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Oh~-DIMENSK)NAL FLOWS OF AN L%IPEIU?ECT DIATOMIC GAS

By A. J. EGGKRS,Jr.

SUM3MRY

~~%h the assumptions that B.wthelofs equation of state
nccountsfor molecularrize and intermolecularforce e-fleck, and
that changes in. the l<brationalheat capacities we giwn by a
Pla-nck ~erra, expressions are clerelopedfor analyzing one-
dirflennsional.ti~zcs of a.diatornicgas.

2% special cases of jlow through -normalmu-loblique shoclx
,;ILfree air at sea lerel are inrestigated. It is found that -upto a
Mach number of 10 the pressure ratio across CLnormal shock
d@rs by ks.s than 6 percent from its ideal gas cake; whereas
at Mach numbtm abore ~ the temperature m>e is considerably
W-w and hence the density rise is well abore that predicted
as.wuwingideal gas behauior. It is-further shown that only the
caloric imperfection in air has am appreciable e~ect on. the
pre.mure.sderelopedin the shock process considered. fie e~ects
qf gaseous imperfectionns on ob@ue shock$ows we stuclied2from
the standpoint of their inj%ience on the iijlt and pressure drag
ofa @ plate opera~ingat :?fach numbers of 10 mnd90. The
i-n.uence is found to be small.

1%’PRODUCTION

A wide -m.rietyof problems in compressible flow has been
solved on the assumption that air behaves as an iclecilclia-
iomic gas. This assumption is justifiecl, provided the
pressure and ternperaturerange of interest is small ancl near
atmospheric. It is an experimental fact, home-rer, that
w-henair is subjected to Iarge changes in state at pressures
tmcl temperatures far remo~-eclfrom atmospheric, it ceases
to obey the simple gas law ancl eshibits other properties not,
cha.racterist.icof an ideal gas. Consequently, flow processes
in which air is subjecied to these extreme conditions can be
expectecl t-odepart from perfect gas behavior. It. is known
that such flow-s wiH be encountered in hypersonic wincl
tunnek ancl by a.ircraft fly@ at high supersonic airspeeds;
hence, the nature anc[ extent of this departure have become
important considerations in aerocl~amics.

Chissical theories and experiments have shown that three
properties of a.reaI gas first cause it to exhibit characteristics
unlike those of an iclea.1gas. These properties may be
ckssified as thermal and caloric imperfections. Thermal
imperfections in the form of intermolecular forces cmcl
molecular size effects are signilic.antlly manifest at. low
temperatures and high pressures. Changes in the vibrational
heat capacities become an important. caloric imperfection at
rehitively high temperat.ures. Circumstances under which
effects of molecular cksociation ancl~orelectronic excitation
become important (e. g., temperatures apprec.iabFyabove

.5000°R) maybe neglectecl for the present. Insofar m gases
in equilibrium are concernecl, it is usutdIy suilicient to ac-
count for intermolecular force anclmolecular size effects with
adcLitioncdterms in the equution of state. Simikrly, changes
in the vibrut.ions.1heat capacities of the molecules may be
accounted for with a function of temperature in the e.spres-
sions for the spectic heats.

Tsien (reference I) investigateed the effects of gaseous _
iruperfect.ionson air flows w=ingTan ckr TTaals’ state equa-
tion. Appro.simat.e solutions to the one-climensiomd isen-
tropic and normal shock equations were obtained. (Tsien
points out two ~ery early papers of limited &cope on the
subject by A. Bueemann and W. J. ‘iTalker.) The Joule-
Thomson effect was neglected in Tsien’s amdysis,l how-ever,
thus introducing some error. Donalckon (reference ~)
obser~ecl this error ancl found that the clifferentialequations
of motion coLLMbe integrated to .tielcl one-climensiom-d
isentropic flow equations, eyact to the accuracy of Tan der
?Taals’ equation. A comparison of results obta.inecl tith
these equations and the flow equations for a perfect gas
indicated that appreciable error would be made if the latter
expressions were used to preclict aerocbmamic phenomena
inrol-iing high temperatures or high pressures.

A mattw considered by Kantrowitz (reference 3) is the -”
inabiIity of a gas composed of polyatomic molecules to in-
stantaneously adjust its internal energy to temperature
changes a.thigh temperatures. This time lag in equilibrium
partition of energy occ”urs primarily in the -vibrational
energies of the molecules which, unlike the translational ancl
rotational energies, require many coI.Iisionsper molecule to
become fully adjustecl to a new temperature. As pointed
out by Kantrowitz, for rapicUyaccelerating flow-sthe result-
ing heat-capacity lag causes an entropy increase anclhence a
total-heacl clecrease in a gas. The net effect may be made
negligible, howeyer, by decreasing the rate of change of
temperature of the fluid with time. In the speeicd case of
flow through a normal shock ware, Bethe and Teller”(refer-
ence 4) founc[ tha,theat-capacity-lag effects caused the thick-
ness of the shock to increase. (The wave is considered to
extend o-ier that portion of the fluid in which equilibrium
partition of energy cloesnot pre-mil.) As the Mach number
upstream of the wave increases, ho~e~er, the shock tends
rapiclly towarcl a sharp cliscontinuity. It. may also be
observed that, although heat-capacity lag influences flow
within the shock, it C1OWnot alter the magnitude of the

1This error is reported to hwre been subsequently correcte&, however, the author is rma-
mre of the publication.
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entropy increase across the shock, as this is independent of
the mechanism by which avaiIable energy is dissipatedwithin
the wave. These observations are important for they lend
support to the simplifying assumptions that moderately
accelerating flows may be treated as isentropic except in the
presence of a shock wave, in which case the wave may be
treated as a discontinuity and the properties on both sides
calculated as if there were no heat-capacity 1~.g.

In the present paper, one-dimensional flow equations are
obtained with the aid of Berthelot’s equation of state. This
equation, rather than Van der Waak’, is employed in order
that somewhat better estimates of intermolecular force
effects may be obtained. It is assumed that caloric imperfec-
tions may be accounted for with a P1anck term in the ex-
pressions for the speciiic heats. The analysis covers both
isentropic and plane-shock flows. Within the limitations .of
the assumptions, both exact and approximate flow equations
are developed. The approximate expressionsprovide explicit
solutions for all the important flow parameters, and are
designed to utilize data avaiIable on the theoretical behavior
of an ideal diatomic gas. (See, e. g., reference 5.)

SYMBOLS

local speed of sound, feet per second
nozzle cross-sectional area, square feet
molecular size constant, cubic feet per slug
intermolecular force constant, “R, feet to the fifth per

sIug, second squared
spectic heat at constant pressure, foo~pounds per

slug, ‘R
specific heat at consliant volume, foot-pounds per

slug, ‘R
base of natural logarithms, 2.718. . .
logarithm to base e
Mach number (ratio of local velocity to local velocity

of sound)
absolute pressure, pounds per square foot

(
gas constant 1715 s]~~l!R

)
for air , foot-pounds per

slug ‘R
absolute temperature, ‘R
internaI energy, foot-pounds per slug
local velocity, feet per second

specific vohune
()

~ ~cubic feet per slug

extermd -workperformed, foot-pounds per slug
ratio of specific heats (cP/c,)
mass density, slugs per cubic foot
molecular vibrational energy constant, ‘R

SUBSCRIPTS

stagnation conditions
conditions upstream of shock wave
conditions downstream of shock
ideal gas quantities _.

SUPERSCIUPTS

quantities at the nozzle throat
quantum-mechanical functions

wave

ANALYSIS

It will be assumed throughout the analysis that the gas
exhibits no heat-capacity lag. Shock-free flows am con- ,
sidered isentropic, and flow through plane shock waves is I

assumed to be adiabatic. Justification for the first two
assumptions is discussed in the Introduction. The extent
to which plane shock processes, particularly at high Mach
numbers, deviate from adiabatic behavior is Ieft for future
investigation,

Berthelot’s equation of state is employed in two forms,
1

depending upon the desired range of applicability, In the
development of equations for investigating flows over a wide
range of Mach numbere~ temperatures, and pressures, the :
state equation is used in its exact form

(1)

where b is the molecular size constant and c is the intermolec-
ular force constant. It will be noted that equation (1)
differs from Van der Waak’ equation by a factor of I/Tin the
intermolecular force term. The introduction of this factor
yields a variation of intermolec@ar force with temperature
which is in accordance with experiment. (See, e. g., refer-
ence 6.) Thus, as pointed out in reference 7, close agree-
ment between theoretical and experimental values of com-
pressibility of gases is obtained.

In the derivation of approximate flow equations an expres-
sion of the form

( )P=PRT l+bP–& (2)

is employed. This equation is, of course, a fist-order approx-
imation to equation (1).

FLOWOF A DIATOMICGASOBEYING BERTHELOT’S I?QUATION OF STATE
1

Isentropic flow of a Berthelot gas may be studieclwith the
aids of the clifferentia.1isentropic expansion equation,

ck+-dw= (W*)+G’)Y++)=’ ‘3)
where

()bul
FT ,=C’

and the JouIe-Thomson effect is given by

(3=%)P-P=Y (4) ‘

Combining these expressions and substituting the value of F’ ;
from equation (1) ykdds

‘T dp=o (5] ,c,dT–@-p(l-bp)

,
Now the dtierentia.1expression for c, is

(%9r=T(a
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which, upon substituting from equation (1), may be inte-
grated to give

(6)

where c~’ is a function which describes the quanhnn-mechan- i
ical variations of c~with temperature. The second term on
the right of equation (6) represents the effects of gaseous
imperfections on c..

The function chosen for G’ is determined by the molecular
structure of the gas under consideration and the temperature
range over which accurate predictions of c.’ are desired. For
aerodynamic purposes, diatomic gases are of primary intcrest.
The import-ant temperature range extends from liquefa.ct,ion
temperatures to several thousand ddgrees Rmkine. A rela-
tively simple function may be written for c,’ in this case, as
the number of translational and rotational degrees of freedom
is constant, and only the variation with temperature of the
tibrational heat capacity need be cotiidered. This function
is

{ ()02 ~(em
c,’ =Coi 1-!- (’yr—u ~ [1 _g(m)]2

}
(7)

The second term in the brackets, essentially a Pla.nck term,
accounts for the tibra.tional contribution to the specific
heat at constant vo1ume2 The assumption is that the mole-
cules of the gas behave Likelinear harmonic oscillators insofar
as the vibrat,ionaI degrees of freedom are concerned. (See
reference 8.)

b expression governing isentropic expansion of an imper-
fect c!.iatomic gas may now be obtained by substituting
equat-iom (6) and (7) into equation (5) and integrating from
stagnation to static states. Since

()d +, = TdP–ZPdTP

~This fs a common method of accounting for the vm”atfon wf~h temperature of the vibro-
tfonal heat capacities. M MS been adopted hy Donoldson and others for imperfect gss
tiudfes.

thwe results the relation

(8)

b order to determine the Mach number of a stream, it is
necessary to fid the velocity of flow and speed of sound in
the stream. These quantities may be found by employing
the one-dimensional energy equation,

(~).(P) ‘k’). (P)du+d(Pu) + VdV= * d ~ ~ ‘u dT+d ~- +VdV=O

(9)

Substituting equations (l), (4), (6), and (7) into equation (9)
and integrating from stagnation to static- tempe.r~tureand
density @Ms for the velocity

{

R6
r+’c(w+(%w

~zs=2 Cni(TO– T) + [1 _e(e/~] To

(lo)

The corresponding speed of sound is determined by substitut-
ing equations (1), (5), (6), and (7) into the general equation

“’=%=(3.+(3.%
The resulting expression is

[

R’
P2T +2+P(1 –/)p)1

“= (l:;p)’–~+

[

Zcp
%f 1-1-(%- Q {($) [15;T)]2+~

}1
(11)

Combining equations (10) and (11) yields the foIIowing equation for the Mach number
.

{

A(;-’)+($)[lJ(@,.Io+&Fc($-fi)+(%-;)l

312=2 )(’Yi-l) (+++*2 2
_—

[ {

2cp + (13P)’ 2“
1+ (-fru ($) g(:&12+~. H I

The specific heats and the ratio of specificheats are readiIy obtainable for a diatomic gas obeying Berthelot’s state equation.
The specific heat at constant volume c, is found by substituting equation (7) into equation (6), thUS ykkhg

[ K)
O 2 ~(i?m

Cn=csi ,, 2+3-1+(’yf-u ~ [l_e(/ )]
H

“(13)

The specific heat at constant pressure c, is obtained by substituting equations (1) and (13) into the reciprocity relation

I and setting
C.i=c=t–R (14)
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The rcsulti ng expression for CPk

1

L \ k . ,, AA A

The ratio of specific heats y follows directly, of course, from equations (13) and (15) cmd maybe written

7=’)’<
L

[/

L K1+ (~i–1) ;

A matter of special interest in the study of channel flows
is Lhevariation of Mach number with cross-sectional area of
the channel. The relation between these two quantities is
most conveniently determined from the ratio of cross-
sectional area at the sonic velocity station (the station of
minimum mea for any pas, CLSpointecl out by Tsien) to
cross-sectional area at a. station of arbitrary .Mach number.
The continuity equation yielcls this ratio in the form

(17)

With the aicl of this equation and equations (l), (8), (11),
and (12), the area ratio corresponding to a particular Mach
number may be determined from a knowledge of the ideal
gas specific heats, characteristic constants of the gas (i. e.,
b, c, and d), and, for example, the stagnation conditions. In
general, however, this computation cannot be carriecl out
entirely analyticallym For example, it is seen from equation
(8) that none of the variables can be explicitly determinecl;
hence, a final solution for any single variable must be ob-
tained giaphically or by equivalent means.

In order to relate the fluid properties on the two sides of
a normal shock wave, it is convenient to integrate equation
(9), the energy equation, across the wave. The resulting
expression is

(%-9+CUJT2-TJ-(W%O+
(%) r=’+e(ol%l~, (18)

Continuity of flow ancl conservation of momentum must also
be satisfied across the wave. These requirements may be
expressed analytically in ,the familiar forms, respectively,

PI VI = P2V2 (19)

and
plT712—p2v22=P2—Pl (20)

Equations (18) through (20) provide the additional informa-
tion necessary to cleterminethe flow through a norma~shock
wave. Hcwe again, however, final solutions for certain of

. (15)

(16)

the unknown flow parameters are most conveniently obtained
graphically.

.4PPROX1MATEFLOWSOF AN IN! PERFI%CTI)IATOMICGAS

This part of the study is concerne.clwith first-oxdcr devia-
tions of one-climensional gas flows from the behavior of au
ideal gas. With this restriction, explicit solutions can bc
obtained for all the important flow parameters. 13qua.tion
(2) will, of course, be employecl as the equation of stat.c. A
simplification is also allowed in the tc.mperaturefunction for
the vibrational contribution to the spccihc heats, since the
specific heats are restricted to vary only in the first order
from their ideal gas vahies. In this case only large wdncs
of t9/Tare considered ancl the Phmck term may be ctpproxi-
mated by

()62 @Tl .()82
T [1—et”JT~]2- T ‘-(o’~)

Equation (8) may now be reduced to the form

(i+’)’-(’’TO(!+l)l(o-”)’”)’21)
This equation can be readily SOIVCC1for p/Pain terms of T/T.,
retaining only terms of the proper orcler, thus yielding

1 1 3-2w

‘=(ml-’m)-v-w(a= -’]-

‘0 (i+l)e-(o’T0)+[(%x3 +11’-(’’T0)(TT)})} ’22)

By solving for T/T. in a simiIar mcmncr, there is ,obhincd

‘=(:r-’[l+(’-l)po[(:To

(i+9’-(o’T0)-[(wY-’+wT’(’’p)pi’*-* }1
(23)

1
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A relation between the pressure and clensity ratios for isen-
tropic expansion is obtained by combining equation (2) tith
equation (23). The resuhing e.~reesiog is

Equations @2,) through (24) are useful for cletermining the
nature and extent of small cleparturesfrom ideal gas behatior
of a diatomic gas undergoing isentropic changes in state.

Isentropic relations will no-w be obtained bet.meen pres-
sure, temperature m-ccldensity ratios, and the stream lIach
number. In order to do this, it is con-renient to reduce
equation (12) to a form consistent with the fi.rst-orcler
approximations. Performing this ope~at.ion~ielcls

and

%2(%) (2Y’-(’’T”)(T”1{2(2;)+;)+

*o(’-%)-a(’-M)+

~ ~-(me) _e-c8/m2’o/Tq
T-, [

}
(25) !

where
ri= (7;=37,+3)

.-b e.spression for the temperature ratio in terms of Mach
number, stagnation tempera.ture ancl clensity, and gas con-
stants is obtained by substituting equations (2), (22), and
(24) into equation @5) and sol-ring; hence

where

(26)

(27)

where (T/To) i, (p/po) i, ancl (P/PO)t are unique functions of the Mach number M. (These functions and dl other ideal gas
expressions employecl in the analysis are inclucleil in Appenclix A.) ‘1%e density cmd pressure ratios are obtained by s~b-
st,ituting equations (23) and (24), respectively into equation (26), thus yielcling

-where

B,(.M) =* B,(M)

“(’’)= 2[1-(:):-’’!+7*C1(J”
and

D,(&,.I)=-(l+:)+

[(3f+w’-(’’T0)[(TT)’)*1+1+

()

~ D1 ;., Jl

Yf— 1

(2s)

(31)

It may be noted that equations (26), (28), and (30) can be
rear.nmgeclto give the Mach number in terms of T/TO, p/po,
a.nclP/Po, respectively.

Expressions for the specitlc heats and the ratio of specific
heats are cleri-redby reducing equations (13), (15), and (16)
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to conform to the first-order deviation theory, Performing
this operation yields

{ [ 1}
C,=c,, 1+ (~;—1) (e/Tyt?-@/~) +~2 (32)

c~=c~${1+c%)[($Y6-(u’’)+%21} ’33)
and

‘=~’{l-r+)[’’’-l’’($)e-{’’T)+’~’-’)al} ’34)

It is observed that CP,c,, and Y are independent of moleculm :
size within the limitations of the theory. This fact appre-
ciably simplifies the determination of the chara.cte.risticgas ,
constants c and b.

The calculation of cross-sectional area of a nozzle for
isentropic expansion of an approximate Berthelot gas can
no-w be made. For this purpose it is convenient to write ,
equation (17) as follows:

+=(9(9(:)”
The local speed of sound a can be obtained directly from equation (11) by retaining only fist-order terms, thus

[
a=WT I+ilp+? &–

‘72’2($)’-(’”)1 ~

Hence, substituting equations (26), (28), and (35) into equation (17) in the above form yields for A*/A,

A*. A*
( )[ (y )(9’-(’’’0)1

‘= ~ , 1+~4(hf)hIO+C4(h9 ~~2+ ~4 jyM ToA

where

Y~+1 [Bl(M) –.BI(M*)I
~4(w =2 (7,_ ~)

c4(~) ‘2;:I) [G (M) –C,(M”*)]+
%[(:1-2’’-(977

()

6

1

7’+1 P'(&'~)-~`(i'~*)l+`-(e`To'[(TdT';-']{($)i+:['-('::)'(iY(3xl}- ’37’‘4 To’M ‘2(’yi-1)

‘-(’’To)[(T”’’”)’-l]{(~)i+%[1-(7ii:)2 (i)(*Il}

and (A*/A) j is the explicit function of Mach number given in Appendix A.
Flow through a norms.I shock wave will now be considered. The temperature, density, and pressure ratios across a

normal shock wave may be related to the ideal gas expressions for these quantities by simplifying and rewriting equation
(18) as follows:

I

Y-%=`~~T'(1-2)+% [(M)-ll+"%('-%)+~` [[`-(o'T')-`-(''T2)l
(38)

Substituting equations (2), (19), and (2o) into equation (38), dividing through by equation (35), and sol-ringfor the tempera- !
ture ratio yields the expression:

T2 Tz
( ){

l+-
1

E=zi [ F )(9’-(6’’’)1}
B5 (M,) bp,+ CG(M) ~~+ D5 T,) MI

* G(fkflj—1
(39)

yi—1

where

G(M,)=2–
(9J+7ikJ

‘2) {(g) -(:),+* [1-(i)J}-@)j’7,M,2 [l-(:)j+’}
B,(MJ ‘(; ~+ G(MI) T2 ,

(P2/P1)f ~ + ZriC5(M,) =@(MI) {3 (;), [(wI) i

1

-1 Y7[’-(i)ll-(E)j’r’M’2 [l-(f:)J-l]-(:), (;] ’40)
and

~5(iMl)=G(Ml)[(i)i{l-`-(''''''(''''''`-l'}-(~~-'J(+)['-(a)J]+(~f-l)'J~~(i)(2)i[l-(:)J

(35) ,

(36) “
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In order to obtain the relation for the density ratio P2/PI,

it is convenient to write equation (39) in the form

T2 T,()Z=zi (1++ (41)

where ~~
equation
(2), (19),

includes all the ii-at-order correction terms in
(40). Combining this expression and equations
and (35) with equation (38) yields the relation

:=(:)i{l-(:I&b’(M’’b’’+o’(M”a+
‘6(i)a11)(%)e-(’’T1)-A(*)i’Tl}’42)

(43)

As with the temperature ratio, it will be convenient to mite
equation (42) in the form

()P2_ @ (1+ e,)
E— PI i

(44)

where GPis the sum of aII the fist-order correction terms.
The pressure ratio across a normal shock wave is now ob-
tained by ,corabining equations (19), (20), (35), and (44)
to provide the relation

-+1+%(7’;’)2(+)’-(’”1)“’)q=—b RT12

The additional information needed to define the flow
through a normal shock wave is the Mach number .MZon
t-hedow-nstrea.mside of the ~ave. This Mach number may
be obtained with the cent-~uity equation

by substituting in equations (35), (41), ancl (44), thus yield-
ing

.%= 312
M, ()

~1 , (1+6=–6,) (47)

where

‘~=-%+’’’(:)il+2aFa( &(fil:’l+l+

%:)2(w-(o’T” {(21e-(o’T’)c(T1’T2)r’J-11 ’48)

Stagnation conditions dowustrea.m of the wave may be
related to sta.mation conditions upstream of the wave with
the three ident,it.ies

%=(3(’%)
$=(!2)(!!!23)

and

(49)

(50)

(51)

in which all terms of the right-hand members are given in
preciously developed expressions.

It is important to note that the normal shock expressions
are applicable to the study of oblique shock flows. For
example, equations (39) through (46) may be employed
directly by substituting Ml sin P for MI -ivhereverit occurs.
In order to determine M, however, it, is con-renient to have
a relation between the wave angle B and the stream deflect-ion
angle & This relation may b; obtaiuecl by combining the
momentum Wd c.ontinuity equations for flow through an
oblique shock (reference 9) to yield the expression

P,–-1=’+ (cot ~ ~:t *JP, 1

which may be -mitten

JIZ can then be calculated from the expression

(53)

-which is obtaiuecl from the continuity equation. Ih this
equation the ideal gas -raluesfor the temperature and density
ratios are those corresponding to the initial Mach number
31, and the ware angle 13. When M from equation (53) is
known, the remaining normal shock expressions, equations
(49) through (51), can also be applied to oblique shock flows.

It is observecl that, in general, all expressions obtained in
the preceding approximate analysis diEFerfrom the corre-
sponding ideal gas equationa onIy by smslI correction factors
containing the Mach number, temperature and density, amd
constants of the gas. As pointecl out in the Introduction,
this simplifies the investigation of one-dimensional imperfect
gas flows, provided effects of the imperfections are not large.

DISCUSSIONAND CON~LUSIONS

The complex manner in which gaseous imperfections influ-
ence general one-dimensional-flow processes precludes the
cletailed consideration, here, of more than t-wo flows of aero-
dynamic intcrest. Before c[iscussing these flows, it may be
worth while to establish more definitely the conditions under
-whichimperfections in air cari alter its dynamical behavior
horn that predicted on the assumption that ideal gas Iaws
are obeyed. These conditions are easiIy deducecl from the
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Fmumz I.—Variation of pressure ratio across a normsd shock wave with Mach nmnbc.r,
(Initialstat&NACA standard atmosphere at sea Ievel.)

equations employed in the analysis a.ucla knowledge of the
characteristic gas constants.3 They may be summarized as
follows:

1. The occurrence of temperatures in excess of 800° R, ip
which case the specific heats change appreciably.

2. The occurrence of densities in excess of 10 times sea
level atmospheric, in which case the moIecules occupy an
appreciable fraction of the available volume.

3. The occurrence of sufficiently high pressures ancl low
temperatures to cause the intermolecular forces to be
appreciable.

One additional observation should be macle concerning the
integrated effect of ..these phenomena on a particular flow
process. This is that the several imperfections frequently
counteract each other (note, e. g., the state equation and
equations (24), (26), and (27)), and thus aher certain ffow
parameters only slightly from their ideal gas values.

Tho specia,l cases of flow through normal and oblique
shocks in free air (3TACA standard atmospheric conditions
at sea. level) will now be considered. The pressure ancl
temperature ratios across a nurmal shock have been calcu-
lated for Mach numbers from 1 to 10 using equations (1),
(11), (18), (19), and (20). In this case the terms containing
b tmclc are extremely small (it is easily shown that they COUIC1,
in fact, be neglcctecl), and it is sufficiently accurate to use
the values for these constants given in Appendix B.

The pressure rise so determined is shown in figure 1 as
a function of Mach number, and it is seen that it differs by
lessthan 6 percent from the ideal gas value 4up to the maxi-

$The values chosen for tlm character’iatic gas constants, and the method by wkich they
were determined, me included in Appendix B.

4 AU ideal gas dzta are obtained from the tables of reference 5.

mum Mach number of 10. This behavior might he antici-
patecl from the icleal gas equation for the pressure mtio
(Appendix A) which is relatively insensitive to variations
in ~ at high Mach numbers. The corresponding tcmpcraturc
rise across a normal shock is illustratcd in figure 2. Here it
is observed that the effect of increase in specific heats npprc-
ciably recluces the temperature ratio below the ichxd gas
values at the higher Mach numbers.5 It may be deduced
from figures 1 ancl2, that the density rise -d be considcraldy
above the ideal gas value at the higher Mach numbers,
The accuracy of these rcdts wiII decrease fttMctch numbers
in excessof 7, for unclerthese circumstances (hc t.cmpcraturw
downstream of the wave appreciably ‘e~cccd 5000° R which
is sufliciently high to cause molecular dissociation ancl thus
alter the” flow. It is indicated in rcfcrcncc 4,6 however,
that up to a Mach number of 10, this clccrcnscin ttccurncy is
signiflc.an”tiymanifest onIy in the tempcrature cud clcmsi[y
raties. (For example,,at M= 10, the effect,of clissocimtionis
to further “decrease the temperature ratio from 17 to abo~lt
14.5.) -

In vie~s~..ofthe fact. that the changes with tcmpcmturc of
the.specific heats of air do not strongly influence the pressure
rise across a, normal shock, up to Mach numl.mrsof 10, it
follows that corresponding pressure eflccts in flow through
oblique shocks will also be small, providccl the Mach num-
ber of the component of velocity normal to the wave is below
10. This suggests, within the limitations obscrwx.1, that
the effect of variable specific heats on t.hose aerodynamic

—

7-

f
Ideuf gas

z

\ /
/ ~

f
%-. - -.ltnpet-fecf gas

Mach number, ,-

FICWRE2.—Variation of temperature ratio across a normal shock wave wifh IIacbnumhcr,
(Initial state–NACA staudard atmosphere ttt sca lewd.)

5This result is cousisteut with Wood’s ftndmgs concerning SUrfWCtcmpcrat ~rrs WIII[g~
MrIch numbers. (See referonca 10.)

6In thk Merence, calculations similar to those dcscribcd allow lUIW IICCn~rric~ mrt
including the effects of molecular dissociation but neglecting fhe otToctsof thermal lmprrfcc.
tioms. Tho results ofthff refemncc and the present report are found, w“bcrecornpwalslq to
ba in good agreement.
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O2TE-DIMESS1ONAL FLOW’S OF AX IMPERFECT DIATOM.IC GAS ~~~

characteristics essentially independent of viscosity may be
small for some shapes; (Epstein’s fin~a in reference 11,
concerning hypersonic flows about- bodies, pertain to much
higher Mach numbers than those Considered here.) The
extent to which thk is correct has been investigated for the
simplest shfipe, a flat plate. Pressures on the upper surface
of the pIate were determinecl, assuming Prandtl-Meyer
flow about the leacling eclge,~and pressures on the lower
surface were founcl viith equations (45) (replacing Ml with
M, sin p) and (52) ~ These data and the corresponchng lift
and pressure drag coefficients”of the plate were calculated
for Mach numbers of 10 and 20, and for angles of attack
from 0° to 24° ancl 13°, respectively. A comparison of the
coefficients with those obtained assuming icleal gas flow

7The owunption of PrendtI-Mewr flow will yidd increa@Jy inoeeur?.te upper-enrfaee
pressure ss t he Wet streem rempermure approaches absoIute zero. ti this usc the pressrrres
me so low, however, tiM they moke a negl@iIe contribution to the forces on the pfate.

~This rnethcd of ealcuhringlower+mfoeePressuresreqniresthat the chord of the pfate &
IWP! in cornpm!son to the region of the Ieadi&medg~ contained within the shock wave.

over both t-he lower and upper surfaces showed that the
effect of variable specific heats is very small. (For example,
the force coefficients are smaller in the case of the imperfect
gas but never by more than 3 percent, e-ren at the highest
a.ngles of attack.) This resulb is not justification for as-
surniqj ideal gas behavior to calculate the high Mach
number aerodynamic characteristics of arbitrary shapes, ‘“
other effects such as specific heat. lag being neglected; but
it does indicate that the assumption is justifla.blefor certain
shapes on which the important pressure forces are obtained
through obhque or normal shock compression.

ihEs &IROX.*UTICAL hBORATORy,

h’-ATI0A’a ~DVISORy ~OWIITTEE FOR ~ER03-.iUTICS:
31 OFFET FIELD, CALIF., ~a i?O, 1948.

..

(KiG&lG-fil-l’7



1

>1

APPENDIX A

IDEALGAS EQUATIONS I NORMALSHOCKEQUATIONS

The following are ideal gas equations used in the analysis
of approximate flows of an imperfect diatomic gas: ill,;= (7~–~)~,2+2,

%@f?- (7,– 1)
ISENTROPIC FLOW EQUATIONS

(i)i=(:Y=(’++-M2)-%

(:)i”(i)~=(’+=~’)+

7~-1

(%)i=(;)T=(’+7+@-1

7A-1

‘)

2(7;-1),9’%+ 1 —

2
~+w-l~ M2

.
A* ‘
(-)At =M

P,
()

=27,M,2– (7*– 1)
-Zi Yt+ 1

()
& (7i+0M12

PI f= (’YI— 1)M12+2

()
[2wMI’- (w-l)] I(w-1)114,’+2] ,.

2 ,= (74+ 1)’M12

APPENDIX B

DETERMINATIONOF CHARACTERISTICGAS CONSTAN’1’S
FOR AIR

~Tumerical val~es” for “the characteristic gas constants 6
and c may be determined from a knowledge of the critical
pressure and temperature of a. gas. Values determined in
this manner are, however, genera.lly less a.cc.uratein a par-
ticular range of temperatures and pressures than is desired.
Consequently, it is often advantageous to fix b and c such
that theoretical and experimental values of the primary
parameters CP, 7 and compressibility (i. e., P/p) are in good
agreement in the range of interest. This method is the
more suitable of the two for most aerod~amic studies as
the variations in pressure and temperature are limited;
hence, it has been employed in this paper to determine b
and c, as well as e, for air. It is sufficient for the ilhmka.tive
applications presented here to determine the former con-
stants only for the approximate flow equations. Separate
values of 8 are found for the exact and approximate Planck
terms.

As pointed out previously (note the development of approx-
imate expressions for Cfl,cU,and ~), it is a simple matter to
obtain the characteristic gas constants appearing in the app-
roximate flow equations. In this example, c and 6 were
chosen fist to give agreement between experimental and
theoretical values of c? and ~, the latter values being, calcu-
lated from equations (33) and (34), respectively. Data on
the variation of these quantities with pressure and tempera-
ture at high temperatures were obtained from references 12
through 19? A comparison of these data with theory, setting

*ThesedatahtwebeenemalatedbytheResearchDepartmentofthePittsburgh-Des
MofnesSteelCompeng,and the results of thle correlation are presented here.

24s

c=2.25 X 108 ‘R, ft6/slug, sec2 and 8=5800° R, is shown in
figures 3 and 4 for pressures of O tmcl 144X 10s pounds per
square foot absohde. The agreement is observed to be good
up to temperatures of 30000 R. Using equations (15) and
(16) to calculate c= and ~, respectively, and a vrduc of
8=5500° R, it is seen tha,t at zero pressure excellent rqpe-
ment with the correlated data is obtained up to 50000 R.
The approximate theory was then chcckecl al low tempera-
tures with experimental wdues of ~ given in reference 20.
At temperatures above liquefaction and pressures up to 25
atmospheres, the difference between theoretical ancl cxpmi-
mental values of ~ was found not to exceecl 3 pcrccnt.

~ ~P 8000 I
;$$ ,
c $4!~~ Q 7000.. 1
.~jjk
&@600~ -Cpi
.Q 3 20 30 50%/0’

Absolute fempera+ure, T, ‘R
(8) P=O,pounds per squme foot absolute.

~$~euuo

h~k ,
; O< ‘. I /
c %Q

I 1
‘. Corretafed da+o - - .

~%~ 7000 ; ,,
~ck. ‘.
~~%

(b)
-%_

} ~~~6000
c, 2- 3 57/0 ”-2030 5oxlo~.

Absolufe femperufure, T, “R

(b) P=144X10~; pounds per square foot abeolutc.

Figmw 3.—Variation ofc’,wibh temperature at absoluto pressures of Oand 144XW pourrds
per square foot absolute,
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(a) P=O, rounds per square foot &bsolute.

i) ‘. .

% f.5 1
Oh ‘..
$

.E~ua fian (3.4)
‘,<””

c5- .
-.

:}/.4
0<~

2 3 5 7 JO 20 30 50./0 ‘
Absoiufe fempemfure, z “R

~) P= M4X1CIS,pounds per square foot absolute.

FIGrSE4.—Variat.fonof 7 with temperature at absolute preesrres ofOand M!XIIF, pounds per
squore foot absolnte.

The molecular size coneta.nt b was chosen to -yield good
agreement, bet ween t,heoretical and experimental values of
compressibility of air. The theoretical values were calcu-
lated from equation (2), and the experiments.1 data were
obtained from reference 21. In genemd, it vias found that
using b= 0.485 ft3/slug and the previoudy determined value
of c, equation (2) predicts the compressibility of air to within
2-percent error at pressures from O to 150 atmospheres, and
temperatures from liquefaction to 8500 R. (The deviation
from ided gas behavior is small abo~e this temperature at
the pressures indicated.)
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