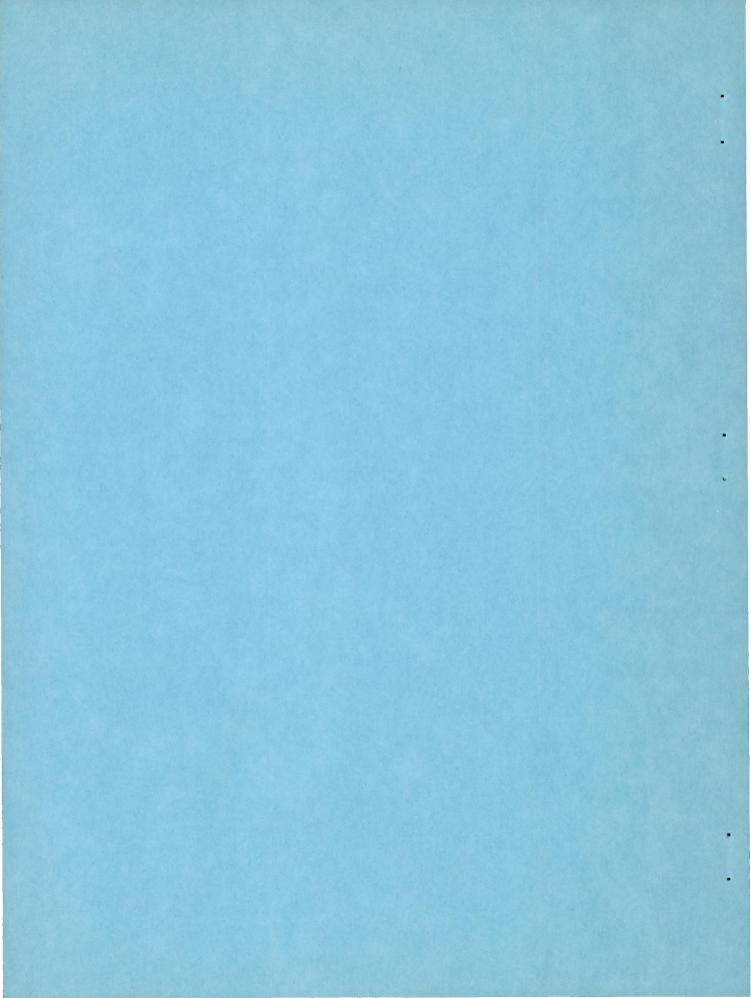
NACA

RESEARCH MEMORANDUM

COMBUSTION EFFICIENCY OF HOMOGENEOUS FUEL-AIR


MIXTURES IN A 5-INCH RAM-JET-TYPE COMBUSTOR

By Thaine W. Reynolds and Robert D. Ingebo

Lewis Flight Propulsion Laboratory Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON November 17, 1952

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

COMBUSTION EFFICIENCY OF HOMOGENEOUS FUEL-AIR MIXTURES IN A

5-INCH RAM-JET-TYPE COMBUSTOR

By Thaine W. Reynolds and Robert D. Ingebo

SUMMARY

Combustion-efficiency data have been obtained for a 5-inch-diameter combustor employing a straight V-gutter flame holder and a simple cone flame holder. The data obtained cover a range of inlet static pressures, temperatures, and velocities for four fuels.

The data have been shown to correlate with the inlet flow variables of static pressure P, temperature T, and velocity V by the empirical parameter $P^{0.3}T/V^{0.8}$ and also with fuel variations by means of a fundamental flame-speed relation.

It has also been shown that the data are in agreement with a mechanism based on the concept that the rate of flame propagation through the unburned mixture is a function of the fundamental flame speed.

INTRODUCTION

The combustion process in a ram-jet engine or other engines requiring a similar high-speed combustion process may be considered to be a stepwise process where (1) the liquid fuel is sprayed into the high-velocity stream, (2) the spray disintegrates into a myriad of drops, (3) the drops vaporize, (4) the fuel mixes with the air stream to form a combustible mixture, (5) the mixture is ignited, and (6) the flame spreads through the unburned mixture. An attempt to evaluate the importance of any one of these steps in controlling the rate of the over-all process is obviously difficult in a system in which all the steps vary simultaneously.

It is possible to treat, analytically and experimentally, the preparation of the fuel-air mixture (steps 1 to 4) separately from the combustion steps, and to evaluate the effects of various conditions of inlet static pressure, temperature, and velocity on the fuel-air mixture parameters.

Also, it is possible to investigate the combustion process separately from the fuel preparation by the use of homogeneous fuel-air mixtures.

Such an experimentally idealized system does not necessarily represent a practical ram-jet-type combustor, but will contribute to a better understanding of high-speed combustion processes for such an application. In a practical application, carburetion features can seldom be so simplified as they are herein for study purposes.

Several investigations have been carried out on the effect of mixture parameters on the stability of flame-holding elements in homogeneous fuelair mixtures (references 1 to 3). The object of the present investigation carried out at the NACA Lewis laboratory was to determine the effect of inlet static pressure, temperature, velocity, and fuel-air ratio on the combustion efficiency of a ram-jet-type combustor with homogeneous fuelair mixtures.

A second objective was to investigate the effect of flame speed on the combustion efficiency by the use of different fuels. Thus, this report is concerned mainly with flame propagation as distinct from flame stability as reported for similar idealized combustion equipment in references 1 to 3.

No attempt was made to design a combustor which would be particularly efficient under any specified set of operating conditions, but rather two flame holders were selected which would operate stably over a wide range of conditions and which would be representative of flame holders in common use.

This report presents the results of combustion—efficiency measurements of two flame holders and four fuels over a range of inlet static pressures, temperatures, velocities, and fuel-air ratios. A correlation of the data is presented and a proposed mechanism for the propagation is discussed.

SYMBOLS

The following symbols are used in this report:

- A area, sq ft
- af flame area per unit volume of mixture, ft-1
- c arbitrary constant
- d characteristic diameter, ft
- K constant
- L combustor length, ft

- m mass air flow, lb/sec
- P inlet static pressure, atm
- Re Reynolds number, dVρ/μ
- T inlet mixture temperature, OR
- T_b inlet temperature before fuel introduction, OR
- uf fundamental flame speed of fuel-air mixture, ft/sec
- V inlet mixture velocity, ft/sec
- η combustion efficiency, percent
- μ viscosity, lb-ft/sec
- ρ density, lb/cu ft
- φ' function

Subscripts:

- c combustor
- f flame
- f,g flame, gasoline
- u unburned mixture

Superscripts:

- a exponent
- b exponent

APPARATUS AND PROCEDURE

A schematic layout of the combustor and piping used in this investigation is shown in figure 1. The combustor was a jacketed section of 5-inch standard pipe. The over-all length from the flame holder to the exit quench spray location was 36 inches. The flame holder used for most of the data was a $1\frac{1}{2}$ -inch wide straight V-gutter of approximately 45°

included angle and blocked about 38 percent of the combustor cross-sectional area. Ignition was accomplished by introducing a hydrogen-oxygen pilot flame behind the flame holder at either end. The pilot was turned off after the burner was ignited. A cone flame holder was used in part of the investigation; it consisted of a 60° cone with two small gutters extending to the wall for support and blocked about 40 percent of the combustor cross-sectional area. A variable-area exhaust nozzle, manually controlled, was used to control the burner pressure.

The procedure used to obtain the test data was to set the mass air flow and air temperature at predetermined values. The air temperature had to be set at about 50° F above the desired inlet mixture temperature to allow for temperature drop due to vaporization of the fuel. Then, after the burner was ignited and the desired fuel flow established, the inlet static pressure was set by controlling the exhaust-nozzle area. Quench water was sprayed into the exhaust stream at the exit of the combustor to bring the gas temperature down to about 500° F. The combustion efficiency was calculated by an enthalpy balance. Spot checks by gas analysis of the exhaust stream gave combustion-efficiency measurements that agreed within 2 percent with the heat-balance calculations.

With this procedure, data were taken over the following range of combustor inlet conditions: static pressure, 1/2 to 2 atmospheres; mixture temperature, 100° to 300° F; and velocity, 170 to 300 feet per second.

RESULTS AND DISCUSSION

A summary of the data on the V-gutter is given in tables I and II. Plots of the combustion efficiency against the fuel-air ratio for several of the data conditions given in tables I and II are shown in figures 2 and 3. It is evident from these plots that over the range of conditions studied, for both gasoline and isopentane, the combustion efficiency was essentially independent of the fuel-air ratio. This effect was unexpected inasmuch as most data reported have a peak in the curve of combustion efficiency plotted against fuel-air ratio. The data of this report, however, are for homogeneous fuel-air mixtures, cover only a limited range of fuel-air ratios, and, further, do not have variations of inlet conditions with fuel-air ratio since a variable-area exit nozzle was used to maintain constant inlet conditions. Even so, it might be expected that the flame would propagate more rapidly through nearstoichiometric mixtures than it would through leaner or richer mixtures giving a higher combustion efficiency at near-stoichiometric mixtures. It is the case, however, that even though the inlet velocities may be the same for two fuel-air ratio conditions, the residence time for the fuelair mixture in the combustion chamber will be less for the higher temperature-rise condition. The resulting residence-time propagationrate product must be approximately the same for the range of fuel-air ratios encountered in this investigation.

NACA RM E52123 5

Table III contains a summary of the data plotted in figures 2 and 3 at a fuel-air ratio of about stoichiometric. It was desired to fit these data to a common correlating equation if possible. It was found that the combustion efficiency could be expressed as a simple power function of the inlet parameters in the range of combustion efficiencies covered in this investigation. Figures 4, 5, and 6, respectively, show plots of combustion efficiency against static pressure, temperature, and velocity on log-log scale. If an average slope for the lines on each of the three figures is taken, then the combustion efficiency may be expressed by the relation

$$\eta_b = CP^{0.3} T^{1.0}/V^{0.8}$$

A plot of all the data in table III is shown in figure 7. In this figure, combustion efficiency is plotted against the empirically derived parameter above. It is evident from this plot that all the combustion-efficiency data on the 5-inch combustor with the V-gutter flame holder over the range of conditions covered can be expressed by the equation

$$\eta_{b} = 7.0 \frac{P^{0.3} T}{V^{0.8}}$$

where η_b is expressed in percent, P in atmospheres, T in degrees Rankine, and V in feet per second, within an average deviation of less than 3 percent in combustion efficiency. Although an extension of the equation would predict 100 percent combustion efficiency at or above some value of the correlating parameter, the exponents of the parameter do not apply at efficiencies much higher than those encountered in this experimental work. Hence an extrapolation of the parameter would not be justifiable at higher efficiencies. This point will be discussed later on in this section. From some data available in the literature on a similar system (homogeneous pentane-air mixtures in a 2-in. burner) (reference 4), the parameter was shown to correlate when extended at the lower efficiency range. These data (table IV) cover a static pressure range of 0.133 to 2.9 atmospheres, or greater than 20 to 1. These data are also shown in figure 7. The fact that the data fall on a straight line is significant; that this line is the same straight line as for the 5-inch combustor data is coincidental, since these data were obtained in a different combustor configuration.

To see whether this correlation parameter would apply to another type of flame holder, combustion-efficiency data were taken over a range of combustor-inlet conditions with the cone flame holder. These data are shown in table V and are plotted in figure 8. Although the combustion efficiency against fuel-air ratio curves are not flat as was the curve with the V-gutter flame holder, a comparison is made with the previously

derived parameter at the stoichiometric fuel-air condition. These data are shown in table VI and are plotted in figure 9. The agreement with the cone flame holder, although not as good as with the V-gutter flame holder, is reasonable.

The foregoing results are in accord with a suggested mechanism of the combustion process based on the fundamental flame speed of the mixture. An instantaneous cross-sectional view of the flame in the combustor is pictured in figure 10. It is supposed that as the flame propagates into the unburned mixture of fuel and air, turbulence existing in the combustor causes isolated volumes of mixture to form. The total flame area is increased by the high degree of turbulence, and the flame propagates through these isolated volumes at the fundamental flame speed of the mixture.

The combustion efficiency may be expressed as follows:

$$\eta = \frac{\rho_{u} A_{f} u_{f}}{\rho_{u} A_{c} V} \tag{1}$$

The numerator represents the mass of combustible consumed by the flame per unit time; the denominator represents the mass flowing through the

combustor per unit time. Since
$$A_f = \int_0^V a_f dV = A_c \int_0^L a_f dL$$
, equa-

tion (1) can be written in differential form as

$$\int_{0}^{\eta} d\eta = \frac{\rho_{u}A_{c}u_{f}\int_{0}^{L} a_{f} dL}{\rho_{u}A_{c}V}$$
(2)

It can be assumed that the flame area per unit volume of mixture a_f is a function of both Reynolds number (which is an index of the turbulent-flow pattern) and u_f/V (which determines the change in flame area per unit volume as the mixture flows through the combustor); that is,

$$a_f = \varphi' \left(\text{Re}, \frac{u_f}{V} \right)$$
 (3)

Then, equation (2) may be expressed as

$$\eta_{b} = \frac{A_{c}u_{f}}{A_{c}V} \int_{0}^{L_{c}} \phi' \left(\operatorname{Re}, \frac{u_{f}}{V} \right) dL$$
 (4)

NACA RM E52123 7

The assumption was made (as found in reference 5) that the dependence of flame area on the Reynolds number is

$$A_{f} = c Re^{a}$$
 (5)

It should be noted that in reference 5 only diameter and velocity terms were varied in obtaining the Reynolds number dependence. Nevertheless, this Reynolds number dependence is assumed to hold for variations in density and viscosity, also in the development following.

The expression is further simplified by assuming that the function, $\phi'(u_f/V)$ can be expressed in the form $(u_f/V)^b$. When this assumption is applied, equations (4) and (5) become

$$\eta_b = c \operatorname{Re}^a \left(\frac{u_f}{v}\right)^b L_c = K \operatorname{Re}^a \left(\frac{u_f}{v}\right)^b$$
(6)

The Reynolds number can be expressed in terms of the inlet parameters for this study by the following transformation:

$$Re = dV\rho/\mu$$

But ρ is proportional to PT⁻¹, and in the temperature range investigated, μ is proportional to T^{0.7}; therefore, the Reynolds number variation is proportional to PV/T^{1.7}. Flame velocity for isooctane (assumed representative as to temperature variation for the gasoline used in this investigation) has been found to be proportional to T^{1.4} in the range of inlet temperatures under consideration (reference 6). The dependence of flame speed on pressure is subject to question. A survey of the literature indicates somewhat conflicting results, with u_f depending on pressure from small-positive, zero, to small-negative exponents. Since the dependence is uncertain, herein u_f is assumed independent of static pressure. Equation (6) can then be expressed

$$\eta_{b} = c \left(\frac{PV}{T^{1.7}} \right)^{a} \left(\frac{T^{1.4}}{V} \right)^{b}$$
 (7)

Values of a = 0.3 and b = 1.1 reduce this expression to

$$\eta_{\rm b} = c \frac{P^{0.3} \, T^{1.03}}{V^{0.8}}$$
 (8)

This parameter is essentially identical to the empirically derived one. The exponent a = 0.3 is close to the value of 0.24 found in reference 5.

To further check on the possible validity of this propagation mechanism and to investigate the applicability of the flame-speed term, two additional fuels were investigated which had fundamental flame speeds higher than that for gasoline. These were benzene, with uf of about 12 percent greater than gasoline, and propylene oxide, with uf of about 60 percent greater than gasoline (reference 7).

These two fuels were run at two sets of conditions: P=2/3 atmosphere, $T=200^{\circ}$ F, V=285 feet per second; and P=2/3 atmosphere, $T=200^{\circ}$ F, V=185 feet per second. Propylene oxide was also run at an inlet static pressure of 1/3 atmosphere. The results are shown in tables VII and VIII and are plotted in figure 11. A comparison of these fuels with the gasoline curve of figure 7 at an equivalence ratio of 1.0 is shown in figure 12. On this figure, the P, T, and V parameter for the benzene and propylene oxide points have been multiplied by the ratios of the flame speeds raised to the 1.1 power as equation (7) showed to be required (see table IX). Figure 12 indicates that the performance of these three fuels is correlated by the common line, a fact which lends support to the assumed combustion mechanism.

As was mentioned previously, it was not anticipated that the straight-line correlation would hold much beyond the efficiency range of about 80 percent covered in this investigation. This limitation of the correlation is evident also in the higher efficiency point for the propylene oxide. A possible explanation for this limitation of the correlation is as follows: a schematic illustration of an instantaneous flame zone is shown in figure 10. When conditions are such that the flame is spreading outward toward the wall at such a rate that the outer flame envelope is approaching or touching the wall at the downstream end of the combustor, any change in conditions tending toward higher combustion efficiencies would not likely cause the same relative effect on the combustion efficiency as occurs in the lower efficiency range. As the flame approaches the wall, the cooling and quenching effect of the wall comes into play and the mechanism governing propagation and, therefore, any correlation of performance data, are, of course, appreciably modified. Proof of this is shown by some curves of combustion efficiency plotted against combustor length presented in reference 8. The general shapes of the curves are as shown in figure 13(a). The data for these curves were for a constant-area exhaust and, hence, any reduction in combustion efficiency as the length was varied caused inlet velocity to increase and inlet static pressure to decrease. However, if these data are normalized to constant inlet static pressure and velocity conditions by means of the parameter derived in the present study, the straight line portion of the curve is still obtained although the slope is considerably smaller (fig. 13(a)). This same sort of behavior is anticipated whether the variable tending to change the combustion efficiency be combustor length, static pressure, temperature, velocity, or flame speed. In other words, the combustion efficiency against combustor length curve would be expected to change with changing conditions as shown in the curves in figures 13(b) to 13(e), with the actual combustor length $\rm L_c$ giving the change of combustion efficiency with conditions as would be read from this sequence of curves.

If the conditions are such that the combustion efficiency for the given combustor is about 80 percent, and, if then one of these conditions, for example, flame speed, is increased, the combustion efficiency would increase but no longer in the same proportion as in the lower efficiency range (fig. 13(e)).

This sort of behavior is probably the reason that the combustion efficiency against inlet parameter curve decreases rapidly in slope beyond about 80-percent efficiency.

CONCLUDING REMARKS

The results obtained in investigations with a 5-inch-diameter ramjet-type combustor employing two flame holders (a straight V-gutter and a cone) and homogeneous fuel-air mixtures of four fuels (gasoline, isopentane, benzene, and propylene oxide) are summarized as follows:

- 1. The majority of data indicated that the combustion efficiency was relatively insensitive to fuel-air ratio over the range of fuel-air ratios investigated.
- 2. The data obtained with the V-gutter flame holder using gasoline and isopentane (which have approximately the same fundamental flame speed) were correlated by the equation

$$\eta_{b} = 7.0 \frac{P^{0.3} T}{V^{0.8}}$$

where P is combustor-inlet static pressure in atmospheres, T is combustor-inlet temperature in degrees Rankine, V is combustor-inlet velocity in feet per second, and η_b is combustion efficiency in percent.

3. The data on propylene oxide and benzene were also correlated with this same equation when it was multiplied by the ratio of the fundamental flame speeds of the fuels raised to the 1.1 power. For the fuels tested

$$\eta_{b} = 7.0 \frac{P^{0.3} T}{V^{0.8}} \left(\frac{u_{f}}{u_{f,g}}\right)^{1.1}$$

where u_{f,g} is the fundamental flame speed of the reference fuel (gasoline).

- 4. A mechanism of flame propagation which yields the same parameter as that empirically derived is explained and has been shown to be consistent with the data as to both variations in inlet conditions of static pressure, temperature, and velocity, and to variations in fuels.
- 5. The application of these equations is indicated to be limited to efficiencies not exceeding about 80 percent; the reason for this limitation is surmised to be a modification of flame propagation mechanism as the propagating flame approaches the combustor walls.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio

REFERENCES

- 1. Williams, G. C., Hottel, H. C., and Scurlock, A. C.: Flame Stabilization and Propagation in High Velocity Gas Streams. Third Symposium on Combustion and Flame and Explosion Phenomena, The Williams and Wilkins Co. (Baltimore), 1949, pp. 21-40.
- 2. Longwell, J. P., Chenevey, J. E., Clark, W. W., and Frost, E. E.:
 Flame Stabilization by Baffles in a High Velocity Gas Stream. Third
 Symposium on Combustion and Flame and Explosion Phenomena, The
 Williams and Wilkins Co. (Baltimore), 1949, pp. 40-44.
- 3. Caldwell, F. R., Ruegg, F. W., Olsen, L. O., and Broida, H. P.:
 Sixty-ninth Report of Progress on the Combustion Chamber Research
 Program for the Quarter Ending March, 1951. U. S. Dept. Commerce,
 Nat. Bur. Standards Rep. 1B101. (NAer Order 01033.)
- 4. Mullen, James W., II, and Fenn, John B.: Burners for Supersonic Ram Jets. Some Factors Influencing Performance at High Altitudes A Resume. Experiment Inc., Richmond (Va.), Tech. Memo. No. 188, Jan. 11, 1950.
- 5. Bollinger, Lowell M., and Williams, David T.: Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames. NACA Rep. 932, 1949. (Supersedes NACA TN 1707.)

6. Dugger, Gordon L., and Graab, Dorothy D.: Flame Speeds of 2,2,4-Trimethylpentane-Oxygen-Nitrogen Mixtures. NACA TN 2680, 1952.

- 7. Calcote, H. F., Fenn, J. B., and Mullen, J. W., II.: Correlation of Classical Combustion Quantities with Ramjet Burner Performance. Bumblebee Rep. No. 130, Experiment Inc., May 1950. (Contract NOrd 9756, Bur. Ordnance, U. S. Navy.)
- 8. Wilkerson, Emery C., and Fenn, John B.: Study of Combustion Chamber Length in Two-Inch Ram Jet Burners. Experiment Inc., Tech. Pub. 47, AF, AMC, Wright-Patterson Air Force Base, 1951. (Contract AF-33(038)-3025.)

TABLE I - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH GASOLINE

Inlet static pressure P (atm)	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air temperature before fuel	Inlet temperature T (OR)	Inlet density p (lb/cu ft)	Inlet velocity V (ft/sec)	Combustion efficiency $\eta_{\rm b}$ (percent)	Lean blow-out f/a	Rich blow-out f/a
0.50 .50 .50 .50	1.24 1.24 1.24 1.24 1.24	0.0659 .0654 .0604 .0650 .0605	681 681 681 682 682	632 633 634 635 636	0.0325 .0324 .0323 .0323 .0322	274 274 275 275 276	36.6 37.7 38.3 37.2 38.6		
.50 .50 .50 .50	1.24 1.24 1.24 1.06 1.06	.0568 .0628 .0655 .0600 .0579	682 683 683 680 679	637 635 632 637 636	.0322 .0323 .0324 .0322 .0322	275 274 274 235 235	39.8 37.9 37.4 46.5 47.5	0.0537	0.0683
.50 .50 .50 .50	1.06 1.06 1.06 1.06	.0547 .0566 .0591 .0626 .0655	678 678 678 678 678	634 637 634 631 628	.0324 .0322 .0323 .0325 .0326	234 235 234 233 233	47.0 47.2 46.7 45.3 43.5		.0670
.50 .50 .50 .50	1.06 1.19 1.15 1.15 1.19	.0577 .0549 .0593 .0613 .0633	678 641 645 645 644	634 604 604 602 600	.0323 .0340 .0335 .0343	235 251 245 241 248	47.2 38.1 39.4 40.7 38.0		
.50 .50 .50 .75	1.20 1.08 1.08 1.68 1.67	.0658 .0610 .0578 .0562 .0665	642 637 635 656 656	597 594 595 615 617	.0346 .0345 .0345 .0484 .0491	249 224 225 249 244	36.3 42.9 43.9 50.2 47.8	.0507	.0688
.75 .75 .75 .75	1.62 1.64 1.25 1.83 1.81	.0737 .0542 .0556 .0607	659 658 680 680 684	605 618 635 636 631	.0493 .0482 .0475 .0471 .0474	235 244 189 278 274	52.8 53.0 66.0 43.7 47.1	.0517	.0772
.75 .75 .75 .75	1.81 1.82 1.83 1.66 1.68	.0767 .0534 .0493 .0502 .0579	686 686 686 756 756	628 641 645 710 703	.0479 .0469 .0466 .0419 .0424	271 278 281 284 284	49.4 44.8 46.5 53.1 52.5	.0487	.0790
.75 .75 .75 .75	1.69 1.66 1.59 1.45 1.45	.0657 .0753 .0480 .0479 .0575	756 760 774 766 760	697 693 727 723 712	.0427 .0432 .0411 .0414 .0420	284 275 277 251 247	50.2 52.9 55.0 59.4 57.9	.0444	
.75 .75 .75 .75	1.47 1.47 1.12 1.11 1.68	.0661 .0756 .0620 .0751 .0496	756 752 747 736 776	695 685 692 675 729	.0430 .0437 .0430 .0443	245 241 187 180 295	56.9 60.5 69.9 69.4 52.3	.0620	.0776
.75 .75 .75 .75	1.68 1.68 1.68 1.67 1.68	.0537 .0579 .0620 .0665 .0703	776 777 776 776 777	726 723 719 716 713	.0410 .0412 .0414 .0419 .0418	294 292 291 286 288	53.7 55.0 53.5 55.8 54.3		
.75 .75 .75 .75	1.68 1.67 1.68 1.68	.0744 .0765 .0711 .0678 .0637	778 779 778 779 780	709 710 712 715 719	.0420 .0419 .0418 .0416	287 286 288 289 291	53.0 52.2 51.6 51.0 53.0		.0777
.75 .75 .75 .75	1.68 1.68 1.68 1.68	.0595 .0554 .0513 .0529	779 779 779 780 780	722 725 729 729 732	.0412 .0418 .0408 .0408 .0407	292 294 295 295 296	53.9 53.1 55.0 52.6 53.2	.0472	
.75 .75 .75 .75	1.88 1.88 1.89 1.89	.0576 .0665 .0735 .0772	679 680 682 684 686	633 629 625 625 627	.0470 .0473 .0476 .0476	287 285 284 284 284	44.0 42.0 46.9 47.8 48.4		.0793

TABLE I - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH GASOLINE - Continued

Inlet static pressure P (atm)	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air temperature before fuel	Inlet tem- perature T (°R)	Inlet density p (lb/cu ft)	Inlet velocity V (ft/sec)	Combustion efficiency $\eta_{\rm b}$ (percent)	Lean blow-out f/a	Rich blow-out f/a
0.75 .75 .75 .75	1.88 1.89 1.89 1.89 1.89	0.0702 .0647 .0610 .0566 .0536	687 687 688 688 688	630 635 639 641 644	0.0473 .0469 .0466 .0465 .0462	285 289 291 291 293	45.9 42.3 43.5 44.8 44.4		
.75 .75 .75 .75	1.90 1.89 1.26 1.26	.0512 .0478 .0650 .0716 .0611	688 688 682 682 681	645 649 631 626 635	.0461 .0459 .0472 .0475 .0469	295 295 191 190 191	43.9 44.1 63.4 65.4 64.9		0.0752
.75 .75 .75 .75	1.25 1.25 1.25 1.57 1.57	.0678 .0722 .0603 .0584 .0566	682 682 682 700 700	630 628 634 655 657	.0473 .0474 .0469 .0454 .0453	189 189 189 248 248	62.1 63.7 61.6 52.8 54.5		.0734
.75 .75 .75 .75	1.57 1.57 1.57 1.57 1.57	.0589 .0587 .0584 .0663 .0663	702 703 703 703 704	657 658 658 653 653	.0453 .0452 .0453 .0456 .0456	248 249 248 247 247	53.4 53.1 53.7 50.6 50.4	To the	
.75 .75 .75 .75	1.57 1.57 1.57 1.57 1.57	.0734 .0734 .0725 .0575	704 704 704 707 707	646 647 647 662 666	.0461 .0460 .0466 .0450 .0437	244 244 241 250 257	53.5 52.0 54.1 52.9 51.9		
.75 .75 1.00 1.00	1.57 1.57 1.60 1.62 1.95	.0566 .0566 .0616 .0772	707 707 663 661 657	662 667 615 598 629	.0447 .0438 .0645 .0663 .0631	252 257 178 175 221	53.9 53.5 73.6 70.9 65.1	0.0540	.0800
1.00 1.00 1.00 1.00	1.96 1.96 2.58 2.58 2.56	.0666 .0808 .0484 .0592 .0684	667 668 659 658 660	618 605 623 614 607	.0642 .0656 .0643 .0647 .0653	219 214 288 286 281	63.4 64.4 47.1 47.6 46.3	.0524	.0843
1.00 1.00 1.00 1.00	2.13 2.14 2.14 2.14 1.73	.0522 .0649 .0779 .0461 .0642	758 760 760 760 761	712 704 694 719 709	.0558 .0565 .0572 .0553 .0560	274 271 268 277 221	56.7 54.9 61.3 57.0 66.3	.0442	.0843
1.00 1.00 1.00 1.00 1.00	1.73 1.75 1.44 1.45 1.40	.0803 .0516 .0598 .0642 .0546	760 755 757 755 760	702 707 711 699 710	.0564 .0561 .0558 .0567 .0559	220 224 188 183 180	70.5 68.0 76.4 74.8 77.9	.0500	.0850
1.00 1.00 1.00 1.00	1.63 1.64 1.62 1.62 1.61	.0682 .0737 .0617 .0557	652 652 661 663 665	595 589 617 616 620	.0668 .0674 .0644 .0643 .0641	175 174 180 181 180	71.5 72.0 70.3 72.5 71.1	.0510	.0785
1.00 1.00 1.00 1.00	1.98 1.98 2.02 1.98 1.98	.0575 .0575 .0509 .0631 .0687	665 665 665 664 664	625 625 624 615 611	.0635 .0635 .0635 .0646	224 224 228 220 218	61.1 61.1 59.2 61.6 63.5	.0495	
1.00 1.00 1.00 1.00	1.99 1.98 1.98 2.60 2.59	.0733 .0788 .0814 .0491	664 664 664 657 657	607 602 599 621 617	.0653 .0659 .0663 .0639	219 215 214 292 289	61.6 64.8 62.6 42.5 44.7		.0828
1.00 1.00 1.00 1.00	2.58 1.57 1.57 1.69 1.61	.0581 .0540 .0513 .0510	659 668 688 664 690	614 625 649 661 646	.0647 .0635 .0612 .0601 .0599	286 177 184 201 192	45.6 74.8 71.4 67.8 73.9	.0487	

NACA RM E52123

TABLE I - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH GASOLINE - Continued

Inlet static pressure P (atm)	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air temperature before fuel	Inlet temperature T (OR)	Inlet density P (lb/cu ft)	Inlet velocity V (ft/sec)	Combustion efficiency $\eta_{\rm b}$ (percent)	Lean blow-out f/a	Rich blow-out f/a
1.00 1.00 1.00 1.00	1.68 1.62 1.63 1.63	0.0564 .0617 .0503 .0684 .0703	686 688 688 690 704	643 637 648 637 645	0.0617 .0623 .0613 .0624 .0615	194 186 190 187 184	69.8 72.6 70.4 70.4 72.6	0.0480	0.0772
1.00 1.00 1.00 1.00	1.89 1.90 1.91 1.91 1.91	.0551 .0614 .0611 .0654 .0727	670 678 682 686 689	628 631 637 636 633	.0632 .0629 .0623 .0623	214 216 220 220 218	64.2 59.5 57.8 60.4 61.4	.0495	.0800
1.00 1.00 1.00 1.00 1.00	1.92 1.60 1.60 1.61 1.70	.0506 .0608 .0729 .0500 .0605	692 695 695 695 673	650 650 639 654 628	.0611 .0611 .0621 .0608 .0632	225 188 185 190 193	61.0 70.9 69.2 67.4 72.8	.0484	.0772
1.00 1.00 1.00 1.00	1.44 1.61 1.64 1.64	.0579 .0607 .0678 .0754 .0517	670 655 660 656 659	624 611 606 598 619	.0636 .0650 .0655 .0663 .0641	162 178 180 177 183	73.0 70.4 67.8 69.9 73.2	.0508	.0780
1.00 1.00 1.00 1.00	1.98 1.99 2.00 2.00 2.00	.0561 .0628 .0694 .0764	660 661 660 660 661	620 616 609 603 599	.0640 .0646 .0652 .0659 .0663	222 221 220 218 216	59.0 58.0 57.5 60.3 60.3		.0806
1.00 1.00 1.00 1.00	2.00 2.60 2.60 2.60 2.61	.0507 .0497 .0534 .0588	660 658 655 653 651	621 621 614 609 602	.0639 .0639 .0646 .0652 .0659	224 292 288 286 284	57.1 40.9 37.4 40.6 40.4	.0500	
1.00 1.00 1.00 1.00	1.52 1.53 1.50 1.73 1.72	.0731 .0635 .0556 .0562 .0646	702 713 718 748 748	645 656 669 699	.0616 .0605 .0594 .0568	177 181 181 218 214	72.6 73.9 75.1 73.8 70.4	.0519	
1.00 1.00 1.00 1.00	1.73 1.76 1.77 1.77	.0723 .0750 .0549 .0628 .0706	750 764 762 762 762	686 696 715 707 701	.0579 .0570 .0555 .0561	214 221 229 226 224	70.7 68.6 70.6 71.4 71.6		
1.00 1.00 1.00 1.00	1.77 1.75 1.73 1.74 1.75	.0745 .0794 .0763 .0718	763 766 769 7 7 0 769	699 697 701 703 707	.0568 .0571 .0566 .0566	223 220 219 220 222	71.7 71.7 72.5 72.1 72.3		.0810
1.00 1.00 1.00 1.00	1.76 1.76 1.77 1.77	.0631 .0592 .0549 .0510 .0471	770 769 769 769 768	710 713 717 720 722	.0559 .0556 .0556 .0555	226 227 228 229 229	73.8 75.5 75.7 73.9 70.9	.0455	
1.00 1.00 1.00 1.00	1.77 1.78 1.78 1.78 2.12	.0691 .0726 .0757 .0788 .0459	768 767 767 767 783	705 702 699 695 738	.0563 .0567 .0571 .0571	225 225 223 223 282	70.7 71.1 71.5 69.8 61.5		.0796
1.00 1.00 1.00 1.00	2.14 2.15 2.18 2.20 2.29	.0519 .0581 .0637 .0694 .0761	783 783 782 781 780	734 728 722 715 710	.0541 .0545 .0549 .0554 .0559	283 283 284 285 281	61.7 62.5 59.4 57.6 57.7		
1.00 1.00 1.00 1.00	2.20 2.20 2.20 2.20 2.20	.0789 .0814 .0770 .0739 .0707	778 778 777 777 776	707 703 705 707 709	.0562 .0565 .0563 .0561	281 279 280 281 281	57.4 59.3 58.2 60.2 59.0		.0821

TABLE I - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH GASOLINE - Concluded

nlet tatic ressure	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air tempera- ture before fuel	Inlet tem- perature	Inlet density	Inlet velocity	Combustion efficiency $\eta_{\rm b}$	Lean blow-out f/a	Rich blow-ou f/a
(atm)			(OR)	(°R)	(lb/cu ft)	(ft/sec)	(percent)		
1.00 1.00 1.00 1.00	2.20 2.20 2.20 2.20 2.20	0.0676 .0638 .0587 .0537 .0473	776 776 776 776 776 775	712 717 720 723 728	0.0557 .0554 .0552 .0549 .0545	283 285 285 287 289	59.7 60.9 62.3 61.3 59.4		
1.00 1.50 1.50 1.50 1.50	2.20 2.52 2.52 2.52 2.56	.0448 .0496 .0612 .0700 .0543	775 660 665 666 669	731 623 612 605 622	.0544 .0955 .0971 .0982 .0958	290 189 186 184 192	58.0 72.2 76.2 73.0 76.1	0.0436	0.071
1.50 1.50 1.50 1.50	2.57 2.58 2.59 2.58 2.67	.0497 .0581 .0622 .0668 .0520	666 665 661 662 665	624 614 608 605 625	.0955 .0968 .0979 .0983 .0952	193 191 190 188 201	72.1 76.2 77.6 74.0 72.6	.0485	.069
1.50 1.50 1.50 1.50 1.50	2.64 2.64 2.64 2.63 2.64	.0579 .0631 .0684 .0739 .0768	665 665 666 666	621 617 612 607 604	.0958 .0964 .0973 .0981	197 196 194 192 192	758 74.4 74.3 74.3 74.3	.0463	.079
1.50 1.50 1.50 1.50 1.50	2.63 2.23 2.50 2.53 2.48	.0486 .0498 .0500 .0549 .0616	666 762 760 760 756	627 716 715 708 703	.0949 .0832 .0842 .0852 .0857	199 192 213 213 207	75.0 82.5 78.8 82.6 77.2	.0423	.053
1.50 1.50 1.50 1.50 1.50	2.91 2.90 2.90 2.89 2.89	.0573 .0621 .0670 .0721 .0769	674 677 680 681 683	629 631 628 625 622	.0967 .0965 .0961 .0978	216 215 216 212 212	70.3 71.6 70.1 73.8 72.9		
1.50 1.50 1.50 1.50 1.50	2.89 2.92 2.94 2.95 2.98	.0817 .0809 .0756 .0706 .0652	684 683 680 677 674	617 617 618 619 621	.0986 .0982 .0979 .0981 .0973	210 213 215 215 219	71.2 71.3 71.3 71.6 69.1		.084
1.50 1.50 1.50 1.50 1.50	2.97 2.99 2.99 2.97 2.93	.0608 .0557 .0511 .0561 .0664	670 669 668 668 674	622 624 627 623 621	.0975 .0964 .0960 .0970	218 222 223 219 216	70.7 69.3 66.9 71.0 68.9	.0475	
1.50 1.50 1.50 1.50 1.50	2.92 3.87 3.87 3.87 3.87	.0761 .0492 .0517 .0538 .0467	676 670 670 670 672	615 633 632 630 635	.0983 .0941 .0951 .0955 .0948	213 295 292 290 292	71.0 46.4 48.2 49.7 48.2	.0525	
1.50 1.50 1.50 1.50 1.50	3.87 3.87 3.87 3.87 3.87	.0449 .0456 .0477 .0495 .0513	672 673 673 674 674	637 636 635 635 634	.0945 .0946 .0945 .0948	293 293 293 292 292	48.0 49.2 48.9 49.9 50.4		
1.50 1.50 1.50 1.50 1.50	3.84 3.87 3.87 3.87 3.87	.0517 .0488 .0456 .0477 .0495	665 666 667 669 670	627 629 633 632 631	.0960 .0957 .0951 .0954	287 290 292 291 291	47.9 47.2 47.8 48.5 48.9		
1.50 2.00 2.00 2.00 2.00 2.00	3.87 3.48 3.48 3.48 3.48	.0513 .0479 .0519 .0539 .0559	670 687 689 689 691	631 646 644 644 648	.0954 .1225 .1233 .1233 .1215	291 204 202 202 205	50.0 77.4 82.3 82.6 75.0		
2.00 2.00 2.00 2.00 2.00	3.31 3.29 3.29 3.29 3.29	.0504 .0528 .0549 .0570 .0587	682 685 685 689 689	640 641 641 642 642	.1236 .1238 .1238 .1234 .1227	192 190 190 191 192	78.7 80.5 81.2 83.1 81.1		
2.00 2.00 2.00 2.00 2.00	3.29 3.29 4.13 4.13 4.13	.0485 .0464 .0471 .0541 .0558	690 692 675 674 673	650 652 638 633 631	.1222 .1218 .1244 .1254 .1258	193 194 238 236 235	78.0 74.5 61.7 67.1 68.6	.0447	
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	4.15 4.15 4.15 4.14 4.14 4.14	.0572 .0589 .0602 .0621 .0641 .0654	670 671 671 671 672 672 672	628 627 625 624 620 620 620	.1264 .1265 .1269 .1272 .1281 .1280	235 235 234 233 232 232 232	67.4 69.6 70.0 70.0 69.8 70.6 69.7		

TABLE II - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE

COMBUSTOR WITH ISOPENTANE

NACA	5
a sur	ممو

							in and
Inlet static pressure P	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air temperature before fuel	Inlet temperature T (OR)	Inlet density ρ (lb/cu ft)	Inlet velocity V (ft/sec)	Combustion efficiency η_b (percent)
(atm)			(OR)	(A-)	(1b/cu 1c)	(10/500)	(percent)
1.00	2.32	0.0571	538	508	0.0781	213	48.2
1.00	2.31	.0620	538	506	.0784	211	44.7
1.00	2.31	.0672	538	505	.0786	211	45.9
1.00	2.70	.0618	538	506	.0785	247	36.4
1.00	2.15	.0544	592	559	.0710	217	52.4
1.00	2.14	.0580	595	558	.0711	216	53.3
1.00	2.13	.0629	598	559	.0710	215	53.2
1.00	2.13	.0650	600	560	.0708	215	52.1
1.00	2.12	.0710	603	557	.0712	213	53.6
1.00	2.20	.0551	598	564	.0703	224	51.5
1.00	2.17	.0598	599	561	.0707	220	52.4
1.00	2.14	.0672	602	560	.0708	216	50.5
1.00	2.12	.0733	605	559	.0710	214	55.2
1.00	2.55	.0528	607	572	.0694	263	42.5
1.00	2.55	.0565	607	571	.0695	263	40.8
1.00	2.56	.0592	608	570	.0697	263	40.5
1.00	2.56	.0629	608	567	.0700	262	41.2
1.00	2.55	.0598	608	570	.0697	262	41.8
1.00	2.55	.0542	608	574	.0692	264	41.0
1.00	1.69	.0547	683	642	.0618	196	67.8
1.00	1.69	.0586	684	640	.0620	195	69.5
1.00	1.68	.0630	685	637	.0623	193	66.9
1.00	1.68	.0673	686	635	.0625	193	66.3
1.00	1.68	.0714	688	632	.0628	192	68.2
1.00	1.68	.0755	689	631	.0629	191	68.7
1.00	1.68	.0558	690	648	.0613	196	69.3
1.00	1.68	.0510	692	651	.0609	198	68.6
1.00	1.68	.0541	693	650	.0611	197	70.9
1.00	1.68	.0606	694	646	.0615	196	69.9
1.00	1.69	.0651	694	643	.0617	196	67.6
1.00	1.68	.0722	694	639	.0621	194	68.7
1.00	1.68	.0573	696	650	.0610	197	70.3

TABLE III - SUMMARY OF COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE

COMBUSTOR WITH GASOLINE AND ISOPENTANE

NACA

							- The same
Fuel	Inlet static pressure P (atm)	Inlet temperature T (OR)	Inlet velocity V (ft/sec)	Combustion efficiency η_b (percent)	Calculated parameter $\frac{P^{0.3} \text{ T}}{V^{0.8}}$	Calculated $ \eta = \frac{P^{0.3} T}{V^{0.8}} $	Difference calculated minus observed n
Gasoline	0.50	635	275	38.5	5.75	40.2	1.7
	.50	635	235	46.5	6.53	45.7	8
	.50	600	245	38.0	5.95	41.6	3.6
	.50	635	225	43.0	6.78	47.5	4.5
	.75	615	245	50.0	6.88	48.2	-1.8
Gasoline	.75	630	190	64.0	8.70	60.9	-3.1
	.75	635	280	44.2	6.43	45.0	8
	.75	700	284	52.0	6.98	48.9	-3.1
	.75	720	290	53.4	7.06	49.4	-4.0
	.75	700	245	59.0	7.82	54.7	-4.3
Gasoline	.75	680	185	69.7	9.60	67.2	-2.5
	.75	655	250	53.0	7.24	50.7	-2.3
	1.00	620	175	71.8	10.00	70.0	-1.8
	1.00	620	220	61.0	8.31	58.2	-2.8
	1.00	620	285	43.0	6.74	47.2	4.2
Gasoline	1.00	720	285	59.3	7.82	54.7	-4.6
	1.00	700	220	71.2	9.38	65.7	-5.5
	1.00	705	183	76.0	10.92	76.4	.4
	1.00	645	190	70.0	9.71	68.0	-2.0
	1.50	615	195	74.5	10.22	71.5	-3.0
Gasoline	1.50	620	215	70.7	11.00	77.0	6.3
	1.50	635	292	48.5	7.63	53.4	4.9
	1.50	710	205	80.0	11.40	79.8	2
	2.00	645	202	79.0	11.27	78.9	1
	2.00	642	192	82.0	11.80	82.6	.6
	2.00	625	235	70.0	9.74	68.2	-1.8
Isopentane	1.00	505	211	47.5	7.01	49.1	1.6
	1.00	506	247	36.4	6.14	43.0	6.6
	1.00	560	215	53.0	7.58	53.1	.1
	1.00	570	263	41.4	6.59	46.1	4.7
	1.00	640	195	69.0	9.41	65.9	-3.1

TABLE IV - COMBUSTION EFFICIENCY DATA FOR CONE FLAME HOLDER IN 2-INCH RAM-JET-TYPE COMBUSTOR WITH PENTANE (FROM REFERENCE 4)

Inlet static pressure	Inlet temper- ature	Inlet velocity	Combustion efficiency	Calculated parameter
(atm)	(°R)	(ft/sec)	(percent)	V0.8
0.133	610	339	20	3.14
.20	610	339	21.4	3.55
.267	610	327	26	4.02
.373	610	291	32	5.15
.516	610	278	40	5.56
.667	610	266	43.4	5.88
2.9	610	254	79	9.98

TABLE V - COMBUSTION EFFICIENCY DATA FOR CONE FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR

		WITH GASO	DLINE AND	ISOPENTANE		NA	CA
Fuel	Inlet static pressure P (atm)	Inlet tem- perature T (OR)	Inlet velocity V (ft/sec)	Fuel-air ratio f/a	Combustion efficiency $\eta_{\rm b}$ (percent)	Lean blow-out f/a	Rich blow-out f/a
Gasoline	0.97 1.00 1.00 1.00	665 667 670 673 667	203 199 199 201 199	0.0599 .0556 .0527 .0495 .0600	75.9 80.4 82.7 83.7 78.6	0.0482	
Gasoline	1.00 1.00 1.00 .75 .75	665 663 660 675 671	198 198 197 253 251	.0630 .0655 .0689 .0548 .0569	77.7 75.6 74.5 69.8 69.9		0.0756
Gasoline	.75 .76 .78 .75	669 667 665 671	251 246 237 202 202	.0596 .0628 .0672 .0611 .0561	68.4 67.0 65.4 77.5 79.4	.0532	.0685
Gasoline	.75 .75 .75 1.00	668 664 660 670 666	201 200 199 245 241	.0587 .0640 .0680 .0586 .0612	78.6 75.7 73.4 68.4 68.5		.0729
Gasoline	1.00 1.00 1.00 1.00 1.25	662 658 664 665 663	236 234 248 251 174	.0633 .0662 .0565 .0525	69.8 67.6 68.4 69.5 86.0	.0492	.0772
Gasoline	1.25 1.25 1.25 1.25 1.25	660 657 656 654 656	173 171 171 170 174	.0642 .0668 .0693 .0730 .0578	83.4 81.0 81.1 80.1 88.9		.081
Gasoline	1.25 1.00 1.00 1.00	670 765 765 767 769	175 203 205 205 206	.0531 .0684 .0591 .0573 .0556	90.1 78.5 86.0 87.4 88.0	.0475	
Gasoline	1.00 1.00 1.00 1.00 1.00	772 773 776 765 759	206 207 209 208 206	.0537 .0516 .0479 .0619 .0657	88.3 89.9 88.6 82.7 80.1	.0442	
Gasoline	1.00 1.00 1.00 .75	754 751 749 768 770	205 204 204 253 251	.0693 .0728 .0763 .0559	78.9 79.2 78.8 78.1 79.9	.0488	.080
Gasoline	.75 .75 .75 .75	767 761 759 755 750	252 246 250 247 178	.0601 .0651 .0679 .0723	75.9 72.4 71.1 71.6 83.7		.074
Gasoline	.75 .75 .75 .75	750 752 754 735 738	178 180 181 178 260	.0660 .0603 .0547 .0760	83.9 89.8 91.6 81.2 63.3	.0521	.079
Gasoline	.50 .50 .50 .50	738 741 727 715 700	257 256 253 171 171	.0598 .0545 .0707 .0673	69.1 71.0 64.7 80.5 80.1		.071
Gasoline	.50 .50 .50 .50	708 670 668 670 658	171 251 25 4 257 252	.0626 .0607 .0563 .0517	78.5 61.5 60.2 58.4 59.2		
Isopentane	.50 1.00 1.00 1.00 1.00 1.00	654 574 572 569 574 576 577	250 193 191 191 193 194 192	.0667 .0691 .0722 .0750 .0660 .0630	55.9 63.8 67.4 68.4 63.3 63.7 63.9 64.2	.0630	.079

TABLE VI - SUMMARY OF COMBUSTION EFFICIENCY DATA FOR CONE FLAME

HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR AT STOICHIOMETRIC

FUEL-AIR RATIO WITH GASOLINE AND ISOPENTANE NACA

Fuel	Inlet static pressure P (atm)	Inlet tem- perature T (OR)	Inlet velocity V (ft/sec)	Combustion efficiency nb (percent)	P0.3 T
Gasoline	0.50 .50 .75 .75 .75 .75 1.00 1.00 1.25	662 707 734 665 669 742 762 664 666 761 662	255 171 256 200 245 180 250 242 200 206 173	60.0 79.5 66.5 78.3 68.0 88.5 76.0 69.0 78.5 85.0 87.0	6.40 9.42 7.10 8.78 7.52 10.63 8.42 8.20 9.57 10.71 11.56
Isopentane	1.00	574	192	64.0	8.50

TABLE VII - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH BENZENE

Inlet static pressure P (atm)	Air flow ma (lb/sec)	Fuel-air ratio f/a	Air temperature before fuel Tb (°R)	Inlet tem- perature T (°R)	Inlet density p (lb/cu ft)	Inlet velocity V (ft/sec)	Combustion efficiency Tb (percent)	Lean blow-out f/a	Rich blow-out f/a	Equivalence ratio
0.69	1.05	0.0619	721	670	0.0411	183	66.6			0.003
.69	1.05	.0677	723	663	.0413	182	70.6			0.821
.69	1.05	.0746	723	660	.0415	181	68.7	7 18 18		.898
.69	1.05	.0810	723	653	.0420	179	74.6			.990
.69	1.05	.0876	723	649	.0422	178	77.4			1.073
.69	1.05	.0937	723	644	.0425	177	78.3			1 047
.69	1.06	.0996	7?3	639	.0431	176	77.3			1.243
.69	1.06	.1061							0.1061	1.320
.69	1.06	.0612	723	668	.0412	185	67.4		0.1001	1.410
.69	1.06	.0562						0.0562		.812
.69	1.60	.0576	729	680	.0403	284	47.7			707
.69	1.60	.0616	729	675	.0406	282	48.0			.763
.69	1.60	.0661	730	670	.0407	281	49.6			.816
.69	1.58	.0712	730	667	.0410	276	51.6			.876
.69	1.58	.0750	731	663	.0413	277	52.6			.934
.69	1.58	.0794	731	660	.0413	277	56.5			
.69	1.59	.0846	731	656	.0418	272	60.3			1.052
.69	1.59	.0889	731	654	.0419	272	62.0			1.122
.69	1.59	.0554			.0410		02.0	0554		1.179
.69	1.59	.0936						.0554	.0936	.735

TABLE VIII - COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR NACA

WITH PROPYLENE OXIDE

Inlet	Air flow	Fuel-air	Air tempera-	Inlet tem-	Inlet	Inlet	Combustion	Lean	Rich	Equiva-
static pressure P (atm)	ma	ratio	ture before fuel Tb (OR)	perature (OR)	density p (lb/cu ft)		$\begin{array}{c} \text{efficiency} \\ \eta_{\text{b}} \\ \text{(percent)} \end{array}$		blow-out f/a	
0.68 .68 .68	1.05 1.05 1.07 1.07 1.06	0.0903 .1203 .1471 .1681 .1048	689 690 690 696	605 579 556 603	0.0448 .0469 .0486 	168 160 158 168	80.9 75.4 88.5 81.5		0.1681	0.857 1.148 1.400 1.600 1.000
.68 .68 .68	1.05 1.05 1.58 1.58 1.58	.1348 .1621 .0682 .0762 .0839	697 697 712 715 717	573 550 643 636 631	.0473 .0491 .0422 .0427 .0430	159 153 267 264 263	85.8 90.4 52.1 62.2 67.6			1.280 1.450 .650 .725 .799
.69 .73 .77 .78	1.60 1.63 1.60 1.59 1.59	.0905 .0968 .1063 .1147 .1204	718 720 720 720 720 721	626 620 616 607 602	.0436 .0470 .0497 .0510	263 248 230 223 220	71.4 76.3 73.9 70.9 68.9			.861 .922 1.012 1.090 1.148
.79 .79 .33 .33	1.61 1.61 .79 .81	.1389 .0639 .0914 .0832 .0774	722 699 698 697	583 615 614 618	.0536 .0215 .0215 .0214	215 263 268 267	74.7 54.0 54.0 49.8	0.0639		1.320 .690 .870 .793 .737
.33 .33 .33 .33 .33 .33	.80 .80 .79 .79 .79 .79	.0715 .0965 .1044 .1108 .1174 .1241 .1308	697 695 694 693 693	605 596 591 583 579 574	.0219 .0222 .0224 .0227 .0229 .0230	262 255 252 249 247 245	54.0 51.3 57.9 57.6 58.6 61.1	.1523		.680 .919 1.000 1.052 1.120 1.182 1.245 1.450

TABLE IX - SUMMARY OF COMBUSTION EFFICIENCY DATA FOR V-GUTTER FLAME HOLDER IN 5-INCH RAM-JET-TYPE COMBUSTOR WITH BENZENE AND PROPYLENE OXIDE

AT EQUIVALENCE RATIO OF 1.0

Fuel	Inlet static pressure P (atm)	Inlet temperature	Inlet velocity V (ft/sec)	Combustion efficiency Nb (percent)	P ^{0.3} T	$\frac{P^{0.3} T}{V^{0.8}} \left(\frac{u_f}{u_{f,g}}\right)^{1.1}$
Benzene	0.69	665 665	182 280	73 54	9.27 6.54	10.20 7.35
Propylene oxide	.68 .73 .33	603 620 600	168 250 260	81.5 75 55	8.90 6.80 5.03	14.80 11.30 8.35

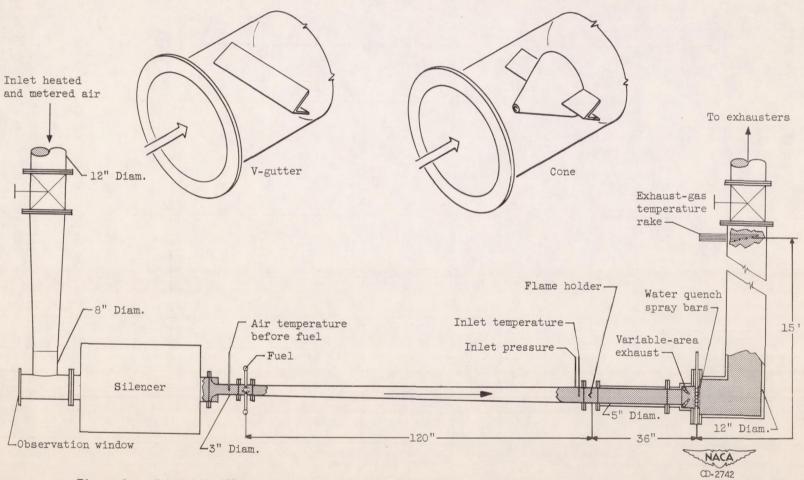
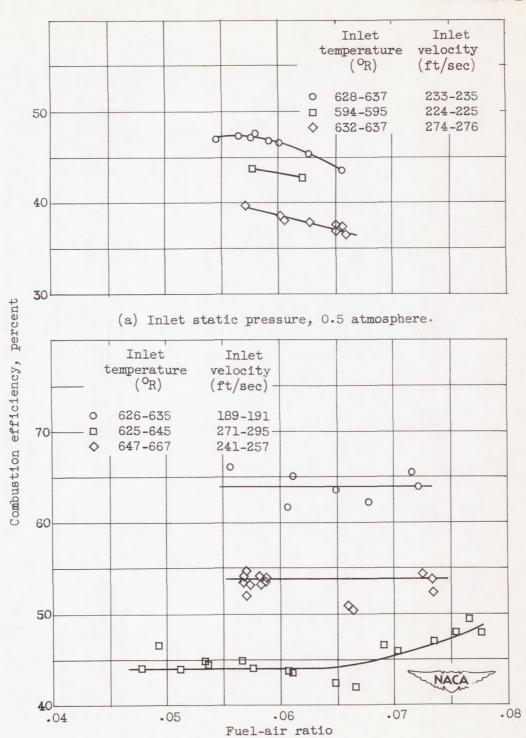
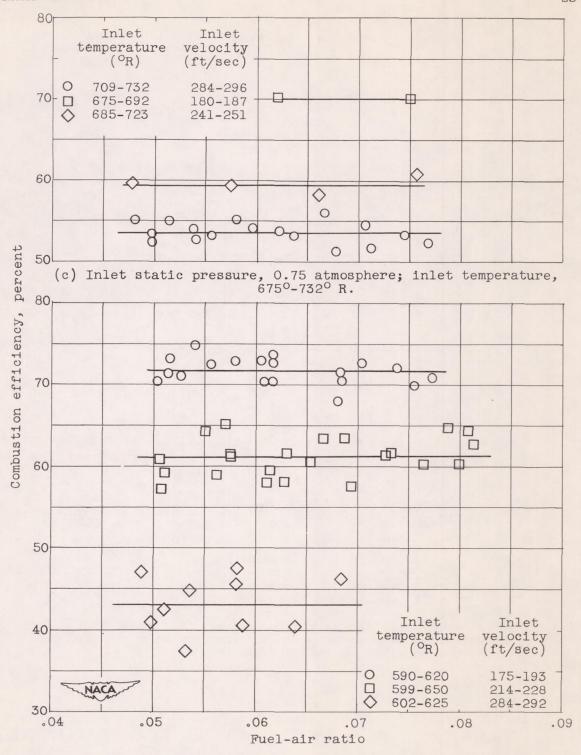




Figure 1. - Schematic illustration of 5-inch ram-jet-type combustor setup and flame holders used.

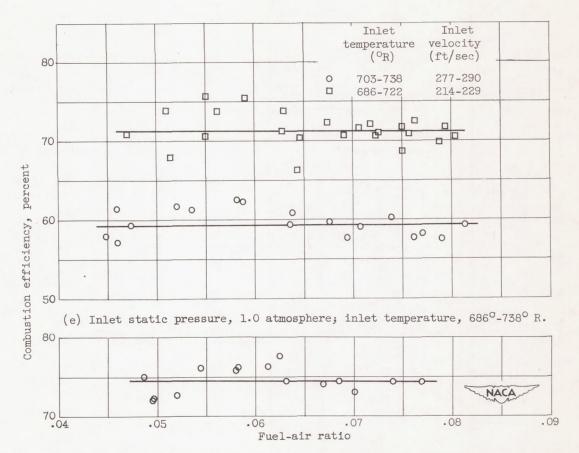

(b) Inlet static pressure, 0.75 atmosphere; inlet temperature, 625°-667° R.

Figure 2. - Combustion efficiency data for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline for five inlet pressures with varying velocities and temperatures.

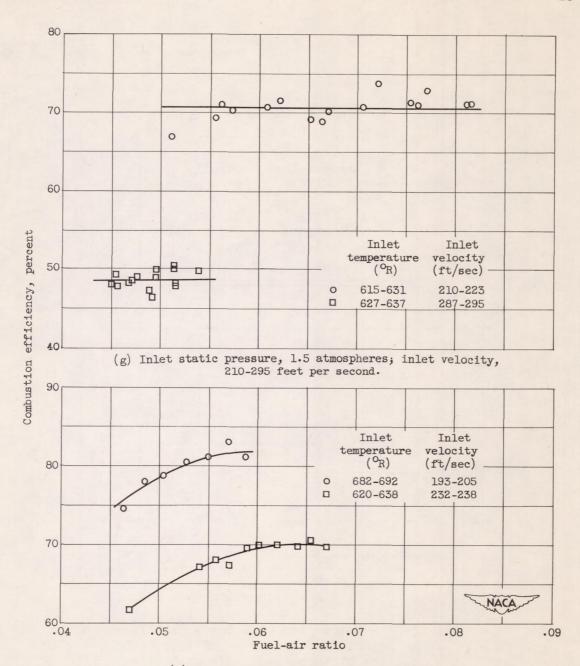

(d) Inlet static pressure, 1.0 atmosphere; inlet temperature, 590°-650° R.

Figure 2. - Continued. Combustion efficiency data for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline for five inlet pressures with varying velocities and temperatures.

(f) Inlet static pressure, 1.5 atmospheres; inlet velocity, 188-201 feet per second; inlet temperature, 605°-627° R.

Figure 2. - Continued. Combustion efficiency data for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline for five inlet pressures with varying velocities and temperatures.

(h) Inlet static pressure, 2.0 atmospheres.

Figure 2. - Concluded. Combustion efficiency data for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline for five inlet pressures with varying velocities and temperatures.

NACA RM E52123

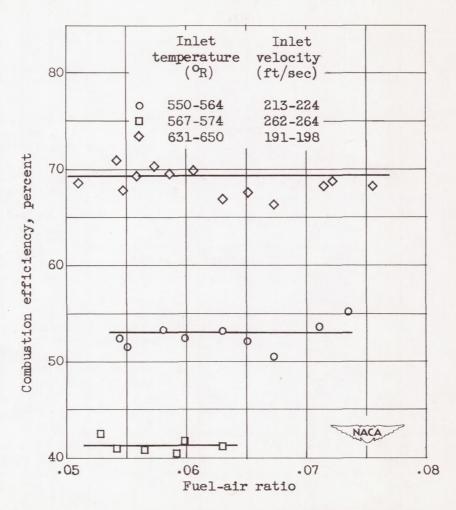


Figure 3. - Combustion efficiency data for V-gutter flame holder in 5-inch ram-jet-type combustor with isopentane at three inlet air velocities. Inlet static pressure, 1 atmosphere.

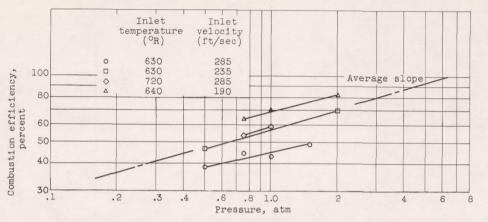


Figure 4. - Effect of inlet static pressure on combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor at equivalence ratio of 1.0.

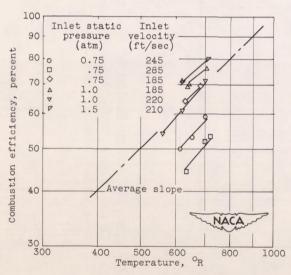


Figure 5. - Effect of temperature on combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor at equivalence ratio of 1.0.

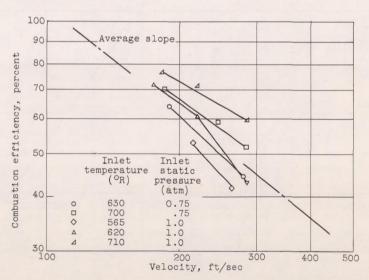


Figure 6. - Effect of velocity on combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor at equivalence ratio of 1.0.

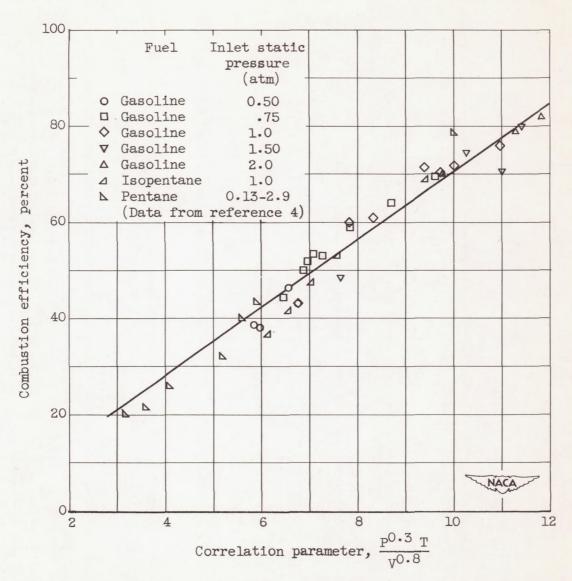


Figure 7. - Correlation of combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline, isopentane, and pentane.

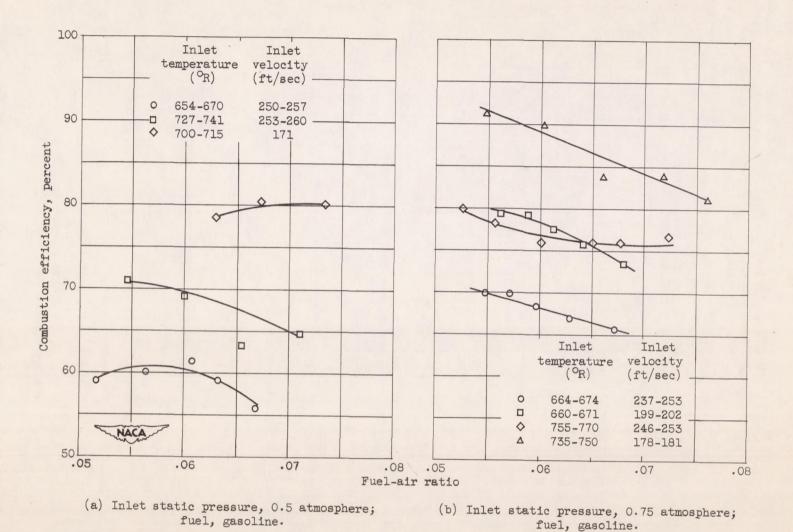
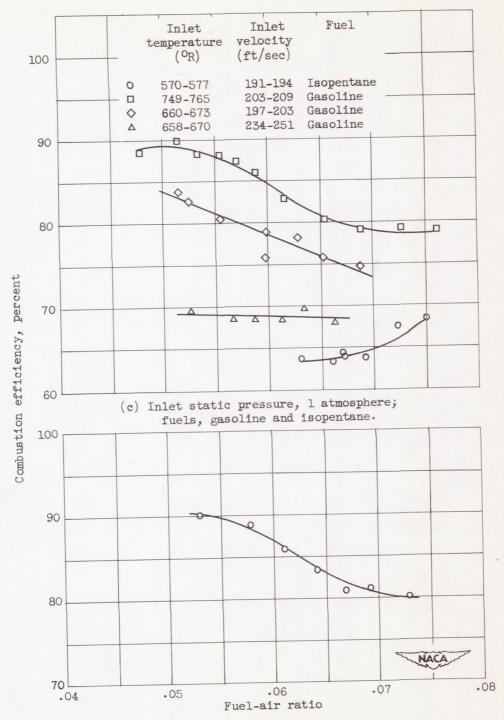



Figure 8. - Combustion efficiency data for cone flame holder in 5-inch ram-jet-type combustor with gasoline and isopentane for four pressures.

(d) Inlet static pressure, 1.25 atmospheres; inlet velocity, 170-175 feet per second; inlet temperature, 654°-670° R; fuel, gasoline.

Figure 8. - Concluded. Combustion efficiency data for cone flame holder in 5-inch ram-jet-type combustor with gasoline and isopentane for four pressures.

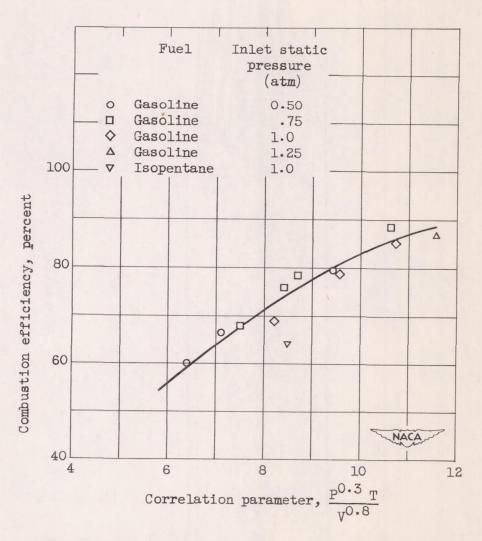


Figure 9. - Correlation of combustion efficiency for cone flame holder in 5-inch ram-jet-type combustor with gasoline and isopentane.

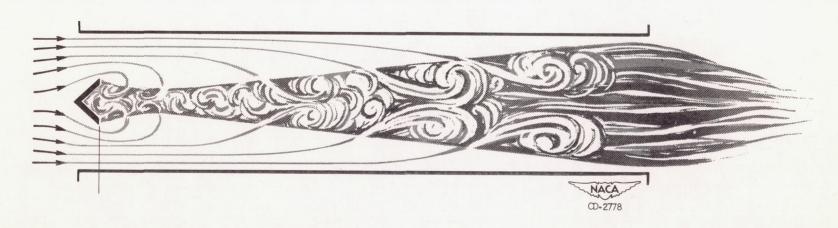


Figure 10. - Schematic illustration of instantaneous cross section of flame in 5-inch ram-jet-type combustor.

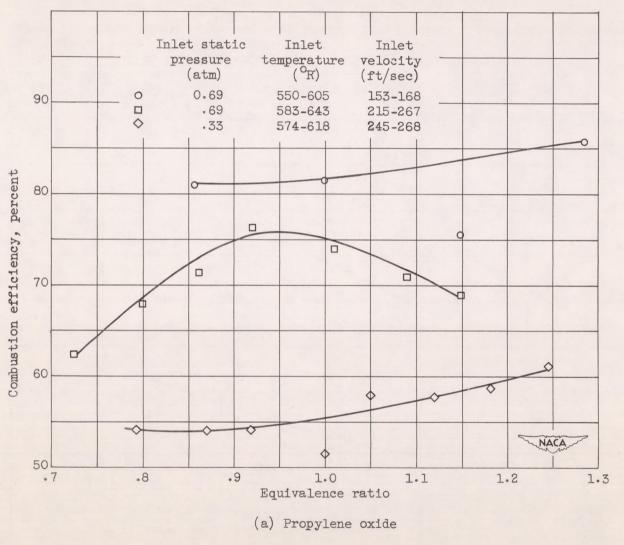
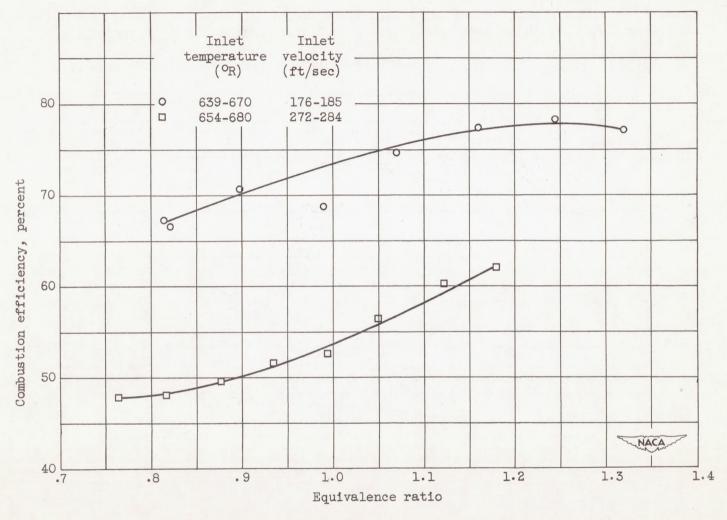
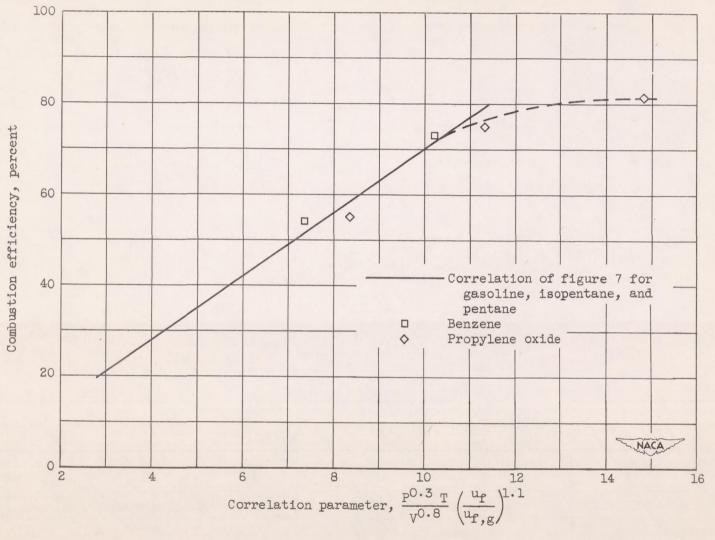
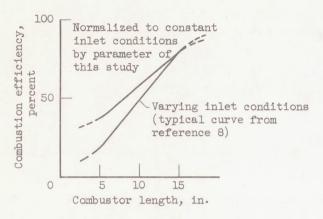
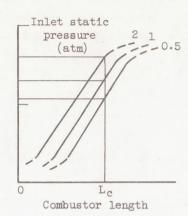
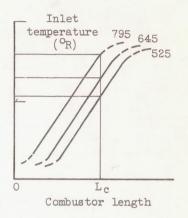



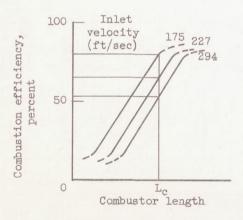
Figure 11. - Combustion efficiency for V-gutter flame holder in 5-inch ramjet-type combustor with two fuels.

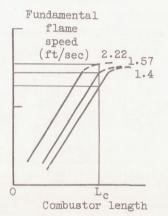
(b) Benzene; inlet static pressure, 0.69 atmosphere.

Figure 11. - Concluded. Combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor with two fuels.


Figure 12. - Correlation of combustion efficiency for V-gutter flame holder in 5-inch ram-jet-type combustor with gasoline, isopentane, pentane, benzene, and propylene oxide.


(a) Effect of varying inlet conditions.


(b) Pressure variation. (T, 770° R;
 V, 250 ft/sec; u_f, 1.4 ft/sec.)

(c) Temperature variation.
(P, 1 atm; V, 200 ft/sec;
u_f, 1.4 ft/sec.)

(d) Velocity variation.
(P, 1 atm; T, 710° R;
uf, 1.4 ft/sec.)

(e) Fundamental flame speed variation. (P, 2/3 atm; T, 660° R; V, 180 ft/sec.)

Figure 13. - Some typical combustion efficiency against combustor length curves.