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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2409 

SUMMARY OF METHODS FOR CALCULATING DYNAMIC LATERAL 

STABILITY AND RESPONSE AND FOR ESTIMATING 

LATERAL STABILITY DERIVATIVES 

By John P. Campbell and Marion O. McKinney 

SUMMARY 

A summary of methods for making dynamic lateral stability and 
response calculations and for estimating the aerodynamic stability 
derivatives required for use in these calculations is presented. The 
processes of performing calculations of the time histories of lateral 
motions, of the period and damping of these motions, and of the lateral 
stability boundaries are presented as a series of simple straightforward 
steps. Existing methods for estimating the stability derivatives are 
summarized and, in some cases, simple new empirical formulas are pre
sented. Reference is also made to reports presenting experimental data 
that should be useful in making estimates of the derivatives. Detailed 
estimation methods are presented for low-subsonic-speed conditions but 
only a brief discussion and a list of references are given for transonic
and supersonic-speed conditions. 

I N T ROD U C T ION 

Dynamic lateral stability has not received widespread attention in 
the past because it has not generally been a serious problem in the 
design of airplanes. Consideration of dynamic lateral stability has 
recently become more important, however, because current design trends 
toward the use of low aspect ratiO, sweepback, and higher wing loading 
have, in many cases, led to unsatisfactory dynamic lateral.stability.· 
Airplane designers are therefore finding it necessary to make such calcu
lations in connection with the design and modification of airplanes. In 
many cases these calculations are difficult to perform for designers who 
have had no previous experience in theoretical stability work because 
most of the published theoretical analyses are not presented in a form 
that is especially suited to the computation of dynamic stability. The 
estimation of the stability derivatives required in dynamic stability 
calculations has also been found to be difficult in many cases. Althoueh 
theoretical and experimental data on these derivatives have appeared in 
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numerous publications, no single publication has presented methods for 
estimating the derivatives for all types of airplanes. 

One approach to a presentation of methods of calculating stability 
and estimating stability derivatives in a form suitable for use by 
designers was made by Zimmerman in rerere~ce 1. Although this report 
has proved to be of valuable assistance to designers in making dynamic 
stability calculations, recent trends in airplane design have caused its 
usefulness to be seriously limited. For example, the equations of refer
ence 1 do not include the product-of-inertia terms which have been shown 
by recent studies to be very important in some cases. (See references 2 
and 3.) Moreover, the calculation of the time histories of lateral 
motions, one type of calculation that has been the subject of increasing 
interest in the last few years (references 4 to 7), is not covered in 
reference 1. The methods of estimating stability derivatives presented 
in reference 1 are also limited because they apply only to airplanes 
having unswept wings with an aspect ratio of 6 operating at speeds at 
which compressibility effects are negligible. The purpose of the present 
paper is to extend the methods of reference 1 to include the methods of 
computation which are of current interest to designers and to include 
methods of estimating derivatives for configurations and flight conditions 
which 'are now being considered. 

This·paper summarizes and reduces to simple straightforward steps 
methods for computing the time histories of lateral motions, the period 
and damping of these motions, and the lateral stability boundaries. 
Existing methods of estimating stability derivatives for a variety of 
airplane configurations are summarized and, in some cases, simple new 
empirical formulas are presented. Reference is also made to reports 
presenting experimental data that should be useful in making estimates 
of these derivatives. 

SYMBOLS 

All forces and moments are referred to the stability system of axes 
which is defined in figure 1. The following definitions apply to the 
symbols except where they are. otherwise defined: 

m mass of airplane, slugs 

S wing area, square feet 

wing mean chord, feet (b/A) 

b wing span, feet 

span of that part of wing that has tip dihedral, feet 
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h 

w 

s 

d 

z 

A 

r 

v 

kX o 

3 

tail length (distance from center of pressure of vertical· 
tail to center of gravity, measured parallel to longi
tudinal stability axis; values of l must be calculated 
for each angle of attack), feet 

average fuselage height at wing root; feet 

average fuselage width at wing root, feet 

vertical distance of quarter chord of wing root chord from 
fuselage center line, positive downward, feet 

nondimensional time parameter based on span (Vt/b) 

longitudinal distance rearward from airplane center of 
gravity to wing aerodynamic center, feet 

longitudinal distance from leading edge of vertical tail 
chord to horizontal tail aerodynamic center, feet 
(see fig. 6) 

vertical distance from horizontal tail to base of vertical 
tail~ feet (see fig. 6) 

height of center of pressure of vertical tail above longi
tudinal stability axis; values of z must be calculated 
for each angle of attack, feet 

aspect ratio 

sweepback of wing quarter-chord line, degrees 

taper ratio (Tip chord/Root chord); also, differential 
operator in Laplace transform 

dihedral angle, degrees (see sketch of fig. 9) 

dihedral angle of wing tip, degrees 

time, seconds 

airspeed, feet per second 

radius of gyration about principal longitudinal axis of 
inertia, feet 

radius of gyration about principal normal axis of inertia, 
feet 



4 

kZ 

KX o 

KZ o 

KZ 

KXZ 

ex, 

€ 

p 

KXZ 

K2 
Z 

radius of gyration about X axis, feet 

(V kXO 2cos2~ + kZO 2sin2~ ) 
radius of gyration about Z axis, feet 

(VkZo2cos2~ + kXo2sin2~) 

kXo/b 

kZo/b 
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kX/b 

kZ/b 

product-of-inertia factor ~kZo2 - kXo2) sin ~ cos ~) 

angle of attack of principal longitudinal axis of inertia, 
degrees.(see fig. 2) 

angle of climb, degrees (see fig. 2) 

angle of attack of longitudinal body axis, degrees 
(see fig. 2) 

angle between principal longitudinal axis of inertia and 
longitudinal body axis, degrees (see fig. 2) 

air density, slugs per cubic foot 

angle of bank, radians 



NACA TN 2409 '5 

W angle of yaw, radians 

~ angle of sideslip, radians 

p 

r 

¢o 

Wo 

~o 

(D¢)o 

(DW)o 

R 

I 

A,B,C,D,E 

rolling velocity, radians per second (d¢/dt) 

yawing velocity, radians per second (dW/dt) 

initial angle of bank, radians 

initial angle of yaw, radians 

initial angle of sideslip, radians 

nondimensional initial rolling velocity (d¢/da) 

nondimensional initial yawing velocity (dW/da) 

Rout~'s discriminant or real part of complex root R + Ii 

imaginary part of complex root R + Ii 

coefficients of the characteristic biquadratic equation 

Pl,P2' ••. P7 factors of the B, C, and D coefficients 

).,lJ).,2').,3' ).,4 

D 

P 

Tl / 2 

T 

a 

roots of characteristic biquadratic equation 

differential operator (d/da) 

period of the lateral oscillation, seconds 

time to damp to one-half amplitude, seconds 

time conversion factor (m/pSV) 

nondimensional time factor (t/T) 

relative density factor (m/pSb) 

impressed rolling moment, foot-pounds 

impressed yawing moment, foot-pounds 

impressed lateral force, pounds 
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Cy 
c 

Cy 

q 

(CDo)CL = ~(CD 

impressed rolling-moment coefficient 

impressed yawing-moment coefficient 

impressed lateral-force coefficient 

lift coefficient (Lift/qS) 

drag coefficient (Drag/qS) 
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rolling-moment coefficient (Roiling moment/qSb) 

yawing-moment coefficient (Yawing moment/qSb) 

lateral-force coefficient (Lateral force/qS) 

dynamic pressure, pounds per square foot (~v2) 

_ CL
2

) 
rcA 

CD CL
2 

= CD - -
0 rcA 

CZ 13 
?C Z 

= di3 

Cn13 
den 

- dl3 

CYI3 
dey 

=di3 

Cz 
dCZ 

p - d~ 
2V 

de n C --
~'-d~ 

2V 

Cy 
dey 

= 
d~ p 

2V 
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de2 
C2 =

r (jrb 
2V 

(jCn 
CUr = (jrb 

2V 

dey 
Cy =-

r (jrb 
2V 

C2 
2 =---L 

P 4K 2 X 

-~ 
~ - 4K 2 

Z 

Cn r 
Ur =-

4K 2 
Z 

7 
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CYr 
Yr TiP 

lc 
!-lCl c 

= 
2K 2 

X 

!-lCn c 
nc 

2K 2 
Z 

CYc 
Y = c 2 

(~Cnp)l 

\~Cnp) 2 

H 

ao 

Subscripts: 

wing 

fus 

tail 

design 

data 

exp 

V-tail 

e 

H 

increment in Cnp 
forces 

increment in Cnp 
lift 

horizontal tail 
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produced by lift and induced-drag 
6 

produced by drag not associated with 

section lift curve slope 

wing 

fuselage 

used to designate vertical tail 

used to designate design under consideration 

used to designate design for which force-tes~ data are 
available 

experimental 

V-tail 

effective 

horizontal tail 
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CAL C U L A T ION o F LATERAL STABILITY 

AND RES P 0 N S E 

Various types of calculations may be performed to indicate in some 
way the stability of an airplane or the response to gust disturbances 
and control manipulations. The calculations most commonly made are cal
culations of time histories of disturbed motions, period and damping of 
the free motions, and spiral and oscillatory stability boundaries (linez 
of neutral damping of the spiral mode and of the lateral oscillations). 
Step-by-step procedures for performing these types of calculations are 
explained in the text and derivations and additional pertinent material 
are presented in appendixes A to D. 

The period and damping calculations are the easiest of the three 
types to perform. For this reason, and because the dynamic lateral 
stability of airplanes is at present specified in the flying-qualities 
requirements in terms of the period and damping of the lateral oscilla
tion, period and damping calculations are probably the most commonly 
performed. 

Recent dynamic stability work has indicated, however, that the 
period and damping characteristics of the free motions of an airplane 
are not always a sufficient indication of whether the dynamic behavior 
of an airplane following various types of disturbances will be con
sidered satisfactory. For this reason the calculation of time histories 
of the motions of airplanes is becoming more common despite the fact 
that these calculations are fairly laborious. The increasing use of 
automatic computing machines has also made the calculation of motions 
more popular. 

For many years, calculations of stability boundaries were the type 
of calculation most commonly performed. In recent years, however, sta
bility boundaries have not been considered to give an adequate indica
tion of stability. Since boundaries are useful in some cases, however, 
(for example, for quick approximation of the effects of changes in 
dihedral and tail area) the methods of calculating the spiral and oscil
latory stability boundaries are described herein. Lines of constant 
period and damping of the lateral oscillation are related to stability 
boundaries (lines of neutral stability). In some cases these lines of 
constant period and damping may prove more useful than boundaries. Since 
no extensive use h~s been made of lines of constant period and damping, 
however, the methods of calculating these lines (presented in refer
ences 8 and 9) are not given in the present paper. 

The equations and methods o~ calculation presented in the present 
paper deal specifically with the inherent motions of airplanes for the 
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case of three degrees of freedom (roll, yaw, and sideslip) and linear 
stability derivatives. In order to perform similar calculations for 
cases involving additional degrees of freedom, nonlinear derivatives, 
or a~topilots with time lag, special equations are required. The 
methods and equations for treating these cases are presented in refer
ences 10 to 18. Additional degrees of freedom for the case of free 
controls are treated in references 16 to 18 and for the case of fuel 
sloshing are treated in reference 10. The use of nonlinear derivatives 
in stability calculations is covered in reference 11. Methods of 
treating the effect of autopi19ts, including the effect of time lag in 
the autopilot are presented in references 12 to 15 and 19. 

For some cases the effects of aerodynamic time lag are important. 
There are two different sources of such lag: (l) the time required for 
an aerodynamic impulse to travel from one component of the airplane to 
another (for example, the time required for a change in sidewash at the 
wing to reach the tail - a phenomenon commonly referred to as lag of 
sidewash); and (2) the time required for the growth and decay of the 
aerodynamic loads on the airplane components. For both of these cases 
the time-lag ~ffects usually become increasingly important as the period 
of the lateral oscillation decreases. The effects of the first type of 
time lag can be accounted for in some cases by modification of the sta
bility derivatives. For example, the effect of the lag of sidewash on 
the derivative Cnr is discussed subsequently under the section on 
"Estimation of Lateral stability Derivatives". In many cases, how
ever, both types of time lag will require special stability equations. 
No general treatment of these cases has been published but an indi
cation of the method of treatment may be obtained from the treatments 
of autopilot lag in references 13 and 15. 

CALCULATION OF PERIOD AND DAMPING 

As pointed out in references 1 and 2, the period and damping of the 
various modes of the lateral motion may be calculated from the roots of 
the characteristic equation 

by the equations 

and 

P 
211 
-T 
I 

loge 2 • 
R T 

0.693 
-R-- T 
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where R represents a real root A or the real part of a complex root 
A = R ± Ii and I· represents the imaginary part of a complex root. 
Negative values of Tl / 2 represent the time required to double amplitude 

for unstable modes of the motion. 

The values of the coefficients A, B, C, D, and E may be 
obtained by the method given in steps 1, 2, and 3 of the section on 
"Calculation of Motions". If the period and time to damp are to be cal:
culated for a number of related cases, however, the values of the coef
ficients A, B, C, D, and E may be more conveniently calculated by 
a tabular procedure such as that shown as table I for making boundary 
calculations. 

Methods of determining the roots of the biquadratic characteristic 
equation are presented in appendix C. 

CALCULATION OF MOTIONS 

Calculation of the lateral motions of an airplane involves the 
integration of three simultaneous differential equations (see 
appendix A) to obtain a general solution in terms of the mass and 
aerodynamic parameters of the airplane. The general equations, once 
obtained, can then be used to obtain numerically the motions of any 
airplane in terms of the variation with time of the angles of bank, yaw, 
and sideslip or some function of these angles such as rolling or yawing 
velocity. Various methods, such as those given in references 20 to 22, 
are of course available for integrating the differential equations. 
Since the problems met in airplane dynamics are fairly complex, however, 
many of these methods are not suitable because of the difficulties of 
computation that arise. The method given in reference 4 (based on the 
Heaviside operational calculus) is satisfactory for calculating the 
forced motions following application of external forces or moments but, 
without modification, this method cannot be used to calculate the motions 
resulting from initial displacements in bank, yaw, or sideslip or from 
initial values of rolling or yawing angular velocity. A solution'based 
on the Laplace transformation is more satisfactory than that Qased on the 
Heaviside operational calculus because it permits direct calculation of 
the free motions following any initial condition, in addition to calcu
lation of the forced motions following application of external forces and 
moments. The application of the Laplace transformation to the calculation 
of lateral motions is outlined in appendix B. The material presented in 
this appendix is similar to the work presented in references 5 and 6 
except that the mass and aerodynamic stability derivatives have been com
bined as shown in appendix A to reduce the number of arithmetical and 
algebraic processes required in numerical solutions. 
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The process of calculating the motions is presented as a series of 
simple though lengthy arithmetical and algebraic steps so that an under
standing of the calculus involved in solving the differential equations 
is not required. The method as shown is suitable for calculating the 
mot'ions as variations of ~, W, 13, p, and r with time for the case 
of the free motions following initial angular displacements (~o' Wo ' 
and (30 ) and an6Ular velocities (D~)o and (D1\r)0 and for the case of 
the forced motiuns resulting from constant impressed forces and moments 
(Lc ' Nc , and Yc ). These are the case.s for which motions are usually 
calculated. It is also possible to calculate the motions resulting from 
impressed forces and moments which are arbitrary functions of time by 
the methods explained in references 6 and 7. 

Motions Resulting from Initial Angular Displacements and Angular 

Velocities and from Constant Impressed Forces and Moments 

The six steps involved in obtaining a specific solution for the 
lateral motions of an airplane are: 

step 1: Determine values of the following parameters: 

(a) Mass characteristics: 

m, kX , o 11, and p 

(b) Geometric characteristics: 

S and b 

(c) Flight conditions: 

V, CL, and 1 

(d) Aerodynamic stability deriv~tives: 

Cy , 
13 

Cl , 
P 

C~, Cy , 
p 

C l , 
r 

C~,. and 

The methods of determining the values of the aerodynamic stability 
derivatives are given in subsequent sections of this paper. 

Cy. 
r 

In cases where impressed forces and moments are used as disturbances, 
determine the values of the factors 

Cl , Cn , Cy 
c c c 

that are appropriate to the particular problem. 
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step 2: From the known factors, evaluate the following parameters 
which are the stability derivatives in the form in which they are used 
in the calculation of motions! 

Also, 

IS. 
KXZ 

= --
K 2 

X 

lf3 - _1-1_ C 
- 2KX2 lf3 

1 
lp = -- Cl 

4K 2 P 
X 

l = r 
1 C 

4KX2 lr 

, 
whEm impressed 

1 ~ C 
~c = 2K 2 lc 

X 

The values of 

expressions 

2 
KX , 

where 

K2 
KXZ m m 

- Kz2 T = pSV ~ = pSb 

_1-1_ C 1 
nf3 = Yf3 = 2" Cy 2Kl nf3 f3 

1 1 
~ = -- Cn yp = 4i! CYp 4K 2 P Z 

_l_C 1 
Ilr = Yr = 4i! CYr 4KZ2 Ilr· 

forces and moments are used, evaluate 

2 
KZ ,and KXZ can be determined from the following 

K2 
Z 

KXZ 

2 2 2 . 2 
KXo cos ~ + KZo Sln ~ 

= KZo2cos2~ + KXo2sin2~ 

(KZo 
2 

- KXo 2) sin ~ cos ~ 

kZo 
KZo = b 

step 3: Solve for the values of the appropriate ones of the 
following coefficients from equations (1) to (4): 
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In all cases solve for the values of A, B, C, D, and E: 

C -P1YI3 :+- P2 + P5Yp + P6Yr - P6 
(1) 

D 
CL CL 

P5 "2 + P6 "2 tan r + P7 

E 
. CL CL 

P3 2" + P4 2" tan r 

where 

PI = -lp - ~ + Kl~ + ~lr 

P2 = lpllr lr~ 

P3 = ll3~ lrnl3 

P4 = lpnj3 ll3~ 

P5 = Klnj3 - l/3 

P6 = ~l/3 - nj3 

P7 = -P2YI3 + P3yp + P4Yr - P4 

The quantities PI to P7 are factors of the coefficients B, C, D, 
and E which are combinations of terms that occur frequently in calcu
lations of motions resulting from initial angular displacements and 
velocities and which are consequently grouped together for convenience. 
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Calculate the values of ao, al' . . . a5 when solving for the 

angle of bank ¢ or the rolling velocity p: 

~ = ~oC "'13oP5 + (n¢)o(-Ay13 + ~lr - nr) -

(D*)o(K1Ur - lr) + lc - ncKl 

t. CL ,CL ( 
a3 = ¢o ,P6 2" tan ., + P7) - * oP5 "'2 tan ., - 13oP3 + (D~)o P6Yr-

15 

P6 - ~lrY13 + UrY13) + (~)o(-P5Yr + P5 + KrUrY13 - lrY~ -
(2) 
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.Calcv;Late thEj! values?f bO' bV .... ' b5whe~ solving for 
angle of yaw W or the yawing velocity r: 

b3 = -¢oP6 C2L + Vo (P5 C; + P7) - ~oP4 + (D¢)o( -P6Yp + ~lpy~ -

npY~) + (~W)o(P5YP - KlnpY~ + lpY~)+ lc(K~~ + ~) -

nc (lp + y~) - YcP6 

b4 = ~¢oP4 + VoP3 - (D¢)oP6 + (DW)op;]C2L + lc(n~yp -

~y~) + nc (lpy~ - l~y~ - YcP4 
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Calculate the values' of 

angle of sideslip ~: 

. ., c4 'when solving for the 
~ i' .. 

CL CL' r CL 
c2 ¢oPl ~ + voPl ~ tan r + ~oP2+ (D¢)oL ~ - K2lpYr + K2lp + 

Vr - np + (JS,lr - nr)Y~ + (Dwlo[A ~L tan 7 + Klry'r -

K 1 ~ - lpY r + l P - (Kl ~ - l r) Y J + l c tK2Y r + K2 + Y p) + 

nc(Yr - 1 - KlyJ + YcPl 

step 4: Solve for the roots ~l' ~2' ~3' and ~4 of the 
biquadratic equation 

M 4 + B~3 + C~ 2 + D~ + E = 0 

(4 ) 
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where the values of the coefficients A, B, ... , etc. wttre given by 
the solution of equations (1). Methods of determining the roots of the 
biquadratic equation are given in appendix C. 

Step 5: Use the coefficients obtained from equat'ions (1) to (4) 
and the roots of equation (5) to solve for the following coefficients: 

Calculate the values of the factors Al , ~, .•. , ~ when 
solving. for the angle of bank' ¢ or the rolling velocity p: 

-, 
\ ' 

aOA45 + alA44 
+ a2A43 + a3A42 + a4A4 + a, 

A4 = -------:-----=--------~ 
6AA45 + 5BA44 + 4cA43 + 3DA42 + 2EA4 

( 6) 
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Calculate the values of the factors Bl' B2, 0 0 0, B6 when 
solving for the angle of yaw W or the yawing velocity. r: 

bOA45 + blA44 + b2A43 + b3A42 + b4A4 + b5 B4 = -----~-----=----~--.:-. 
6AA45 + 5BA44 + 4cA43 + 3DA42 +2EA4 
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Calculate ·the vallles Hf ;th~ .f~cto.rs: ClJ ,' C2,· ,~, .. , C5 when 
sol ving for the angle of sideslip,. '13: ' . : ... 

cOA15 + clA14 + c2A13 + c3A12 + c4Al' 

6AA1
5 + 5BA14 + 4cA13 + 3DX 2 '~'2EA' ,1. 1 ' 

COA45 + C1A44 + c2A43 + c3A42 + c4A4 

C4 = 6AA45 + ,5BA44 + 4cA43 + 3DA42 + 2EA4 

(8) 

If equation (5) has conjugate complex roots,' the values of the 
coefficients (equations (6) to (8)) corresponding to these roots will 
be conjugate complex. In order to facilitate 'treatment of this case it 
is convenient to establish some special n,otation. This special notation 
is expla:tned in appendix D.- , 
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Step 6: 'The equations' of 'motion are Writte'n in cfifferent' form 
depending upon the roots of equat'ion (5).:' If' the characteristic equa
tion has four real roots Al, A2, A3, and A4, the general form of 
the equations of motion is 'used, as follows: 

+ ~O + A6 

If,as is generally the case, equation (5) has two complex roots and'two 
real roots (R + Ii, R -Ii, A3' and A4), the equations of motion may be 
expressed as 

.~ = KBeOR cos (or + ~) + B3e
OA

3 + B4eOA4 + B50 + B6 

~ = KCeOR cos (or + we) + c3e
OA

3 + C4eOA4 + C5 

p = }~A(R2 + r2 eaR cos~r + lilA + tan -1 ~) + 

OA3 OA4 1 
A3A3e + A4A4e + ~ 

(10) 
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where 

KA = 2(RA2 + I 2 -1 IA 
wA = tan -A RA 

KB 2[;.B 
2 

+ I 2 = tan 
-lIB 

(lOa) = B ~ RB 

Kc 4Rc
2 2 

tan 
~l Ie 

= + IC W = 
He C 

and RA and IA are defined in appendix D. 

If there are four complex roots (R + Ii, R - Ii, RI + IIi, and 
R' - IIi), the equations are 

K aR ( ) K I aR I (I I ) 
'" = Be cos 0'1 + ~ + B e c,os 0'1 + ~ + B5a + B6 

~ = Kce
aR 

cos 
aR' 

(0'1 + ere) +Kc'e cos(aI ' + ere ' ) + C5 

1 ~K .(2 
p = TtAvn + 2 aR ( -1 I) I e cos 0'1 + wA + tan if + ~ + 

(11) 

KA,~,2 + -1 11)0 + wA I + tan R'," 

r = ~[KBVR2 + r2 eaR cos ~r + "'B + tan -1 ~) + I>; + 

KB'VR,2 + 1 12 eaR I (" I I I t -1' I I )~, 
cos \ + ~ + an R' U ' : 
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where 

2iRA,2 + 
lA' 

K' ,2 (1)' tan -1 
A = IA 'A R' A 

2VRB,2 K' + IB 
,2 

~' tan 
-1 IB' 

(lla) B R' B 

2tkc ,2 + Ke' Ie ,2 We' tan 
_l,IC' 

= = R' C 

The coefficients KA, KB, Ke, (1)A' ~, and We are defined in equa-

tions (lOa) and RA, lA' RA' , and IA 
, are defined in appendix D. 

Solve the appropriate ones of these equations of motion (equa
tions (9), (10), or (11)) by substituting values of the nondimensional 
time factor a in the equations and solving for ¢, 'it, i3, p,. or r. 

Motions Resulting from Arbitrary Disturbances 

The motions resulting from arbitrary forcing functions can be 
obtained from the motions resulting from constant impressed forces and 
moments by the methods explained in references 6 and 7. 

Avery useful method of obtaining the motion resulting from various 
abrupt gust and control disturbances is given by Jones in reference 7. 
In this paper it is pointed out that, although the component motions of 
an airplane must be calculated simultaneously (that is, by simultaneous 
differential equations), the effects of component disturbances may by 
the principle of superposition be calculated separately and later added 
in any desired proportion. Thus, if a given rolling moment causes a 
200 bank in 1 second and if a given yawing moment causes a 50 bank in 
1 second, the combined effect of both acting simultaneously will be a 
250 bank in 1 second. Jones also points out a somewhat similar fact 
with regard to the effects of disturbances that are not applied simul
taneously. This fact is that, if a given disturbance which arises at 
the time t = 0 is later augmented, the effect of the increment of 
disturbance will run its course independently of the effect of the 
original disturbance. For example, in a problem involving the correc
tion for a gust disturbance by a manipulation of the control, the mot~on 
produced by the gust disturbance can be calculated independently and the 
motion caused by the assumed corrective control manipulation can be 
added,to it at any desired point. This example is illustrated graphi
cally in figure 3. 
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The principle of superposition may be applied analytically as well 
as graphically. The analytical application which makes use of Carson's 
integral or Duhamel's integral is described in references 7 and 23. 
This method is useful for calculating the motions resulting from 
impressed forces and moments which are arbitrary functions of time. By 
application of these methods, the solutions for constant impressed 
forces and moments can be used to obtain new solutions for any arbitrary 
variation of impressed forces and moments with time which can be 
expressed by a mathematical formula. Some simple variations of 
impressed forces and moments with time and their Laplace transforms are 
given in reference 6. The transforms for any other function for which 
transforms have been worked out may be found in tables of Laplace 
transforms. 

CALCULATION OF STABILITY BOUNDARIES 

Oscillatory Stability Boundaries 

As pointed out in the preceding section of this report, the degree 
of stability of the uncontrolled motions of an airpiane is indicated by 
roots of the characteristic equation 

tI 

For stability the real roots or the real part of the complex roots of 
the characteristic equation must be negative. A useful discriminant 
for determining some of the characteristics of the roots in stabjlity 
work is Routh's discriminant R (R = BCD - AD2 - B2E). The use of this 
discriminant in dynamic stability analyses has been pointed out in many 
reports, for example, references 1, 2, 3, 5, 21, and 24. Routh has 
shown (reference 20) that, if R and the coefficient E are finite, 
the necessary and sufficient conditions that the real roots and the 
real parts of the complex roots should be negative are that every coef
ficient of the biquadratic and also R should have the same sign. 
Routh also showed that when R = 0 and B and D have the same sign 
there are a pair of complex roots with the real parts zero. Since the 
value of the real part of a complex root indicates the stability of an 
oscillatory mode of the motion of an airplane, the lateral oscillation 
is neutrally stable when R =0 and the coefficients B and D have 
the same sign. Oscillatory stability boundaries can be determined, 
therefore, by solving the equation R =, 0 and checking to determine 
whether the signs of B and D are the same. 

Since two of the most important stability derivatives affecting 
lateral stability are the directional stability derivative Cn~ and 
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the' effective dihedral deri vati veC 1!3' boundaries for neutral oscil
latory stability are usually calculated as a function of these two 
derivatives as illustrated in figure 4. These calculations are gener
ally carried out by the method shown in table I. This table contains a 
numerical example and step-by-step instructions for using the table. 
The results of this numerical example are plotted in figure 4. The 
procedure illustrated in table I is first to assume values of the inde-' 
pendent variable 'Cn!3 to cover the range for which the boundary is 
required. The values of all the other mass and aerodynamic stability 
derivatives except CI!3 are then estimated. The value of Cn!3 is 
generally assumed to have been varied by varying the size of the verti
cal tail and consequently the tail contribution to each of the other 
stability derivatives varies, as Cn!3 is varied. The values of the 
coefficients A, B, C, D, and E and then R are calculated as 
functions of 1!3= 

I ~C 
!3 4K 2 1!3 

X 

The values of 1!3 corresponding to the assumed values of Cn!3 for the 

condition of neutral oscillatory stability are next obtained by solving 
the expression R = 0 which is a quadratic in 1!3 that is of the form 

2 ul l!3 + vII!3 + WI = 0 

Finally, the values of CI!3 corresponding to the assumed values, of Cn!3 

are obtained from the values of 1!3' 

The values of 1!3 which satisfy the expression R = 0 must be 
checked to determine whether they satisfy the other condition for 
neutral OSCillatory stability - that the ~ign of the coefficients B 
and D must be the same. This check can be performed readily by sub
stituting the values of 1!3 which satisfy R = 0 into the expression 
for D which is a linear equation of the form 

D = u21!3 + v2 

Thus, the sign of D is determined. The sign of B is a constant for 
any given value of Cn!3 and is almost invariably positive since the 

three predominant terms of B contain the derivatives C1p' Cnr ' 

and CY!3 which in all practical cases contribute a positive increment 
to the value of B. 
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Since t,,-o values of CZ 13 satisfy the condition R = 0 for each 

value of Cn13 , the R = 0 curve has two branches. As pointed out in 

reference 24, one of the branches of the R = 0 curve generally repre
sents an oscillatory stability boundary and the other branch represents 
a line of numerically equal real roots w.ith opposite ·signs. (See 
fig. 4.) If neither of the values of CZ

13 
which satisfy the expres-

sion R = 0 for a particular value of Cn13 is found to represent a 

point of neutral oscillatory stability, the lateral motion has no oscil
latory mode for that value of Cn13 . If both of the values of CZ

13 
which satisfy the expression R = 0 are found to represent points of 
neutral oscillatory stability, the lateral motion has two oscillatory 
modes. In this case, since the boundary D = 0 represents the line of 
infinite period, the branch of the R = 0 boundary which lies close to 
the D = 0 boundary is usually the boundary for neutral stability of 
the longer period of the two oscillatory modes. A detailed discussion 
of the significance of the stability boundaries and the regions formed 
by these boundaries is given in reference 24. 

In calculating ,stability boundaries for a specific airplane a com
plete solution such as that explained in the preceding paragraphs should 
be made. For general studies of stability, however, approximate oscil
latory stability boundaries may be calculated much more simply by the 
methods shown in reference 24. 

As pointed out previously, methods of calculating lines of constant 
period and damping of the lateral oscillation are presented in refer
ences 8 and 9. 

Spiral Stability Boundaries 

Spiral stability boundaries, like oscillatory stability boundaries, 
are usually determined as a function of the directional stability deriva
tive Cn13 and the effective dihedral derivative CZ

13 
as illustrated in 

figure 4. As pointed out in reference 1, neutral spiral stability 
occurs when the E coefficient of the characteristic equation is zero 
(E = 0). A spiral stability boundary can be easilY obtained from this 
relation. If expressions for E (in terms of ZI3) corresponding to 

. several values of Cn13 have already been obtained in the process of 

calculating an oscillatory stability boundary, the equations formed by 
setting these expressions for E equal to zero can be solved for the 
values of ZI3 ,and hence CZ 13) corresponding to the assumed' values 

of Cn .. If the values of E have not already been obtained, in 'the 
13 

process of calculating an oscillatory stability boundary, a spiral 
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stability boundary for the level-flight condition (1 
culated simply from the equation 

0) can be cal-

(12) 

Values of Cnl3 are assumed wi thin the r~ge for which the boundary is 
required. The values of CI r and Cnr corresponding to each value bf 

Cn~ are then determined. The tail contributions to these derivatives 

generally vary with Cn~ since Cn~ is usually assumed to be varied 

by changing the size of the vertical tail. 

EST I MAT ION Q F LATERAL STABILITY 

DERIVATIVES 

GENERAL REMARKS 

Methods of estimating the lateral stability derivatives have been 
presented in numerous publications but no single report has contained 
information for estimating the con~ribution qf all principal airplane 
components to all the derivatives for airplanes having any sweep angle 
or aspect ratio. In the present paper, an approach to such a presenta
tion is made by the coordination of and reference to existing estima
tion methods, by reference to publications containing data which should 
be useful in making estimates, and by the suggestion in some cases of 
simple new empirical formulas.- Detailed estimation methods are pre
sented for low-sub sonic-speed conditions but only a brief discussion and 
a list of references are given for transonic- and supersonic-speed con
ditions. In general, the estimation methods presented should be expected 
to yield only fairly accurate values suitable for making first approxi
mations of dynamic stability. This limitation applies especially to 
the cases in which the derivatives are based completely on theory. 

For convenience, the references that should be useful in estimating 
the stability derivatives are presented in table II. The references 
are grouped according to the speed range covered (subsonic or super
sonic) and according to the derivatives presented in each report. The 
references for the subsonic case (references 1 and 25 to 94) are further 
divided into two groups - one including reports which contain estimation 
methods and the other including reports which contain experimental data 
that should be useful in making estimates of derivatives. The 
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references for the supersonic case (references 95 to 115) are sub
divided according to wing plan form. 

The following sections covering the estimation of the nine sta
bility derivatives are divided into three groups according to the type 
of derivative - sideslip derivatives (CYi3.' Cni3 , Cr~), rolling deriva.-

tives (Cnp ' Crp' CYp), and yawing derivatiyes (cnr , Crr' CYr). The 
derivatives CYp and CYr have usually been neglected in making 

dynamic lateral stability calculations because theory indicated that for 
unswept wings CYp and CYr were zero. Recent experimental data, 

however, have indicated that both swept and unswept wings produce meas
urable values of these derivatives (references 25, 59, and 86). Since 
the vertical tail contributes to CYp and Cyr' it appears desirable 

to estimate these derivatives and to use them in the calculations of 
stability unless it is established that for ·the case in question the 
effects'of CYp and CYr on stability are negligible. For these two 

derivatives, only the effect of the wing and vertical tail need to be 
considered. 

The methods of estimating the rolling and yawing derivatives pre
sented herein were obtained from theoretical treatments based on the 
assumption of steady rolling and yawing and from experimental data 
obtained principally from tests made under conditions of steady rolling 
and yawing. The only information that applies directly to the oscil
latorycase is a limited amount of data on Cnr obtained by oscillation 

techniques. When calculations are made in which the oscillatory mode 
is the subject of interest, some consideration should be given to .cor
recting the derivatives based on steady rolling or yawing to account 
for differences in the derivatives that are likely to exist as a result 
of differences between the oscillatory motion and the steady rolling 
and yawing motion. For example, the data of reference 82 have indi
cated that, for flap-extended or power-on conditions, fairly large dif
ferences might exist between the values of the tail contribution to Cnr 
for the steady yawing and yawing oscillation cases. At present little 
information is available for correcting the values of Cnr for the 

steady yawing case to apply to the oscillatory case and, unfortunately, 
little or no information is available for correcting the other stability 
derivatives. 

Since most wind-tunnel force-test data that are likely to be used 
in making estimates of the stability derivatives are probably for much 
lower Reynolds numbers than those for the full-scale airplane, some 
adjustments to the data are usually required to account for the dif
ferences in Reynolds number. The effects of Reynolds number should be 
considered in the cases of all the derivatives,. especially those which 
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are estimated by methods that involve the use of force-test data. 
Methods of correcting for Reynolds number effects for some of the 
.derivatives are discussed in the following sections which cover the 
estimation procedures. In the cases where the Reynolds number effects 
are not discussed, it can be assumed that any abrupt variation in the 
derivatives near the stall for low-scale data will also be present for 
the full-scale airplane but will probably occur at a higher lift coef
ficient because of the higher maximum lift coefficient of the airplane. 
An indication of the lift-coefficient range over which the theory may 
not be expected to give reliable values of stability derivatives for the 
full-scale airplane can be obtained from large-scale (lrag data. The 
analysis of reference 86 indicates that the variation of the derivatives 
with lift coefficient is different from the theoretical variation at 
lift coefficients above that at which the drag due to lift increases 
abruptly from the ideal value CL2/nA. 

The effects of Mach number and power are not treated in the sections 
on the individual derivatives but are discussed briefly in separate 
sections. A detailed treatment of these effects, including design 
formulas and charts, was considered beyond the scope of this paper. 

o 

THE SIDESLIP DERIVATIVES CYi" Cni" Cli' 

No satisfactory purely theoretical methods have yet been developed 
for obtaining accurate estimates of the sideslip derivatives CYi" Cni" 

and Cli' for a complete airplane, primarily because of large inter

ference effects between the various airplane components and because of 
large, and often unpredictable, variations of the derivatives with angle 
of attack. Fortunately, these derivatives can be obtained from conven
tional wind-tunnel force-test data. Such experimental data are essential 
to the accurate determination of sideslip derivatives. It is, of course, 
highly desirable to have force-test data for the exact airplane design 
under consideration, but reasonably accurate estimates can usually be 
made by correcting the force-test data for a generally similar design. 
The methods of correcting the force-test data on a similar design for 
use in the case under consideration are covered in the following sec
tions. In the formulas presented, the subscript word "design" is used 
to designate the design under consideration and the subsf:ript word "data" 
is used to designate the similar design for which force-test data are 
available. 

Force-test data should be used to determine the effect on the side
slip derivatives of such airplane components as leading-edge high-lift 
devices, stall-control devices, trailing-edge flaps, nace+les, external 
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stores, canopies,and dorsal and ventral fins. The effect of leading
edge high-lift devices is usually merely to extend to a higher lift 
coefficient the same variation of the derivative with lift coefficient 
as for the plain wing. Trailing-edge flaps often have large effects on 
the contributions of both the wing and the vertical tail to the sideslip 
derivatives (references 39 and 69); and since these effects are not 
easily estimated, it appears that in these cases use of force-test data 
is essential~ The addition of nacelles and external stores generally 
has been found to decrease the .direct~onal" stability factor Cn~ 

slightly. The results of a limited amount of research to determine the 
effect on the sideslip derivatives of the size and shape of canopies 
has been reported in references 48 and 73 but these results are inade
quate for making accurate predictions of the effects of canopies. The 
effects on the sideslip derivatives of dorsal and ventral fins are 
usually small at the small and moderate angles of yaw that are generally 
considered in stability calculations. (See references 47 and 71.) 

CYI3 

In estimates of the lateral force du~ to sideslip derivative CYI3' 

force-test data for the design under consideration should be used when
ever possible. If such data are not available, data for a similar 
design can be used and corrected as follows: 

Wing-fuselage.- Since the wing-fuselage contribution to CYI3 is 

usually relatively small compared with that of the vertical tail, great 
accuracy is not required in estimating this factor. This contribution 
may be estimated as follows: 

(1) Wing: If the wings of the two designs are generally similar 
the difference in CYQ can be considered negligible and no correc-

fJwing 
tion'is necessary. The theory of reference 25 does not appear to be 
suitable for use in estimating CY~wing. 

(2) Fuselage: If the two fuselages are similar in shape, the 
difference in CY~fus can probably be estimated satisfactor~ly by cor-

recting for the difference in the relative size of the fuselage and 
wing for the two airplanes. It appears, however, from table X of refer
ence 69 unlikely that a reliable prediction of CY~fus can be made 

directly from the geometry of the fuselage. Some additional data on 
CYQ are presented in reference 77. Experimental data from other 

fJfus 
investigations have shown that differences in fuselage cross-section 
can caUqe very large differences in the variation of CY~fus with 

angle of attack. For example, in the case of a flat fuselage with the 
major cross-sectional axis horizontal, the sign of CYQ - has been" 

fJfus 
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found to reverse at moderate and high angles of attack. Force-test 
data are essential for making estimates in such cases. 

(3) Wing-fuselage interference: For low-wing or high-wing con
figurations, wing-fuselage interference c.auses the value of CYi3 to be 

greater than that obtained by adding the contributions of the wing and 
fuselage. (See reference 39.) If the vertical location of the wing on 
the fuselage is generally similar for the two designs, however, any 
correction for a difference in this interference factor can be neglected. 

Vertical tail.- Accurate estimates of CYi3tail are necessary 

because this factor is used to estimate the tail contribution to several 
other derivatives. This factor is especially important at low angles 
of attack because in this case the tail contribution is often much 
greater than the wing-fuselage contribution to all derivatives except 
Cl p • For this reason it is highly desirable to have tail-off and tail
on force-test data for the design under consideration or for a very 
similar design. Corrections to the data for a similar design can be 
made as follows: 

(1) Correction for differences in wing area, tail area, and tail 
lift-curve slope can be made by the following formula: 

( CL . Stan) 
(/ ) Cl.tall design 

= \
CY

i3tan data (CT.~. . Stan) 
~all data 

Sdata 

Sdesign 
(13) 

The value of CLotan can be obtained from figures 5 and 6 which are 

based on the theory of reference 34 and on the theory and data of refer
ences 28 and 35. The chart of figure 6 can be used to estimate the 
change in the effective aspect ratio of the vertical tail caused by the 
end-plate effect of the horizontal tail. It should. be emphasized that 
for the best accuracy the charts in figures 5 and 6 should be used in 
conjunction with formula (13) for correcting existing force-test data 
and not for making a direct estimate of CYQ .' . 

.... tall 

(2) In the case of V-tails, the correction for Cy can be 
i3tail 

made as follows: 

Ir;y .) 
, i3v -tall design 

(KC~Sv-tail sin2r) . 
\ deslgn S data 
--~----------------~--~-

(KCL Sv -tail sin2r) Sdesign aN data 

(14 ) 
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where the terms C~N' r, and K'are the same as given in reference 30 

and are defined as follows: 

r 

K 

slope of the tail lift curve in pitch measured in the plane 
normal to the chord plane of each tai~ panel 

dihedral angle of tail surface measured from XY-plane of the 
tail to each tail panel, degrees 

ratio of sum of lifts obtained by equal and opposite changes 
in angle of attack of two semi'spans of tail to lifts obtained 
by an equal change in angle of attack for the complete tail 

Values of the term K, which are usually about 0.7, can be obtained from 
reference 30. 

(3) Since large differences in sidewash and dynamic pressure at 
the tail can be caused by differences in wing plan form and wing loca
tion, use of experimental data for the specific design or at least for 
a design which has a closely similar wing-fuselage combination and 
vertical tail location is extremely desirable. No methods are available 
which permit accurate predictions of sidewash at the tail, but the 
experimental data of references 39, 49, and 69 can be used to obtain 
some indication of the variation in sidewash with vertical location of 
an unswept wing on a fuse~age and the experimental data of references 36 
and 77 provide additional information on sidewash at the tail. Other 
experimental data indicate that the sldewash fields produced by highly
swept, low-aspect-ratio wings or by fuselages of flat cross section can 
sometimes be strong enough at high angles of attack to reverse the 
effectiveness of a conventionally-located vertical tail surface. Until 
a reliable method is developed for predicting these large sidewash 
effects, force-test data appear to be the only means by which satisfac
tory estimates of CY~tail can be obtained. 

Although attempts have been made to develop methods for estimating 
the yawing moment due to sideslip (static directional stability) deriva
tive Cn~ (for example, references 68 and 69) no reliable method has 

yet been obtained. The use of force-test data therefore seems imperative'. 

Force~test data for the design under consideration should be used 
if available. If such data are not available, use data for a similar 
design and correct as explained in the sections to follow. 
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Wing-fuselage.- The corrections for the wing-fuselage contributions 
are: 

(1) Correction f~ wing - From figure 7 (taken from reference 25) 
the values of (Cn~/CL )wing for the design under consideration and for 

the design for which test data are available can,be determined. The 
effect of differences in taper ratio can be neglected. (See refer
ences 60 and 66.) The difference between these values of Cn~/CL2 

should then be added (with proper regard for sign) to the experimental 
dat,a for the complete model. 

(2) Correction for fuselage - The formula 

Cn = -1. 3 (Fuselage vOlume) (~w) 
~fus Sb 

(15) 

can be used to calculate the Cn~ of the fuselage (per radian) ,for the 

design under consideration and for the similar design for which force
test data are available. The differences between these two values can 
then be added (with proper regard for sign) to the force-test data for 
the complete model. Formula (15) does not include the effect of fine
ness ratio and should not be used for fineness ratios less than 4. This 
formula is an approximate empirical expression which should not be used 
to estimate the value of CnQ directly but should only be used as 

I-'fus 
indicated to determine a correction for force-test data. This correc
tion method should not be used in the cases of high angles of attack 
when there are large differences in fuselage configuration. Force-test 
data are essential in such cases. 

(3) Correction for vertical location of the wing - If the designs 
are generally similar, the correction for the vertical location of the 
wing on the fuselage can be neglected. (See reference 39.) 

(4) Correction for center-of-gravity position - If the center-of
gravity position for the design under consideration is appreciably dif
ferent from that for the design for which force-test data are available, 
the value of Cnp for the wing-fuselage combination can be corrected 

by multiplying the value of Cy~ for the wing-fuselage combination by 

the distance between center-of-gravity positions (expressed in wing 
spans) . 
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Vertical tail.- Corrections to Cn~tail for differences in 

CY~tail and tail length lib can be made by the following formula: 

(CYf3 l) 
~ .) \ tail b design 

- CnA 
- ~tail data (Cyf3 ~) 

tail data 
The contribution of wing-tip fins to Cnf3 is treated in refer-

ences 70 and 84. 

(16) 

In estimates of the rolling moment due to sideslip (effective 
dihedral) Cl~' force-test data for the design under consideration should 

be used. If such data are not available, data for a similar design can 
be used and corr~cted by the methods that follow. 

Wing-fuselage.- The corrections for wing-fuselage contributions are: 

(1) Correction for wing - From figure 8 (based on reference 25) 
the theoretical values of Cl~/CL for the design under consideration 

and for the design for which data are available can be determined. The 
difference between these two theoretical values can then be added (with, 
proper regard for sign) to the experimental data. Consideration should 
be given to scale effect, airfoil section, and surface roughness on the 
value of Cl~ for highly swept wings. The lift coefficient a~ which 
the experimental variation of Cl~ with lift coefficient departs from 

theory is greatest at high Reynolds numbers and for smooth wings with 
round leading edges. For wings with rough surfaces or sharp leading 
edges the effects of Reynolds number on Clf3 are usually small and low-

scale wind tunnel data can be used. For airplanes having very smooth 
sweptback wings with rounded leading edges, however, some correction 
should be made for scale effect when estimations are made from low
scale wind-tunnel data. Since no rational method has been developed 
for.making such corrections it is suggested tha~for lift coefficients 
higher than that at which the experimental data depart s . from the theory, 
an average of the theoretical and low-scale experimental values be used. 
Conservative dynamic stability results will usually be obtained if the 
uncorrected theoretical values of CZf3 are used because these values 

are ordinarily greater (more negative) than measured values and because 
the la~ger negative values of CZf3 usually tend to decrease the dYnamic 
lateral stability. 
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(2) Correction for wing dihedral - The effect of dihedral on Cl~ 
is treated in references 29, 39, 51, 58, 66, and 79. Correction for 
the difference in dihedral between the two designs can be made by 
multiplying the incremental geometric dihedral angle (in degrees) by 
the factor Cl~r. pbtained from figure 9. A plot of Cl~r against 

aspect ratio for taperr'i3.tios of l.0, 0.5 and 0.25 (obtained from refer
ences 58 and 66) and a formula from reference 50 for correct'ing for 
sweep are presented in the upper portion of figure 9. The lower chart 
and formula in figure 9 (developed from reference 66) should be used in 
addition to the upper chart and formula of figure 9 to estimate the 
values of Cl~r for the case of a wing with partial-span dihedral'. 

Although this chart and formula apply directly only to wings with one 
dihedral break they can be used to estimate the Cl~ for wings with 

r 
two or more dihedral breaks by the method described in reference 66. 
The effect of drooped wing tips and of wing-tip end-plates on Cl~ , 

Wlng 

should be determined by experimental data since no reliable estimation 
procedure for these effects is available. 

(3) Correction for wing-fuselage interference - Although the con.
tribution of the fuselage alone to Cl~ is usually negligible, the 
interference between the wing and fuselage can greatly alter the value 
of Cl~ of the wing. This interference is such that a high location 

of the wing on the fuselage gives more positive effective dihedral 
(higher -Cl~) and a low wing location gives less positive dihedral 
than a midwing position. This effect is treated the0-retically in 
reference 67 and has been studied experimentally in references 38 to 42. 
The following simplified expression for estimating the increment in CI~ 

caused by wing-fuselage interference has been developed from the rela
tionships presented in reference 67 and in other sources: 

f:::.C 1 = 1 2'I/A Zw h + w ( 1 7 ) 
~~ • b b 

This expression has been found to give reasonably good agreement with 
experimental data for a variety of configurations. It is suggested 
that values of ~l~ be calculated from this equation for both the 

design under consideration and for the design for which force-test data 
are available. The difference between these values can then be added 
(with the proper regard for sign) to the force-test data. 

Vertical tail.- The value of Cl~tail determined from force-test 

data on a similar design can be corrected as follows to obtain Cl~tail 
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for the design under ccnsideration: 

( z) Cy -
~tail b design 

( z) Cy -
I3tail b data 

(18) 

The results of reference 35 indicate that Cz can also be affected 
. I3tail 

by the location of the horizontal tail with respect to the vertical 
tail. If the two designs have approximately the same horizontal tail 
size and location, however, this effect can be neglected. 

The value of CZl3tail for a V-tail can be estimated from the 

f~llowing empirical formula: 

~
y 

I3V-tail 4 
b sin r (bv-tail+ ZV-tail sin ~deSign 

fczl3 ) = fcz ) 
\ V-tail design \ I3V-tail data [CYI3V -tail ( ;l l> sin r bV~tail + 4ZV-tail ~in rLJ data 

(19) 

where bV-tail is the developed (not projected) span of the V-tail, 
ZV-tail is the vertical distance from the center of gravity ~o the 
chord of the V-tail (positive up, and r is the dihedral angle of 
the V-tail. More information on V-tails can be found in references 30, 
61, and 62. 

In the case of a vertical tail located on the wing, there is, in 
addition to the incremental CZ

13 
produced by the tail lateral force, 

an incremental CZ
13 

produced by the interference effect of the vertical 

tail on the wing. Since this interference effect varies greatly with 
spanwise and vertical position of the tail, it should be determined 
from force tests. Usually the 'lccerference is such that a vertical tail 
above the wing gives a negative _ncrement of CZ

13 
(positive effective 

dihedral) and one below the wing gives a positive increment of CZ
13

• 

In general, the largest interference effects are obtained with vertical 
tails at or near the wing tips. 
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The wing and vertical tail are the only airplane components that 
contribute appreciably to the yawing moment due to rolling derivative 
Cnp ' The contributions of the fuselage and horizontal tail can usually 

be neglected. 

Wing.- The contribution of the wing to Cnp can be estimated from 

the formula and charts of figure 10 which were taken from reference 86. 
Although these charts apply strictly only to wings having a taper ratio 
of 1.0, experimental data have in,dicated that they will also provide 
fair;y good estimates for taper ratios of 0.50, 0.25 and O. In the 
estimation formula 

(20) 

the value of (CDo)a should be determined, if possible, from force-test 

data obtained at high ReYnolds number on the wing under consideration, 
since low Reynolds number data might indicate values of (CDo)a that are 

too large. For the case of smooth wings with a large leading edge 
radius and low or moderate sweep, it is s~ggested that (CDo)a for the 

airplane be assumed to be zero at all lift coefficients up to the stall. 
This assu~ption will result in larger negative values of Cnp than 

would be estimated from low Reynolds number data on (CDo)a and con

sequently should lead to conservative dynamic stability results since 
an increase in Cnp in the negative direction has been found to cause 

a reduction in dynamic stability. The value of (CDo)a for highly swept 
wings is often very large at high lift, coefficients, especially for 
wings with rough ,surfaces, sharp leading edges, or triangular plan form. 
For these cases, values of (CDo)a determined even from low Reynolds 

number data might lead to reasonably good estimates of Cnp ' In all 

these cases, however, high-scale drag data should be used whenever it 
. is available. 

Effect of high-lift deviceEj.- The principal effect of leading-edge 
high-lift devices is to extend to a higher lift coefficient the linear 
variation of Cnp with lift coefficient. The formula and charts of 

figure 10 are directly applicable to this case. The effect of 
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trailing-edge high-lift devices is not so straightforward, but experi
mental data have indicated that the formula and charts of figure 10 
also give reasonably good estimates in this case. 

Vertical tail.- The contribution of an isolated vertical tail 
surface to Cnp can be estimated by the following approximate formula 

which has also been commonly used to estimate Cnptail of a complete 

airplane: 

l z 
-2 - - Cyo. 

b b f-'tail 
(21) 

The values of CY~tail should be determined from force-test data as 

previously discussed. Instead of the geometric tail length lib, it 
will usually be better to use the effective tail length -Cn ICY . 

~tail ~tail 
as determined by fOrce-test data. Formula (21) then becomes 

C~ = 2(~)Cn~ 
tail tail 

(21a) 

In the case of the conventionally located vertical tail surface, how
ever, the rolling wing produces a sidewash at the tail which greatly 
alters the tail contribution to Cnp. This sidewash causes the values 

of Cnptail to be much more negative than is indicated by formula' (21). 

This effect is discussed more fully in reference 36 in which is also 
presented a method for estimating the sidewash. Some preliminary theo
retical studies have indicated that the effect of the sidewash on 
Cnp varies considerably with tail size and tail location and to 
. tail' . 
some extent with wing plan form. A comprehensive experimental verifi
cation of this theory is planned but as yet only a few scattered checks 
have been obtained. For the case of the conventionally located vertical 
tail surface, the following formula has been found to give estimates 
of C~tail that are in fairly good agreement with experimental data: 

or 

C 
~tail 

(22) 

(22a) 
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This formula is based on the assumption that Cn is zero at 00 angle 
Ptail 

of attack and varies with angle of attack in the same manner as indicated 
by formula (21). Formula (22) or the method of reference 36 can be used 
satisfactorily for first approximations of Cnp . for most configura-

tall 
tions with conventionally located vertical tails. For more accurate 
estimates, especially for configurations having an unusual tail size or 
tail loc~tion, experimental data should be used. 

For wings of triangular plan form with vertical tails either 
directly above or above and slightly behind the wing, experimental data 
have indicated that neither formula (21) nor formula (22) gives an 
accurate estimate of Cnptail but that, an average' of the values obtained 

by the two formulas provides a fairly go~d estimate. 

It is obvious that these methods of estimating Cnp are only 

approximate and are open to question in many cases. Experimental and 
theoretical studies are currently being made to provide better methods 
of estimating Cnptail and,when these methods become available, the 

approximate methods presented herein should be discarded. At the present 
time, however, formula (22) and reference 36 will usually provide much 
more accurate estimates of Cnp than formula (21) which has been 

tail 
in common use up until this time. 

Wing-fuselage.- Most of the rolling moment due to rolling (damping
in-roll derivative) Cl p of an airplane is produced by the wing. The 

effect of the fuselage can be neglected unless the ratio of the diameter 
of the fuselage to the wing span is relatively large (greater than 
about 0.3). For large values of this ratiO, the value of Cl p will be 

smaller than that for the wing alone by an amount'that can be estimated 
from a consideration of the area and lateral center of pressure of the 
wing area included within the fuselage. (See references 103, 108, 
and 112.) 

Wing.- The damping in roll of wings has been the subject of many 
experimental and theoretical investigations. (See references on C2p 
in table II.) As a result, some methods of estimating C2p have been 

developed which have been found to give reasonably good agreement with 
experimental results. The method presented in reference 79 appears to 
give sufficiently accurate estimates of C2p for zero lift., This 



40 NACA TN 2409 

method is extended in reference 89 to permit the estimation of Cz P 
over the normal flight range of lift coefficient. Estimation charts 
and formulas from reference 89 are presented in figure 11. 

H~gh-lift devices.- Experimental data have indicated that the 
damping in roll of wings at low and moderate lift coefficients is not 
greatly affected by the addition of high-lift devices such as trailing
edge flaps, leading-edge flaps, slats, and slots. The principal effect 
of such deVices is to increase the lift coefficient at which the sharp 
decrease in CZp occurs. The charts and formulas of figure 11 can be 

used to estimate the CZ p of wings with either full-span or partial

span high-lift devices with fair accuracy despite the fact that the 
method is not strictly applicable to partial-span high-lift devices. 
(See reference 89.) 

Wing-tip fueltanks.- The use of wing-tip fuel tanks usually 
increases the damping in roll of the wing. The experimental data of 
reference 91 for unswept wings indicate that the magnitude of the 
increase varies with ~gle of attack and depends upon the wing taper 
ratio and on the si_ze and location of the tanks. Unpublished experi
mental data indicate similar effects of wing-tip tanks on sweptback 
wings. The following approximate formula for estimating the increment 
in CZ p produced by wing-tip tanks at low lift coefficients is based 

on the limited amount of available experimental data and should not be 
expected to yield very close quantitative estimates: 

(D.C Z ) = (C Z ) (Maximum. tank. diameter) (KT) (23) 
\ p tanks \ P tanks off Wlng span 

where, for symmetrically mounted tip tanks, 

for tanks mounted below the wing tip or forward on the wing tip, 

and for pylon-mounted tip tanks, 

~ = 1 

Experimental data for both unswept and swept wings indicate that 
(D.Czp)tanks usually becomes smaller with increasing angle of,attack 

and, in some cases, actually reverses si~ at high angles of attack so 
that the tanks are decreasing rather than increasing the damping in roll. 
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The dat.a of reference 91 can be used to obtain an approximate estimate 
of the effect of angle of attack for unswept wings. 

Tail surfaces.- The contribution ~o Clp of conventional type 

horizontal and vertical tail surfaces is usually very small and, in 
most cases, negligible. When an airplane rolls, the wing produces a 
rotation of flow at the tail surfaces which reduces the already small 
damping moments of the isolated surfaces, except in the case of the 
vertical tail at high angles of attack where the tail center of pressure 
is below the center of gravity. 

The contribution of an extremely large horizontal tail to CZ p 
might not be negligible and can be estimated by multiplying the value 
of Cl for the part.icular tail plan form obtained from the charts and 

p St(bt )2 ,formulas of figure 11 by the factor 0.5 S b in which the fac-

tor 0.5 is included to account for the rotation of flow produced by the 
wing. 

The contribution of an isolated vertical tail surface to Cl p is 

given by the following approximat.e formula: 

2 2(Z) C b Yl3tail (24) 

As in the case of Cnptail this formula can be modified to provide an 

approximate correction for the effect of the wing on the damping in 
-roll of conventionally located vertical tail surfaces: 

C = 2(~) [z ZPt.ail b b _ (Z) lcy 
b a.=Qj 13tail 

(25) 

Pn analysis of this expression indicates that the value of Cz is 
Ptail 

negligible at .low and moderate angles of attack where z/b is positive 
but that it. might be fairly important at very high angles of attack 
where z/b is a large negative value. As in the case of Cnp' experi-

mental data indicate that., for a vertical tail located either directly 
above or slightly behind a wing of triangular plan form, the value of 
CZ p , can be.estimated with better accuracy by an average of 

tail 
formulas (24) and (25) than by formula (25) alone. For conventional 
tail arrangements, however, formula 25 gives better correlation with 
experimental data. 
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Cy 
P 

Wing.- The following formula for the derivative CyP (lateral 

force due to rolling) from reference 86 is based on experimental data 
and is the same as that presented in reference 25 except for an addi
tional correction to account for tip suction: 

CYp A + cos A 1 = tan 11.. + CL A + 4 cos A A (26) 

The data of reference 86 show that this formula applies only for lift 
C 2 

coefficients below that at which the drag factor CD - ~~ begins to 
increase. At higher lift coefficients the experimental data indicate 
smaller values of CyP than given by formula (26). For these cases an 

approximation of the value of CyP can be obtained from the experi

mental data of reference 86. As in the case of Cnp, the break in the 

variation of CyP with lift coefficient should be expected to occur 

at lower lift coefficients for wings having sharp leading edges or 
rough surfaces and for wings tested at low Reynolds numbers. 

Vertical tail.- The discussion concerning C nptail 
and 

is also applicable to CYPtail' The value of CY
Ptail 

for an isolated 

tail surface is given by the formula: 

Cy = 2 (~ )CY ~ , 
Ptail tail 

(27) 

This formula can be modified as follows to account approximately for the 
effects of wing sidewash in the case of a conventionally located vertical 
tail: 

Cy = 21~ 
Ptail L (z) J - - Cy 

b a,=0 ~tail 

An average of formulas (27,) and (28) can be used for ta.ils located 
either directly above or above and slightly behind the wing. 

(28) 
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Wing-fuselage.- In the past, the contribution of the wing-fuselage 
combination to yawing moment due to yawing (damping in yaw) derivative 
Cnr has usually been found to be small compared to the contribution of 

the vertical tail. The fuselage contribution to the damping in yaw' 
depends, of course, on the relative size of the fuselage and wing. In 
the past, the relative size of these components has generally been such 
that the fuselage contribution could be neglected. (See references 82 
and 83.) For some recent designs which have a large :uselage relative 
to the wing, however, the fuselage contribution to Cnr is important. 

In the case o~ fuselages having flat sides or having a flattened cross 
section with the major axis vertical the fuselage contribution may also 
be important and some fuselage contribution to Cnr should be assumed, 

especially at high angles of attack. On the other hand, experimental 
data have shown that a flattened cross-section fuselage with the major 
axis horizontal can have negative damping in yaw at moderate and high 
angles of attack. 

The contribution of the wing to Cnr can be estimated from the 
formula and charts of figure 12 which were taken from reference 25. 
Values of CDo for the wing should be estimated from force-test data. 

For values of xjc greatly different from zero, the charts of refer
ence 25 can be used. The formula and charts of figure 12 are not con-
sidered reliable at high angles of attack, especially for swept wings. ~ 
The, use of experimental data from the references on Cnr listed in 

table II is recommended in this case. 

The effect of partial-span inboard flaps on Cnr can usually be 

neglected. (See reference 82.) The effect of full-span trailing-edge 
or leading-edge high-lift devices can be estimated satisfactorily from 
the formula and charts of figure 12. Values of CDo in this case are, 

of course, for the wing with the high-lift device installed. 

Vertical tail.- The contribution of a conventional-type vertical' 
tail to Cnr can be estimated from the formula 

Cn 
rtail 

2 (-bL )2 CY13tail (29) 



44 NACA TN 2409 

or) with the effective tail length -CnQ /CYQ substituted for 
I-'tail I-'tail 

the geometric tail length z/b, 

C nrtail (29a) 

The experimental values for C . 
nrtail presented in reference 82 for 

power-on or flap-down configurations are 30 to 40 percent greater than 
values predicted by formulas (29) or (29a). These differences are 
attributed to lag ~f sidewash effects in the free-oscillation tests 
used in measuring Cnr . In estimations of Cnr . for stability cal-

, tail 
culations, similar lag of sidewash effects should be assumed if the 
OSCillatory mode is of primary importance but no lag of sidewash should 
be assumed if the aperiodic mode is mbstimportant .. 

Methods for estimating the Cnrtail for wing-tip vertical tails 

are presented in references 70 and 82. 

Cz r 

The wing and vertical tail are the only airplane components that 
contribute appreciably to rolling-moment-due-to-yawing derivative CZr 
of an airplane. The contributions of the fuselage and horizontal tail 
can usually be neglected. A semiempirical method for estimating CZ r 
is presented in reference 85. This method involves the use of experi- . 
mental data on the parameter CZf' to correct the theoretical values of 

Cz given in reference 25 and to estimate the value of C, rwing ~rwing' 

Wing.- The formula· of reference 85 and the charts of CZr/CL from 

reference 25 for estimating C l' . are ·gi ven in figure 13. The rwing 
values of CZf'/CL to be used in the charts can be obtained from fig-

ure 8. For taller ratios less than 0.25, values of CZr/CL and CZ.
13

/CL 

for a taper ratio of 0.25 can be used. The value of CZ Q used in , I-'exp 
the formula should be the same as the value of CZ Q estimated from 

I-'wing 
experimental data by the method indicated in the section on CZf" In 

the case of C Zr' however, (unlike the case of Cr 13 ) conservative 
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dynamic stability results will usually be obtained if the smaller values 
·of th~ derivative (based on low-scale experimental data) are used 
instead of the larger (theoretical) values. This difference is a result 
of the fact that either an incr~ase in the normally negative value of 
C2~ or a decrease in the normally positive value of C2r can cause 

reduction in dynamic stability. As pointed out in reference 85 the 
estimation procedure shown in figure 13 appears to account satisfactorily 
for the effects of high-lift devices, wing, dihedral, and airfoil section. 

Vertical tail.- The contribution of the vertical tail to C2r is 

usually estimated by the formula 

C2rtail = -2(~)(~)CY~tail (30) 

where CY~tail is preferably obtained from force-test data. When 

experimental data onC2~tail are available, the following formula from 

reference 85 can be used and will probably be more reliable than equa
tion (30) because it takes into account any interference effects that 
might cause the effective vertical location of the center of pressure of 
the tail to be different from the location determined by geometrical 
procedure s : 

(31) 

or·with the effective tail iengtli -Cn~tail/CY~tail substituted for the 

geometric tail length 21b, 

C2 
rtail 

= 2 ~tail C ~
cn ) . 
Cy ~tail 2 ~tail 

(31a) 

Wing.- The theory of reference 25 gives values of the derivative 
CYr (lateral force due to yawing) for the wing for a taper ratio of 1.0. 

The experimental data of references 25 and 59 indicate that this theory 
is inadequate for making reliable estimates of CYr . It is recom-

wlng 
mended therefore that the experimental data given in references 25, 58, 
59, and 60. be used in making estimates of CYr ... wlng 
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Vertical tail.- The value of 'CYrtail can be estimated by the 

formula 

2 1 C 
- b Y13tail 

or by the formula in ~hich the effective tail length 

is substituted for the geometric tail length lib: 

(32a) 

The discussion of lag-of-sidewash effects for en apply also to 
rtail 

EFFECTS OF MACH NUMBER 

The effects of Mach number on the lateral stability derivatives 
have been treated theoretically in many investigations (see table II) 
but very little experimental data have been obtained to verify this 
theoretical work. Moreover, only a small part of this experimental 
work has been covered in published reports (reference 111) because most 
of it is classified at the present time. It appears, therefore, that 
estimates of the lateral-stability derivatives for the time being will 
have to be based largely on theoretical ,work. 

The effects of Mach number on the stability derivatives can be 
usually considered negligible for all airplane components except the 
wing and vertical tail. For the low-lift-coefficient condition in the 
case of many high-speed airplanes, the vertical tail contributes more 
than the wing to all the stability derivatives except Clp ' For this 

reason, in calculations for transonic or supersonic speed conditions it 
is especially important to know the effects of Mach number on the 
vertical-tail lift-curve slope or CYl3tail" 

Wing. - The effects of compressibility on the subsonic stabi'lity 
derivatives of the wing can be estimated by the formulas of reference 26. 
The values of the supersonic stability derivatives for some wing plan 
forms can be estimated by the references tabulated in table II. In this 
table the derivatives are grouped according to the type of wing plan 
form and to the particular derivatives covered. A helpful summary and 
discussion of the effects of Mach number on the derivatives for several 
different wing plan forms is presented in reference 103. A summary of 



UACA TN 2409 

the theoretical lift-curve slope, damping in roll, and center-of
pressure characteristics of various wing plan forms is presented in 
reference 107. In the cases in which the theory shows large or abrupt 
changes in a stability derivative with changes in Mach number (for 
example, fig. 10 of reference 103) special care should be taken in 
estimating the derivative in that particular Mach number range. The 
abrupt changes should be smoothed or faired out in a manner similar to 
that suggested in.the following section for estimating CYA .. 

'"'tall 

47 

In some cases, experimental data for supersonic speeds will be 
available on the sideslip derivatives and on the damping-in-roll deriva
tive Clp • In such cases the experimental data should be used in pref
erence to the theory. Some experimental results have indicated that the 
effect of the vertical location of the wing on the fuselage on the 
derivative Clf3 might be greatly different at supersonic speeds from 

that at subsonic speeds. Since no methods are presently available for 
estimating this effect for the supersonic case, it appears that, at 
least in the case of high-wing and low-wing designs, force-test data 
are necessary for obtaining an accurate estimate of Clf3. 

Vertical tail.- The sideslip derivatives produced by the vertical 
tail at transonic and supersonic speeds ~an be estimated theoretically 
but should be obtained from force-test data whenever possible. These 
sideslip derivatives can be used to estimate the tail contributions to 
the other derivatives as pointed out previously. In estimates of the 
value of CYA for transonic and supersonic speeds, corrections must 

'"'tail 
be made for the effect of Mach number on the lift-curve slope of the 
tail, and these corrections should account for any differences in the 
end-plate effect of the horizontal tail on the vertical tail. 

For Mach numbers below about 0.8 or 0.9 and above about 1.6 or 1.8 
the effect of Mach number on the lift-curve slope of the vertical tail 
can be estimated satisfactorily from the theoretical values of refer
ences 26, 34," and 107. Since experimental data indicate that theoreti
cal values of lift-curve slope are usually too high for Mach numbers 
from about 0.8 or 0.9 to about 1.6 or 1.8, the empirically determined 
fairings shown in figure 14 are recommended for use as a guide in the 
use of the theory to obtain approximate estimates in this Mach number 
range when force-test data are not avilable. 

Experimental data have indicated that for vertical-tail configura
tions which have a tail length (distance from the center of gravity to 
the tail center of pressure) that is relatively short in terms of tail 
chords, the rearward shift of the tail center of pressure at supersonic 
speeds can cause an appreciable increase in the tail length and 
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consequently an appreciable, increase in the magnitude of some of the 
tail derivatives. Theoretical center-of-pressure positions for various 
plan forms at supersonic speeds are given in reference 107. 

EFFECTS OF POWER 

On the basis of existing information, the effects of power on the 
lateral stability derivatives appear to be negligible in the case of 
jet-propelled airplanes but these effects are often very large in the 
case of single-engine propeller-driven airplanes. Methods are available 
for estimating some of these power effects but in most cases experimental 
data are necessary for making a satisfactory estimate. The effects of 
power can be broken 'down into two general classes: 

(1) The effec;ts of the lateral f,orce produced by the propeller 
itself 

(2) The effects of the propeller slipstream on the wing, fuselage, 
and vertical tail of the airplane 

Effects of propeller lateral force.- A method of estimating the 
propeller-lateral-force derivative Cy~ is presented in reference 31 

which is based on the work of references 32 and 33. The contribution 
of the propeller lateral force to the other stability derivatives can 
be estimated from this derivative by assuming that the propeller is 
effectively a vertical tail surface and by using the expressions for 
the tail contribution to the various derivatives presented in the 
preceding sections. Some experimental data on the effect of windmilling I 

propeller on all of the derivatives are presented in reference 65. 

Effects of propeller slipstream.- The effects of propeller slip
stream on the lateral-stability derivatives are usually much greater 
than the effects of propeller lateral force in the case of single-engine 
tractor airplanes. The slipstream effects on the wing, the fuselage, 
and the vertical tail can be considered as three i~dependent effects. 

The slipstream effects on the wing can usually be neglected except 
for the derivatives C2~ and C2 r .1 Experimental data showing the 

decrease in effective d,ihedral (-C2~) with power for single-engine air

planes are 'presented in references 54,55,56,74, and 80. It appears 
highly desirable to determine this effect of power experimentally 
because interference effects mak~ accurate estimations of the effect 
very difficult. The effect of the slipstream on the value' of C 2 rwing 
cannot be estimated from the data on C2 as described in the ,. 

~wing 
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section on Clr. In fact, this procedure would 

sign for the increment of Cl r . contributed wlng 

49 

probably give the wrong 

by the slipstream. An 

approximation of this increment might be obtained by estimating the slip
stream velocity and the lateral displacement of the slipstream caused 
by yawing. Usually the power effects on Cl~. and Cl r ~ will be 

wlng wlng 
greatest for the flap-extended configuration. 

In the case of the single-engine airplane the effect of the slip
stream on the fuselage is usually to increase negatively the values 
of Cn~ and CY~. (See references 54, 55, 56, 71, 74, and 76.) Since 
no accurate methods of estimating these slipstream effects on Cn~ 

and CY~ are available, it is necessary to determine them from force

test data. 

The effects of the slipstream on the vertical tail are often very 
important and should also be determined from experimental data, if 
possible. The· in~rease in dynamic pressure at the tail caused by the 
slipstream is treated theoretically in reference 116 and is illustrated 
by the experimental data of references 50, 54, 55, 56, 71, 74, and 76. 
The experimental data of reference 76 also show that the propeller slip
stream can cause a destabilizing sidewasp at the tail which will tend 
to reduce the stabilizing effect of the increased dynamic pressure at 
the tail. Since these data indicate that slipstream effects on the 
vertical tail vary greatly with airplane configuration and propeller 
arrangement (single or dual rotation), use of experimental data appears 
to be the only satisfactory estimation procedure at present. 

Suggested estimation procedure for power effects.- The following 
procedure is suggested for estimating power effects. Obtain force
test data for tail off and tail on. Use tail-on data directly for Cy~, 

Cn~, and Cl~. Estimate rolling and yawing derivatives as follows: 

(1) Estimate CYQ from reference 31 and use this deriva-
~propeller 

tive and proper linear dimensions to estimate other propeller deriva
tives (rolling and yawing derivatives) in the same manner as tail 
derivatives. 

(2) Subtract tail-on data from tail-off data to get values of 
CY~tail' Cn~tail' and Cl~tail for the power-on condition and use 

these values to estimate the tail contribution to the other derivatives. 

(3) For tail-off values of rolling and yawing derivatives, use 
same values as for power-off for all derivatives except Clr. Estimate 

Cl r as suggested in preceding section. 
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(4) Add the values obtained in steps 1, 2,-and 3 to get the 
rolling and yawing derivatives for the complete airplane. 

INADEQUACIES IN PRESENT INFORMATION AND METHODS 

In the course of summarlzlng the estimation methods for the various 
stability derivatives, the need for much additional information on all 
the derivatives became apparent. In particular, information is needed 
to aid in the estimation of the derivatives in the transonic and super
sonic speed ranges. Additional work also needs to be done in correlating 
and analyzing existing subsonic data and in obtaining new experimental 
data for the development of semiempirical methods of estimating the sub
sonic derivatives without resort to force-test data. Another important 
need is'forfull-scale 'experimental results at all speeds for checking 
both low-scale data and the existing methods of estimating derivatives. 
Details of the need for additional work along these lines are discussed 
in the following sections. ~tudies should also be made to determine 
the conditions for which the use of steady-state stability derivatives 
in conventional stability equations i,s inadequate and to determine 
satisfactory methods of treating such conditions. 

Transonic and Supersonic Speeds 

Additional theoretical work is needed on the estimation of sta
bility derivatives in the transonic and supersonic speed ranges to 
cover the range of wing plan forms for all the derivatives. In particu
lar, more work is needed on plan forms currently under consideration, 
such as wings having moderate sweepback and taper. - This need is illus
trated by table II which indicates that very little material is available 
on the stability derivatives for such plan forms except, perhaps, for 
the derivative C2 p ' It appears from the table that this derivative 

and the triangular plan form have, in the past, received a dispropor
tionate ,share of attention, probably because of the greater ease with 
which they could be treated theoretically. 

The greatest need for work on stability derivatives at the present 
time is probably in the measurement of the derivatives at transonic and 
supersonic speeds. Experimental data on wings are urgently needed for 
checking the theoretical work and for use in the development of empirical 
corrections to the theory wherever necessary. Such corrections are 
particularly needed for fairing out abrupt variations of the derivatives 
with Mach number and for fairing through the Mach number range for which 
theory predicts infinite values. Examples of such discontinuities as 
indicated by theory are shown in figures 8 to 13 of reference 103. 
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Since experimental data obtained at supersonic speeds on wing-fuselage 
combinations and on complete models have revealed interference effects 
that are different from those obtained at 'subsonic speeds, it appears 
highly desirable to obtain at least a limited amount of experimental 
data at transonic and supersonic speeds to evaluate these interference 
effects. For example, investigations should be undertaken to determine 
the effect of wing-fuselage interference on the derivative Cl~ and 

the end-plate effect of the horizontal tail on the lift-curve slope of 
the vertical tail. 

Most of the experimental data on stability derivatives at transonic 
and supersonic speeds will of necessity be obtained at Reynolds numbers 
considerably less than full-scale values and under test conditions which 
might render the results open to question in some cases. Full-scale 
checks in flight of the low-scale data-and of the estimation methods 
therefore appear to be desirable. Consequently the methods of measuring 
stability derivatives in flight now being developed by the Cornell -
Aeronautical Laboratory, the Massachusetts Institute of Technology, and 
the NACA should be extended to transonic and supersonic speeds when the 
methods appear to be developed to a satisfactory degree of reliability 
for the subsonic case. Some preliminary considerations involved in the 
use of these flight techniques are discussed in references 117 to 120. 

Subsonic Speeds 

The methods presented in this paper for estimating the stability 
derivatives at subsonic speeds depend either directly or indirectly on 
the use of force-test data., These methods are probably more reliable 
than methods which do not involve the use of force-test data on the. 
particular design under consideration or on a similar design. Methods 
which do not rely on such data are desirable in some cases, however, 
because the necessary data will not always be available. 

In the case of sideslip derivatives, empirical methods can probably 
be developed largely from existing information. In some cases it will 
be necessary to augment the existing information with new results since 
much of the available force-test data were not obtained in a manner that 
would make the data readily usable for developing general estimation 
procedures. 

In the case of rolling and yawing derivatives, considerably less 
information is available than in th~ case of the sideslip derivatives. 
Most of the information now available was obtained in the Langley 
stability tunnel, principally on wing configurations and to a limited 
extent on complete airplane models and airplane components other than 
the wing. Considerably more work is reqUired, especially for components 
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in combination, before satisfactory methods can be dev~loped for 
estimating rolling and yawing derivatives without the use of force-test 
data on the-particular design under consideration or on a similar design. 

In discussing the work necessary for developing new procedures for 
estimating the stability derivatives without the use of force-test data 
on the design under consideration or on a similar design, it is useful 
to break the problem down into two parts: (1) effect of individual 
components and (2) the effect of interference of the components on each 
other. 

The principal components to be considered are the fuselage, wing, 
vertical tail, and propeller. For the isolated fuselage, the main 
problem is the development of methods for the estimation of Cn~ and 

then, perhaps, of Cnr and Cy~. For the isolated wing, the main 

problem is to estimate the derivatives at lift coefficients above that 
at which separation begins. Such estimations can be made with reasonable 
accuracy for some of the derivatives-by existing methods which make use 
of force-test data, but the development of methods which do not involve 
the use of force-test data will probably be very difficult. For the 
isolated vertical tail, the problem is to establish the effective tail 
area and aspect ratio from the geometry of the tail so that the lift~ 
curve slope (or CY~) of the tail can be calculated. Solutions to this 

seemingly simple problem have in the past become involved with interfer-
ence effects so that, as yet, no reliable methods have been published 
for estimating Cy~ of the vertical tail from its geometry. For the 

isolated propellers, the work that is needed at present is a systematic 
check of existing methods of estimating the lateral force on the 
propeller to determine the accuracy of these methods. 

The principal interference effects to be considered are mutual 
interference of the wing and fuselage; wing-fuselage interference on 
the vertical tail; horizontal-tail interference on the vertical tail; 
propeller-slipstream interference on the wing, fuselage, and vertical 
tail. The mutual-interference effects of the wing and fuselage are 
probably important only for the derivatives Cl~' Cn~, and Clr. A 

large amount of experimental data is available for the sideslip deriva
uves but no procedures for estimating the interference effects on these 
derivatives have been reported. Wing-fuselage interference has very 
important effects on Cy~ of the vert~cal tail, and consequently on all 

of the stability derivatives for some flight conditions. These effects 
result from the sidewash and change in dynamic pressure at the tail 
which may result from sideslipping, rolling, or yawing. Although con
siderable data which show these interference effects are available, 
particularly for the case of sideslipping, no reliable methods exist 
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for estimating the interference effects. Horizontal-tail interference 
also has an important effect on Cy~ of the vertical tail for some 

horizontal-tail positions. Some work on a limited number of configura
tions has been done toward developing methods of estimating this effect 
but data are required on more configurations before the generally appli
cable methods can be evolved. The propeller slipstream can cause impor
tant effects on CZ~ and CZ r of the wing, on Cn~ and Cy~ of the 
fuselage, and on Cy~ of the tail (and consequently on the tail contri
bution to all the derivatives). Some data are available for the effect 
of the sljpstream on the sideslip derivatives but, because of the com
plexity of this problem, considerable additional data may be required 
before a satisfactory method of estimating the slipstream effects' can 
be developed. . 

,As mentioned in the preceding section, full-scale checks of low
scale data and of the estimation methods are desirable. For the sub
sonic case some of the checks can be obtained from large-scale wind
tunnel tests but some checks in full-scale flight tests should also be 
obt~;ned when the various methods of measuring stability derivatives in 
fli'Jut have been developed to a satisfactory degree of accuracy. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., December 13, 1950 
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APPENDIX A 

EQUATIONS OF MOTION 

The dimensional equations for the lateral motions of an airplane 
are 

o ' (Al) 

dY ~ . rI. d'lr dY d'lr d v dY 
-dp'dt - (Llft))I' + mV dt - dr dt - (Lift)(tan Y)'Ir + m dt - dv v - Yc == 0 

(A3) . 

If equations (Al) and (A2) are divided ,by ~V2Sb and equation (A3) is 

divided by ~pV2S the equations of motion may be expressed in the con

ventional nondimensional form in which they have generally been presented 
in NACA reports (for example, see reference 2): 

2 d2¢ 1 ~ d~ 1 d'lr 
21lKX - - C, - + 2j..LKXZ - - - C, - - C, (.l ~ - C'c == 0 ds2 2 Lp ds ds2 2 Lr ds L~ L 

Cy ~ - Cy == 0 
~ c 
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In order to convert these equations into a form which will reduce the 
number of arithmetical and algebraic steps in performing stability cal- . 
culations, equations (A4) are multiplied by m/pSb and written in the 
following form: 

(D2 - lpD)¢ + (KlD2 - lrD) \jr - l1313 - lc = 0 

(~D2 - ~D)¢ + (D2 - ~D)\jr - n1313 nc 0 (A5) 

(-YpD - C2L)¢ + (D . - yrD - C; tan 'Y) \jr + (D - Y13) 13 - y c = 0 . 

where 

m 
~ =-pSb 

Kl 
KXZ 

=-
KX

2 

113 = -L-C 
"K 2 I13 
eX 

lp 
1 - --C - 4 2 Ip 

KX 

Zr 
1 = -- Cz 

4K 2 r 
X 

Ic = -~- Cl 
2K 2 c 

X 

T = .2!!... 
pSV 

K2 
KXZ 

- Kz2 

n13 - -H- C 
- 2K 2 n13 

Z 

1 
~ =--C 

4K 2 ~ 
Z 

1 
nr = -- Cn 4K 2 r 

Z 

nc -~C - 2 nc 
2KZ 

t 
a = T 

1 
Yc = - Cy 2 c 

d 
D = dO' 
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APPENDIX B 

APPLICATION OF THE LAPLACE TRANSFORMATION TO CALCULATING MOTIONS 

The application of the Laplace transformation to the calculation 
of the lateral motions of airplanes is presented in order to illustrate 
the development of the equations of motion in the form in which they 
are presented in the present paper. This work is similar to that pre
sented in references 5 and 6. In fact, it follows the presentation in 
reference 5 very closely. Reference 6 presents a brief explanation of 
the Laplace transformation and its application to solution of the equa
tions of motion of an airplane. This paper also makes reference to 
detailed explanations of the Laplace transformation. In cases where 
modification of the equations presented in the present paper are neces
sary, reference should be made to these texts for an understanding of 
the mathematics involved. Applying the Laplace transforms 

L(l) = 1 
).. 

L(W) = )..¢).. - ¢O 

L{n2¢) '= ")..2¢).. - )..¢O - (n¢)O 

and multiplying each of the equations by ).. transforms equations (A5) 
from appendix A to 

()..3 - lp)..2)¢).. + (Kl)..3 lr)..2) *)..- l(3)..13).. = rl 

(Bl) 

where 
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Solving equations (Bl) by determinants gives 

-l13A, 

-n13A, 

2 

¢A, 
A, - Y13A, 

-l13A, 

-n
13

A, 

2 A, - Y13A, 

rl 

r2 

r3 

A,3 - l A,2 p 

K A,3 - n A,2 
2 p 

_y A,2 CL 
- - A, 

P 2 

K1A,3 - lrA,2 

A,3 --n A,2 
r 

which may be expressed as 

Similarly, the e'xpressions for 'ir A, and 13 A, are 

bOA,5 + bl A,4 + b2A,3 * b3A,2 + b4A, + b
5 

A,2(AA.4 + BA,3 + CA,2 + DA, + E) 

COA,4 + C1A,3 + C2A,2 + C3A, + c4 

A, (AA. 4 + BA,3 + CA, 2 + DA, + E) 

57 

(B2 ) 

(B3) 

(B4) 

where the expressions for the coefficients in equations (B2) to (B4) are 
given in terms of the mass and aerodynamic stability derivatives by 
equations (1) to (4) in the main body of this paper. 

,\ 

In order to obtain the actual variables from the transformed 
variables,an inverse Laplace transformation must be applied. The 
expressions for ¢A,' 'irA,' and 13 A, are of the form uA,/vA, where uA, 
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and v~ are polynomials, the degree of v~ being higher than that 

of u~. The inverse transform of a function of this type is 

(B5) 

In this equation all of the roots ~ of v~ = 0 are assumed to be 

distinct. This assumption is valid for ~~; but for ¢~ and *~, 

v~ = 0 has two zero roots. (See equations (B2), (B3), and (B4).) The 
terms in the equations for ¢ and * resulting from the two zero roots 
are 

where 

dD(O) + n(o)cr 
dcr (B6) 

• 
The inverse transforms of ¢~, *~, and ~~ are from equations (B5) 
and (Bp) 

¢ = A cr~l le + ~ecr~2 cr~3 cr~4 + A3e + A4e + ~cr + A6 (B7) 

* 
B cr~l le B cr~2 + 2e + B3e cr~3 cr~4 

+ B4e + B5cr + B6 (BS) 

C cr~l cr~2 cr~3 cr~4 . 
~ le + C e + C3e + C4e + C5 2 (B9) 

The equations for the rolling velocity p and the yawing v~locity r 
can be obtaine~ from equations (B7) and (BS) by differentiation 

(B10) 

(Bll) 

where the expressions for "the coefficients of equations (B7) to (Bll) 
are given by equations (6) to (S) in the section "Calculation of Motions." 
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APPENDlX C 

SOLUTION OF BIQUADRATIC EQUATION 

Many methods are available, of course, for solving for the roots 
of a biquadratic equation. For example, there are Horner's, Ferrari's, 
Bernoulli's, Descartes', and Hitchcock's methods; various methods of 
solution by trial; and also various graphical methods such as that 
given in reference 1. Solution by trial in which synthetic division is 
used, however, is recommended as being the simplest method for most 
lateral stability work. The characteristic equation for the lateral 
motions of an airplane 

4 3 2 AA + BA + CA + DA + E = 0 

generally has two real roots and a pair of conjugate complex roots. For 
these cases the two real roots can be factored out easily and the 
remaining quadratic solved for the conjugate complex roots. In the few 
cases for which all four of the roots of the characteristic equation 
are complex, Descartes' method can be used to factor the biquadratic 
equation into two quadratics. When there are real roots, solution by 
Descartes' method requires more time than factoring out the real roots 
singly and consequently is not recommended for general use. These 
methods of solution are explained in the following sections. 

Solution by Trial by Means of Synthetic Division 

Solution for real roots by trial by means of synthetic division 
consi~ts of successive approximations of a root and checking by synthetic 
division until the root is determined to the desired degree of accurac~. 
This check by synthetic, division'is based on the fact that if a is a 
root of a polynomial f(x) then x - a is a factor of f(x) and con
sequently no remainder is left when r(x) is divided by x-a. 

The method of solving the stability biquadratic equation by trial 
with synthetic division is explained in three steps in the following 
sections. First, the rule for synthetic division and a numerical 
example are given. Second, the specific use of synthetic division for 
factoring a biquadratic is illustrated by a simplified example for 
which the roots are known. This example shows how the cubic and then 
the quadratic factors of the biquadratic are obtained. Third, the use 
of synthetic division in extracting the roots of a representative 
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characteristic stability biquadratic is illustrated with special refer
ence to methods of making the first approximations of the real roots. 

Explanation of synthetic division.- Synthetic division is explained 
in almost all algebra text books but is presented herein for the con
venience of the reader. The rule for synthetic division may be given 
as follows: 

Assume that a polynomial in x (f(x)) is to be divided by 
write the coefficients of the polynomial in order, supplying 0 
a coefficient is lacking. 

x - aj 
when 

Multiply a by the first coefficient, and add (algebraically) the 
product to the next coefficient. 

Multiply this sum by a, add to the next coefficient, and proceed 
until all the coefficients are used. The last sum is the remainder and 
also the value of the polynomial when a is substituted for the 
variable x. 

For example, divide 4 3x3 3x2 - x - 6 by x - 3. x + + 

1 + 3 + 3 - 1 - 6 

+ 18 + + 186 3 
1 + 

Use of synthetic division in factoring out roots.- The use of 
synthetic division to factor out two known rational roots of a biquadratic 
equation is illustFated by the following simple example. These two 
rational roots represent the two real roots of the characteristic sta
bility equation which, of course, are not normally known but can be 
approximated by the method given in the next section of this paper. 

One factor of the biquadratic is x - 1 so there is no remainder 
when the biquadratic is divided by the root 1 

1 + 3 + 3 - 1 - 6 

+ 1 + 4 + 7 + 6 1 
1 + 4 + 7 + 6 0 

Since the remainder is 0, x - 1 is one factor of the biquadratic 

equation and x3 + 4x2 + 7x + 6 is another factor. Inasmuch as a 
cubic equation must have at least one real root, a second real root of 
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, 
the biquadratic equation can be factored out of the cubic. 
example x + 2 is a factor so divide the cubic by the root 

1 + 4 + 7 + 6 

- 2 - 4 - 6 -2 
1 + 2 + 3 0 

For 
-2. 

_ 61 

The factors of the biquadratic then are x - 1, x + 2, and x2 
+ 2x + 3. 

The quadratic factor can be solved for its roots by the quadratic 
formula. For example 

x 
-2 ± V4 - 12 

2 -1 ± i {2 

Example of application to characteristic equation.- Reasonably 
accurate first approximations to the real roots of the characteristic 
equation can be obtained from simple formulas. Successively closer 
approximations can then be obtained by interpolating from the remainders. 
The following example illustrates the application of this method to 
obtaining the roots of the stability biquadratic. The biquadratic 

A4 + 10.43A3 ~ 16.32A2 + 68.6A - 9.10 = 0 

is of the form 

'4 3 2 AA + BA + CA + DA + E = 0 

Since the coefficient Eis generally much smaller than coefficient D 
in lateral stability work, one of the real roots (usually the smaller 
of the two) is approximately equal to -E/D or it may be more closely 
approximated by the equation 

A - -
E 

D _ CE 
D 

or for the particular case 

A = (16.32)(-9.10) = 68.6 - 68.6 

-9.10 0.129 
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Approximating the root by synthetic division 

1 -+ 10.43 + 16.32 + 68.6 -9.10 

+ .13 + 1.36 + 2.3 + 9.10 

+ .13 + 1.36 + 2.3 + 9.14 
1 + 10.56 + 17.68 + 70.9 + .04 

1 + 10.56 + 17.68 + 70.9 + 0 

.1284 

.129 
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Approximation 

2 

1 
1 

2 

For this root, the second approximation was determined by dividing the 
coefficient E by the fourth sum from the quotient 

-9·10 
70.9 

This-procedure generally provides a good second approximation for the 
small real root. 

The cubic equation obtained by setting 

equal to zero is of the form 

a)..3 + b)" 2 + cA. + d = 0 

In most lateral-stability work, a real root of this equation will be 
approximately equal to -b or it may be more closely approximated by 
the equation 

or for the particular case 

(10.56)3 + 70·9 
(10.56)2 + 17.68 

-9.65 
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Approximating the root by synthetic division 

1 + 10.56 + 17.68 + 70.9 Approximation 

9.48 - 10.20 - 70.9 -9.485 6 

9.49 - 10.16 - 71.4 -9.49 5 

9.48 - 10.25 - 70.4 -9.48 4 

9.45 - 10.50 - 67.9 -9.45 3 

9.55 - 9.64 - 76.8 -9.55 2 

9.C5 - 8.78 - 85.9 -9.65 1 
1 + 0.91 + 8.90 - 15.0 1 

1 + 1.01 + 8.04 - 5.9 2 

1 + 1.11 + 7.18 + 3.0 3 

1 + 1.08 + 7.43 + 0.5" 4 

1 + 1.07 + 7.52 - 0.5 5 

1 + 1.075 + 7.48 0 6 

For this large real root there is no simple method of determining the 
second approximation as there was in the case of the smaller real root. 
The magnitude of the estimated root in this case is arbitrarily 
increased or decreased slightly from the first approximation. From the 
remainders determined from the first two approximations, 'a fairly close 
third approximation "can then be made." 

Factoring the quadratic equation obtained by setting 

equal to zero by use of the quadratic formula gives the final two roots 
of the biquadratic equation. 

1. 075 ± ~ 1.16 - 29. 92 
AO= - ------~~----------

2 

= -0.538 ± i~28i?6 

-0.538 ± 2.68i 
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The roots of the biquadratic equation may be checked by multiplying 
the four factors to determine whether their product equals,the original 
biquadratic 

',2 ,',,: 
(A. - 0.1284)(A. + 9.485)(A. + 0.53.8+ 2.68i)(~ + 0.538 - ,2.68i) = (A. + 51;457A...~ 

, ..... 

Solution by Descartes' Method 

Descartes' method of solving a biquadratic equation is particularly 
useful for solving equations which do not have any real roots. This 
method- is explained in most text books on advanced algebra and theory of 
equations. In general, the method consists of reducing the biquadratic 
equation to a'cubic equation which can be'solved easily. 'One root of 
the cubic equation is used to form two quadratic equations the roots of 
which are used to obtain the roots of the biquadratic equation. 

Method.- Reduce the general biquadratic equation 

to the form 

by dividing by A. 

Obtain the values of q, r, and sfrom the following equations: 

, r 

q = c- 3. b2 

8 

= d _ bc + ! b3 
2 8 
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and form the equation 

x6 + ~ qx4 + (k q2 - ~ S)X2 - it: r2 ~ 0 

and solve this cubic equation in x2 for one of its roots x2 f O. 
Solution by trial by means of synthetic division is recommended. 
Determine the values of l. and m from the equation 

l ~+ 2x2 r 
2 - 4x 

.. ,. 

q 
2x2 r m 2+ +4x 

Substi tute the values of land m and the value of . x used in 
obtaining l and m in the equations 

2 
y + 2xy + l 0 

and solve these quadratic equations for their roots,y from which the 
roots of the biquadratic equation may be obtained from.the following 
relation: 

b 
y - 4 
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SPECIAL NOTATION USED IN CALCULATING MOTIONS WEEN 

THE CHARACTERISTIC EQUATION HAS COMPLEX ROOTS 

When two of the roots Al and A2 are conjugate complex, the coefficients Al 
Bl and B2, Cl and C2 will be conjugate complex. If R + Ii is one of the roots 
if the powers of Al are expressed as 

then 

k 
Al = Rk + Iki 

Al = Rl + Ili 

2 
Al = R2 + I2i 

A13 = R3 + I3 i 

4 
Al = R4 + I4i 

5 
Al = R5 + I5 i 

Substitution'of the root R + Ii in the expression for Al gives 

and A2, 
Al and 

(aoR5 + al R4 + a~3 + a3R2 + a4Rl + a5) + (aOI5 + al I4 + a2I 3 + a3 I 2 + a4I l)i 
Al \6AR5 + 5BR4 + 4CR3 + 3DR2 + 2ER~ + (6AI5 + 5BI4 + 4CI3 + 3012 + 2EI1)i 

The division of these complex numbers is indicated by the equation 

0'\ 
0'\ 

~ 
:x> 
1-3 
2: 

I\l 
g 
\0 



Xl + yli 

x2 + Y2i 
XI X2 + YIY2 x2YI - xIY2 . 

= + ~ 
X 2 + Y 2 X 2 + Y 2 2 2 2 2 

It is evident from these relations that Al is a complex number. In this case new symbols are 
used to represent the real and imaginary parts of Al as follows: 

Al = RA + IAi 

~ is the conjugate of Al and will be referred to as 

A2 = RA - IAi 

By procedures similar to those for the A coeffiCients, 

BI 
(bOR5 + bl R4 + b~3 + b3R2 + b4RI + b5) + (bOI 5 + b1 I 4+ b2I 3 + b3I2 + b4IJi 

(6AR5 + 5BR4 + 4cR3 + 3DR2 + 2ER0 + (6AI5 + 5BI4 + 4cI3 + 3DI2 + 2EIVi 

which may be referred to as 

BI = RB + IBi 

and 

B2 = RB - IBi 

Also, 

c (CaR5 + cl R4 + c~3 + c3R2 + C4RI) + (COI5 + cl I4 + C2I 3 + c3I 2 + C4I I)i 

I (6AR5 + 5BR4 + 4cR3 + 3DR2 + 2ERI) + (6AI5 + 5BI4 + 4cI3 + 3DI2 + 2EII)i 

which may be referred -to as 

~ 
(") 

~ 

t-3 
~ 

f\) 
+="" o 
\0 

0'1 
-..;J 



Cl = Re + lei 

and 

e 2 = Re - lei 

Similar analysis shows that, if the roots A.3 and A.4 ,are also conjugate complex quantities 

(A.3 = R' + I'i and A.4 = R' - I'i), then 

and 

where 

A3 

Also, 

and 

A3 R'A + I'Ai 

A4 R'A - I'Ai 

(aoR'5 + a l R'4 + a~ '3 + a3R ' 2 + a4R 'l + a5) + (aoI '5 + alI '4 + a2 I ' 3 + a3 I '2+ a 4I ' 1) i 

. (6AR'5 + 5BR '4 +4cR'3 + 3DR'2 + 2ER'l) + (6AI'5 +5BI '4 + 4cI'3 + 3DI'2 ~. 2EI'l)i 

B =R' +I'i 3 B ,B 

B4 R' - I' i B B 

0'\ 
CP 

s; 
(") 

:t> 
1-3 
~ 

ru 
+:
o 
\() 



where 

(bOR'5 + b1R'4 + b2R'3 + b3R'2 + b4R'l + b5) + (bOI'5 + b1I'4 + b2I'3 + b3I'2 + b4I"'l)i 
B3 = ~77~~--~~---'~~--=-~~--~~~~~~~--~~~--~~---=~~~~==~~~ 

(6AR'5 + 5BR'"4 + 4cR'3 + 3DR '2 + 2ER'l) + (6AI'5 + 5BI'4 + 4cI'3 + 3D1 '2 + 2EI'l)i 

Similarly, 

and 

where 

C3 

c3 = R'C + I'C i 

c4 = R'C - I'C i 

(COR'5 + cl R'4 + c~'3 + c3R'2 + C4R'l) + (COI'5 + cl I'4 +" c2I '3 + c3 I '2 l- C4I 'l)i 

(6AR'5 + 5BR '4 + 4CR'3 + 3DR '2 + 2ER'l) :l- \6AI'5 + 5B1 '4 + 4cI'3 + 3D1'2 + 2Elil)i 

~ " f); 
:x::o 

~ 
f\) 

g 
\Q 

0"\ 
\Q 
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TABLE 11.- REFERENCES CONTAINING USEFUL INFORMATION FOR ESTIMATING LATERAL STABILITY DERIVATIVES 

Subsonic Supersonic 

Derivative (All are .theoretical estimation methods.) 
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Figure 1.- The stability system of axes. Arrows indicate positive direc
tions of moments, forces, and angles: This system of axes is defined 
as an orthogonal system having the origin at the center of gravity and 
in which the Z-axis is in the plane of symmetry and perpendicular to 
the relative wind, the X-axis is in the plane of symmetry and perpendi
cular to the Z-axis, and the Y-axis is perpendicular to the plane of 
symmetry. At a constant angle of attack, these axes are fixe~ in the 
airplane. 
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Figure 2.- System of axes and angula~ relationship in flight. Arrows 
indicate positive direction of angles. ~ = ~ - E. 
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Figure 3.- Illustration of superposition of motions to determine effect 
of arbitrary disturbances. 
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and sweepback for the case of subsonic incompressible flow. ao = 0.11. 
Values from reference 34. 
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Cl = Cl r-
/3 13r 

where 

C = (A + 4) cos A (C ) 
l/3r A + 4 cos A l/3r 

11.=0 
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figure 10.- Variation of (6C~)1/CL and (6C~)2/(CDo)a with aspect 

ratio for the case of subsonic incompressible flow. A = 1.0. Taken 
from reference·96. 
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Figure 11.- Charts and formulas for estimating Cl for the case of 
p 

subsonic incompressible flow. Taken from reference 89. 

2 i ' 2AA + 2 cos A) 10 CL
2
) + snH -- D--

A + 4 cos A 8 rcA 
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Figure 12.- Charts and formula for estimating Cnr for the case of 

subsonic incompressible flow. Taken from reference 25. 
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Figure 13.- Charts and formula for estimating Cz for the case of 
r 

subsonic incompressible flow. Taken from reference 85. 

Cz = C (C z,:\ + C (
Cz f3\ - Cz 

rwing ~CL~theory ~L:JtheOry f3exp 
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Figure 14.- Examples of suggested fairing of theoretical values of lift
curve slope for use in estimating values for the vertical tail in the 
transonic range. 
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