\delta_{f} = 9.4^{\circ}$

(b) M = 0.85 $C_{NA} = 0.12$ $\delta_{a_L} = .2^{\circ} up$ $\delta_{f} = 9.3^{\circ}$

			Row		
Orifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-0.278 189 092 .048 .374 .266 .274 .237 .256 .136 .102 .082 .038 .140 028 .007 029 029 027 .014	-0.431 -0.74 0.74 213 931 346 212 403 0.417 141 099 085 078 078 078 000 035 007 049	-0.360 - 210 - 157 .055 .994 .876 .306 .536 .462 .104 .092 .021 .042 .059 - 028 .021 .035 .000 .051	-0.553 205 055 .066 .153 .983 .818 .761 .444 .014 .000 .007 064 042 080 035 .007 007 .000	-0.367 201 .037 .967 .924 .261 071 056 112 205 064 014 048 .000 007
c _n	0.103	0.162	0.176	0.160	0.080 .007
CI CI CI	$n^{\circ} = 0.143$ $n^{\circ} = -0.0099$ $b^{\circ} = .060$)	2	$x^{*}_{cp} = 31.$	9

			Row		
Orifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-0.305 -057 -119 .192 .410 .338 .210 .310 .292 .162 .094 .044 .147 -041 .028 -036 -014 -007	-0.334 046 064 315 1.030 308 285 356 458 134 099 092 078 085 -028 000 035 014 035	-0.276 199 102 .046 1.037 .892 .388 .489 .496 .090 .091 .028 .035 .035 .035 .021 .007 .044	-0.349 130 028 .103 .198 .972 .844 .843 .450 .021 .000 014 071 069 087 042 .007 007 .000	-0.302 164 .037 .972 .908 .308 043 056 119 232 050 .007 055 .007 022
cn	0.138	0.177	0.179	0.177	0.089
сm	0154	0133	0144	.0008	.0085
$\begin{array}{cccc} C_{\rm N}^{ \rm i} &= 0.158 & {\bf x}^{\rm i} &= 29.8 \\ C_{\rm m}^{ \rm i} &=0076 & {\bf y}^{\rm i} &= 41.4 \end{array}$					

NACA RM H58D29

1

ÿ

TABLE	VII	Continued.
-------	-----	------------

[M \approx 0.85; $\delta_{f} \approx 7^{\circ}$]

(c) M = 0.85 $C_{N_A} = 0.23$

•

.

α δ _{at}		4.20	up
Se	=	8.60	

(d)	М	=	0.85
	CNA	=	0.30

 $a = 5.2^{\circ}$ $b_{a_{\rm L}} = .2^{\circ} up$ $b_{\rm f} = 8.4^{\circ}$

L

5

mifice	Row						
OFILICE	1	2	3	4	5		
1	0.194	0.131	0.165	0.147	0.027		
2	.169	.284	.095	.185	.073		
3	.192	.330	.184	.266	.147		
4	.346	•415	.238	.299	• 956		
5	.700	1.082	1.106	• 332	•912		
6	• 538	.521	•953	• 978	.799		
7	.382	.431	.876	.933	.206		
8	•445	.448	.614	.944	139		
9	.459	.576	.608	.772	125		
10	.358	.309	•436	.231	309		
11	.123	.138	.098	.000	050		
12	.115	.085	028	083	.007		
13	.044	.064	.000	106	055		
14	.174	.057	.039	139	.007		
15	034	028	049	122	022		
16	.048	007	.014	070			
17	043	.042	.021	.000			
18	027	.021	.014	021			
19	•000	•007	•043	•007			
cn	0.250	0.260	0.285	0.262	0.185		
cm	0171	0101	0127	.0089	.0071		
CN "	= 0.246		x	" cp = 26.7	7		
Cm [*] Cb [*]	=0042 = .103		У	"cp = 41.8	3		

	Row						
Orifice	1	2	3	4	5		
1	0.461	0.376	0.532	0.485	0.237		
2	.441	.512	.274	.416	.235		
3	.384	• 420	.350	.384	.248		
4	.575	. 562	.348	.476	.967		
5	.771	1.126	1.140	.475	.911		
6	.665	.753	1.014	1.013	.845		
7	.526	.586	.948	.959	.283		
8	.544	.587	•911	1.035	118		
9	.531	.639	.691	.875	132		
10	.498	.540	.615	.468	329		
11	.188	.171	.133	.100	035		
12	.115	.084	042	090	.014		
13	.044	.042	049	106	055		
14	.125	.063	.013	194	.021		
15	034	028	049	144	036		
16	.007	020	.014	084			
17	036	.035	.014	042			
18	013	.070	.000	035			
19	.000	.014	.029	.007			
cn	0.326	0.353	0.369	0.337	0.230		
cm	0129	0132	0123	.0108	.0085		
CI	v" = 0.324		x	'ep = 26.0			
C _r C ₁	=0033 = .134		У	'cp = 41.3	3		
the second s	the second se	the second s					

[M \approx 0.85; $\delta_{\rm f} \approx 7^{\circ}$]

7

-

(e)	М	~	0.85	
Cl	A	~	0.33	

*

4

 $\begin{array}{l} \alpha = 5.9^{\circ} \\ \delta_{a_{L}} = .1^{\circ} \text{ down} \\ \delta_{f} = 8.2^{\circ} \end{array}$

(f) M = 0.86 $C_{N_{A}} = 0.44$

$$a = 7.0^{\circ}$$

$$b_{a_{L}} = .2^{\circ} up$$

$$b_{a_{L}} = 8.1^{\circ}$$

0.00			Row		
Orlice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.697 .636 .564 .725 .849 .716 .605 .596 .594 .570 .244 .135 .025 .118 -041 .000 -036 -027 .007	0.548 564 573 614 1.094 888 647 686 706 615 0249 091 021 042 - 041 - 014 014 - 007 028	0 • 868 • 386 • 431 • 465 1 • 171 1 • 028 • 990 • 997 • 794 • 688 • 237 - • 049 - • 049 - • 076 - • 006 - • 056 - • 007 - • 611 - • 021 • 043	0.756 .507 .501 .622 .535 1.082 .991 1.096 .907 .870 .234 021 133 214 179 070 048 .000 014	0.308 .307 .292 .950 .935 .821 .634 131 104 335 .035 .021 .061 .014 029
cn cm	0.376 0106	0.392 0107	0.411 00 <i>3</i> 8	0.334 .0076	0.307 0074
C _N C _m C _b	= 0.357 =0019 = .147		x y	¹ cp = 25.5 ¹ cp = 41.1	5 L

0.101	Row					
Urliice	1	2	3	4	5	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.956 1.113 .842 .995 .969 .928 .720 .738 .741 .653 .325 .133 .012 .082 .020 .007 .035 .026 .007	1 • 558 1 • 370 • 770 • 785 1 • 1 48 1 • 020 • 906 • 767 • 832 • 715 • 445 • 097 - 035 • 028 - 054 - 013 • 014 - 007 • 020	1.609 1.260 1.082 .825 1.134 1.081 .983 1.052 .974 .819 .357 -062 -096 -044 -076 -014 -007 -027 .042	$1 \cdot 659$ $1 \cdot 350$ $1 \cdot 210$ $1 \cdot 078$ $\cdot 843$ $1 \cdot 046$ $1 \cdot 082$ $1 \cdot 069$ $\cdot 906$ $\cdot 835$ $\cdot 300$ $\cdot 041$ $- 124$ $- 285$ $- 197$ $- 096$ $- 020$ $- 042$ $\cdot 021$	1.222 1.064 .773 .801 .824 .741 .631 - 020 - 102 102 295 .007 .021 013 .048 028	
cn	0.472	0.513	0.535	0.523	0.429	
cm	0053	0002	 0002	.0223	.0100	
C _N [†] C ^m [†] C ^b	= 0.488 = .0066 = .209		x y	cp = 23.6 cp = 42.8		

NACA RM H58D29

. .

TABLE VII .- Continued.

 $[\mathrm{M} \approx 0.85; \ \delta_{\mathrm{f}} \approx 7^{\circ}]$

(g) M = 0.86 $C_{NA} = 0.53$

-

α	=	8.00	
Sar.	=	0	
δr	=	7.40	

(h) M = 0.86 $C_{NA} = 0.59$ $a = 9.0^{\circ}$ $b_{a_{L}} = .2^{\circ} down$ $b_{F} = 7.2^{\circ}$

Orifice			Row		
01 11 100	1	2	3	4	5
1	1.145	1.833	1.853	1.866	1.432
2	1.486	1.677	1.515	1.625	1e336
5	10109	1.349	1.376	1.439	1.096
-+ E	10312	101/1	1 e 200	1.403	1.012
5	10104	1.226	1.411	1.166	e952
0	1.052	1.092	1.403	1.312	•886
1	0710	.969	1.152	1.268	•618
0	001K	e 904	1.165	1.331	•114
10	0002	e 940	1.041	1.074	.020
11	6137	• 899	•933	• 583	- 0258
12	9470	• 581	a 435	•519	•041
12	0225	0143	•068	e301	o082
15	0012	- 034	- 027	•116	•013
14	0001	e014	.000	107	•068
16	007	054	082	- 056	014
17	- 028	007	007	- 020	
18	- 020	.000	020	e040	
19	007	.007	020	- 014	
1,	007	.015	e042	•021	
cn	0.580	0.618	0.663	0.669	0.545
cm	0055	0008	0046	.0035	.0046
CN °	= 0.604	4	x	cp = 24.8	
Cb	= .0010 = .262		y	ep = 43.3	

			$o_{f} = r$	•2					
Orifice		Row							
	1	2	3	4	5				
1	1.249	2.022	2.023	2.046	1.617				
2	1.833	1.829	1.662	1.769	1.449				
3	1.222	1.650	1.527	1.599	1.191				
44	1.552	1.474	1.358	1.565	1.057				
5	1.319	1.385	1.568	1.382	.896				
6	1.173	1.197	1.471	1.381	.612				
7	1.045	1.099	1.410	1.185	•511				
8	1.009	1.073	1.435	.946	.223				
9	.986	1.041	e799	.684	.176				
10	•841	.959	•648	.627	096				
11	•380	•353	• 574	•543	.187				
12	.225	.206	.286	e 404	.193				
13	.037	• 062	.163	.241	.114				
14	.109	•069	.177	.095	•157				
15	.007	.007	.089	.098	.035				
16	020	.027	.149	0144					
17	035	•034	•068	.196					
18	026	•021	•094	.132					
19	•000	•027	e085	•090					
cn	0.662	0.705	0.750	0.705	0.586				
cm	0049	0041	0280	0192	0120				
CN *	= 0.671		x',	ap = 26.1					
Cm [*] Cb [*]	=0076 = .285		y'	ep = 42.5					

55

.

TABLE VII .- Continued.

 $[M \approx 0.85; \delta_{f} \approx 7^{\circ}]$

(i)	М	=	0.86	
(CNA	=	0.63	

 $a = 9.5^{\circ}$ $\delta_{a_{L}} = 0$ $\delta_{f} = 7.2^{\circ}$

(j)	М	=	0.85	
C	NA	=	0.67	

$$a = 9.9^{\circ}$$

$$b_{a_{L}} = .5^{\circ} up$$

$$b_{e} = 7.2^{\circ}$$

			UT - 11			
	Row					
Orifice	1	2	3	4	5	
1	1.420	2.090	2.050	2.099	1.679	
2	1.879	1.900	1.735	1.805	1.529	
3	1.338	1.713	1.589	1.670	1.227	
4	1.571	1.555	1.438	1.611	1.084	
5	1.354	1.456	1.612	1.434	•827	
6	1.253	1.270	1.524	1.310	.618	
7	1.115	1.143	1 : 428	• 998	•532	
8	1.071	1.091	1.435	•919	.250	
9	1.050	1.089	e847	.684	.197	
10	.868	.911	•681	•634	082	
11	•359	• 385	.636	•564	e138	
12	.251	•254	• 334	•431	•228	
13	.061	·117	.245	•275	0134	
14	e136	.103	.215	•122	01/1	
15	•007	034	.151	.063	e070	
16	e047	.033	.185	e 1 / 1		
17	028	.075	0122	0230		
18	.000	•014	0133	010/		
19	e10e	0 0 54	e115			
cn	0.698	0.735	0.793	0.717	0.601	
c_{m}	0090	0065	0381	0250	0138	
C _N *	= 0.696		xt	cp = 26.6)	
Cm	=0111		VI	= 42.2		
Cr. 8	= .294		5	cp - 4~		

Orifice	Row					
	1	2	3	4	5	
1	1.601	2.125	2.132	2.145	1.770	
2	1.990	1.990	1.801	1.906	1.601	
3	1.357	1.785	1.689	1.734	1.326	
4	1.694	1.574	1.529	1.694	•898	
5	1.391	1.538	1.665	1.514	•821	
6	1.307	1.352	1.578	1.471	•612	
7	1.169	1.198	1.483	1.275	•567	
8	1.160	1.128	1.480	1.166	•257	
9	1.108	1.151	•916	•787	e224	
10	.901	.822	• 790	•710	178	
11	e 4 2 8	.508	0003	034	104	
12	• 311	• 275	e 348	e489	0250	
1.5	e006	.097	0191	0201	01/4	
14	047	010	0100	- 126	9212	
15		.020	.122	- 0120	0135	
10	035	- 0.60	-061	- 3.62		
18	020	.034	.040	125		
19	.007	•014	.106	.063		
c _n	0.749	0.754	0.816	0.766	0.609	
cm	0109	0051	0291	0140	0097	
Cl	v" = 0.724		x	cp = 25.9		
C _r C ₁	$n^{*} =0068$ $n^{*} = .306$		ك ¹	cp = 42.3		

NACA RM H58D29

,

F

TABLE VII. - Concluded.

 $[M \approx 0.85; s_f \approx 7^\circ]$

(k) M = 0.85 $C_{N_A} = 0.70$

 $a = 10.5^{\circ}$ $b_{a_{L}} = .2^{\circ} up$ $b_{e} = 7.2^{\circ}$

	,		OF =	102			
Orifice -	Row						
	1	2	3	4	5		
1	1.835	2.219	2.213	2.217	1.796		
2	2.045	2.053	1.866	1.915	1.609		
3	1.535	1.848	1.743	1.734	1.299		
4	1.722	1.709	1.600	1.667	e785		
5	1.453	1.573	1.700	1.409	e636		
6	1.343	1.461	1.639	1.221	•572		
7	1.267	1.260	1.519	•972	.518		
8	1.231	1.210	1.348	•947	•338		
9	1.186	1.192	.882	•711	0272		
10	.750	.610	.695	.689	062		
11	.458	• 450	.616	.613	035		
12	.271	.295	• 362	•512	•325		
13	.079	.138	.265	.365	0234		
14	.136	·110	.247	.162	• 301		
15	.040	·088	.185	014	.168		
16	•047	.093	•237	•246			
17	.007	.102	.191	•291			
18	020	.062	.202	•249			
19	.033	.020	e141	e118			
cn	0.755	0.775	0.838	0.755	0.603		
cm	0044	0044	0431	0370	021/		
C	N ¹ = 0.733		$x_{cp}^{1} = 26.7$				
C	$C_{\rm m}^{*} = -0123$						
$C_{\rm h}^{2} = .307$ $y'_{\rm cp} = 41.9$							

(1) $M = 0.85$ $C_{N_A} = 0.73$	3	a = 10 $\delta_{a_{L}} =$ $\delta_{f} = 7$.2° up			
Orifice	Row						
	1	2	3	4	5		
1	1.912	2.259	2.236	2.169	1.836		
2	2.106	2.112	1.954	1.947	1.622		
3	1.566	1.897	1.784	1.693	1.303		
le,	1.745	1.785	1.658	1.671	•854		
5	1.465	1.622	1.704	1.377	.679		
6	1.364	1.501	1.678	1.108	•620		
7	1.323	1.299	1.522	.939	.506		
8	1.234	1.268	1.351	.949	0373		
9	1.196	1.127	.870	•734	•299		
10	·692	.653	.724	•718	.000		
11	e473	•457	e645	•691	e014		
12	•278	• 324	•438	•561	•333		
13	.080	·138	• 328	•407	•268		
14	.170	.124	• 304	e203	•309		
15	.013	•095	•227	•042	.218		
16	.054	.120	•292	0247			
17	014	.102	•218	•325			
18	007	.069	•196	•229			
19	e020	e 020	•127	.133			
cn	0.762	0.803	0.870	0.764	0.629		
cm	0031	0067	0512	0447	0290		
Cl	v [*] = 0.754		x	cp = 27.2			
C _r C ₁	n =0162 n = .316		y '	cp = 41.9			
TABLE VIII. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE DOUGLAS X-3 WING

 $\left[M \approx 0.90; \delta_{f} \approx 7^{\circ} \right]$

(a) M = 0.90 $C_{N_{A}} = 0.07$ $a = 2.4^{\circ}$ $b_{a_{L}} = 0.2^{\circ} up$ $b_{f} = 10.5^{\circ}$

			Row		
Orifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-0.585 572 223 150 .300 .206 .182 .166 .177 .287 .100 .195 .098 .411 114 042 057 029 .006	-0.913 414 088 .048 .980 .210 .223 .235 .336 .275 .275 .129 .117 .319 163 071 .000 006 .012	-1.158 725 231 .961 .789 .553 .338 .387 .385 .354 .164 .091 .107 232 .000 .012 024 .031	-1.235 765 462 171 008 .866 .739 .804 .366 .450 .410 .300 172 319 213 079 030 037 .019	-1.253 599 .008 .973 .866 .694 .536 133 248 342 148 037 060 012 019
c _n c _m	0.090 0 <i>3</i> 67	0.132 0312	0.140 0381	0.145 0246	0.106 0177
C _N r C _m r C _D r	= 0.125 =0299 = .055		x [†] y [†]	cp = 49.0 cp = 44.3	

(Ъ)	М	=	0.90	
С	NA	=	0.15	

 $a = 2.9^{\circ}$ $\delta_{aL} = 0.4^{\circ} up$ $\delta_{f} = 10.6^{\circ}$

			-		
			Row		
Orifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9	-0.434 369 167 067 .364 .230 .261 .247 .323 .176 .225 .147 .418 102 060 050 035 .012	-0.488 191 048 .121 .959 .373 .216 .341 .386 .343 .343 .344 .160 .136 .283 097 131 .067 031 .042	-0.921 446 241 120 1.018 .846 .707 .425 .382 .477 .410 .226 .152 .068 270 024 006 012 .032	-0.990 	-0.667 308 .000 .969 .880 .713 .556 097 243 452 229 037 084 .000 044
cn cm	0.143 0 <i>3</i> 73	0.190 0284	0.198 0 <i>3</i> 70	0 ,194 -,0188	0.142 00 <i>3</i> 9
CN Cm Cb	= 0.176 =0258 = .076		2	$c^{\dagger}_{cp} = 39.$ $v^{\dagger}_{cp} = 43.$	7 1

NACA RM H58D29

.

.1

NACA RM H58D29

TABLE VIII.- Continued. [M \approx 0.90; $\mathfrak{I}_{f} \approx 7^{\circ}$]

(c) M = 0.90 $C_{N_A} = 0.24$

• •

 $a = 3.9^{\circ}$ $\delta_{a_{L}} = 0.4^{\circ}$ up $\delta_{f} = 10.1^{\circ}$

	Row						
Orifice	1	2	3	4	5		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-0.128 041 .000 .142 .560 .435 .378 .355 .385 .410 .288 .265 .234 .429 101 024 044 018 .006	-0.190 .016 .127 .248 1.082 .614 .406 .389 .470 .451 .406 .257 .154 .392 272 041 018 030	-0.183 206 048 .016 1.092 .913 .832 .745 .503 .523 .493 .298 .248 .394 385 060 .012 042 .044	-0.239 113 .016 .097 .148 .992 .833 .883 .694 .723 .484 .378 .226 307 537 170 102 062 019	-0.285 173 .088 .965 .889 .746 .609 .283 .097 469 506 178 107 .006 025		
c _n	0.240	0.283	0.323	0.308	0,222		
CN'	= 0.274		x	cp = 35.9			
Cbi	=0298 = .119		У	cp = 43.3			

(b)	М	-	0.90	
0	NT.	_	0.37	
0	AN	-	0.)1	

$$a = 5.1^{\circ}$$

$$\delta_{aL} = 0.1^{\circ} \text{ down}$$

$$\delta_{f} = 9.2^{\circ}$$

1

.

			Row		
Orifice	1	2	3	4	5
1	0.247	0.182	0.143	0.158	0.032
2	.203	.269	.139	.208	.071
3	.237	• 356	.159	.238	.151
4	.365	• 415	.230	.291	.902
5	.722	1.078	1.080	.295	.892
6	.615	.837	.940	. 980	.749
7	.503	.531	.844	.885	.643
8	.495	. 500	.851	.944	.305
9	.491	.583	.745	.776	.265
10	.496	.535	.592	.792	152
11	.393	.478	.582	.747	209
12	.311	.408	.357	.460	325
13	.287	.196	.308	.305	083
14	.439	.421	.443	090	.036
15	089	216	334	417	.006
16	.048	.000	066	200	
17	013	006	024	042	
18	.012	.000	042	031	
19	•012	.012	.019	.006	
cn	0.345	0.387	0.413	0.413	0.305
cm	0452	0413	0486	0341	0289
CN [*] Cm [*]	= 0.371		x	cp = 35.3	
Cb'	= .159		У	cp = 43.0	

TABLE VIII .- Continued.

[M \approx 0.90; $\delta_{f} \approx 7^{\circ}$]

(e)	М	=	0.90
С	NA	=	0.36

.

 $a = 6.0^{\circ}$ $b_{a_{L}} = 0.5^{\circ} up$ $b_{f} = 8.9^{\circ}$

(f)	М	=	0.90	
C	NA	=	0.46	

α	=	7.00	
SaT.	=	0.40	up

			-I	• /	
			Row		
Orifice	1	2	3	4	5
1	0.452	0.391	0.363	0.426	0.180
2	•412	• 4 4 1	.293	.398	•203
3	.409	. 449	.309	.378	.237
4	.536	.500	.355	• 442	.898
5	.805	1.072	1.090	•432	.863
6	.682	.888	.974	.967	.774
7	.547	.638	.895	.920	.664
8	.594	.610	.924	1.004	•381
9	.570	.653	.850	.820	.299
10	.534	.604	.673	.812	151
11	.472	.544	.663	0774	183
12	.338	•479	•433	.612	- 0274
13	.350	·231	• 366	• 376	- •419
14	.431	• 443	.318	125	133
15	053	245	302	384	.025
16	.006	129	227	459	
17	.012	.012	048	107	
18	.006	006	.012	037	
19	•024	•018	•062	•006	
cn	0.404	0.436	0.460	0.450	0.320
	0//2	0.206	0156	0250	0171
em	= OLLA		······································	==0290	
CN *	= 0.412		2	"cp = 33.	0
Cm	=0330			$y'_{cp} = 42.$	3
CP,	= .174			S.F.	

			$o_{f} =$	8.4	
	-		Row		
Drifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.810 915 693 826 946 809 696 672 658 633 560 373 334 228 - 024 113 106 075 041	1.318 .827 .646 .675 1.097 .954 .813 .707 .750 .714 .629 .546 .335 .474 - 211 - 106 .024 .006 .018	1.336 1.060 .809 .521 1.083 1.037 .888 1.018 .906 .792 .749 .500 .396 .168 315 131 078 .048 .087	1.389 1.116 .978 .780 .533 1.015 .968 1.021 .815 .837 .744 .636 .498 042 328 362 137 037 .012	0.965 .827 .348 .822 .791 .716 .653 .406 .359 030 098 165 295 193 .037
cn cm	0.499 0415	0.547	0.567 0405	0.563 0196	0.414 0156
CN ¹ Cm ¹ Cb ¹	= 0.516 =0307 = .219		x y	cp = 30.9 cp = 42.4	

NACA RM H58D29

3

.

ï

TABLE VIII .- Continued.

 $[M \approx 0.90; \delta_{f} \approx 7^{\circ}]$

(g) :	M =	0.90	
CN	A =	0.53	

!

α δar	11 11	8.0° 0.4°	up
$\delta_{\mathbf{f}}$	=	8.10	

	Row										
Orifice	1	2	3	4	5						
1	1.004	1.581	1.580	1.624	1.198						
2	1.227	1.416	1.285	1.345	1.097						
3	.941	1.194	1.139	1.235	.850						
4	1.128	.941	1.006	1.114	.937						
5	1.068	1.141	1.289	1.008	.855						
6	.946	1.021	1.266	1.185	.808						
7	.840	.895	.987	1.122	.729						
8	•777	.846	1.101	1.194	.503						
9	.780	.856	.940	1.012	•457						
10	•711	.820	.911	.974	.049						
11	.655	•717	.818	.765	025						
12	•469	.621	.635	.609	141						
13	.270	• 453	.133	• 481	225						
14	.216	.153	•022	048	176						
15	.036	216	194	305	.000						
16	.120	059	090	315							
17	.125	.048	.036	168							
18	•064	.018	.060	025							
19	.059	• 054	•119	•019							
cn	0.592	0.632	0.684	0.676	0.549						
cm	0421	0328	0412	0181	0217						
C _N [†] C _m [†]	= 0.615 =0287		x y	cp = 29.7 cp = 43.2							
b	= .200			-1							

(h)	M = 0.90 $C_{NA} = 0.60$		a = 0 $\delta_{a_{L}} = 0$ $\delta_{f} = 0$	9.00 0.4° up 7.9°	
			Row	199	
Jrifice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.156 1.614 1.124 1.329 1.274 1.088 1.005 .933 .894 .805 .736 .549 .256 .224 024 .054 019 041 .030	1.807 1.626 1.451 1.341 1.293 1.118 1.078 .975 .942 .930 .832 .558 .228 .080 151 065 .061 .031 .055	1.800 1.444 1.348 1.205 1.432 1.362 1.276 1.282 1.052 .735 .617 .311 .195 .158 024 .042 .061 .072 .069	1.812 1.565 1.429 1.358 1.188 1.321 1.242 1.277 .812 .646 .578 .415 .258 .060 132 165 103 105 .019	1.398 1.263 1.032 1.064 .953 .790 .611 .290 .224 018 .006 074 137 073 138
c _n c _m	0.672 0326	0 .707 02 <i>3</i> 8	0.713 0299	0.662	0.544 .0031
C _N [*] C _m [*] C _b *	= 0.652 =0129 = .272		x y	cp = 27.0 cp = 41.6	,

TABLE VIII. - Concluded.

[M \approx 0.90; $s_{f} \approx 7^{\circ}$]

(i) M = 0.90 $C_{NA} = 0.65$ $\alpha = 9.6^{\circ}$ $\delta_{a_{L}} = 0.4^{\circ} \text{ down}$ $\delta_{f} = 7.9^{\circ}$

0			Row		
Orlice	1	2	3	4	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.157 1.641 1.108 1.363 1.282 1.104 .996 .940 .926 .798 .741 .499 .126 .110 090 067 051 071 .000	1.827 1.637 1.469 1.359 1.294 1.102 1.069 .957 .961 .937 .589 .389 .124 .130 098 054 .062 .049	1.821 1.495 1.366 1.238 1.442 1.411 1.285 1.347 .750 .625 .603 .325 .226 .182 - 006 .091 .086 .109 .076	1.857 1.592 1.455 1.392 1.204 1.323 1.155 1.032 .621 .583 .501 .376 .229 .182 057 062 012 .000 .031	1 • 455 1 • 304 1 • 056 1 • 041 • 929 • 664 • 485 • 286 • 226 • 098 • 025 - • 030 • 006 - • 076
cn cm	0.647 0154	0.685 0175	0.705 0298	0.642 30056	0.544 0044
C _N C _m C _b	= 0.635 =0104 = .266		2	$c_{cp}^{i} = 26.$ $y_{cp}^{i} = 41.$	6 8

α, deg			e _{nf}			Car						
Row	1 2 3 4 5	5	CNf	l	2	3	4	5	Chf			
7.6 8.5 9.4 10.4 11.5	1.726 1.945 2.025 1.921 1.877	1.770 1.909 1.663 1.682 1.667	1.279 1.319 1.292 1.373 1.362	1.179 1.257 1.261 1.273 1.320	0.956 .998 1.064 1.061 1.034	1.301 1.394 1.336 1.345 1.344	1,005 1.072 1.061 .990 .967	1.055 1.057 .857 .859 .861	0.676 .696 .674 .714 .714	0.632 .673 .669 .673 .694	0.519 .536 .560 .566 .550	0.736 .759 .698 .699 .701

TABLE IX. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING.

(a) $M \approx 0.55; \delta_{f} = 0^{\circ}$

Sc

NACA RM H58D29

1

×.

					(0)~	0, 1, _, _,						
α, deg			°nf			Cr			chf			C.
Row	1	2	3	4	5	CNf	1	2	3	4	5	hf
3.2 3.7 4.6 5.4 6.2 6.8 7.7 8.3 9.6 10.8 12.2 15.5	0.424 .586 .949 1.256 1.405 1.579 1.822 1.935 1.865 1.673 1.604 1.323	0.534 .723 .932 1.035 1.314 1.522 1.705 1.821 1.706 1.620 1.473 1.402 1.212	0.542 .662 .836 .981 1.204 1.260 1.289 1.420 1.420 1.400 1.472 1.404 1.278 1.064	0.568 .756 .944 1.037 1.301 1.438 1.523 1.308 1.326 1.319 1.226 1.218 1.086	0.390 .523 .662 .758 .924 1.055 1.018 1.027 1.013 1.023 .957 .972 .968	0.473 .628 .904 1.138 1.274 1.365 1.388 1.365 1.342 1.238 1.193 1.045	0.245 .350 .487 .578 .737 .828 .911 1.043 1.072 .962 .861 .830 .691	0.356 .496 .614 .661 .838 .935 .983 .978 .881 .831 .749 .716 .624	0.390 .488 .598 .658 .655 .676 .695 .749 .740 .777 .741 .672 .570	0.396 .502 .583 .628 .758 .831 .849 .699 .712 .699 .712 .652 .648 .578	0.287 .351 .411 .462 .550 .603 .565 .560 .542 .539 .510 .530 .535	0.324 .426 .518 .568 .680 .746 .770 .724 .703 .645 .624 .552

.

TABLE IX .- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Continued.

(b) $M \approx 0.71$; $\delta_r = 0^\circ$

r

5

NACA	
RM	
H58D29	

TABLE IX. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Continued.

(c) $M \approx 0.77; \delta_{f} = 0^{\circ}$

a, deg			cnf				°h _f					
Row	1	2	3	4	5	CNf	1	2	3	4	5	Chf
2.2	0.198	0.231	0.233	0.319	0.132	0.220	0.115	0.126	0.173	0.220	0.082	0.140
2.4 3.5 3.8	.302 .531 .660	.386 .703 .858	·392 .647 .788	.454 .742 .892	.260 .522 .646	.350 .611 .744	.177 .311 .390	.237 .461 .561	.285 .455 .544	.321 .487 .558	.182 .364 .433	.234 .405 .482
5.5 6.2 6.6	1.126 1.381 1.516	1.343 1.610 1.717	1.276 1.519 1.598	1.301 1.498 1.540	.076 1.012 1.148 1.214	.995 1.156 1.362	.568 .673 .814 .801	.711 .816 .916	.699 .791 .866 .887	.692 .762 .854	.532 .622 .674	.613 .697 .781
7.6 8.2 8.9	1.812 1.865 1.912	1.849 1.818 1.685	1.563 1.557 1.456	1.644 1.453 1.400	1.230 1.149 1.091	1.529 1.464 1.394	1.034 1.062	·900 ·996 ·945	.826 .818	.009 .907 .781 747	.704 .675 .624	.819 .834 .781
10.4	1.786 1.654	1.590	1.460	1.349	1.110	1.343	· 934 · 857	.815	.760	.719	.601	.704

57

α , deg			^c nf						chf					
Row	l	2	3	4	5	CNf	1	2	3	4	5	Chf		
2.3 2.4 3.1 3.8 4.5 5.2 5.7 6.2 6.9 7.4 8.2 10.1 11.1	0.234 .274 .437 .676 .906 1.094 1.238 1.348 1.472 1.551 1.661 1.802 1.806	0.274 .324 .547 .796 1.073 1.301 1.563 1.632 1.738 1.806 1.928 1.520 1.579	0.308 .363 .568 .780 1.054 1.407 1.542 1.616 1.711 1.764 1.878 1.620 1.580	0.369 .442 .597 .859 1.174 1.474 1.597 1.661 1.743 1.802 1.813 1.048 1.341	0.192 .243 .360 .606 .874 1.130 1.342 1.391 1.492 1.561 1.572 .852 1.007	0.267 .320 .486 .712 .972 1.219 1.390 1.454 1.545 1.605 1.672 1.235 1.343	0.141 .168 .261 .416 .549 .649 .726 .780 .842 .889 .952 .965 .949	0.156 .196 .354 .528 .694 .796 .871 .904 .950 .984 1.038 .778 .812	0.216 .270 .395 .548 .710 .820 .862 .892 .934 .963 1.017 .860 .822	0.260 .306 .414 .594 .764 .854 .898 .931 .973 1.001 1.020 .562 .722	0.130 .182 .258 .479 .621 .704 .785 .790 .832 .868 .892 .482 .548	0.175 .216 .327 .491 .638 .728 .786 .814 .856 .887 .924 .654 .707		

.

,

٠

TABLE IX .- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING .- Continued.

α , deg			c _{nf}						c _{hf}			
Row	l	2	3	4	5	C _{Nf}	1	2 -	3	4	5	Chf
1.6 2.3 2.6 3.4 4.2 4.6 5.1 5.4 6.2 6.8 8.4 9.5 10.8 11.8 12.5 14.4 15.2	0.123 .266 .352 .591 .775 .904 .997 1.100 1.261 1.369 1.602 1.741 1.876 1.955 2.047 1.705 1.480	0.155 .285 .337 .688 .948 1.117 1.317 1.317 1.485 1.587 1.768 1.910 2.054 2.108 2.183 1.603 1.328	0.131 .226 .426 .684 1.070 1.177 1.251 1.339 1.434 1.524 1.682 1.812 1.888 1.827 1.910 1.594 1.242	0.207 .325 .540 .793 1.157 1.271 1.329 1.374 1.470 1.564 1.733 1.732 1.528 1.477 1.548 1.474 1.260	0.077 .099 .211 .541 .922 1.042 1.075 1.126 1.216 1.298 1.467 1.432 1.004 .914 1.030 1.129 1.069	0.140 .238 .361 .633 .927 1.050 1.148 1.205 1.304 1.392 1.557 1.625 1.581 1.571 1.647 1.393 1.178	0.071 .157 .213 .365 .457 .526 .582 .642 .720 .783 .894 .958 1.025 1.058 1.025 1.058 1.096 .898 .768	0.080 .160 .186 .465 .606 .669 .734 .760 .819 .869 .955 1.020 1.088 1.113 1.146 .809 .684	0.104 .146 .318 .482 .636 .685 .716 .751 .796 .840 .922 .986 1.029 1.019 1.046 .826 .652	0.140 .209 .390 .540 .676 .729 .758 .776 .824 .871 .953 .964 .853 .823 .858 .772 .667	0.055 .061 .174 .416 .560 .612 .622 .646 .688 .727 .817 .805 .564 .513 .547 .612 .577	0.089 .145 .244 .435 .562 .615 .653 .679 .728 .772 .853 .889 .860 .855 .885 .723 .617

TABLE IX.- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING.- Continued.

(e) $M \approx 0.88; \delta_{f} = 0^{\circ}$

TABLE IX. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Continued.

a, deg			cnf						°h _f			G
BOW	1	2	3	4	5	$c_{N_{f}}$	1	2	3	4	5	^{Ch} f
2.6 3.1 3.7 4.2 4.8 5.3 5.7 6.2 6.9 7.6 8.5 9.4 10.9 12.3 13.3	0.386 .518 .672 .924 1.026 1.146 1.246 1.353 1.456 1.570 1.674 1.833 1.999 2.116	0.368 .622 .836 .953 1.197 1.303 1.386 1.453 1.555 1.643 1.751 1.885 1.992 2.134 2.213	0.468 .587 .803 1.047 1.179 1.268 1.312 1.378 1.470 1.567 1.659 1.762 1.874 1.958 1.961	0.566 .688 .973 1.136 1.247 1.317 1.370 1.450 1.530 1.610 1.709 1.822 1.818 1.650 1.649	0.315 .464 .807 .932 1.022 1.085 1.136 1.201 1.284 1.370 1.460 1.556 1.480 1.192 1.076	0.400 .556 .784 .921 1.067 1.147 1.210 1.278 1.363 1.445 1.538 1.644 1.696 1.683 1.702	0.226 .323 .406 .446 .540 .599 .661 .717 .776 .883 .930 1.001 1.083 1.129	0.203 .412 .532 .604 .692 .722 .766 .798 .846 .891 .942 1.010 1.062 1.127 1.163	0.351 .430 .546 .627 .679 .720 .742 .770 .815 .862 .907 .961 1.012 1.051 1.049	0.400 .401 .607 .662 .710 .747 .774 .812 .853 .893 .944 1.000 1.000 1.000 .907 .898	0.274 .378 .505 .553 .604 .632 .653 .687 .723 .761 .812 .861 .825 .691 .591	0.271 .386 .497 .555 .616 .650 .681 .715 .756 .797 .843 .896 .921 .911

.

(f) M \approx 0.90; $\delta_{\rm f}$ = 0°

cnf α , deg chf CNf Chf 4 1 2 3 5 1 2 4 3 5 Row 0.177 .250 .329 .667 .843 .942 1.128 1.286 0.155 .204 .358 .639 .827 .896 1.010 0.148 0.155 0.220 0.070 0.080 0.143 0.100 1.7 0.113 0.050 .055 .250 .437 .499 .538 .538 .606 .639 .677 .700 .734 .773 .839 .859 .911 .618 .634 0.097 2.2 .216 .133 .195 .343 .389 .427 .505 .581 .638 .692 .754 .834 .899 .929 .994 .137 .176 .435 .535 .574 .649 .716 .745 .783 .825 .866 .117 .306 .459 .565 .590 .642 .693 .728 .728 .766 .798 .831 .862 .125 •323 •554 •654 .422 .290 .694 .841 2.6 .510 •365 •529 •609 •637 •677 •725 •759 3.4 .653 .790 .421 3.9 .951 1.039 .499 .734 1.010 1.097 .909 .530 4.9 .870 1.124 1.180 .974 5.4 1.003 1.234 1.276 1.120 1.051 .633 1.200 1.356 1.430 1.508 1.587 1.675 1.808 1.887 1.120 1.187 1.258 1.323 1.393 1.463 1.581 1.648 1.102 1.308 1.342 1.125 .666 .159 .799 .831 .866 .898 .959 .997 1.040 1.385 6.7 1.201 1.416 1.197 .703 .737 .771 .803 7.1 1.311 1.395 1.473 1.483 1.240 1.516 1.578 1.703 1.780 1.870 1.944 1.812 7.7 1.554 1.311 8.2 1.622 1.386 .901 .967 1.605 1.743 9.1 1.517 .925 .862 1.685 9.9 ·955 1.004 1.813 .893 1.572 1.005 10.9 1.995 2.070 1.644 1.744 1.811 1.059 1.904 1.672

1.424

1.386

1.040

·903 .887

.837

.820

1.072 .734 .732

1.036

·921 .818

1.973 1.394

1.394

1.732

1.152

1.173

12.0

16.7

17.6

1.918

1.759

1.718

1.628

1.582

TABLE IX .- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING .- Continued.

(g) $M \approx 0.92; \delta_r = 0^\circ$

147

.970

.736

	1		c _{nf}						- I			C
Row		2	3	4	5	$C_{N_{f}}$	1	2	3	4	5	^{°h} f
1.8 2.2 2.7 3.3 3.9 4.4 4.9 5.2 5.6 6.2 6.8 7.5 8.1 8.6 9.3 10.3 10.8 11.2 12.0 11.9 13.6	0.126 .216 .327 .506 .603 .701 .821 .923 1.004 1.119 1.222 1.343 1.429 1.498 1.562 1.648 1.726 1.812 1.911 1.952 2.036	0.162 .231 .331 .604 .762 .897 1.070 1.197 1.264 1.333 1.420 1.526 1.609 1.675 1.773 1.826 1.609 1.675 1.773 1.826 1.882 1.964 2.037 2.075 2.141	0.100 .171 .422 .590 .841 .953 1.047 1.134 1.199 1.273 1.347 1.439 1.523 1.586 1.649 1.699 1.699 1.763 1.837 1.907 1.947 2.020	0.212 .285 .506 .731 .925 1.036 1.117 1.178 1.238 1.312 1.381 1.474 1.563 1.616 1.693 1.750 1.811 1.880 1.956 1.972 2.051	0.058 .075 .343 .628 .740 .832 .918 .977 1.030 1.086 1.153 1.251 1.337 1.394 1.473 1.501 1.564 1.639 1.709 1.736 1.811	0.136 .196 .365 .583 .739 .845 .954 1.037 1.096 1.164 1.237 1.330 1.409 1.466 1.540 1.540 1.590 1.647 1.718 1.788 1.816 1.884	0.072 .129 .193 .307 .360 .408 .474 .537 .576 .647 .698 .761 .810 .844 .872 .908 .939 .983 1.028 1.053 1.086	0.090 .125 .178 .399 .483 .548 .607 .666 .697 .734 .780 .824 .870 .900 .946 .970 .999 1.040 1.072 1.088 1.115	0.075 .118 .316 .424 .512 .567 .603 .641 .673 .710 .746 .790 .832 .863 .895 .917 .945 .988 1.022 1.033 1.064	0.133 .182 .361 .489 .553 .599 .642 .671 .701 .737 .774 .824 .861 .894 .930 .988 1.025 1.059 1.061 1.095	0.040 .052 .290 .397 .449 .488 .532 .559 .586 .616 .653 .705 .743 .765 .808 .827 .863 .893 .937 .945 .974	0.084 .120 .248 .387 .453 .501 .547 .616 .652 .690 .735 .774 .802 .838 .861 .889 .925 .958 .969 .997

1

*

.

(h) $M \approx 0.96; \delta_f = 0^\circ$

NACA RM H58D29

890 149

TABLE IX .- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING .- Continued.

(i) $M \approx 0.99$; $\delta_f = 0^\circ$

a, deg			cnf						chf			
Row	1	2	3	4	5	CNf	1	2	3	4	5	^{Ch} f
3.0 3.5 4.4 5.0 5.3 5.9 6.5 6.8 7.4 8.1 8.6 9.1 9.1 10.0 10.4 11.0	0.210 .361 .533 .646 .797 .907 1.029 1.137 1.259 1.352 1.433 1.524 1.498 1.585 1.658 1.733 1.803	0.244 .469 .836 1.074 1.150 1.247 1.320 1.441 1.516 1.588 1.695 1.666 1.755 1.811 1.863 1.920	0.325 .488 .796 .887 1.014 1.089 1.187 1.263 1.352 1.431 1.493 1.592 1.550 1.636 1.683 1.732 1.786	0.419 .569 .875 .965 1.073 1.143 1.238 1.316 1.403 1.475 1.531 1.624 1.597 1.679 1.721 1.787 1.822	0.268 .395 .679 .778 .870 .940 1.021 1.092 1.182 1.246 1.308 1.386 1.362 1.439 1.483 1.539 1.579	0.282 .442 .687 .787 .930 1.001 1.090 1.163 1.257 1.327 1.387 1.449 1.527 1.574 1.628 1.673	0.129 .221 .327 .376 .464 .525 .596 .658 .722 .769 .811 .851 .837 .878 .910 .943 .976	0.132 .303 .442 .509 .596 .636 .690 .725 .783 .819 .855 .901 .888 .933 .959 .986 1.013	0.257 .354 .483 .529 .583 .618 .665 .700 .745 .779 .812 .859 .843 .884 .908 .933 .958	0.304 .399 .520 .558 .614 .650 .698 .737 .782 .816 .846 .893 .875 .917 .937 .937 .990	0.266 .305 .419 .464 .508 .544 .590 .627 .665 .695 .733 .767 .760 .799 .813 .852 .861	0.202 .305 .420 .467 .529 .566 .614 .650 .697 .729 .761 .802 .789 .828 .849 .878 .878

S

						-	Contraction of the local division of the loc	Concerning the state of the sta	and the second sec			
a, deg			°nf						chf			G
Row	l	2	3	4	5	°N _f	l	2	3	4	5	^{Ch} f
2.5 2.4 3.7 4.7 5.50 6.2 7.5 8.3 9.7	0.044 .140 .328 .453 .545 .618 .765 .842 .969 1.129 1.261 1.332 1.417 1.574 1.593	0.099 .178 .357 .574 .700 .821 1.038 1.087 1.189 1.370 1.441 1.502 1.580 1.758 1.774	0.040 108 414 567 786 .869 .981 1.034 1.142 1.281 1.374 1.432 1.497 1.642 1.667	0.153 .209 .521 .712 .868 .955 1.046 1.096 1.183 1.314 1.416 1.464 1.534 1.675 1.703	0.011 .024 .348 .596 .688 .762 .854 .891 .986 1.108 1.196 1.247 1.308 1.448 1.470	0.080 .138 .376 .557 .686 .773 .903 .950 1.043 1.181 1.266 1.318 1.385 1.528 1.548	0.027 .089 .204 .282 .328 .362 .452 .455 .570 .656 .724 .763 .808 .882 .891	0.054 .101 .221 .376 .449 .504 .578 .606 .662 .762 .785 .818 .854 .939 .951	0.041 .077 .305 .400 .477 .515 .589 .638 .712 .781 .814 .889 .897	0.103 .129 .365 .467 .517 .553 .599 .627 .674 .740 .791 .815 .850 .922 .934	0.019 .021 .282 .371 .414 .448 .499 .518 .566 .626 .674 .700 .732 .797 .807	0.054 .085 .260 .365 .420 .459 .515 .541 .590 .663 .702 .729 .762 .832 .842

۲

.

+

TABLE IX .- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING .- Continued.

(j) $M \approx 1.01; \delta_r = 0^\circ$

x

						- 1						
a, deg			c _{nf}						chf			
Row	1	2	3	4	5	CNf	1	2	3	4	5	^{Ch} f
2.7 2.8 3.3 4.5 5.5 6.6 6.6 7.6 8.4 9.1 10.1 10.6 11.4 13.0 13.8 14.6 17.4	0.136 .178 .260 .385 .494 .576 .732 .797 .909 .973 1.121 1.214 1.210 1.361 1.433 1.512 1.603 1.697 1.786 1.872 1.966 2.048 2.105	0.158 .187 .352 .499 .616 .742 .926 .993 1.109 1.263 1.346 1.346 1.346 1.427 1.532 1.599 1.669 1.744 1.823 1.891 1.954 2.019 2.087 2.141	0.199 .264 .368 .575 .665 .742 .871 .931 1.043 1.093 1.200 1.285 1.356 1.436 1.498 1.557 1.635 1.697 1.760 1.843 1.908 1.978 2.036	0.288 .353 .461 .675 .761 .831 .945 1.001 1.103 1.151 1.254 1.329 1.402 1.402 1.402 1.474 1.531 1.597 1.661 1.735 1.797 1.863 1.934 2.000 2.064	0.019 .163 .293 .492 .580 .639 .769 .819 .917 .966 1.050 1.129 1.197 1.268 1.325 1.386 1.447 1.515 1.581 1.639 1.712 1.794 1.875	0.164 .223 .339 .505 .597 .679 .813 .869 .969 1.017 1.114 1.189 1.257 1.336 1.394 1.455 1.522 1.591 1.654 1.717 1.782 1.849 1.905	0.093 .121 .162 .231 .295 .340 .433 .469 .530 .566 .637 .685 .720 .765 .800 .837 .921 .963 .998 1.036 1.082 1.106	0.079 .099 .230 .313 .375 .429 .509 .542 .605 .633 .686 .729 .769 .818 .850 .883 .920 .961 .991 1.019 1.019 1.047 1.083 1.103	0.173 .215 .273 .361 .401 .436 .502 .530 .585 .610 .661 .702 .737 .779 .809 .836 .875 .908 .938 .972 1.000 1.035 1.062	0.207 .255 .322 .412 .452 .486 .542 .573 .625 .650 .659 .737 .772 .809 .837 .873 .905 .938 .905 .938 .967 .995 1.028 1.059 1.090	0.039 .176 .231 .307 .351 .388 .443 .473 .526 .550 .599 .638 .674 .706 .737 .768 .794 .830 .861 .888 .927 .963 1.005	0.115 .161 .236 .313 .359 .398 .462 .491 .544 .569 .618 .656 .690 .728 .757 .787 .819 .854 .882 .910 .939 .972 .998

TABLE IX. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING EDGE FLAP OF X-3 WING. - Continued.

z

(k) $M \approx 1.10; \delta_{f} = 0^{\circ}$

1

1

.

.

.

TABLE IX.- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING.- Concluded.

α , deg			cnf						° _{hf}			G
Row	1	2	3	4	5	CNf	1	2	3	4	5	^{°h} f
1.9 1.8 2.0 2.9 3.6 4.0 4.4 5.4 5.4 6.9 7.8 8.9 9.4 10.2 13.9 14.2 13.9 14.7 17.0 17.8	0.030 .078 .156 .305 .426 .511 .613 .746 .811 .885 .965 1.087 1.133 1.232 1.318 1.397 1.489 1.566 1.649 1.736 1.819 1.942 2.006	0.063 .096 .172 .420 .551 .653 .755 .905 .970 1.035 1.102 1.219 1.274 1.348 1.429 1.533 1.623 1.623 1.704 1.778 1.843 1.894 1.968 2.031	-0.007 .057 .230 .467 .581 .648 .726 .848 .908 .983 1.047 1.156 1.211 1.279 1.351 1.429 1.519 1.519 1.519 1.660 1.728 1.783 1.863 1.946	0.131 .151 .330 .578 .682 .739 .815 .935 .935 .983 1.047 1.109 1.210 1.260 1.328 1.389 1.474 1.567 1.632 1.705 1.761 1.805 1.913 1.985	-0.044 023 .158 .402 .498 .560 .638 .755 .803 .855 .915 1.022 1.071 1.129 1.190 1.268 1.354 1.487 1.548 1.594 1.684 1.768	0.048 .080 .205 .422 .528 .599 .680 .801 .854 .914 .974 1.077 1.124 1.190 1.257 1.338 1.422 1.490 1.557 1.616 1.665 1.750 1.816	0.040 .065 .105 .185 .257 .308 .361 .431 .464 .504 .549 .615 .647 .695 .737 .776 .815 .847 .886 .925 .963 1.028 1.057	0.024 .045 .095 .255 .321 .363 .419 .526 .598 .661 .688 .725 .812 .856 .896 .931 .962 .983 1.014 1.046	0.020 .060 .194 .301 .355 .389 .487 .512 .548 .580 .632 .661 .695 .730 .769 .812 .848 .873 .913 .913 .913 .973 1.011	0.086 .091 .236 .353 .405 .434 .473 .534 .558 .591 .622 .674 .699 .734 .765 .804 .849 .881 .913 .939 .961 1.014 1.049	-0.009 .008 .154 .267 .312 .343 .381 .440 .466 .490 .524 .604 .633 .663 .700 .747 .773 .810 .837 .857 .906 .956	0.035 .053 .147 .263 .316 .350 .392 .453 .479 .510 .542 .595 .620 .653 .686 .724 .765 .797 .827 .856 .878 .918 .952

.

2

.

,

(1) M \approx 1.15; $\delta_{f} = 0^{\circ}$

α , deg			cnf						chf			
Row	l	2	3	4	5	CNf	l	2	3	4	5	Chf
7.4 8.4 9.5 10.7 11.5 12.4 13.4	1.160 1.448 1.678 1.948 2.282 2.444 2.499	1.330 1.646 1.970 2.112 1.947 1.874 1.687	1.162 1.530 1.566 1.553 1.504 1.529 1.525	1.245 1.512 1.718 1.466 1.481 1.366 1.365	0.896 1.098 1.253 1.367 1.339 1.289 1.232	1.109 1.378 1.574 1.591 1.568 1.529 1.471	0.577 .714 .819 .959 1.220 1.319 1.362	0.808 .996 1.137 1.153 .994 .945 .880	0.739 .873 .812 .790 .770 .782 .783	0.717 .848 .950 .755 .761 .698 .703	0.545 .627 .692 .772 .723 .675 .643	0.656 .788 .866 .843 .812 .787 .769

.

TABLE X. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING

.

.

(a) $M \approx 0.55; \delta_f = 7^\circ$

TABLE X.- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING.- Continued.

α , deg			^c nf		1				chf			
Row	1	2	3	4	5	CNf	1	2	3	4	5	Chf
1.4 1.9 2.6 3.7 4.4 4.8 5.9 6.9 7.4 8.3 8.7 9.7 10.2 10.3 11.4 13.0 14.7 16.4	-0.259 084 .111 .306 .578 .703 .974 1.253 1.379 1.648 1.763 2.126 2.210 2.155 2.197 1.995 2.004 1.574	-0.223 .022 .190 .611 .742 1.107 1.382 1.543 1.811 1.902 1.999 1.896 1.655 1.695 1.396 1.552 1.176	-0.207 .009 .157 .324 .624 .730 1.025 1.242 1.439 1.714 1.772 1.727 1.635 1.515 1.358 1.413 1.015	-0.221 .014 .178 .365 .628 .758 1.080 1.331 1.464 1.612 1.699 1.842 1.684 1.469 1.549 1.264 1.355 1.118	-0.194 023 .074 .199 .339 .431 .757 .949 1.078 1.253 1.294 1.447 1.430 1.397 1.402 1.206 .983 1.305	-0.203 .000 .145 .311 .531 .642 .945 1.174 1.313 1.518 1.592 1.707 1.629 1.491 1.513 1.284 1.331 1.106	-0.191 106 .015 .122 .277 .330 .488 .628 .698 .856 .934 1.164 1.210 1.195 1.231 1.102 1.087 .849	-0.248 055 .049 .169 .325 .429 .665 .826 .905 1.002 1.030 1.047 .966 .838 .868 .710 .786 .599	-0.190 042 .059 .156 .350 .450 .646 .802 .882 .995 .997 .918 .860 .834 .780 .710 .737 .548	-0.218 048 .056 .168 .345 .441 .632 .761 .813 .895 .934 .999 .900 .788 .826 .657 .702 .585	-0.227 083 024 .063 .153 .214 .470 .548 .623 .700 .726 .803 .793 .757 .741 .646 .512 .690	-0.205 056 .036 .136 .281 .364 .561 .687 .752 .843 .872 .916 .861 .785 .797 .672 .690 .580

.

.

.

(b) $M \approx 0.71$; $\delta_f = 7^\circ$

.

						11						
a, deg			cnf						chf			
Row	1	2	3	4	5	°N _f	1	2	3	4	5	Chf
2.8 3.0 3.7 4.4 5.6 6.4 7.6 8.2 8.7 9.9 10.6 11.7 13.5	0.006 .091 .256 .427 .546 .764 1.030 1.295 1.477 1.614 1.747 1.933 2.061 2.158 2.096 1.980	0.146 .227 .332 .482 .619 .900 1.183 1.437 1.638 1.814 1.965 2.122 2.223 1.831 1.565 1.407	0.105 .182 .277 .437 .610 .849 1.097 1.351 1.704 1.845 1.920 2.036 2.026 1.590 1.546 1.336	0.140 .200 .312 .494 .649 .863 1.159 1.285 1.620 1.839 1.891 1.928 1.928 1.923 1.428 1.372 1.372	0.063 .110 .201 .300 .375 .580 .825 1.043 1.177 1.346 1.451 1.499 1.566 1.456 1.485 1.200	0.103 .168 .269 .413 .539 .759 1.012 1.210 1.441 1.605 1.701 1.797 1.846 1.536 1.435 1.309	-0.033 .016 .101 .192 .255 .377 .525 .644 .742 .809 .879 .988 1.068 1.147 1.143 1.090	0.013 .062 .130 .217 .318 .530 .705 .856 .983 1.058 1.111 1.167 1.222 .945 .791 .712	0.019 .062 .125 .221 .350 .513 .687 .821 .992 1.046 1.046 1.046 1.134 1.134 1.147 .840 .827 .692	0.020 .060 .130 .243 .355 .511 .686 .801 .998 1.061 1.078 1.092 1.074 .750 .709 .730	-0.032 004 .060 .126 .166 .340 .514 .618 .729 .850 .891 .842 .881 .842 .881 .810 .819 .648	0.004 .043 .107 .193 .281 .442 .601 .720 .856 .925 .962 .994 1.021 .810 .753 .688

TABLE X. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Continued.

(c) $M \approx 0.76; \delta_{f} = 7^{\circ}$

TABLE X.- NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING.- Continued.

α , deg			c _{nf}						c _{hf}			C.
Row	1	2	3	4	5	CNf	l	2	3	4	5	⁰ hf
2.6 3.1 3.5 4.2 4.9 5.6 5.9 6.4 7.0 7.6 8.3 8.6 8.6 9.4 10.2 11.6 13.0 15.0 15.8	-0.094 .057 .123 .310 .507 .708 .816 .985 1.139 1.299 1.457 1.504 1.538 1.703 1.921 2.177 2.225 2.076 1.936	0.030 .175 .266 .403 .578 .788 .916 1.057 1.222 1.448 1.658 1.724 1.786 1.916 2.055 2.230 1.760 1.532 1.378	-0.004 .157 .224 .357 .776 .852 1.000 1.193 1.531 1.671 1.713 1.716 1.820 1.942 1.910 1.707 1.530 1.396	0.010 .171 .249 .377 .553 .779 .829 .996 1.267 1.541 1.688 1.764 1.857 1.874 1.257 1.325 1.239 1.199	0.019 .093 .150 .251 .360 .510 .601 .574 .898 1.291 1.428 1.489 1.490 1.559 1.620 1.435 1.252 1.035 1.011	0.004 .136 .206 .330 .486 .679 .763 .881 1.085 1.339 1.544 1.572 1.674 1.766 1.654 1.484 1.326 1.235	-0.094 -014 .034 .127 .231 .345 .392 .482 .572 .631 .706 .726 .741 .836 .972 1.123 1.172 1.130 1.077	-0.067 .025 .073 .149 .263 .429 .519 .620 .723 .847 .937 .955 .981 1.041 1.109 1.205 .899 .776 .707	-0.058 .033 .072 .148 .274 .439 .492 .605 .737 .843 .912 .940 .943 1.000 1.063 1.074 .909 .800 .728	-0.080 .020 .073 .160 .277 .437 .462 .603 .765 .869 .944 .970 .978 1.025 1.051 .654 .649 .625	-0.095 -036 .005 .073 .141 .250 .330 .289 .583 .728 .816 .824 .874 .922 .808 .683 .543 .537	-0.071 .011 .055 .128 .229 .368 .424 .508 .648 .752 .822 .844 .857 .910 .965 .893 .778 .691 .648

.

1

.

(d) M \approx 0.80; $\beta_{\rm f}$ = 7°

.12

α, deg			cnf						chf			1
Row	1	2	3	4	5	CNf	1	2	3	4	5	C _{hf}
2.7 2.9 4.2 5.2 5.9 7.0 8.0 9.0 9.5 9.9 10.5 10.9	-0.108 025 .261 .509 .696 1.010 1.296 1.516 1.592 1.728 1.830 1.879	-0.006 .088 .336 .517 .609 1.145 1.479 1.713 1.713 1.786 1.829 1.928 1.986	-0.011 .011 .270 .450 .619 1.105 1.417 1.575 1.636 1.717 1.786 1.834	-0.044 .037 .298 .496 .632 1.186 1.464 1.640 1.683 1.761 1.727 1.699	-0.059 029 .168 .310 .361 .980 1.242 1.372 1.420 1.488 1.477 1.503	-0.033 .031 .262 .434 .545 1.028 1.305 1.480 1.535 1.602 1.640 1.665	-0.103 087 .103 .233 .339 .497 .625 .715 .715 .715 .848 .930 .962	-0.107 062 .112 .282 .659 .823 .930 .964 .987 1.033 1.057	-0.096 073 .093 .217 .326 .640 .777 .856 .881 .921 .957 .977	-0.124 065 .111 .234 .325 .685 .812 .898 .923 .956 .964 .951	-0.133 107 .034 .127 .159 .564 .679 .764 .790 .835 .842 .859	-0.105 069 .089 .194 .267 .585 .713 .798 .827 .827 .862 .891 .903

TABLE X. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Continued.

(e) $M \approx 0.85$; $\delta_{f} = 7^{\circ}$

NACA RM H58D29

TABLE X. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING. - Concluded.

α, deg			°nf						°hf			
Row	1	2	3	4	5	CNf	1	2	3	4	5	C _h f
2.4 2.9 3.9 5.1 6.0 7.0 8.0 9.0 9.6	-0.383 249 .020 .295 .484 .845 1.110 1.341 1.362	-0.288 087 .111 .351 .485 .924 1.251 1.540 1.556	-0.443 -283 .024 .264 .407 .847 1.206 1.399 1.429	-0.410 253 .054 .456 .920 1.246 1.443 1.470	-0.469 209 001 .167 .273 .676 1.017 1.201 1.236	-0.353 -183 .052 .266 .401 .801 1.104 1.314 1.337	-0.255 179 033 .125 .225 .416 .536 .645 .651	-0.293 146 025 .127 .212 .532 .705 .831 .840	-0.374 277 051 .088 .174 .509 .660 .759 .773	-0.370 266 040 .110 .213 .550 .691 .792 .809	-0.496 260 094 .036 .102 .419 .562 .661 .686	-0.326 203 041 .095 .178 .467 .606 .707 .720

r

.

.

.

(f) $M \approx 0.90$; $\beta_f = 7^\circ$

a.

		and the second se		THE REAL PROPERTY AND ADDRESS OF ADDRESS OF ADDRESS OF	Contractor of the contractor of the second							
a, deg		;	cnf						c _{hf}			
Row	1	2	3	4	5	CNf	l	2	3	4	5	Chf
6.7 10.0 12.0 13.4 14.6 15.2 16.0 17.5 18.3	-0.664 .360 .897 1.144 1.360 1.427 1.772 2.137 2.371	-0.368 .512 1.006 1.329 1.731 1.850 2.151 2.572 2.595	-0.580 .355 .883 1.160 1.562 1.681 2.008 2.350 2.370	-0.380 .212 .803 1.012 1.441 1.546 1.867 2.340 2.306	-0.790 091 .558 .641 .850 .909 1.311 1.675 1.663	-0.460 .278 .790 1.012 1.347 1.440 1.745 2.123 2.145	-0.506 .034 .295 .411 .525 .548 .708 .861 .972	-0.382 .103 .377 .632 .891 .965 1.186 1.431 1.363	-0.558 .042 .340 .561 .808 .885 1.112 1.319 1.342	-0.274 045 .297 .435 .708 .784 .979 1.232 1.241	-0.615 286 .152 .229 .330 .361 .686 .913	-0.394 011 .285 .448 .654 .712 .919 1.131

TABLE XI. - NORMAL-FORCE AND HINGE-MOMENT COEFFICIENTS FOR LEADING-EDGE FLAP OF X-3 WING

.

(a) $M \approx 0.55; \delta_{f} = 27^{\circ}$

59

NACA RM H58D29

Figure 1.- Three-view drawing of the X-3 airplane. All dimensions in inches.

r

4

.

.

.

Figure 2.- Photographs of the Douglas X-3 research airplane.

.

Leading-edge flap undeflected.

E-2161

Leading-edge flap deflected 10°.

E-2162

Leading-edge flap deflected 30°.

E-2163

(b) Close-up views of wing with leading-edge flap.

Figure 2. - Concluded.

Orifice row	l	2	3	4	5
Chord length, ft	8.63	7.59	6.54	5.59	4.69
Spanwise location, percent b'/2	0	0.231	0.462	0.673	0.872
Leading-edge-flap hinge line, percent c	12.1	13.7	15.9	18.6	22.2

Figure 3.- Drawing of the left wing of the Douglas X-3 airplane showing the spanwise location of the orifice rows. All dimensions in feet unless otherwise stated.

(a) $M \approx 0.55$.

Figure 4.- Effect of deflecting the leading-edge flap on the chordwise load distributions over the X-3 wing.

(a) $M\approx$ 0.55 - continued.

Figure 4. - Continued.

(b) $M \approx 0.71$.

Figure 4. - Continued.

ş

(c) $M \approx 0.90$.

Figure 5.- Effect of deflecting the leading-edge flap on the variation with angle of attack of the differential-pressure coefficient at the leading edge of the X-3 wing.

Figure 6.- Effect of deflecting the leading-edge flap on the approximate boundary for leadingedge-flow separation for the X-3 wing.

1

*

.

*

.

(a) Root.

Figure 7.- Effect of deflecting the leading-edge flap on the wing-section aerodynamic characteristics of the X-3 wing.

(b) Midsemispan.

Figure 7.- Continued.

(c) Tip.

Figure 7.- Concluded.

(b) Pitching moment.

Figure 8.- Effect of deflecting the leading-edge flap on the aerodynamic characteristics of the X-3 wing.

. .

4

.

NACA RM H58D29

.

.

.

7

(d) Chordwise location of center of pressure.

Figure 8.- Continued.

NACA RM H58D29

Figure 8. - Concluded.

1

.

• •

,

NACA RM H58D29

.

Figure 10.- Effect of deflecting the leading-edge flap on the spanwise pitching-moment distribution over the X-3 wing.

(a) Section normal force.

Figure 11.- Effect of deflecting the leading-edge flap on the section normal-force and hinge-moment characteristics of the leading-edge flap of the X-3 wing.

(b) Section hinge moment.

Figure 11. - Concluded.

.

3

(a) Normal force.

Figure 12.- Effect of deflecting the leading-edge flap on the total normal-force and hinge-moment characteristics of the leading-edge flap of the X-3 wing.

NACA RM H58D29

11S

(b) Hinge moment.

Figure 12. - Concluded.

*

4

NACA RM H58D29

.

NACA RM H58D29

.

¥

Figure 13.- Variation of hinge-moment coefficient with normal-force coefficient for the leading-edge flap of the X-3 wing.

(a) $M \approx 0.55$, $\delta_f \approx 27^{\circ}$.

Figure 14.- Comparison of flight data with wind-tunnel results of reference 8 for midsemispan stations of the X-3 wing. Chordwise load distributions.

Figure 14. - Concluded.

Figure 15.- Comparison of flight data with wind-tunnel results of reference 8 for midsemispan stations of the X-3 wing. Section normal-force coefficient.

*

4

1

3

NACA RM H58D29

.

.

Figure 16.- Comparison of flight data with wind-tunnel results of reference 8 for midsemispan stations of the X-3 wing. Leading-edge-flap characteristics. $M \approx 0.80$.