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SUMMARY

A procedure is presented in the form of charts which permits the
rapid estimation of the natural bending frequencies of helicopter rotor
blades, both rotating and nonrotating. Since the agpproach is based on
Southwell's equation, an evaluation of the method with regard to such
things as higher modes, blade offset, and variable mass and stiffness
distributions is also given. The evaluation shows that, when nonrota-
ting beam bending modes are used, Southwell's equation yields reason-
ably accurate bending frequencies for rotating helicopter blades.
Example comparisons of frequencies estimated using the charts with values
given by the msnufacturer for several actual blades show that the sim-
plified procedure yields good practical resulis.

TINTRODUCTION

The purpose of this peper is to present results in chart form which
permit the rapid estimation of bending frequencies of rotor blades. The
proposed method of frequency determination makes use of the familiar
Southwell form; thus, it is also the purpose of this paper to show that
this approach works qulte well when such things as higher modes, blade
offset, and varisble mass and stiffness distributions are considered.
The paper is divided into three parts as follows: In the first part a
review and an evaluation of the Southwell gpproach is given, in the sec-
ond part frequency charts are presented, and in the third part the
results of applying these charts to some actual helicopter blades are
given to indicate the order of accuracy obtainable in practical cases
with this procedure.

REVIEW AND EVALUATYION OF SOUTHWELL APPROACH

The basic form of the Southwell equation which defines the bending
frequencies of a rotating beam can be obtained by energy considerations
and is given in reference 1 as
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where
wR bending frequency of rotating beam
2 rotational speed of beam
n mass distribution for beam
EI stiffness distribution for beam
T192 tension force in beam
L length of beam
x spanwise coordinate zlong beam
¥,y',y" veam mode shape and derivatives with respect to x

Equation (1) yields exact values fcr the bending frequencies of a
rotating beam if the mode shapes of the rotating beam are known. Since
these exact shapes are usually not known, however, it is necessary to
assume mode shapes from which spproximate frequencies can then be estl-
mated. If the nonrotating mode shape is substituted into the first
term of equation (1) and the coefficient of Q2 is replaced by K, the
Southwell constant, the Southwell equation takes the following form:

wg? = oyg? + K02 (2)
where
ONR nonrotating bending frequency of beam
K Southwell constant

If the hinge or point of fixity of the rotating beam ls offset from the

axis of rotation, it msy easily be shown that the Southwell constant can
be written in the form:
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K=Ko+Kl€ (3)
where
Ko zero-offset Southwell constant
Kl offset correction coefficlent for Southwell constant
€ distance hinge is offset from axis of rotation, percent

beam length

If equation (3) is substituted into equation (2),

og? = ayg® + (Ko + K16 0 ()

If certain constants for the beam are introduced into equation (%), it
can be written as

0332 = zan2 EIOLL + (Ko + Kle) a2 (5)
moLs

where Io and my are measured at the root of the beam and

L length of beam outboard of hinge or point of fixity
an nonrotating frequency coefficient for beam vibrating in
nth mode )

In order to provide a basis for estimating the accuracy, usefulness,
and possible limitations of the Southwell approach, a systematic series
of blades was selected and frequencies were calculated by the Southwell
approach and a more exacti process. Figure 1 shows the cases studied using
both methods. These cases include the uniform cantilever with 0, 5, and
10 percent offset and the uniform hinged beam with the same offsets. The
"linear" type beams are beams in which the mess and stiffness both vary
linearly from the root value to zero at the tip. Zero- and l0-percent
offset were treated for this type of beam with both the cantilever and
hinged root.

The Southwell freaquencies were obtained with the use of the mode
s@apes for the nonrotating beam whereas the true or reference frequen-
cies were obtained by a Rayleigh-Ritz energy procedure involving
expansion of the rotating beam modes in terms of the nonrotating modes
of a uniform beam. For the cantilever beams, five nonrotating uniform
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nodes were used in the expansion. For the hinged beams, a pendulum mode
was used in addition to the five nonrotating modes. Some of the results
of this investigation ere shown in figures 2 to 5.

The variation of bending frequency with rctational speed for a

2
uniform hinged beam is shown in figure 2. The range of {
() 164

in this figure is roughly 25 percent abcve that encountered in current
helicopters. From the results shown it is evident that the Southwell

results are quite accurate, the maximum error being about 3 percent in
frequency squared or only about l%-percent in frequency. This maximum

error is about the same for all three modes.

In order to avold confusion, results for the 5-percent-offset case
are not shown in this figure. They fall roughly midway between the
0- and 10-percent-offset curves and show the same type of agreement
between exact and Southwell results.

Frequency results for the "linear" type hinged beam are shown in
figure 3. From this figure it 1s spparent that the Scuthwell results
are extremely accurate, even for the highest rotational speeds shown.

A comparison of frequency results for the uniforr and the “linear"
type hinged beam is given in figure 4. The most important thing to be
noted from this comparison is the difference in slope between the dashed
and solid line for each mode. The slope of each of these lines is
directly proportional to the Southwell constant. The large difference
in slope, particularly evident for the first mode, indicates that a
single value of the Southwell comnstant for each mode could not ade-
quately predict the varlations of frequency with rotaticmal speed which
are shown in the figure.

Frequency results for uniform cantilever beams are presented in

2

fTigure 5. The range of [}——9—£] corresponds roughly to that covered
“NR1st

for the hinged beams; the difference in scale is due to the fsct that
the first bending frequency of a uniform hinged beam is zbout four times
greater than the first pending frequency of a uniform cantilever beam.
For each mode the lower dashed and solid curve are for zero offset and
the upper pailr are for 10-percent offset.

From the figure it 1s apparent that the Southwell results are very
accurate for the second and tnird modes. For the first mode, however,
the error in frequency is somewhat larger, gbout 5 percent. Similar
results obtained for cantilever beams with mass and stiffness distribution
varying linearly from the root value to zero at the tip show about the
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same type of agreement between the Southwell and the more exact results
as are given in figure 5. Since the error in Southwell resultis for the
first mode is roughly the same for both these cases it is reasonable to
assume that avplying a correction factor determined by the error shown
in figure 5 will result in more accurate prediction of the first mode
bending frequency of other cantilever beams as well.

From the foregoing evaluation of the Southwell approach it was con-
cluded that Southwell constants based on the nonrotating beam mode shapes
lead to reasonably accurate bending fregquencies of rotating helicopter
blades. The evaluation also showed that the Southwell constants vary
appreciably with beam mass and stiffness distribution.

CHARTS FOR FREQUENCY DETERMINATION

In order to provide a means for rapidly estimating rotor-blade
bending frequencies, the nonrotating frequency coefficients, zero-offset
Southwell constants, and offset correction coefficients for Southwell
constants have been computed for a series of beams with linear mass and
stiffness distributions. The range of mass and stiffness distributions
was selected to encompass variations found in currently manufactured
blades with some latitude for new design. A1l the constants are based
on the mode shapes of the nonrotating beam which were obtained by stand-
ard numerical iteration procedures. The cantilever modes were obtained
using 10 stations while the hinged modes were obtained using 15 stations.

The variation of the nonrotating frequency coefficient a,, with

beam mass and stiffness distribution is shown in figure 6. The abscissa
is the ratio of tip mass to root mass, 1.0 represents a constant mass
beam, and O the case where the masgss varies linearly to zero at the tip.

The solid curves are for beams with constant stiffness along the
length, the dashed curves for beams where the stiffness drops to half
the root value at the tip, and the long- and short-dashed curves for
beams where the stiffness is zeroc at the tip.

Figure T permits selecting an accompanying value for the Southwell
constant for beams with zero hinge offset. The variation with stiffness
distribution appears quite small, particularly for the first mode.
Actually, however, there is a maximum difference of about 5 percent.

The variation with mass distribution is obviously somewhat more pro-
nounced for all the modes shown. The zero-offset Southwell constant is
not shown for the zero or pendulum mode since it is always unity inde-
rendent of the mass and stiffness distribution of the beamn.
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In order to account for cases where the hinge is offset from the
axis of rotation, offset correctlon coefficients K; have also been
computed for this family of beams. These coefficients, when multiplied
by the offset given as a fraction of the free beam length, yleld the
correction to be added to the zero-offset Southwell constant.

The variation of this offiset coefficlent is shown in figure 8. Tt
is evident that this variation is quite similar to that shown in figure 7
except for the zero mode. An expression for the zero-mode offset coef-
ficients presented here is given in reference 2.

Results similar to those presented in figures 6 to 8 have also been
obtalned for cantiliever beams and are shown in figures 9@ to 1l1l. The
effect of root fixity on the Southwell constant for the various modes can
be deduced by comparing the curves in figures 8 and 9 with those in
figures 10 and 11. t should be mentioned that a more sccurate estimation
for the first bending frequency of a rotating cantiliever bpeam should be
obtainable bty reducing the frequency obtained usirg the charts and Scuthwell's
equation by a small percentage which may be quickly estimated from figure 5.

EXAMPLE RESULTS

In order to illustrate the type of accuracy which can be expected
in using the frequency charts of figures 6 to 11, bending frequencies
have been estimated for the first three modes of four existing helicop-
ter.blades, all of which are hinged. The following procedure was used
in this estimation:

(1) Straight lines were faired through the m and EI distribu-
tions for the blade, large values near the root being ignored.

(2) From these fairings, the effective root values of m and EI and
the necessary tip-to-root ratios were obtained.

(3) By using these ratios, values of ans Kg, and K; were obtained
from the charts.

(%) Substitution of these constants into the Southwell equation
yielded the bending frequencies at zero and at rated rotor speed.

The results are shown in table I. The m and EI distributions
for the blades are shown on the left-hand side of the table. The actual
distribution 1s given by the solid lines. The dashed line is the linear
approximation selected to represent this varliation. It should be empha-
sized that these linear approximations used in estimating the frequen-
cies were the initial ones selected and were not Jjuggled to obtain the
best agreement. The frequencles shown as exact in this figure are values
furnished by the manufacturer.
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If the exact and estimated results for the blades are compared, it
is evident that the results are quite accurate when the crudeness of
the linear spproximations used is considered. It is interesting to note
that in all cases the estimated frequency of the rotating beam is more
accurate than that for the nonrotating beem; this indicates that the
linear approximations yield more accurate values for the Southwell con-
stants than for the nonrotating frequency coefficients.

Although no comparisons have been made for fixed end blades, it is
believed that even more accurate results should be obtainable for this
end condition since large values of root stiffness can be more accurately
accounted for by using the offset correction factors.

All the results presented in this paper are for bending vibration
in a plane normal to the plane of rotation. Frequencies for vibration
in any other plane can be easily determined from these results, however,
by means of a simple formula proposed by Lo and Renbarger (ref. 3).

CONCLUDING REMARKS

To summarize, it has been shown that the Southwell approach, based
on nonrotating mode shapes, provides a reasonably accurate means of pre-
dicting frequency changes due to rotational speed for most current heli-
copter blades. It has peen found, however, that a single Southwell
constant for each mode cannot yield accurate results for all cases,
particularly if the mass distribution of the blades is quite different.
In order to aid the designer, charts have been presented which permit
the rapid estimation of nonrotating frequencies, of Southwell constants,
and of the offset correction coefficients for Southwell constahts, from
which reasonably accurate frequencies can be readily obtained for rota-
ting blades. In exemple applicatlions, the method gave good estimations
of the pending frequencies of actual rotor blades.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 18, 195k.
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TABLE I

EXACT AND ESTIMATED FREQUENGIES FOR SEVERAL
MANUFACTURED BLADES

@nr, RADIANS/SEC | g, RADIANS/SEC
m EI MODE —ExacT | EST. | EXACT | EsT.
TRUE Do st | 173 74 402 | 477
| {-FaRED 2nd | 485 50.0 868 | 857
ard| 955 | 1010 | 1370 | 1378
2R ist| 216 21 506 | 492
Ll ~ 2nd 58.9 60.5 92.4 92.2
3rd| 1123 | 1220 | 1280 | 1540
st | 219 210 740 | 783
2nd| 637 | 595 | 1320 | 1344
A . 3rd | 1260 | 1255 | 2000 | 2075
st | 134 146 378 | 378
oand | 437 | 41s 710 | 703
- 3rd| 949 945 | 1250 | 1240

ROOT TiP ROOT TIP
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Figure 1l.- Beams treated by "exact" and Southwell methods.

SIX-MODE EXPANSION
— — SOUTHWELL APPROAGH

Q 2
I:(wNR)lsi]

Figure 2.- Bending frequencies of uniform hinged beam.
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MODE
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)

Figure 3.- Bending frequencies of "linear" type hinged beam.

15 MODE
Ist
oF
wg \2 UNIFORM
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= 3rd

Figure 4.- Comparison of uniform and "linear" type hinged beams.
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Figure 5.- Effect of rotational speed on the bending frequencies
of a uniform cantilever beamn.
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