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Simplified General Method for Drawing Airplane Profiles 

The above method was useful for obtaining a better under-

standing of the prob•lem. It leads, nevertheless, to a somewhat 

laborious drawing which becomes quite complicated when we take 

a transformation function having terms of a high degree. 

Besides, it is extremely difficult to determine by that 

method the parameters which govern the profile form, with the 

object of •obtaining "families of profiles," that is profiles 

the form of which evolves in a continuous manner by modification 

of one of the characteristics such as C 	 the maximum rel-

ative thickness; eli , the suitable distribution o± the relative 

thickness along the chord, etc. 

*From L'Aeronëutique,January, 1928. For Part I see N.A.C..A. 
Technical Memorandum No. 468. 
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The method given below overcomes these difficulties. It 

depends on the following considerations (See Comptes . Rendus de 

l'Academie des Sciences, HNotestt de M. Carafoli, October 24,, 

1927, and November 14 and 28, 1927. 

We have seen that, by changing the axes, t1e transforma-

tion functioir can always be put into ' the form 

n
12' 

fl2 

in which c2 is a real quantity. 

Let Ox and Oy . be a system of axes, M the.center of the 

generating circle passing through B 1 , and B' the point of 

zero velocity which should correspond to the profile tip' (Fig. 

ii). It can be shown that the auxiliary circle M 1 , 'corre-

spond.ing to the partial transformation 

z 1 =2. or z 1	 =C2 

passes through the point 0	 so that 0B1 X 001 = 02, ' and 

the center M 1 is located at the intersection of the line 0M1 

(symmetrical to OM with respect to Oy) with the line C M1 

parallel to B 1M (Fig. 8). 

The position of B' on the generating circle is defined by 

the value of the moment coefficient 0, according to the for-

mula
= 8T1	 7	 (10!) 

in which	 , the angle of B'M with Ox, corresponds to
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(3 - qy) of the preceding notations (if MB'O =	 and B'0B1 

= Y) and 1 is the profile chord, the value of which is approxi-

mately 2 (oB 1 + oc1). 

	

It follows from equation (10'),	 being expressed in de-




grees, that

- B1C 

2 4(0B1+0C1) •= Crn 36.4 (i
	

0B) 
8u IT 0B1 x 0C	 - B11 

0 

36.4 Cm0 

For the point B' ( = - OB'e"), which must correspond 

to the trailing edge of the profile, we should have 

nxn 

(d	 n=
0 

If the point C' corresponding to B' for the transforma-

tion z 1 =	 be on the auxiliary circle M1 , then ( - 

represents CIBIe1a (Fig. 11), from which we derive 

n 
CB'e'0 -(	

n_X\. - 

\fl=2	
0 

or 

n 
z	 = C'B'e1 

n=.	 (_	
)flrø(	

B' 
)n 
e' 

If, for example, the transformation function be 

q 

the above formula can then be written

(36)
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PXp	 qxq 

(- 1)P (oBt )P e	 + (- i) (oB' 
)g e'	 +

(36t) 

r X	
C'B'e' 

+ (- i) (OBI)r e' 	 = 

so that the three terms of the first member constitute a polygon 

C'IHB 1 the geometrical resultant of which is B'C' (Fig. 12). 

Conversely, each polygon C 1 IHB' would correspond to three 

terms p, q, r of the transformation function, which are deter-

mined by means of the formula (35$) 

pxpeh1
= CIe'P ...., 

(_ 
1 )P (oB)P 

and so on.	 / 

In particular, the polygon could be reduced to any number 

of sides a1ined on C'B t (as, for example, ChIIHtBt). 

In practice, it even suffices to consider a single supplementary 

term of any degree n, in which case we have 

nX e-	 - CtBte	
* 

(_ 1)fl (oB' ) fl - 

*We have already pointed out the advantage of the case in which 
the only complementary term is of the degree n = 3, or

I,
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We should thus add to the two terms, which give us the point 

P,	 the segment P P	 of the modulus

- ( 
1) fl C'B' OB' r 

and of amplitude

= - ny - nO 

In order to compute the velocity W at the point P 	 of


the profile, it suffices to construct the vector 

	

Q'R' -
	 fl 

= (	
)rI C I B t (Q! 

	

-	 \0PJ 

starting from the corresponding point Q' with direction P. 

and magnitude P'R', and we get, as before, 

= 2V	 x	 (255 
MB	 P'R' 

Utilizing these principles, the profile design would involve 

the following operations, which are entirely geometrical and re-

quire no special knowledge of the problem. 

The simplified method of drawing a profile with a pointed 

trailing edge includes the following operations: 

1. Draw the two axes Ox and Oy and lay out the length 

0B1 along the negative direction of Ox. 0B 1 is generally 

taken as one-fourththe chord of the profile to be obtained 

(Fig. II). 

. Choose 0C 1 or B1 C 1 determining the point C 1 , the 
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position of which relative to B 1 characterizes the thickness 

distribution along the profile chord. In the case represented by 

the figure, we have B1 C1 positive or negative according to 

whether	 is on the right or on the left o± B 1.. When B1C1 

is positive, the profile is less sharp at the rear and conversely. 

In practice, we take

BC < 1 1 = 0.05. 
0 B1 

3© Choose 0M0 which characterizes the apparent mean cam-

ber of the profile (by analogy with the case of Joukowski pro-

files). For profiles with small Cm0 it is convenient to take 

i 0.10. 
0B1 

4. Choose the center M of the generating circle on the 

straight line B1 M0 in such a manner that M0M would satisfy 

the following formula in terms of the maximum relative thickness 

eli we wish to obtain 

M0M ± 0.4 B1 C 1	 0.77 

0B1	 1-.O.77 

The minus sign is taken when B1 C 1 is positive and vice versa. 

5. Draw the generating circtie with the center M and the 

radius MB1. 

6. Draw the auxiliary circle corresponding to the partial
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t ransf ormat ion

z 1 =	 or z= 

This circle will then pass th 

will be at the intersectioir of the 

OM with respect to Oy) with the

c2 = 0B1 X 0C1. 

rough C1 . Its center 

line 0M1 (symmetrical to 

line C1 M1 parallel to B1M. 

7. Carry out the operations corresponding to the first two 

terms of the function, by geometric summation of the vectors 

0?' and. OQ of equal amplitudes and opposite signs (Trefftz, 

geometrical construction). 

When C	 is inside the generating circle, the points P 

define a profile with •rounded trailing edge, but, when C 

is outside of the circle, the contour of the points P forms 

a figure 8 with a small bulge toward the rear. 

8. Define, on the generating circle, the point of zero ve-

locity B', with the object of obtaining a C 	 fixed a priori. 

For the latter, we draw EM making an angle ¶ with Ox, such 

that 'r° = 36.4 0m0• The point C', on the auxiliary circle 

M1 , corresponds to the point B', so that 

B'0B1 = B1 00 1 =y 

9. Construct the representative segments of the other terms 

of the transformation function. 

Since, in practice, it is important to take a single com-

plementary term of the degree n = 3, the segment to De con-
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structed, starting from each of the points P, will have the mag-

nitude

	

PP =	 = - C'B' (OB"\ 
3	 T1 

and the direction

(p =	 - 31Y - 

Remarks.- The above method defines, without ambiguity, the 

parameters which govern the evolution of the profile form. These 

parameters are

c	
M0M 0 • 4 B C1 	 B1 C1 

	

1T1Q' 0B1 '	 0B1	 '	 0B1' 

and the degree n of the complementary term. 

The knowledge of these parameters pernits the definition of 

"profile groups" of evolutive forms and characteristics. For ex-

ample:

(a) Groups with variable Cm0 , with constant apparent 

camber and relative thickness and otherwise general form charac-

terized by the same B1 01 /0B1 and the same degree n. 

(b) Groups with variable apparent camber, with constant 

and relative thickness, as well as same B1 C1 /0B1 and n. 

(c) Groups with variable thickness distribution (by varia-

tiorr of B 1 C 1 /0B1 ), all other characteristics remaining constant.

(d) Groups with variable relative thickness, with all other 

parameters constant. 



N.A.C.A. Technical Memorandum No. 469 

(e) Groups with variable n, and all other characteristics 

constant. In practice, there seems to be little interest, in 

the present state of the problem, in varying n and n = 3 is 

therefore adopted. 

Remarks.- The preceding general metiod also permits the 

drawing of profiles with rounded trailing edges (Comptes Rendus, 

Vol. 185, p.842, Oct. 24, 1927). It can be adapted to the partic-

ular case of complementary terms leading to corrective terms of 

constant modulus (Comptes Rendus, Vol. 185, p.1014, November, 1927). 

By extension we can pass from a pointed profile to a profile 

with a reflexed trailing edge.(Comptes Rend.us, Vol. 185, p.1189, 

Nov. 28, 1927. 

Aerodynamic Characteristics of Theoretical Profiles 

The aerodynamic characteristics of theoretical profiles re-

suit from the application of the same conformal transformation 

to the sustaining flow around the generating circle, according 

to Joukowski's hypothesis. 

It is known that this hypothesis consists in determining 

the circulation P such that the point of the profile in the z 

plane corresponds to a point of zero velocity on the generating 

circle in the	 plane.	 - 

Under these conditions, the aerodynamic characteristics of 

the theoretical profile, corresponding to the case of a wing of
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infinite span, will be given by the following formulas: 

Lift coefficient

CzZ 8ir . (a +)	 (17) 
1 

Moment coefficient at the angle of zero lift 

Om(pfOmo= 8 ii	
( - ey) 

in which 

a is the angle of incidence with respect to 0B'; 

is the amplitude of the first axis with respect to OB'; 

is the amplitude of the second axis with respect to 03*; 

02 is the modulus of the parameter x1; 

a is the radius of the generating cic1e; 

1	 is the profile chord, measured from the drawing, after 


it is completed. (It is found, moreover, that the value thus 

obtained differs but little from the approached value.) 

In order to get the moment coefficient with reference to 

the leading edge of the profile, it is sufficient to determine 

the position. of the profile focus F. The latter Is found on a 

line MF making the angle 2 (Y -) with the first axis (MB). 

The distance MF can then be calculated by the formula 

(19) 
a 

Knowing thus the position of the focus F, we then measure 

the distance FA as far as the leading edge and obtaixt
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c	 -c	 c AF 
m(A)	 tm(F)	 ZT

(20) 
or

111(A)	 m0	 zT 

In general M is approximately 0.25. 

Diagrams of Aerodynamic Pressures on a Theoret.cal Profile' 

The velocity at a given point on the profile being W, 

the pressure coefficient can be deflned by the expressioi 

= - ()2	

(2i 

V being the aerodynamic velocity. 

The velocity	 is calculated by the general forr-iula 

d __ bip - c	 =	 (22) 

in which Wc is the velocity corresponding to the point on the 

generating circle. 

For all points P' of the .generating circle (F1g 13), we 

have

	

Wc=2VP1=2VPD,	 (23) 

P'D' being the length of the perpendicuJ.,ar dropped from P' to 

the line V which passes through B. 

Moreover, we have
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(24) 
dzl	

02	 2x2	 fl.X e(n+1)iI 

I -	 -	 tn 

t.
or

Considering the point Q' conjugate of	 P t	 on the auxil-

iary circle	 M1 (Fig. 14), we have

02 I pQt = Ia., 
iç 

If we introduce

Q'R11	 I2c eI 

of the amplitude tp 2 	 previously calculated, we get 

0 2	 2x2 e 
P 1 R' 1 = P t Q' - QR' =	 -	 ________ 1	 2 

Similarly

	

	
= 3x

3 e 4i'Y I 
Rt 1 R'2 

with the amplitude cp 	 or (	 + ?y) and we get 

P'R' =	 -	
- 2x e' '	 ______ 

2 

and so on, as far as the point	 '(n-i) corresponding to the 

term in 

. It must be noted that Q'R' 1 = 2 times the positional cor 

rection previously calculated for the term in x2 . In like man-

ner R' (_1)R' (fl2r times the correction calculated for the 

term in X. 

The construction of the segment P I R t ( n_ i ) utilizes there-
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fore the elements of the profile design. 

Finally, for each point P, consequent on P', we have 

= 2V P1D' PP1() ,
	 (25) 

from which C	 is derived. 

The factors	 are calculable, once for all, for all 

points of the profile. 

The factors PDt vary with the angle of attack a. for each 

of the points P'. 

Aerodynamic Characteristics of a Wing of Finite Span, 


with a Theoretical Profile 

1. Case of rectangular wings 

The aerodynamic characteristics of a wing having a finite 

span are deduced from the aerodynamic characteristics of the pro-

file of a wing of infinite span. by allowing for the modifications 

brought about in the theoretical flow by limiting the span. 

Prnndtl's theory teaches us that these modifications are in-

terpreted j.n practice by the fact that: "The effective angle of 

attack at all sections of the finite wing is equal to the real 

angle of attack diminished by the induced angle of the section: in 

question." This induced angle depends essentially on the law of 

lift distribution along the span. 

For rectangular monoplane wings the simplifying hypothesis
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of an elliptical distribution of the lift is frequently used. 
a 

It can be considered as/sufficiently practical approximation when 

we wish to calculate the mean aerodynamic characteristics for 

the whole wing. If we wish to analyze what takes place in a 

particular wing section, it is convenient to assume a lift dis-

tribution along the wingspan. In this connection, we have pro-

posed to adopt the simplified approximate solution of Fuchs*, 

because the theoretical solution: of Betz necessitates very labor-

bus calculations. The former consists in assuming that th law 

of distribution of the circulatiornor ' of the lift on a rectangu-

lar wing of span A =	 'i's epresented by the formula 

=	
[1 2A+ 3 ()2] 

Figure 12 represents the comparison of the lift distribu-

tions for a rectangular wing of aspect ratio 5 and or the same 

mean. lift of 1. 

The curve EEE corresponds to an elliptical distribution. 

The curve EBB corres ponds to the evolutive distribution:, as ex-

pressed by formula (26). 

The straight line RR corresponds to a rectangular distri-

bution:. 

Lastly, the dotted line represents the distribut born experi-

mentally determined for a mean angle of attack. 

A sufficient agreement is noted between the theoretical 

distribution obtained by formula (26) and the experimental dis-

*A. Toussaint and E. Carafoli, 1tVerif-ications experimentales de 
lâ Theorie des ailes sustentatrices, U L'Aerophile, April 1-15, 
1927.
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tribution, except at the wing tips, where the latter exhibits 

abnormal deviations due to disturbances of the lateral edges. 

In adopting this distribution, approximate but at the same 

time developed with A, one easily finds that the mean lift 

coefficient C	 on the wing is given by the formula 

a 
U_________ 

COz	 1+2u(l_1..' 

in which

Cz&) = srr1 (a +)	 (17) 

and
a=

2A+31r 

As before, a is the radius of the generating circle. 11 is 

sometimes expressed by an approximate formula in terms of the 

profile chord 1. Since we are dealing with theoretical profiles, 

it is not necessary to resort to this approximation. 

The expression for °z(A) may also he written 

= A(A) (a + 

with 

A (A) =8TT .
l+2T1	 ('-?)

(27') 

If the angle of attack (cx.	 +	 ), referred to the axis of 

zero lift, is expressed in degrees, we have
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Cz() = 81T 18	
+•	 )o

•.	 (1?') 
1 5.7.3 

and thus

[cz(A') =	 A?A) (a +)° J with (37!!) 

kA T 57.3
1+2 11. (i-1) 

The expression forthe moment coefficient °m(A) remains 

unchanged and we have

°m(A) =	 12 573	 j °Z(	 (20'.) 

With the simplifying hypothesis of an elliptical lift dis-

tribution, which assumes a 1 = 0, we would have 

11	 1 
= 0Z()	

- 1 +	
(27") 

Remark_I.- The formulas relating to the expression of the 

mean lift coefficient °z(A) for a wing of finite span depend 

essentially on the accepted law of lift distribution along the 

span.

In using the approximate distribution represented by formula 

(26), we desired principally to attract the attention of tech-

nical people to the necessity of considering, for rectangular 

wings, a distribution derivable from the aspect ratio. Conse-

quently, we can employ the theoretical solution established by 

Betz.
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The formulas relating to the expressions for the moment 

coefficients	 and 0m	 as well as the deterrnina.tion of 


the angle of zero lift, do not depend on the above law. of dis-

tribution, nor on the theory of finite span. These aerodynamic 

characteristics are inherent in the profile form, according to 

the theory of infinite span. 

Remark II.- The experiments conducted in the Aerodynamic 

Laboratory show that the mean lift coefficients experimentally 

determined are generally a little smaller than the theoretical 

values computed by the preceding formulas. This slight discrep-

ancy results: first, from the approximation r4ade in regard to 

the lift distribution-; secondly, from the divergence between 

the real and the theoretical air flow; thirdly, from the ap-

proximation-s inherent in the theory of finite span. 

Likewise, the experimental values of 0m0 and of	 are a


little smaller than their theoretical values. These differences 

seem to be due almost exclusively to divergencies between the 

real and. theoretical flows. 

The comparison of the experimental and theoretical values 

Of O, 0m and. will permit figuring the discrepancies be-

tween the experimental and theoretical aerodynamic characteris-

tics for different groups of profiles. 

The induced polar is computed with a sufficient practical 

approximation by the formulas of Prandtl's theory.
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2. Case of wings of elliptical or similar plan form. In 

this case, we still have a1 = 0, but the expression for the 

mean lift coefficient becomes 

Cz
(o) •	 + 2rr 

or again

3 

= AA)E ( +)° 

with 

A(A)E_8flc	 1 a 
+ 2Ti-

a0 and L c relating to the middle section. 

The expression for the moment coefficient 

calculated according to the plan form

(28') 

C	 canbe 
( A) 

Remarks.- The reduction factor to account for the discrep-

ancy between theoretical and experimental lifts is a little 

smaller than the one relating to rectangular wings. 

3. ,Case of wing cells.- This problem is more complex but, 

for a first approximation, we can use the preceding formulas by 

giving to A the.value	 which is employed in calculations 

of induced drag.
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Diagrams of Aerodynamic Pressures on Wings of Finite Span 

The pressure coefficient at a point on any section of a 

finite wing is computed as already mentioned, taking care, how-

ever, of the induced angle in the section under consideration. 

In other words, the directiorn of the aerodynamic velocity, pass-

ing through B t , makes with Ox an effective angle (a 

cp y being the induced angle relative tQ the section located at 

a distance y from the middle section. 

For rectangular wings, having a distribution derived in 

terms of ti, we have 

1. At the middle section: (y = 0) 

(po=	 2)	 (29) 
a	 -

2j 

2 In any section located at the distance y from the 

middle section

= 2TT[l_ L + 
3a (2Y)2] (i 

-mo)	 (30) 

or again

2[l?+3ai(] LI
1, 

I 

in which i = a +	 is the actual angle of attack with refer-
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ence to the axis of zero lift. 

For elliptical or similar wings, with elliptical lift dis-

tribution, we have	 a 
2rr_2. 

= (P(y) =
	

+	 L	 (31) 

Aerodynamic Characteristics of Profile (Fig. 8) 

The chord length is laid out on the drawing, namely, 

1 = 23.8 cm, 

while the approximate computation gives 

1 =.2 CX + 00') = 23.54 cm 

The focus F falls on	 MF, making an angle	 2 (Y - 

-4°	 with the first axis; and we have

=	 = 346 5.38 cm 
a	 6.45 

We then measure

= 6.15 cm, 

from which
6.15 - 0 258 

	

T23.8	 . 

The aerodynamic characteristics of the profile will then 

be

Cz
(o) 

or, for (cx. + ) expressed in degrees, 
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6.8 (a. + 13 )° = 0.119 ( a + 
= 57.3 

0m = °m(F)	
8rr2. (73Y)0 = 0.0536 

an.	 Cm(A) = 0.0536 + 0.258 Cz() 

Lastly, for the experimental comparisons, we take the angle 

= - 1.30 between the tangent chord line and the axis Ox. 

From this it follows that the theoretical angle of zero lift, 

with respect to this chord, has the value 

5,30 - 1.30	 40 

Experimental Verification of the Aerodynamic Characteristics 

With the preceding profile drawing, we have dealt with 

rectangular wigs with spans corresponding to the aspect ratios 

2, 3, 4, 5, and 6, with the same chord length 

1 = 23,8 cm. 

The graph (Fig. is) represents the experimental results 

of tests with these wings. 

We see that the experimental angle of zero lift is the 

same for all the aspect ratios and that its value is 3.6°, while 

the theoretical value was found to be 40• 

The experimental 0m0, which is also the same for all as-

pect ratios, is 0.045, while the theoretical value is 0.0536.
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The mean slope of the curve (ce, Cm) is 0.255 in place of the 

theoretical value of .258. 

Figure 17 represents the lift coefficients for the various 

aspect ratios converted to the infinite aspect ratio by the ap-

plication of formiha (27). The representative points are grouped 

along a mean line near the straight line representing the theo-

retical. lift of the profile 

Cz	 = 0.119 (a. + 
() 

The reduction coeffic±ent k for the experimental and. theo-

retical lifts and angles 3 is thus found to be k= 0.94. 

Lastly, Figure 18 represents the xperimenta1 points of the 

various polars converted to the single aspect ratio A = 5. It 

is seen that the points thus corrected are grouped in a single 

polar blending with the experimental polar for A = 5. 

Experimental Verification of the Pressures 


on the Middle Section 

The pressure diagrams for the middle section were calcu-

lated as already mentioned. The comparison of these theoretical 

pressures with the experimental pressures shows a very good agree-

ment for the angles of attack at which the flow does not ve1op 
important separations. 

This comparison between the theoretical and experimental 

aerodynamic characteristics confers an undeniable scientific
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character upon the investigation of wings with theoretical pro-

files. Under these conditions, the experimental data, which, 

could be established by systematic tests of different profile 

groups,., would be susceptible of a general interpretation. 

For example, in determining the law of evolution for the 

reduction coefficient between the theoretical and experimental 

characteristics for a group of theoretical profiles, we could, 

by a legitimate interpolationi, directly apply the suitable coef-

ficientto all profiles of the group, without having to resort 

to a new experimental investigation. 

These remarks also apply to the aerodynamic characteristics 

which the present theories do not enable us to calculate. In 

particular, we could establish, for each group of theoretical 

profiles, the law of evolutiorn of the maximum C and of the 

minimum C in terms of one or several characteristics of the 

drawing 

Thus, the choice of the profile to give an airplane wing. 

will be found to be completely determined by satisfying the re-

quired conditions for the aerodynamic characteristics and struc-

tural consideraiions. 

Translation by 
National Advisory Committee 
for Aeronautics.
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Fig.l8	 Lift coefficient converted to infinite aspect ratio. 
S.C. 281 (Von Mises) airfoil. Aspect ratios 6,5,4,3&2. 
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