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ONE-DIMENSIONAL FLOWS OF AN IMPERFECT DIATOMIC GAS
By A. J. EccErs, Jr.

SUMMARY

With the assumptions that Berthelot's equation of state
accounts for molecular size and intermolecular force effects, and
that changes in the ribrational heat capacities are given by a
Planck term, expressions are developed for analyzing one-
dimensional flows of ¢ diatomic gas.

The special cases of flow through normal and oblique shocks
th free air at sea level are investigated. It is found that up to a
Aach number of 10 the pressure ratio across a normal shock
differs by less than 6 percent from its ideal gas value; whereas
at Jlach numbers above 4 the temperature rise is considerably
below and hence the density rise is well abore that predicted
assuming ideal gas behavior. It is further shown that only the
caloric imperfection in air has an appreciable effect on the
pressures developed in the shock process considered. The effects
of gaseous imperfections on obligue shock flows are studied from
the standpoint of their influence on the lift and pressure drag
of a flat plate operating at Mach numbers of 10 and 20. The
influence 1s found fo be small.

INTRODUCTION

A wide variety of problems in compressible flow has been
solved on the assumption that air behaves as an ideal dia-
tomic gas. This assumption is justified, provided the
pressure and temperature range of interest is small and near
atmospheric. It is an experimental fact, however, that
when air is subjected to large changes in state at pressures
and temperatures far removed from atmospheric, it ceases
to obey the simple gas law and exhibits other properties not
characteristic of an ideal gas. Consequently, flow processes
in which air is subjected to these extreme conditions can be
expected to depart from perfect gas behavior. It is known
that such flows will be encountered in hypersonic wind
tunnels and by aircraft flying at high supersonic airspeeds;
hence, the nature and extent of this departure have become
important considerations in aerodynamics.

Classical theories and experiments have shown that three
properties of a real gas first cause it to exhibit characteristies
unlike those of an ideal gas. These properties may be
classified as thermal and caloric imperfeetions. Thermal
imperfections in the form of intermolecular forces and
wmolecular size effects are significantly manifest at low
temperatures and high pressures. Changes in the vibrational
heat capacities become an important caloric imperfection at
relatively high temperatures. Circumstances under which
effects of molecular dissociation and/or electronic excitation
become important (e. g., temperatures appreciably above

5000° R) may be neglected for the present. Insofar as gases
in equilibrium are concerned, it is usually sufficient to ac-
count for intermolecular force and molecular size effects with
additional terms in the equation of state. Similarly, changes
in the vibrational heat capacities of the molecules may be
accounted for with & function of temperature in the expres-
sions for the specific heats.

Tsien (reference 1) investigated the effects of gaseous
imperfections on air flows using Van der Waals’ state equa-
tion. Approximate solutions to the one-dimensional isen-
tropic and normal shock equations were obtained. (Tsien
points out two very early papers of limited scope on the
subject by A. Busemann and W. J. Walker.} The Joule-
Thomson effeet was neglected in Tsien’s analysis,! however,
thus introducing some error. Donaldson (reference 2)
observed this error and found that the differential equations
of motion could be integrated to yield one-dimensional
isentropic flow equations, exact to the accuraey of Van der
Waals’ equation. A comparison of results obtained with
these equations and the flow equations for a perfect gas
indicated that appreciable error would be made if the latter
expressions were used to predict aerodynamic phenomena
involving high temperatures or high pressures.

A matter considered by Kantrowitz (reference 3) is the
inability of 2 gas composed of polyatomic molecules to in-
stantaneously adjust its internal energy to temperature
changes at high temperatures. This time lag in equilibrium
partition of energy occurs primarily in the vibrational
energies of the molecules which, unlike the translational and
rotational energies, require many collisions per molecule to
become fully adjusted to a new temperature. As pointed
out by Kantrowitz, for rapidly accelerating flows the result-
ing heat-capacity lag causes an entropy increase and hence a
total-head decrease in a gas. The net effect may be made
negligible, however, by decreasing the rate of change of
temperature of the fluid with time. In the special case of
flow through a normal shock wave, Bethe and Teller (refer-
ence 4) found that heat-capacity-lag effects caused the thick-
ness of the shock to increase. (The wave is considered to
extend over that portion of the fluid in which equilibrium
partition of energy does not prevail.) As the Mach number
upstream of the wave increases, however, the shock tends
rapidly toward a sharp discontinuity. It may also be
observed that, although heat-capacity lag influences flow
within the shock, it does not alter the magnitude of the

1 This error is reported to have been subsequently corrected; however, the author is ona-
ware of the publication.
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entropy increase across the shock, as this is independent of
the mechanism by which available energy is dissipated within
the wave. These observations are important for they lend
support to the simplifying assumptions that moderately
accelerating flows may be treated as isentropic except in the
presence of a shock wave, in which cese the wave may be
treated as a discontinuity and the properties on both sides
calculated as if there were no heat-capacity lag.

In the present paper, one-dimensional flow equations are
obtained with the aid of Berthelot’s equation of state. This
equation, rather then Van der Waals’, is employed in order
that somewhat better estimates of intermolecular force
effects may be obtained. It is assumed that caloric imperfec-
tions may be accounted for with a Planck term in the ex-
pressions for the specific heats. The analysis covers both
isentropic and plane-shock flows. Within the limitations of
the assumptions, both exact and approzimate flow equations
are developed. The approximate expressions provide explicit
solutions for all the important flow parameters, and are
designed to utilize data available on the theoretical behavior
of an ideal diatomic gas. (See, e. g., reference 5.) .

SYMBOLS
a local speed of sound, feet per second
A nozzle cross-sectional area, square feet
b molecular size constant, cubic feet per slug
¢ intermolecular force constant, °R, feet to the fifth per
slug, second squared
¢p specific heat at constant pressure, foot-pounds per
slug, °R
o specific heat at constant volume, foot-pounds per
slug, °R
e base of natural logarithms, 2.7 18
In logarithm to base e
M Mach number (ratio of local veloclty to local velocity
_ of sound)
P absolute pressure, pounds per square foot
-1
R gas constant (1715 slut;g' ER for alr) foot-pounds per
slug 'R
T sbsolute temperature, °R
% internal energy, foot-pounds per slug
14 local velocity, feet per second
] specific volume (%): cubic feet per slug
w external work performed, foot-pounds per slug
¥ ratio of specific heats (¢,/c,)
P mass density, slugs per cubic foot
6 molecular vibrational energy constant, °R
SUBSCRIPTS
° stagnation conditions
1 conditions upstream of shock wave
2 conditions downstream of shock wave
) ideal gas quantities
SUPERSCRIPTS
* quantities at the nozzle throat

quantum-mechanical functions

ANALYSIS

It will be assumed throughout the analysis that the gas
exhibits no heat-capacity lag. Shock-free flows are con-
sidered isentropic, and flow through plane shock waves is
assumed to be adiabatic. Justification for the first two
assumptions is discussed in the Introduction. The extent
to which plane shock processes, particularly at high Mach
numbers, deviate from adiabatic behavior is left for future
investigation.

Berthelot’s equation of state is employed in two forms,
depending upon the desired range of applicability. In the
development of equations for investigating flows over a wide
range of Mach numbers, temperatures, and pressures, the
state equation is used in its exact form

pRT ¢p?

P= =5, T 1
where b is the molecular size constant and ¢ is the intermolec-
ular force constant. It will be noted that equation (1)
differs from Van der Waals’ equation by a factor of 1/7"in the
intermolecular force term. The introduction of this factor
yields a variation of intermolecular force with temperature
which is in accordance with experiment. (See, ¢. g., refer-
ence 6.) Thus, as pointed out in reference 7, close agree-
ment between theoretical and experimental values of com-
pressibility of gases is obtained.

In the derivation of approximate flow equations an expres-

sion of the form
- Ef 512) . (2)

is employed. This equation is, of course, a first-order approx-
imsation to equation (1).

P=pRT(1+ bo

FLOW OF A DIATOMIC GAS OBEYING BERTHELOT'S EQUATION OF STATE

Isentropic flow of a Berthelot gas may be studied with the
aids of the differential isentropic expansion equation,

dutdo—=(3%) a(D)+(§p)ar+ra(P)=0 @
(3%).==

and the Joule-Thomson effect is given by

where

ou\ _ (OP 2¢p*
‘az),:tT oT),~FP="T" )

Combining these expressions and substituting the value of P
from equation (1) yields

RT

(4]
P =t

cdT— 7

————~dp=0 5

Now the differential expression for e, is

bc,) -7 bzP
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which, upon substituting from equation (1), may be inte-
grated to give

c=c/ +p (6)

where ¢,” is a function which describes the quantum-mechan-*

ical variations of ¢, with temperature. The second term on
the right of equation (6) represents the effects of gaseous
imperfections on ¢,

The function chosen for ¢,” is determined by the molecular
structure of the gas under consideration and the temperature
range over which accurate predictions of ¢,” are desired. For
aerodynamic purposes, diatomic gases are of primary interest.
The important temperature range extends from liquefaction
temperatures to several thousand degrees Rankine. A rela-
tively simple function may be written for ¢,/ in this case, as
the number of translational and rotational degrees of freedom
is constant, and only the variation with temperature of the
vibrational heat capacity need be considered. This function

is
—'Cu,{l (vi—1) (T)

The second term in the brackets, essentially a Planck term,
accounts for the vibrational contribution to the specific
heat at constant volume? The assumption is that the mole-
cules of the gas behave like linear harmonic oscillators insofar
as the vibrational degrees of freedom are concerned. (See
reference 8.)

An expression governing isentropic expansion of an imper-
fect diatomic gas may now be obtained by substituting
equations (6) and (7) into equation (5) and integrating from
stagnation to static states. Since

d(i)= Tdp—2pdT
™). I

1 This is & common method of accounting for the variation with temperature of the vibra-
tional heat capacities. It has been adopted hy Donaldson and others for imperfect gas
studies.

Q)
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there results the relation

(T po(1—bp) _ [e@To—1]
cod () +Bin S e (o )““ G
e@IT) T
R §oom | =0 ®

In order to determine the Mach number of a stream, it is
necessary to find the velocity of flow and speed of sound in
the stream. These quantities may be found by employing
the one-dimensional energy equation,

au+d®y+vav=(3e) 4(3)+(37 )dT—[—d(P )+Vav=0
©)
Substituting equations (1), (4), (6), and (7) into equation (9)

and integrating from stagnation to static temperature and
density yields for the velocity
Py
Se(hR)+ )

(10)

V=2 {e, (Tom T+ sy

The corresponding speed of sound is determined by substitut-
ing equations (1), (5), (6), and (7) into the general equation

o-£-(05) 435,

The resulting expression Is
Y 4 AT I
o BT 20, o T [T2+p(1_bp)] |
== Tt a\? ®/T) 9
R e Ol =2

A2=2 (v:

(11)
Combining equations (10) and (11) yields the following equation for the Mach number
MEE (5]
—1 ( d 1)+<T) [1-ewm:|T,+RT|: (T )
—1) (1 R 20p (12)

[1"'(%—1){(1*) [i— e(ilzjr)]z 1%?’)2}]-{—(1 bp)2 ET

The specificheats and theratio of specﬁicheats are readily obtainable for a diatomic gas obeying Berthelot’s state equation.
The specific heat at constant volume ¢, is found by substituting equation (7) into equation (6), thus yielding

cvmtn[ 1+ 0 {(§) et B j s

The specific heat at constant pressure ¢, is obtained by substituting equations (1) and (13) into the reciprocity relation

EPPT)?
=¢—T PR,

I and setting

€;,=Cp,—R (14)
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The resulting expression for ¢, is

Cp==0Cyp,
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(‘7 1 ¢p
'y;—l e/ 26p 1— 2 RT? . (15
1 [1 e“““"’]2 RrT2| 1T Zep )
T |
The ratio of specific heats ¥ follows directly, of course, from equations (13) and (15) and may be written
2— bp 1 ¢p
’Yi'—l e 2¢p 1— bp 2RTE
1+ (T) e TR | 1T° 3 %p J
— 2T e
(1—bp)2 RT (16)

Y=

A matter of special interest in the study of channel flows
is the variation of Mach number with cross-sectional ares of
the channel.
most conveniently determined from the ratio of cross-
sectional area at the somic velocity station (the station of
minimum area for any gas, as pointed out by Tsien) to
cross-sectional ares at a station of arbitrary Mach number.
The continuity equation yields this ratio in the form

()2

With the aid of this equation and equations (1), (8), (11),
and (12}, the area ratio corresponding to a particular Mach
number may be determined from a knowledge of the ideal
gas specific heats, characteristic constants of the gas (i. e,
b, ¢, and 8), and, for example, the stagnation conditions. In
general, however, this computation cannot be carried out
entirely analytically. For example, it is seen from equation
(8) that none of the variables can be explicitly determined;
hence, a final solution for any single variable must be ob-
tained graphically or by equivalent means.

In order to relate the fluid properties on the two sides of
a normal shock wave, it is convenient to integrate equation
(9), the energy equation, across the wave. The resulting
expression is

Ve Ve 1y _(2m_2s:
S ety = ()

P, P, Ry P _
(o) rawms =0

Continuity of flow and conservation of momentum must also
be satisfied across the wave. These requirements may be
expressed analytically in the familiar forms, respectively,

pVi=p Vs (19)

(17)

(18)

and

p1Vl2—/.72V32=P2—P1' (20)
Equations (18) through (20) provide the additional informa-
tion necessary to determine the flow through a normal shock
wave. Here again, however, final solutions for certsin of

3 icam

The relation between these two quantifies is

the unknown flow parameters are most conveniently obtained
graphically.
APPROXIMATE FLOWS OF AN IMPERFECT DIATOMIC GAS

This part of the study is concerned with first-order devia-
tions of one-dimensional gas flows from the behavior of an
ideal gas. With this restriction, explicit solutions can be
obtained for all the important flow parameters. Equalion
(2) will, of course, be employed as the equation of state. A
simplification is also allowed in the temperature function for

- the vibrational contribution to the specific heats, since the

specific heats are restricted to vary only in the first order
from their ideal gas values. In this case only large values
of 8/T are considered and the Planck term may be approxi-

mated by
( ) et < ) —(0 7
T) I—e®@TR=\T
Equation (8) may now be reduced to the form
TN=1(py eo [ _plen ]
n [(T) (&) | ()t LB+
(%0_!_1) e'WTﬂ)-—<g-,+l) et

This equaﬁion can be readily solved for p/p, in terms of /T,
retaining only terms of the proper order, thus yielding

1)

3— 27;

2B b [ T ) - -
(o)) (B Jeome

By solving for T/T, in a similar manner, there is obtained

() [ n{on ()Tl (B
() {7

(23)

(22)




OXNE-DIMEXSIONAL FLOWS OF AN IMPERFECT DIATOMIC GAS

A relation between the pressure and density ratios for isen-
tropic expansion is obtained by combining equation (2} with
equation (23). The resulting expression is

B [room G
[ (2) - Jr e (1) -
(@61 ]

Equations (22) through (24) are useful for determining the
nature and extent of small departures from ideal gas behavior
of a diatomic gas undergoing isentropic changes in state.
Isentropic relations will now be obtained between pres-
sure, temperature and density ratios, and the stream Mach
number. In order to do this, it is convenient to reduce
equation (12} to a form consistent with the first-order
approximations. Performing this operation yields

B.@)= [(11’::)) (m) ]

(yi—2)

(24)

and

) 8 .\ _vi—
D (g 30)="5;

so0=3 (" - 7 L@
{[i-eomiemrti—aen (£) (8, [(H) -1,

where (T/T4):, (p/po)s, and (P/P,); are unique functions of the M ach number 1.
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AL S ()
A= ( =%l )2 mme\s) T

_1) (T) (Tﬂ) —(etr.,)(rum:l{ b (1_.__)_1_

1]
Pu _P.’Po OC‘Pu (1 olpy )+
PoRTo P/Pu RTO T."'To
._1% [e—w:"u)_e—ca/ru)cfam]} (25)
where
Ti=(yf—3v:1+3)

An expression for the temperature ratio in terms of Mach
number, stagnation temperature and density, and gas con-
stants is obtained by substituting equations (2), (22), and
(24) into equation (25) and solving; hence

T (T __ 15 £
7=(7), [ 1+ B0t GOD it

p(F)@e] o
where
-] ’
3 e1))

(These functions and all other ideal gas

expressions employed in the analysis are included in Appendix A.) The density and pressure ratios are obtained by sub-
stituting equations (23) and (24), respectively into equation (26), thus yielding

£= ﬁ\ ; (L LG (1
2 (po)i |:1—,—B_(1I)bpo L Cy(3)

where s
B,(3)= ) +f;<_‘*’1)
N2 ‘.
and
g T
D: (7 ﬂI’)=—<1T—;)+ - (29)
[(%)—i—%] = GITo) (T T)=11 L
D, (7 M)
vi—1 J
Similarly
(P) [1733(1f)bpwc’3(m ot
D ( 7 M) (T(;) e“’”’"’] (30)

: ] ] -
22D (20) () e | @3)
where
By(M) =L B, (M) )
Y ALY — - L, m 7
) 2[1 (&), " 2 aen
and .
- (31)

() -~(+5)s

[ %)i_i_%:[ e~ 6/To) [{To/TH—11 -

e Y
vi—1 Dl (To} JI) J

It may be noted that equations (26), (28), and (30) can be
rearranged to give the Mach number in terms of T/T%, o/pe,
and P/P,, respectively.

Expressions for the specific heats and the ratio of specific
heats are derived by reducing equations (13), (15), and (16)
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to conform to the first-order deviation theory. Performing
this operation yields

o1+ —n| @Treon+ 28 @2

¢ -—c,i{l-l- 7‘_1)[<T) —(am_l_ 669 }
and

'Y='Yi{1 —<‘Y£,;: 1) I:('Yi_ 1) ‘(%)23_(“” + (v+—3) %]} (34)

(33)
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It is observed that ¢,, ¢,, and v are independent of molecular
size within the limitations of the theory. This fact appre-
ciably simplifies the determination of the characteristic gas
constants ¢ and b.

The calculation of cross-sectional area of a nozzle for
isentropic expansion of an approximate Berthelot gas can
now be made. For this purpose it is convenient to write
equation (17) as follows:

=(BRE

The local speed of sound @ can be obtained directly from equation (11) by retaining only first-order terms, thus

: 132 2
G=m[1+5p+%%—(%2%1) (%) e—(e.-r):l , (35)
Hence, substituting equations (26), (28), and (35) into equation (17) in the above form yields for 4%/A,
2e~(5) [ 1+ B+ 000 gt Du(Fo2e) () o | 36)
where
B M 'Y‘i+1 * A
() =5E s (B — B ()]
3-24, 8-2
04(M)—22:_!___11) a0 a2 [ () -5 "

6 —_ytl LA - <_ )] ~(0/T0) [(T, T).-—n{ Ty 29[ =1t (i)g 5)2]}_
D‘(TO'M)_M%—I) [Dl (TO’M) Dy M ) [Freermied (T)ﬁ‘e = &) \7T),

- 0T TN T (vi—1)2 7 0N/ TH\® '

¢~ B/T0) LTI ™) u{(ﬁ)i' 60 |:1__ 12% (To.) -T—:)i]} )

and (A*/A); is the explicit function of Mach number given in Appendix A.
Flow through a normal shock wave will now be considered. The temperature, density, and pressure ratios across a
normal shock wave may be related to the ideal gas expréssions for these quantities by simplifying and rewriting equation

(18) as follows:
B)+% ()1 2 B i

ve_ve
2
Substituting equations (2), (19), and (20) into equatlon (38), dividing through by equation (35), and solving for the tempela-

(38

2 =Cy iT 1 (1
ture ratio yields the expression:

where h
aany=2~(2),(+52z2)
ity =(2) 600 {(7) ~(2) s [1-(B). ] -(B) foraee [1 AL
 (40)

Ch(M) =G ) {s

2. [#— 2 [1-(B) (5 fomae [1-(2) ]2} ~(2), B
oi(f6)-00 | () fr—rsmommm (B~ ] e e (R)E) [-()]
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In order to obtain the relation for the density ratio p./ps,
it is convenient to write equa,tion (89) in the form

T,
‘172= T1 (1+€r) (41)
where ey includes all the first-order correction ferms in

equation (40). Combining this expression and equations
(2), (19), and (35) with equation (38) yields the relation

<P1 { ( MZ[BG(MI)bm-I-C's(MI) 1'3552
Do(7p 1) (7)o =25 (T e ]f @
where

san=(7) [75-5.C) b

_1§ 2%, (P:'./PL)i _ ]}
C(3M) 'n{'h [ ) :[+3 !
and
DAL, ar =11 wmraumn L
s T.I.’ A Yi ¢ '

w1 (D[1-E)])

As with the temperature ratio, it will be convenient to write
equation (42) in the form

v

(43)

2_(2) (1+e) 449)

where ¢, is the sum of all the first-order correction terms.
The pressure ratio across a normal shock wave is now ob-
tained by combining equations (19), (20), (35), and (44)
to provide the relation

%= %}),{1‘1'%3{12 Fi)i [(ﬁ)i (ep-f-n)—n]} (45)
in which
. ﬂc=—bpl s (1+2P) (7‘_1)2< ) ¢ TY  (46)

The additional information needed to define the flow
through a normal shock wave is the Mach number Af; on
the downstream side of the wave. This Mach number may
be obtained with the contipuity equation

=)&)

M,
by substituting in equations (35), (41), and (44), thus yield-
ing

M, ﬂ_fz) (1te—
M\ar), e

v [1-C), Jei e -]

(:‘Yiq—"y 1)2 ( % )2 &~ @/TY { (%E)i e—@/Ty) [(Ty/T2) s_ll—]_} (48)
~ri I 3

(47)
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Stagnation conditions downsiream of the wave may be
related to stagnation conditions upstream of the wave with
the three identities

P“z 2 By P°1
PT;(E) Pz/Po) “9)

LAY LI
Poi_<m) (Pz/ Poz) (50)
and

Ty, T/ T,

To, Tl) (TZ/T%) (51)

in which all terms of the right-hand members are given in
previously developed expressions.

It is important to note that the normel shock expressions
are applicable to the study of oblique shock flows. For
example, equations (39) through (46) may be employed
directly by substituting A, sin 8 for Af, wherever it occurs.
In order to determine 14, however, it is convenient to have
a relation between the wave angle 8 and the stream deflection
angle 5. This relation may be obtained by combining the
momentum and continuity equations for flow through an
oblique shock (reference 9) to yield the expression

P P1 cot 8 cot 8-}-1)

which may be written

cot §=tan 8| v:Af*(1—1) (P_JPIT)Tl—l:l (52)

A can then be calculated from the expression

1—'6,-r€a

M, 1/2
M, ) (Pz ¢sin (B—8) (52)

which is obtained from the continuity equation. In this
equation the ideal gas values for the temperature and density
ratios are those corresponding to the initial Mach number
M, and the wave angle 8. Vhen Af, from equation (53) is
known, the remaining normal shock expressions, equations
(49) through (51), can also be applied to oblique shock flows.

It is observed that, in general, all expressions obtained in
the preceding approximate analysis differ from the corre-
sponding ideal gas equations only by small correction factors
containing the Mach number, temperature and density, and
constants of the gas. As pointed out in the Introduction,
this simplifies the investigation of one-dimensional imperfect
gas flows, provided effects of the imperfections are not large.

DISCUSSION AND CONCLUSIONS

The complex manner in which gaseous imperfections influ-
ence general one-dimensional-flow processes precludes the
detailed consideration, here, of more than two flows of aero-
dynamic interest. Before discussing these flows, it may be
worth while to establish more definitely the conditions under
which imperfections in air can alter its dynamical behavior
from that predicted on the sssumption that ideal gas laws
are obeyed. These conditions are easily deduced from the
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equations employed in the analysis and a knowledge of the
characteristic gas constants.? They may be summarized as
follows:

1. The occurrence of temperatures in excess of 800° R, in
which case the specific heats change appreciably.

2. The occurrence of densities in excess of 10 times sea
level atmospheric, in which case the molecules occupy an
appreciable fraction of the available volume.

3. The occurrence of sufficiently high pressures and low
temperatures to cause the intermolecular forces to be
appreciable.

One additional observation should be made concerning the
integrated effect of these phenomena on a particular flow
process. This is that the several imperfections frequently
counteract each other (note, e. g., the state equation and
equations {24), (26), and (27)), and thus alter certain flow
parameters only slightly from their ideal gas values.

The special cases of flow through normal and oblique
shocks in free air (NACA standard atmospheric conditions
at sea level) will now be considered. The pressure and
temperature ratios across a normal shock have been calcu-
lated for Mach numbers from 1 to 10 using equations (1),
(11), (18), (19), and (20). In this case the terms containing
b and ¢ are extremely small (it is easily shown that they could,
in faet, be neglected), and it is sufficiently accurate to use
the values for these constants given in Appendix B.

The pressure rise so determined is shown in figure 1 as
a function of Mach number, and it is seen that it differs by
less ¢han 6 percent from the ideal gas value * up to the maxi-

3 The values chosen for the characteristic gas constants, and the method by which they

were determined, are included in Appendix B.
+ All ideal gas data are obtained from the tables of reference 5.
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mum Mach number of 10. This behavior might be antici-
pated from the ideal gas cquation for the pressure ratio
(Appendix A) which is relatively insensitive to variations
iny at high Mach numbers. The corresponding {emperature
rise across a normal shock is llustrated in figure 2. Here it
is observed that the effect of increasc in specific heats appre-
ciably reduces the temperature ratio below the ideal gas
values at the higher Mach numbers.® It may be deduced
from figures 1 and 2, that the density rise will be considerably
above the ideal gas value at the higher Mach numbers.

- The accuracy of these results will decrease at Mach numbers

in excess of 7, for under these circumstances the temperatures
downstream of the wave appreciably 'e§,ceed 5000° R which
is sufficiently high to cause molecular dissociation and thus
alter the flow. It is indicated in reference 4,° however,
that up to a Mach number of 10, this decrease in accuracy is
significantly manifest only in the temperaiure and density
ratios. (For example, at =10, the effect of dissociation is
to further decrease the temperature ratio from 17 to about
14.5.)

In view of the fact that the changes with temperature of
the specific heats of air do not strongly influence the pressure
rise across a normal shock, up to Mach numbers of 10, it
follows that corresponding pressure effects in flow through
oblique shocks will also be small, provided the Mach num-
ber of the component of velocity normal to the wave is below
10. This suggests, within the limitations obscrved, that
the effect of variable specific heats on those aerodynamic
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Froure 2.—Varlation of temperature ratio across a normat shoek wave with Mach number,
(Initial state—NACA standard atmosphere at sea Jevol.)

8 This result is consistent with Wood's findings concerning surfisee {emperatures at high
Mach numbers. (See referonce 10.)

6In this reference, calculutions similar to those described above have been carried out
including the effects of molecular dissocialion but neglecting the offocts of thermal imperfee-
tions. The results of this reference and the present report are found, where eomparable, to
be in good agreement.



ONE-DIMENSIONAL FLOWS OF AN IMPERFECT DIATOMIC GAS

characteristics essentially independent of viscosity may be
small for some shapes. (Epstein’s findings in reference 11,
concerning hypersonic flows about bodies, pertain to much
higher Mach numbers than those considered here.) The
extent to which this is correct has been investigated for the
simplest shape, a flat plate. Pressures on the upper surface
of the plate were determined, assuming Prandtl-Meyer
flow about the leading edge,” and pressures on the lower
surface were found with equations (45) (replacing 3, with
A sin 8) and (52).8 These data and the corresponding lift
and pressure drag coefficients of the plate were calculated
for Mach numbers of 10 and 20, and for angles of attack
from. 0° to 24° and 13°, respectively. A comparison of the
coefficients with those obtained assuming ideal gas flow

7 The assumption of Prandtl-Mever flow will yield increasingly inaccurate upper-surface
pressure as the Jocal stream temperature approaches absolute zero. In this case the pressures
are so low, however, that they make a negligible contribution to the forces on the plate.

3 This method of caleulating low er-surface pressures requires that the chord of the plate be
Iarge in comparison to the region of the leading edge contained within the shock wave.

956046—H1—17
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over both the lower and upper surfaces showed that the
effect of variable specific heats is very small. (For example,
the force coefficients are smaller in the case of the imperfect
gas but never by more than 3 percent, even at the highest
angles of attack.) This result is not justification for as-
suming ideal gas behavior to calculate the high Mach
number gerodynamic characteristics of arbitrary shapes,
other effects such as specific heat lag being neglected; but
it does indicate that the assumption is justifiable for certain
shapes on which the important pressure forces are obtained
through oblique or normal shock compression.

Aves AERONAUTICAL LABORATORY,
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS,
Morrer F1eLp, Canir., Dec. 30, 1948.



APPENDIX A

IDEAL GAS EQUATIONS

The following are ideal gas equations used in the analysis
of approximate flows of an imperfect diatomic gas: '

ISENTROPIC FLOW EQUATIONS
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APPENDIX B ¢

OF CHARACTERISTIC GAS CONSTANTS
FOR AIR

DETERMINATION

Numerical values for the characteristic gas constants b
and ¢ may be determined from a knowledge of the critical
pressure and temperature of a gas. Values determined in
this manner are, however, generally less accurate in a par-
ticular range of temperatures and pressures than is desired.
Consequently, it is often advantageous to fix & and ¢ such
that theoretical and experimental values of the primary

parameters ¢,, v and compressibility (. e., P/p) are in good

agreement in the range of interest. This method is the
more suitable of the two for most aerodynamic studies as
the variations in pressure -and temperature are limited;
hence, it has been employed in this paper to determine 5
and e, as well as 6, for air. It is sufficient for the illustrative
applications presented here to.determine the former con-
stants only for the approximate flow equations. Separate
values of # are found for the exact and approximate Planck
terms.

As pointed out previously (note the development of approx-
imate expressions for ¢,, ¢,, and v), it is a simple matter to
obtain the characteristic gas constants appearing in the ap-
proximate flow equations. In this example, ¢ and 8 were
chosen first to give agreement between experimental and
theoretical values of ¢, and «, the latter values being calcu-
lated from equations (33) and (34), respectively. Data on
the variation of these quantities with pressure and tempera-
ture at high temperatures were obtained from references 12
through 195 A comparison of these data with theory, setting

% These data have been correlated by the Research Department of the Pittsburgh-Des
Moines Steel Company, and the results of this correlation are presented here.
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¢=2.25X10° °R, ft®/slug, sec® and 6=5800° R, is shown in
figures 3 and 4 for pressures of 0 and 144X 10° pounds per
square foot absolute. The agreement is observed to be good
up to temperatures of 3000° R. Using equations (15) and
(16) to calculate ¢, and «, respectively, and a value of
=5500° R, it is seen that at zero pressure excellent agree-
ment with the correlated data is obtained up to 5000° R.
The approximate theory was then checked at low tempera-
tures with experimental values of 4 given in reference 20.
At temperatures above liquefaction and pressures up to 25
atmospheres, the difference between theoretical and experi-
mental values of ¥ was found not to exceed 3 pereent.

5 §9¢ 8000 , T
+2 'g, Equation (15)-, —]
§ gi Correlated datan -
0w Q7000 e
£5% &
§‘G < (a) //_\/"‘Equaﬁon {(33)
& 56000l ¢y, = 1 !
g . 2 3 5 7 /o 20 30 50x/0%
Absolute fempercture, T, °R
(a) P=0, pounds per square foot ahsolute.
% Sevs000 :
583 “
] X!
L5e 000 Correlated data-- /
ot ¥ AN AT
13 1IN
g% (%) ™ = --""-Equo;‘f‘on (3.'3)
S heooo . : —
‘%8° 2- 3 5 7 o 20 30  50x/0%

Absolute temperature, T, °R
(b) P=144X10%, pounds per square foot absolute.

Figure 3.—Variation of Cy with temperature at absolute pressurcs of 0 and 144%10? pounds
per square foof absolute.
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2% @ |
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(b) P=144X10%, pounds per square foot absolute.

F16URE 4.—Variation of v with temperature at absoltite pressures of 0 and 1443108, pounds per
square foot absolate.

The molecular size constant & was chosen to yield good
agreement between theoretical and experimental values of
compressibility of air. The theoretical values were calcu-
lated from equation (2), and the experimentsal data were
obtained from reference 21. In general, it was found that
using b=0.485 ft*/slug and the previously determined value
of ¢, equation (2) predicts the compressibility of air to within
2-percent error at pressures from 0 to 150 atmospheres, and
temperatures from liquefaction to 850° R. (The deviation
from ideal gas behavior is small above this temperature at
the pressures indicated.)
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