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AERONAUTIC SYPP%RO%S 

--- 

English 

Unit Abbrwia- Unit Ahbravie- tion 

l e n g t h . . - - - -  l 
r ,  1 inle- - - - - - - 1 
Force_-- _ - -  P 

---A a- 

Speed+.-- -,.. 

- .----- --- ----- 

2. GENERAL SY hIBOLS 

Weight = r r ~ g  Y Kinczna sic vhcosity 
Stnndard accelerittion~ of gravf ty--9.80665 m/s2 p Density (nlna.; per 1111it volunle) 

or 32.1740 ftjsec" Standard density of i1r.y itir, 0.12437 kg-ml4-s2 p,t 15' C 
TI/' and 760 rnln; or 0,0112373 Ih-ftY4 secC 

hfass- - 
9 Spzcific ii-~igllt of " sf,aric ta  rd" air, 1.2335 kg!n13 or 

hlolnerlt of inertin == mi-'. (Lildicnt r nxis of 0.07651 lb/'l;u it 
radius of g v r a t i o ~  k ky  proper subscript.) 

Coefficicrlt of viscosity 

Are8 2 to -Angle of catti;?;,: r ~ f  wings (rslative lo th rus t  line) 
Area of wing 
Gap 
Span 
Chord 

i ,  Angle of stwbilizsr :;etting (rels~tive to thrust 
line) 

& Resultant lrlrsrrlerl t 
2 Res~lf tart t ilx~guIt~r r-ctucity 

b" 
Aspect ratio, - S 

v1 
£2 Reynolds nurnbe;., p -- where 6 is a Iinenr dimen- 

Sh 

Trce air speed sion (e.g., for nn nf rfoil of 2.0 it clicrrd, 100 mph, 
1 

Dynamic pressure, - p  re 2 
standard pressure a t  15' C ,  the corresponding 
Reynolds xli:xn'r>rr i s  9135,400; or for an i3,iri'oil 

I, Lift, nbsoliitc coef-5cicr1t. i?L==7, 
g.3 

of 1.0 t:!.tord, ; 00 rjtps, tfie corresponding 
Reynoicls rlilrnbcr is fj,%65.000) 

Drag, absolu t-e cocitician t 15' - D 
!is - 

Do Profile drag, 12 h?olir te cocfficicnt CDo===- no Angle o l  sttack, iu:ir~it,e aspect rztkio 
PS a ,  Anaieofwttacir , i r~t i t~red 

n* Induced tlri~g, ;~'>sc~iute coeff~ciccnt Coi=T. 
QU 

a, Angle of t l C t ~ c k ,  al~solute (nleasursd franl zero- 
l i f t  n o ~ i  tior11 
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REPORT No. 496 

GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF 
FLUTTER 

SUMMARY 1 of a single degree of freedom would be da~nped out hy 
2 x e  aerodyna,nic jorces 0% an oseillatin airfoil or ( the air forces. The air forces, defined as the forces due - .  

airfoil-aileron rom bination o j  three in dependent degree8 
o j  freedom haze been determined. I'hs problem resolzves 
itself into the sdut ion of certain &$nite integral*, which 
huve been identi3ed as Bessel -#unct,ions of  the first and 
second kind and of zero and-$rst order:   he theory, 
being based o n  potential -$low and the Kut ta  condition, 
is jundumentally epuivaZent to the eonz~entional wing- 
section theory relating to the steady case. 

1 
The airjorces being known,  the mechanism o j  aerody- 

namic instability has been analyzed in detail. An exact 
solution, inroluing potential $ow and the adoption of the 
Kutta condition, has been arrived at. The .solution i s  o j  
a simple form and i s  expressed by means of a n  auxiliary 
parameter k. The mathematical treatment also vrovides 

to the air pressure acting on the wing or wing-aileron 
in an arbitrary oscillatory- motion of several degrees of 
freedoin, are in this paper treated on the basis of the 
theory of nonstationary potential flow. A wing- - 
section theory and, by analogy, a wing theory shall he 
thus developed that ~pplios to the case of oscillatory 
motion, not only of the wing as a whole but also to 
that of an aileron. It is of considerable importance 
that large oscillations may be neglected; in fact, only 
infinitely am all oscillfi tions about the position of 
equilibrium need be considered. Large oscillations 
are of no interest since the sole attempt is to specify 
one or more conditions of instability. Indeed, no 
particular type or shape of airfoil shall be of concern, 

a roncenient cwlie arrangement permitting a ingorm 
treatment oj all subcases of two hgrees d f r e e d o m ,  The 
@utter wlon'ty, deJined as the air velocity at which-flutter 
starts, and which i s  treated as the rnknown g m t i t y ,  i,q 
deterwhined as a junction a ratio the jm- 
psencies in the separate degrees orneedomfor  any rnagni- 
f d e s  and combinations the ai$oil-ai/eron parameters. 

r For those interested solely or particularly in the numeri- 
cd solutions Appendix I has been prepared. ~h~ rou- 
line in solving numerical is pzd 
dm detached from the theoretical background d 
paper. ltJiTSt is necessary to determine a certain number 
of constants pertaining to the case, then to perform a j e w  

ea lcu~t ions  as indicated. ~h~ result is readily 
obtained in the form of a plot of $utter velocity 
frequency jor a n y  values of the other parameters chosen. 
~h~ numerical work of is sim- 
pli$ed by referring to a number of table,s, u,hic, are in- 
e l d e d  in ~ ~ ~ ~ d i ~  1. A number dlUStratiw 

I 

and r . rp~n 'm entni r ~ c ? r ? t r  nrr giren i n  :lppr uilir 11. , 

j 

the treatment being restricted to primary effects. The 
differentia! equations for the several degrees of freedom 

be put down. Each of these equations contains a 
regarding the eqnilibrillm of a system of 

forces. The forces are of three kinds: (1) The inertia 

forces) (2) the restraining forces, and (3) the air forces. 
There is pres1lmably no necessity of solving a general 

of Or divergent lnotion~ but only the 
border case of a pure sinusoidnl motion, applying to the 
rase of unstable eqoilihriurn. This restriction is par- 
ticltlarly important as the expressions for the air force 
developed for  oscillator^ lnotion can thus be employed* 
Imagine a case that is unstable to a very slight degree; 
the amplitudes will then increase very slowly and the 
expressions developed for the air forces will be a ~ ~ l i -  
cable. It is of interest simply to lrnow under what 
e~rcum~1ances this condition Inny obtain and cases in 
which the amplitudes are decreasing or increasing a t  H. 

finite rate need not be trea tcd or specified. A1 thollgh 
i t  i. noq l ih l~  to  trc:r t ! h ~  Ir~t tcr  r t ist .~, t h ~ y  til-rl oi 1 1 0  

: : 1 t , t I .  S01- ic tlto ir t t t l r  ~ ! : i !  

I:~TRODTJ'C'TIBN I or 50ilri friction of th r  -triicturc of pr inls ly  concern. 
It has been known that a wing or wing-aileron s t n~c -  The fortunate sit~iation exists that the effect of the 

turally restrained to a. certain position of equilibrium solid friction is faoorable. Knowledge is desired con- 
becomes unstable under certain c.,nditions. A t  least ( cerning the condition as esisting in the ahwnce of the 
two degrees of frccdorn are required to create n con- 1 intcrnnl friction, 8s this case constitut'es a sort of lo\rrcr 
dition of instability, ns it rnn he sho~vn thnt vibrations j lirnit, which i t  is 110t uiwnys tiesirable to exceed. 
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Owing to the rather extensive field covered in the 
pnper i t  lius been considered necessary to ornit many 
elementary proofs, it being left to the reader to verify 
certniri spec.ific stutexnents. In tho first part of the 
paper, the velocity potentials due to the flow around 
the airfoil-aileron are developed. These potentials 
are treated in two classes: The noncirculating flow 
potentials, and those due to the surface of discon- 
tinuity behind the wing, referred to as "circulatory" 
potentials. The magnitude of the circulation for an 
oscillating wing-aileron is determined next. The 

FIGURE 1.-Conformal representation of the wing profile by a circle. 

forces and moments acting on the airfoil are then 
obtained by integration. In  the latter part of tlre 
paper the differential equations of notion .are put 
down and the particular and important case of un- 
stable equilibrium is treated in detail. The solution 
of the problem of determining the flutter speed is 
finally given in the form of an equation expressing a 
relationship between the various parameters. The 
three subcases of two degrees of freedom are treated 
in detail. 

The paper proposes to disclose the basic nature of 
the mechanism of flutter, leaving modifications of the 

VELOCITY POTENT.IAi,S, FORCES, AND MOMENTS OF 
TI4E NONCIRCULATORY FLOW 

We shail proceed to calculate the various velocity 
potentials dut to position and velocity of the individ- 
ual parts in the whole of the wing-aileron system. 
Let u s  tempolaariiy represent the wing by a circle (fig. 
1). The potenliial of a source c a t  the origin is given 
by 

e 
' o = ~  log (zZ+y2) 

For a source c: ah (x,, y,) on the circle 

Putting a double source 2c at (xl,yl) and a double 
negative source -2r at (xl,- yl) we obtain for the flow 
around the circle 

The function (p on the circle gives directly the sur- 
face potential of a straight line pp, the projection of the 
circle on the horizontal diameter. (See fig. 1.) In 

-- 
this case y = 41 - x2 and p is a function of x only. 

We shall need the integrals: 

(x-x1)"~y--~J' 1 1og@-xd2+(y+uI)2 
dx, = 2(x-c) log N - 2  4 1  cos-lc 

' 

and 

-- 
1 -CX- 41 --Zl JI -c2 

where , N- -. x-c 

primary results by secondary effects for future investi- 1 The iocstion of the center of gravity of the wing- 
Fati0ns.l Such secondary effects are: The effects of a I aileron xa is measured from a, the coordinate of the 
finite span, of section shape, of deviations from poten- 
tial flow, including also modifications of results to 
include twisting and bending of actual wing sections 
instead of pure torsion and deflection as considered in 
this paper. 

The supplementary experimental work included in 
Appendix I1 similarly refers to well-defined elementary 
cases, the wing employed being of n, large aspect ratio, 

axis of rotation (fig. 2);  XB the location of the center 

nondeformable, and given definite degrees of freedom 
by a supporting mechanism, with external springs 

tile positions of wing or wing- 
aileron.  he experimental work was carried on 
lnrgcly to \-erify ttlo gpncr)ll ahnpe  of the approxi- 
~ l l u t e  IIIRRlljtlldt:s illVOiV(ld i l l  i hC, t:Lsoreti(.ully IJ ;~ -  
dieted respollsc elraracterisLil-j, lis tile present report 
is limited to the mathematical aspects of the flutter 
problem, specific recommendations in regard to prac- 

FIOUBI 2--~arameters 01 the ~QIO~I-aileron combination. 

of gravity of the aileron is measured from c, the coordi- 
nate of the hinge; and T. and r b  are the radii of gyration 
of the wing-:-aileron referred to U ,  find of the aileron 
referred to  the 11ii::;r. l ' h ~  ql ! p n  tlries i.3 and ,*,I arc 
" red~ icec i " '  values, ILS deiined l t i ~ c r  irl the p:q)cr. 'i'ht~ 
quantities a, z., C, and zp are positive t,oward tho rear' 
(right), h is the vertical coordinate of the axis of rota- 

tical applications aro not given in this paper. ' tion at a with respect to R fixed reference framn and is 

"'i'he etTect 01 iuteraal friction is in sorue cases essential; this subject s i l l  !M 
positive downwnrcl. The angles a and B nro positive 

contained in a subsequent paper. clock~rise (right-hnd ttirn). The wind velocity Y is to 



I I' h To obtain the effect of an angle of the entire air- pp(x c )dx  = v b ~ 2  b 
27r [-Yup(x - c ) d t  - - 5~/3T8 foil, we put c  = - 1 in the expression for cp,, hence a 

b 
* 
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-- 
pa=vab J1 -x2 b2 jT7  

S - y p j ( r  - c)ds = -- 5 
To depi;.t the airfoil in downward motion with s veloc- 

the right and horizontal. The angle (of attack) a 
refers to the direction of v, tho aileron angle B refers to 
the undeflected position and not to the wind direction. 
The quantities r, and ra always occur as squares. 

. Obserre that the leading edge is located a t  - 1, the 
trailing edge a t  + 1. The quantities a, c, xa, 56, T,, 

ity h ('% down), we need only introduce -h instead of a. CONSTANTS 

v + c3 -I- c cos-'c 
Thus 

\ INTEGRALS 

1 b S-- b Ax= - -uay4 2  pad^=-^^^ 2 

b *  In&= - -hT, 2 cpj,dx = ,j b *  h , ~  

Finally, to describe a rotation around point a at an 
angular velocity h, we notice that this motion rnay be 
taken to consist of a rotation around the leading edgs 
c = - 1 a t  an angular velocity ii plus a vertical motion 
with a velocity- & ( I +  a)b .  Then 

'i b2 - -- 
v & = - - ~ ( x + 2 )  JI - x 2 - & ( I  +a)bZ J1 -x2 

2n 

and TO, which are repeatedly used in the following s-- xa 
, treatment, are ail dirnensionless with the half chord b fpkds = &b2T9 p,+dx = - &b2 - 2 

as reference unit. 
The effect of a ff ap bent down a t  an angle 0 (see fig. 

b 
pods = - Z ; ; ~ @ T 5  S-- b 

- -v@T4 
2) is seen to give rise to a function cp obtained by sub- 2 

stituting - vpb for E ;  hence l1 pbdx = - - b 2  b ' 
27r pjdx = - B T ~  2- 

pfl=%[ ~ ~ c o s - l c -  (z-e) log ~j b - e x =  - - a l  2 ' J - ~ l q . ( x - c ) d x -  - p a e n  b 
To obtain the effect of the flap going down at an 

angular velocity 8, we put r = - (x, - c )bb2  and get - c)dx = - 
b 

2 J - y p i ( ~ -  c ) ~ x =  - -hcr 2 

IPI,==g(,/1-cl~F7+ cos-lc(x- 2c) Ji7 / ~ r a ( ~ - c ) d i = ( . i r ~ 3 ; ,  J-yp;(~- c)& = aYT14r - ( x - e l 2  log N] 

VELOCITY POTENTIALS 

cp. = vob 41 - x2 

pi-Ab41 -s2 

p i = 6 b 2 ( ; x  - a )  J- 

The following tables give in succession the velocity 
potentials and a set of integrals with associated con- 

- (x c) log AT; 

1 --- 
T8= -- 41-2 (2c2+  l)f c c0s-I c 3 

--- - 
where N =  I - c x -  4 1 - x '  4 1 - c 2  -- 

stants, which we will need in the calculation of the air 
forces and moments. 

The velocity pot;c,ntiitls being Icnown, we are ablc tc~ 
calculate local pressures and by integration to obtfiin 
the .forces and molnentis ncting on the ilirfoil anti 

2 Borne of the more diWcult iotegrnl evaluatio~ls are given in Apwodir 111. 1 aileron. 



Employing the est,ended Bcrrloulli Theorem for un- 
steady flow, the local pressure is, except for R cons t~n t  

zo2 39 P.=-r('+r) 
where w is the local velocity and p the velocity potcn- 

bv tia1 at the point. Substituting w=v+-  we obtain bx 

VELOCITY POTENTIALS, FORCES, A N D  MOMENTS 
OF THE CIRCULATORY FLOW 

I n  the following we shall deterlrline the velocity 
potentials and associated forces and moments due to rr 
surface of discontinuity of strength U extending dong 
the positive x axis from the wing to infinity. The ' 
velocity potential of the flow around the circle (fig. 3) 

where v is the constant velocity of the fluid relative to 
the airfoil at infinity. ,Putting down the integrals for 
the force on the entire airfoil, the moment on the flap 

ultimately for the pressure difference between the 
upper and lower surface a t  x 

I 
' FIGURE 3.-Conlormd represenlation of the wing profile with refcrencc to the 

circulatory flow. 

resultingfrom the vortex element - A P  a t  (Xo, 0) is 
Y 

around the hinge, and the moment on the entire air- 
foil, we obtain by rilealls of partial itltegrtibions 

Or, on introducing the individ~lal velocity potentials 
frorn page 5, 

where (X, Y) are the coordinates of the variable 
and Xo is tho coordinate of - AI' on the x axis. 

1 
Introducing Xo + - .= 2;r0 

iyo 
-- 

or X,, = xo + JG2 - 1 on the x ~ x i s  

and X = s  t~nd Y=J1- s3  on the eircle 

the eq~lnt~ion hecoktles 

This expression gives the clockwise circulation 
around the airfoil due to the elelllent - AI' at TO. 

We have: p = - 2p(% + v 2) 
But, since the eIeille,nt - A1' will now be regarded tts 

rnovi~lg to the right rel~ttive to the airfoil with H 

velocity v 

Further  

2 n bq - --- 
AI' bx 4.r: - 1 
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To obtain the force on the aileron, we need the 1 F'in-?I?. 
integral 

' Thus, for the force on the aileron 

Putting iir = l;Tdro and integrating 

Further, for the lno~nent on the entire airfoil around a 

I I 1 4 - 1  A l l  1 /1 

for c-- - 1 we obtain the expression for P, the force 
on the whole airfoil 

Since U is considered stationary with respect to the 
fluid elernen ts 

LT= f (vt - xo) 

where t is the time since the beginning of the nlotion. 
U is thus a function of the distance from the location 
of the first vortex element or, referred to a system 
moving with the fluid, U is station.ary in value. 

Similarly we obtain for the moment on the aileron 

and 

Integrated, this becolnes 

THE MAGNITUDE OF THE CIRCULATION 

The magnitude of the circulation is determined by 
the Kutta condition, which requires that no infinite 

I ( x - C )  (ro+2) velocities exist at  the trailing edge, 
( + ) x c d x  j E 2  Jrm or, at x= 1 

Introducing the values of pa, etc, fro111 page 5 nntl 

b 
4 

(pr from - page 6 gives the important relation: a x  

--- 
' j ' j 2 1 .  ; l z  1; 1 7 ~ * O l l l p ~ l ~  IY!! ! ! I ( \  - ( 1 - - r j  

I i ~ l t l  i~ o ! i t ! L i o ~ i ,  b A , , t  , I  i ~ , i ~  ~ i l c  Liow d i t ~ i l  i t a , i \  

1 - 
2 + (cos-.~c - e 41 - c2) 

the airfoil at  tile trrtrling edge. -1 I t  is obsel-ved t h t ~ t  t.he rcltttion reduces to that of the 
4- Kuttn conditio~l for sttitio~lt~r-y flow 011 plit tillg xr,= a, 
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and in subsequence omitting the variable parameters 
t i ,  @, and h. . 

Let us write 

. 
Introduced in (IV) 

from (V) 
r- 

1 
FIGURE 4.-The functions F and G wainst T -  

and from (V1) 

Introducing 

we obtain finally 
P = - 2p~baCQ (VIII) 

1 + ~ ( C O S - ~  ~-~.\/1--2) Q =  --P~b2(I;2G-Td)& (IX) -1 

I where Q is given ~ b o v e  and C- C(k) will be treated in 
the following section. 

I VALUE OF THE FUNCTION C (k) 

i [ t  ( i - X O ) + P ]  I Put  U =  Uoe 
where s = vt (s+ ( 0  11, the distance from the _first vortex 
element to the ~i.*foil, and k a positive constant deter- 
mining the wave length, 

' then 

I Theso integrals are known, see next part, formulas 
(X1V)-(XVII) and we obtain 

where 

F= J I ( J l+  Yo) + Y i ( y ~  T Jo) 
(4 + Y0I2+ (YI -*Id2 (=I) 

These functions, which are of fundamental import- 
ance in the theory of the oscillating airfoil are given 

I I 
graphically against the argument 3 in figure 4. 

I SOLUTION OF THE DEPU(1TE INTEGRALS IN C BY MEANS OF BESSEL 
FUNCTIONS 

I We have 
e-r coeh t cosh nt dt 

(Formula (34)) p. 51-Gray, Mathews 
& MaeRobert: Treatise on Bessel 
Functions. London, 1922) 

where iz 
K, ( t )  = e G,, (it) 

(Eq. (28), sec. 3, p. 23, same reference) 1 and .- . - 
but 

'x ((2 )= E ITe (x) + (10:: 2 y) e l ,  (I) 2 - 

(where Y, (x) is frorrl Pi, Siclsen: 
Handbuch der Theorie der Cylinder- 
funktionen. Le.ipzig, 1904). 

8 Thh map also be expressed In Hankel functions, C - %  ZJI(') + i  Ha:') 
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Thus, I From equabiorls (111) tind (X)  

Gn(x)= -; [ Y ~  (x)  (x)] 
We have I 

dx 
1 < I  or 

x + i J m  sin kxdr - - Yo (k) + i i  J, (k) = 2 d x r l  

Thus, I t  

(XTV) 
. 6 

" sin kxdx 71- 
(XV) 

Further, 

K~ (-ik) =sm = e f  =xdx 
eik eoshidi = fi j;-. 

2- 2 

Thus, 

J=x$;F1"" - - - 7r - Yl (k) 
2 (XVII) 

* TOTAL AERODYNAMIC FORCES AND MOMENTS 

TOTAL FORCE 

Frorn equations (I)  and (YIlfI) we obtain 

P = - pb2(er*& + 7th - rbail - vT44 - T1b& 

TOTAL MOMENTS 

From equations (11) and (IX) we obtain similarly 

DIFFEBEN'I'IAL EQUATIONS OF IblOTION 

Expressing the equilibrium of the moments about a 
of the entire airfoil: of the moments on the aileron 
stbout c, and of the vertical forces, we obtain, respec- 
tively, the following three equations: 
a: - IaiiA IBBA b ( ~  - a)S9B - Sah- aCa + A t f a  = O 
8: - I ~ B -  b ( c -  a ) a ~ ~ -  hsB- ~ C ~ + M ~ =  o 
h:  - ~ M - & S ~ - ~ ~ S ~ - ~ C ~ + P = O  

Rearranged : 
a ~ ~ ~ + B ( l ~ + b ( c - a ) ~ ~ ) t . h ~ , + a ~ , - i ~ . = ~  
8: a ( ~ ~ + b ( c - a ) ~ ~ ) + f i ~ ~ + i ; S B + f l ~ ~ - ~ ~ = ~  
h:  i l ~ , + ~ ~ , + h ~ + h C , , -  P = O  
. The constants are defined as follows: 

PI  mass of air per unit of voIurne. 

b? half chord of wing. 
Mt mass of wing per unit of length. 

S~SS, static molnents of wing (in slugs-feet) per 
unit length of wing-aileron and aileron, 
respectively. The former is referred to 
the axis a; the latter, to the hinge c .  

L I a t  moments of inertia per unit lerrgth of 
wing-aileron and aileron about a and c, 
respectively. 

Q a ,  torsional stiffness of wing around a,  cor- 
responding to unit length. 

ca, torsional stiffness of aileron around c ,  cor- 
responding to unit length. 

(A? stiffness of wing in deflection, ccrrespond- 
ing to unit length. 

DEFINITION OF PARAMETERS USED IN EQUATIONS 

apb2 
K = the ratio of the mess of a cylinder of air of 

a diameter equal t o  the chord of the 
wing to the mass of the wing, both taken 
for equal length along span. 
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t .  = J&, tllc radius of gyration divided by 6 .  

sa x ., =--, Mb the center of gravity distance of the wing 

from a, divided by b. 

W. = 42, the frequency of torsional vibration 

around a. 

i a =  4%. reduced radius of gyration of aileron 

divided by b, that  is, the radius at 
which the entire muss of the airfoil 
would have to be concentrated to give 

< J L  

the moment of inertia of the aileron Ig.  

t' Yfl 
xp = ; ~ i ~ .  r e i l ~ ~ c s d  conter of gravity distance from c.  

aa=r!G5, frequency of torsional vibration of aileron 
u 1, 

t around c. , 
- 

w, = Jar frequency of wing in deflection. 

FINAL I~QUAI'XONS IN NONDIMENSIONAL FORM 

On introducing the quantities 114a, AfDJ and P, 
replricing Tg and T13 from page 5 ,  and reducing to 
nondimensional form, we obtttin the following sys tern 
of equations: 

" i T: (A) t i [ r : - + x ( i + a 2 ) ] + h ; ~ ( i - a ) + a m 2 + 8  . I: T ~ + ; C - ~ ) L ~ - - K -  7r ( c - a )  r 
. ,  ' 

SOLUTION OF EQUATIONS / Having introduced these quantities in our system of 
As mentioned in the introduction, we shnll only have I equations, we divide tllrollgll by 

to  specify the conditions under which an unstable / (:k>zK. 

equilibrium may exist, no general solution being 
needed. We shall therefore introduce the variables s t  
once as sine functions of the distance s or, in complex 

1 form wit11 - as an auxiliary parameter, giving the k 
ratio of the wave length to 2~ times the half chord b: 

ik -?- 6 . d  
a= aOe b =doe 

and 

where s is the distmce from the airfoil to the $rst 

We observe that the velocity v is then contained in 
only one term of each equation. \Ye shnll consider 
this term containing v as the unlinown parameter !2S. /' +-- 
To distinguish terms contairiing S we shall employ a 
bar; terms without bars do not contain ,Y. 

We shall resort to the following notation, taking care 
to retain a perfectly cyclic urrnngernent. Let the 
letter A refer to the coefficients in the first eqlrution 
not containing C ( k )  or S, I3 to similar coefficients 
of the second equation, and C to those in the third 
equation. Let the first subscript a refer to the first 
variable a,  the subscript 0 to t.he second, and h to the 
third. Let the second subscripts 1, 2, -3 refer to the 
second derivative, the first derivittive, and the argu- 

of @ and h with respect to a. 1 the second derivative of a and-not containing C(kj or 

ds vortex element, -=u ,  and cl and p2 are phase angles d t 
ment of each variable, respectively. A,, t l u ~ s  refers 
to the coefficient in the first equation associated with 
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.; Ch3 to the consttint in the third equation attached 
etc. These coellicirnts are ns follows: 

ra2 -!- (; + a2) A*1= 
, .  < 

A,, = (a - a )  

AaS = 0 . - 

ADI="-"+ K T  (c-a)(?-$) 

A ~ - I [ - ~ ~ ; ( $ - ~ ) , T ~ ]  T 

1 and 

to 

$a+ilaa, R4+ilaB 
& % + i 1 b a ,  Z b 6  +i166 Case 3 

' The solution of the irlstr~bility problem i ~ s  contained 
in t . 1 1 ~  systern oI three rqt~iitiolls .I, n, ilild C is given 
by the wnislling of a third-order drtermi11:~nt of com- 
plex numbers rei~resen ting the coelficierlts. Tllc solu- 

I tion of particular sobcnscs of two degrees of freedom 
is given by tho minors involving the particular co- 
efficients. \lro rh.111 denote tlle case torsion-aileron 
(a,  8) as case 3, ~riierorl-(lt~$cction ( p ,  / A )  ;IS cast: 2 ,  irnd 
dejlection-torsion (h, a) as case 1 .  The determinunt 
form of the solutiori is given in the r n i ~ ~ o r  case and in 
the three possible s u  bcuses, resprc tively, by: 

' .  -- 
. hgaa= 

z b s f  ilba, R b , +  i lbh i l B c f i + i l c D ,  zCh+ilch 1 z" 

Case 2 

- 1 Ech+irchr Bca+iIca 1 
R.,,+ilah, l z ,+i laa  j=O Case 1 

I REAL EQUATIONS IMAGINARY EQUATIONS 

N(~E.-Terms with bars contain X; term8 without bars do not contsin S. 

The 9 quantities &,., RUB, ete., refer to tlle real parts 
and the 9 quantities La, laB, etc., to the imaginary 
parts of the coefficients of the 3 variables a, P ,  and h 
in the 3 equations A, B, C on page 10. Denoting the 
coefficients of 6,  a, and a in the first equation by p, 
Q, and r ,  

C , = O  
1 

G I = ;  + 1 * 

ch2 - 0 

which, separeted in real and i~naginary parts, gives 
the quantities R,. and I.. . Similarly, the remaining 
quantities R and I art: ob tnined. They are all func- 
tions of k or C(k) .  The terms with bars Ea,, I?,,, 
i~nd  Rc,i t ~ r e  S W I I  t o  be tile L)rdy o : l ~ s  VO;I t t ~ i ~ i i n y  I ! I C ~  C'm = 0 

-.___I___ 1 ur~l<nuwfi /I-. 'i'l!kk q ~ i ~ i ~ \ t l t l . . > ;  i i  a~lci :i' t,viii t ~ c  cjc>fi~~c>d 
'Tlir filetor ! u r  2 is o ~ t  ~ l ~ c l u ~ i r r ~  in t t~ese eousLouts. see the  expresslous for ~h0I'tly. The qlli~nbities f i  and I are give11 ill tile 

i; h J  
the R's and I's oa next page. 1 f ~ l l i l ~ i n g  list: 

3 > '  
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(I',. -;:- ; 2 ( a  + {) F 

The solution as given by the three-row determinant 
shall be written explicitly in X. We are immediately 
able to put down for the general case a cubic equation 
in X with complex coefficients and can easily segregate 
tho three subcases. The quantity D is as before the 
value of the determinant, but with the term containing 
X missing. The quantities LK.., &IbB, and M,, are 
the minors of the elements in the diagonal squares 
aa, bp,  and ch, respectively. They are expressed ex- 
plicitly in terms of R and I under the s~lbcases trented 
in t l ~ e  following paragraphs. 

' AUu+Q,,X A , ,  A n h  I I 
I I 

D== 1 &a . i , , - : - i r ,~  -= (j 

where A,,=R,,+il,, etc. 

CompXe:~ t:~lbic equation in dE 

Q.G,&;+- -I- (QaQsric,+ RBQ, A,. -t A,,) X 2  
i iQaMa, + Qdii,, + QhMd X+ I)-0 (=I ) 

Cam 3, :u, 0) : 

aa~i..X2-t- ( Q ~ A , ~ + Q , A , ~ > ~ + M , ~ = O  (xxrr) 
Case 2, (0, h) : 

Q&hX2$. (QgAeh+ a h A b ~ ) X + M a a = O  (=In) 
Case 1, (h, a) : 

Q h Q a 1 Y - f -  (QhAaa+QaAch)ry+Mb~=O (XXIV) 

and finally 

We are a t  liberty to introduce the reference param- 
eters w, and T f ,  and the convention adopted is: w ,  is 
the last o in cyclic order in each of the subcases 3, 2, 
and 1. 

Then %=(->'and G.+,=l ,  thus for 
Wn+irn+~  

Case 3, om== (:$;)'and - Qd= I 

To trest the goneral case of three degrees of freedom 
(equation (XXI)), i t  is observed that the real part 
of the equation is of third degree while the imaginary 
part furnishes an equation of second degree. 2 .  
problem is to find values of X -- satisfying both eq-a: 
tions. We shall adopt the following procedure: Plot 

1 
graphically X against for both equations. The points 

of intersection are the solutions. We we only con- 
I cerned with positive values of g and positive values of 

X .  Observe that we do not have to solve for k, but 
may reverse the process by choosing a number of 
values of k and solve for X. The plotting of X 

1 ageinst 2 for the second-degree equation is si~nplu 

e~:(;~;a;ll, i J , l t  - c ~ 8 . d  t l ~ i :  - I ,  ~3ice\v!i~t,  I I I C ~ ' ;  

] ~ ~ ' > ~ ~  ir;:i-+ =: , A - A , i i i j r i .  1 1 ~  v r  .> ,-( Y, 

the gcnertil case is ~i 103s j::. ~ i i c . ~ ;  inlportance than 
are the three aubcases. ., The equation simplifies con- 
siderably, becoming of second degree in X. 
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We shall now proceed to consider these three sub- 
cases. By virtue of the cyclic arrangement, we need 
only consider the first case (a,  (3). The cornplos 
quadratic equations (XSII) -(XXJV) all resolve 
t,hemselves into two independent staternen ts, which 
we shall for convenience denote "Imaginary equa- 
tion" a d  "Real equation", the former being of first 
and the latter of second degree in X. A11 constants 
are to be resolved into their real and imaginary parts, 
denoted by an upper index R or I ,  respectively. 

Let Ma, = MRaa + iAWraa and Is t similar expressions 
denote Mba and Meh 
Csse 3 ,  (a,@). Separating equation (XXII) we obtain. 
( I )  Inmginary equation: 

(2) Beal equation: 
\ 

Eliminating X we get 

By the convention adopted we have in this case: 

Arranging the equation in powers of Qa we have: 

a,'[- MIc, (Rbfllba) +MRcJbfi21 fia [ (M1ch> * 
-Mrch(Roarbfi+Iaabfl) +2MRchIaarb~l 
+ [-fifrchBaaIaa+ MRchIaa21 = O  

But we have 

Finally, the equation for Case 3 (a, 8 )  becomes: 

Q ~ 2 ( M R C h ~ b f 1 2 - M ' c h R b f l l b b )  + % [ - M ' c h ( R a j d b a +  Iu&ba) 
+2MRehIaaIbfl] MRchIaa" -'c$aaIua= 0 ' ( n v )  

where 

The remaining cases may be obtained by cyclir 
rearrangamen t : 

1 

Case 2, (/3,h) w,= G L E ~  a p = t )  rrp2 Q*=I 

Qg(M",oI , , 2 -b f :aRchPch)  + Qfi[-M;a(RbhL~+ IbhRcfi) 
+ 2 h f ~ a I b a ~ ~  + Ana:QIbB22 1'Mi4EbBIbB 0 (X7iYv1) 

 here %a= Rb@ R c h -  RbhRfl- IbflIch $I IbhIc~ 
Mi, = RbpIch - RbhIcb + 1bSncn - IbnRc6 

1 ~ a s e l ~ ( h . 4  a,=% t l h = ( 2 ) ; ?  n,= 1 

Qi (M!~1aa~-Mi$atJatJ + %[-Mia (RcaIah + IcaRah) 

+ 2 1 ~ ! J c n ~ ~ u l  + Itf?fileh2-M&c,11Ch 0 (XXVII)  

Equations (XXV), (XXVI), and (XXVII) thus 
give the solutions of the cases: torblion-aileron, aileron- 
dejlectisn, and defEection-torsion, respectively. The 
quantity ii may immediately be plotted against 

1 for any value of the independent parameters. 

The coefficients in the equations are all given in terms 
of R and I, which quantities have been defined above, 
Routine calculations and graphs giving R against 
1 E are contained in Appendix I and Appendix 11. 

1 Knowing related values of fi and f;,  X is immediately 

expressed as a function of a by means of the first- 
degree equation. The definition of X and Q for each 
subcase is given above. The cyclic arrangement of 
all quantities is very convenient 8s it permits identical 
treatment of the three subcases. 

It shall finally be repeated that the above solutions 
represent the border case of unstable equilibrium. 
The plot of X against Z? gives a boundary curve between 
the stable and the unstable regions in the XSt plane. 

I 1  I t  is preferable, however, to plot the quantity X 
instead of X, since this quantity is proportional to the 
square of the flutter speed. The fitable area can easily 
be identified by inspection as i t  will contain the axis 
1 I p x = O ,  if the combination is stable for zero velocity. 



APPENDIX I

PROCEDURE [N SOLVING NUMERICAL EXAMPLES

(1) Determine the R's and ]'s, nine of each for a I tions of the two in.te, pendent parameters a and e only)
major ease of three degrees of freedom, or those per- The formulas are gi:,ren in the following list.

taining to a particular subease, 4 R's and 4 I's. Refer
to the following for tile R's and l's involved in each

case:
The numerals 1 to 9 and 11 to 19 are used for con-

venience.

(Major case) Three
degrees of freedom

1 Ra. I_. I1

2 Ro_ Io_ 12 '

:-. 3 R.h I°_ 13-

..... 4 R_. Ib. 14

5 RbB Ib_ 15

6 Rb_ Ibh 16

7 R_a I_. 17

8 R._ _I_ 18

9 R_h I_ 19

(Case 3) Torsional-
aileron (a, fl)

1 R_. Ia_, "11

2 R_a I_ 12

4 Rba Ib. 14

5 Rb_ Ib_ 15

(Case 2) Aileron-
deflection (¢, h)

"5 Rb0 I_o 15

6 R_n I_ 16

8 R_ I_ 18

:- 9 R,h I_h 19

....... (Case 1) Deflection-
torsion (h, a)

7 R_. I¢_ 17

9 R_n I_h 19

1 Ra_ I,_. 11

3 R_n .[_h 13

I t has been found convenient, to split the R's iu two
• 1

i /1parts R-R'-r-I_ , the forme_' being mdepen_en_ of

the argument_. The quantities I and R" are func-

,, 1 1 I(_i__a)G___} . " (1)R _.=_2(a+_) _ F

R"_ = _ 2 G " (3)

1
1T_:!(2- a) G ft " (4)R"_. = - _ _-

_ 1 T,G- T,T,o) (5)
- _- k _| 2

R",_= -1T-'_G (6)

_1,.. f}
R"_=--_ THG 2T, o-k (8)

1
R"_a --- - _ 2 G (9)

1 1 1 1 (11)
Ia,.= - 2(a-J--_)l(_-a) F+ _a] +_ -a

I_= -l [(a + I)(T,,F + _ T, oG)+2p (12)

-}-(t-a)T,}

l.n= - 2(a T1)F (13)

T,_I('I a)F+_G]+I(p--T, 1T,) (14)Ib,.=--_ [\_- -_

1 c_)a/_
Where p = - _ (1

]_n = T_ F (16)
71"

I_,=2{(I_a)F+_G}.i_I (17)

I¢a='_((1 ,1,,F+_T, oG). --T_}• : . . (18)

I_,,-2F (19)

"file qtlant[tics [ _.[ve.'l iil [h,_ _ :_il[ _(-!.(][x ![lld tl:ed [[1 !,h_' ;,.,ih,,,_illg c._h'lii_i_¢._q5
- j

are seen to differ from the l'_ given in tho body of the p:qJer by ti_e factor k ' It

may be noticed that this factor drops otmt in ';he first-degree equalions.

14
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Choosing ccrtnin vnllles of a and c and emploj~ng 
tho values of the TJs given by the for~nulns of the report 
(p. 5) or in table I and also using the values of F and 
G (fornlulas (XII) and (XIII)) or ttlble 11, we evaluate 

1 the quantities I and R" for a certain nuhlber of - Ic 
values. The results of this evaIua,tion are given in 
tables I11 and' TV, whicIl have been worked out for 
a=O,-0.2, and-0.4, and for c=0.5  and c=O. The 

1 
range of - is from 0 to 40. These tables save the work k 
of calculating the 1's and R"'s for ulrnost all cases of 
practical import mce. Interpolation may be used for 
intermediate values. This leaves the quantities I?' to 

1 be dctennined. These, being independent of k ,  are as 

a result t2asy to obtain. Their values, using the same 
system of numbers for identification, and referring to 
the definition of the origirlnl independent variables on 
pages 9 8,nd 10, arc! given as follows: 

. .x,.;,. , . , . "  . . Case 3 J# ,, :,:.<.; ... f . '  ' , y : :  t.3 ids+' 

:\ * /+ 
Find pror",ucts 1.5 2.4 11.15 12.14 

E'hd products 1 .15 2.14 11.5 12.4 
Then 114*,~=1.15-2.14+11.5- 12.4 

and a =MRCh (1 5 )  - MrC, (5.15) 
a=--MrCh(2.14+ 12.4)f 2MRd(11.15) 
~ = M ~ ~ h ( 1 1 ) ~ - M ' , ~ ( 1 . 1 1 )  Findft,  

i n, (15)+i i  Solution : - - - A'- - Mic h 

Similarly . , 

Case 2 

and 
Case I 

Because of the symmetrical arrangement in the 
determinant, the 9 quantities are seen to reduce to 
6 quantities to be calculnted. It is very fortunate, 
indeed, that all the remaining variables segregate them- 

1 
selves in the 6 values of R' which are independent of 

a, is defined as (:%y for case 3; 

Rs is defined as for case 2; and 

n, is defined as (%>1 for case 1. 
WaT,  

fb 

while the more complicated I end R" are functions 
solely of c end a. In  order to solve any problem it  is 
therefore only necessary to refer to tables 111 and I V  
and then to calculate the 6 values of R'. 

The quantities (1) to (9) and (11) to (19) thus 
1 having been determined, the plot of against - J  which k 

1 
The quantity is K ( b ~ F r , ) l  - by definition. 

1 
Since both Q and - are calculated for each value of X 
1 1 1  z, we may plot - - directly as a function of it. This k2 X 

which is proportional to the square of 
, 

U ,  b ,  and c arc nb t~lined n u t u r n r ~ t i c l ~ l l ~  by colllpiilttciorl 
according to the following scheme: 

t i t  1 1 t i  i 0 1  1 :  i , 1 ' . 
-.jlivir~q tile I - b !  - 0  '1 , , ! > ~ t : i l i t +  i , ,  , !  , ! :  1 1 -  < ,  I $  k 0: t l i f ~  ii I ) , \ \  ,> 

. 1 ' I  
quantity, v ~ z ,  2 4 - ihfi, and wiil denote this 

i CJ J ,  
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quantity by F, which we shall term the "flutter factor." In  case 3 the :reference velocity has a similar signifi- 
The flutter velocity is consequently obtained as / canee, that is, it s tho velocity nt which the entire lift of 

I I the airfoil attacking with a leverage 5 6 equals numeri- 
d~ 

bu rrr Since F is nondimensional, the quantity --7 must 

the flutter speed, so to speak, is measured. Observing I TAB~LE I.-VALUES OF T 

cally the torsion~~l stiffness Cg of the aileron or movable 
tail surface. 

1 I K  
obviously be a velocity. I t  is useful to establish the 
significance of this velocity, with reference to which 

rpbi 
that K = - and that the stiffness in case 1 is given by M 

In case 2, no silitable or useful significance of the 
reference velocit,~ is available. 

A this reference velocity may be written:' 
= &tat: 

The velocity vE is thus the velocity at  which the t.otal 
b 

force on the airfoil xpvR22b attacking with an arm , 
squalls the torsiond stiffness C. of -the wing. ~ h $  ( 
statement means, in case 1, that the r e f e r e n c e ~ e l o ~ i t ~  
used is equal to the "divergence" velocity obtained 
with the torsional axis in the middle of the chord. This 
velocity is considerably smaller than the usual cliver- 
gence velocity, which may be expressed as 

where a ranges from O 

the flutter velocity as 

We may thus express 

TABLE TI.-TABLE O F  THE BESSEL FUNCTIONS Jo, J1 
Yo, 2; AND THE FUNCTIONS F A Y D  G 
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TABLE 111.-VALTJER OI-' R 

1 - 
k I O H O M  34 YA 1 1s 2H 3% 6 10 40 

C a 

--- 
-.4 0 

- - _ _ I I _ _ I I _ _ _ ~ I _ _ ~ I I _ -  

- - - .  - 1 1 _ 1  

.00rn .C%17 .Ol3xs .a531 .21861 .33914 .59499 .84414 1.30365 2.25914 4.87340 17.80470 67.38320 259.0648 
Rfap - - - -- - - -- - ------- - ------ ------- --------- ---- -. 

0 0 .00083 .00229 .00510 .01932 .WlQ . N 7 6  .I2176 .12M5 -. 02900 -. 93535 -10.48970 -69.16180 -268.7236 
4 5  -. 2 0 .OW214 .00595 ,01336 ,05278 ,20325 -31065 .53062 1.10233 1.81135 3.55230 10.14740 31.49620 101.6340 

-.4 0 . W 4 7  .00985 .02170 .08656 .34361 .53463 .94336 2.09190 3.66913 8.08235 30.97980 120.89760 475.2592 

0 0 -.00125 -. 00345 -. 00763 -.02890 -. 10030 - 14560 -. 224701 -.30?00 -. 415EO -. 60000 -. 94300 -1.62600 -2.64000 -3.6000 
1 )  - 2 0 -. 00075 --. 00207 -. W% -. 01734 -. W 1 8  -: 087361 -. 13482 -. I8120 -. 24900 -.36a#) -. 56580 -. 97560 -1.58400 -2. Is00 

-.4 0 -.00201 -.GO334 -.0350:! -.01003 -.02006 -.02505 -.W236 -.04012 -.ON15 -.a683 --.I0030 -.XO60 -.40120 -.8024 

0 0 .35010 ,56143 I. 05003 2.54920 11.66330 49.95700 XkS. 7520 
3583" 57271 1.0665 2.57430 11.70770 . W 4  .00233 .00523 .02106 .08603 .I3616 .24796 -366431 .5841 1. Q8286 2.60069 11.75220 ----------------- 

0 0 0 1 3  00035 .@XI70 , M731 .01327 ,021121 .OX378 .05757 ,09248 . 17296 .*I988 1.92110 
0.b -.2 .00013 ,00037 . oO(x33 .00334 .Of372 .02177 03981 . OPjO,? .@a4 . 17566 .42413 1.92840 

-. 4 .m014 . mU38 . m 6  ,ma .olr i7 . (mn3I : 04084 . Wa39 .086211 . 17836 .4%37 1.83575 

' I ,  I I I I I 

1 Independent ot c. 2 Independent of a. 

TABLE 1V.-VALUES OF I 

1 I '  

I*p 

0 

0.25000 
.48000 
.81Wl 

.I7805 

.39170 

.&I531 

,13252 

)10 

0.25096 
.49050 
.81014 

.I7874 
-38212 
.&I545 ------ 
.I3317 

- 
k 

C 

(2) 

- I _  

0 

-21336 
.29354 

-.m -. 30036 -. 10012 

.39010 
-40378 
.41746 

.07435 

.07681 
,07835 

.32288 . M270 

.OW@ 

.01126 

1.49808 
1.69832 
1.89856 
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APPENDIX Ilil 

NUMERICAL CALCULATIONS 

A number of routine examples have been worked out I The heavy line shows the standard case, wllile the 
to illustrate typical results. A "standard" case has 1 remaining curves show the effect of a change in the 

/v7 
a,, wg, wh variable. 

been chosen, represented by the following constants: 

We will show the results of a numerical computation 
of the three possible subcases in succession. 

1 1 
value of xs to -- and -* 

1 
FIQWEE 5.-Case 3, Torsion-aileron (a, P): Standard case. Showing 0, against+* 

~=0.1 ,  C-0.5, a--0.4, x,=0.2, I 40 160 

Case 3, Torsion-aileron (a,@): Figure 5 shows the f l u  

1 against relation and figure 6 the final curve 

FIGWXE 6.-Csse 3, Torsion-aileron (u, 8): Standard m e .  Showing flutter factor 
F against n,. 

Case 2, Aileron-flexure (8, h):  Figrrro 7 shows tho 

a It  Is roalized that considerable a r e  must be exercised la  get. these curves reason- 
ably accurate. 

18 

Case 1, Flexure-torsion (h, a): Figure 9 shows again 

I /  
FIGURE 7.-Case2, Aileron-deflection @, h ) :  (a) Standard case. b), (c), (d) indicate 

dependency on x p .  Case (d), rp= -0.004, reduces to a point. 

1 
the a, against relhtion and figure 10 the final result 

Case 1, which is of importance in the propeller theory, 
has been treated in more detail. The quantity F shown 

'v 
in the figures is 4; z-* 

Figure 11 shows the dependency o n S =  O= W'* a?' 

figure 12 sllows the dependency on the locution of the 
axis a; figure 13 shows the dependency on the radius of 
gyration ra=r;  and figure 14 shows the dcpentlency 
on tlrc l~cat~ion of tlrc center of gravity z, for tllrcc 
differcn t combinations of constants. 

I)c tsilcd discrlssion of tilo esperi1i~ontt~2 work will  riot 
be given in this paper, but shall bc, ~.escrvetl for a letcr 
report. The experiments given in t l~c  followillg ure 
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restricted to wings of n lurge aspect ratio, arranged with 

. two o r  three degrees of freedom L1 nccordmlce with the 

na 
FIGURE ~.--CIISC~ 2, Aileron-delleelion (8, h ) :  Final curves giving flutter factor E' 

..' against fib corresponding to cases shown in figure 7. 

theoreG~::sl cases. The wing is free to move parallel to 
itself h a vertical direction (h); is equipped with an 

. axis in roller bearings a t  (a) (fig. 2) for torsion, and 
with an aileron hinged at (c). Variable or eschange- 

:!ble rprii~\<s restrain the wing to its equilibrium 
posithi:. 

We stlall p ~ r s e n  t results obtained on two wings, bo tll 
of symmetrical cross section 12 percent thick, and wit11 
cl~ord 26=12.7 cm, tested at OO. 

FICVRE 11.-CMB I ,  Flexure-torsion ( h ,  a): Showing dependency of P on T I I ~  

aplmcurve iserpcrin1ent111. Airfoil rill1 r - :; a =  -0.4: r= 0.2; 4r=.01; 5 vnriabls. 
w 

resprctively ; 
~ * , ~ = 0 . 3 3  and o,-7 X 2 a  
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Wing B, wood, with flap, and the constants: 

1 , c=0.5, a--0.4,  2.-0.192, r250.178,  

xB=0.019, r$=0.0079, and a. kept constant 
= 1 7 . 6 X 2 ~  

The results for wing A, case 1, are given in figure 15 ; 
and those for wing B, cases 2 and 3, are given in figures 
16 and 17, respectively. The abscissas are the fre- 

, quency ratios and the ordinates are the velocities in 
cmlsec. Compared with the theoretical results calcu- 
lated for the three test cases, there is an almost perfect 

a 
F I ~ D B E  12.-Case 1, Flexure-torsion ( h ,  a): Showing dependency of B on location 

of aris of rotation a. Airfoil with r--l- ; r =o.z; -I ; ~ 1 -  1; 6 variable. 
2 4 02 6 

agreement in case 1 (fig. 15). Not only is the minimum 
velocity found near the same frequency ratio, but the 
experimental and theoretical values are, furthermore, 
very nearly alike. Very important is also the fact that 
the peculiar shape of the response curve in case 2, pre- 
dicted by the theory, repeats itself experimentally. 
The theory predicts a range of instabilities extending 
from a small value of the velocity to a definite upper 
limit. It was very gratifying to observe that the upper 
brn:lrh of i ' : t 7  i3,1~vi3 rloe or!iy existi d but il..it it x-ilr 
~ ~ ~ : x ~ ! ~ , - l ; i j  ? I ,  - !:::l:p. :i )il j jL( .rx<\  ..$ 1 ; )  .,:-lt~{i *)l 

-- dotted lihes in both figures (figs. 16 and -1.7). 
- 

I 7 ~ i & i  mattor is the suhjnet of n payor now in preparation. 

The conclusion from the experiments is briefly that 
the general shapes of the predicted response curves re- 

F 

r 
FIGVBE 13.-C8se 1, Flexure-torsion (h,  a): Showing dependency of F on the radins 

of gyration Ya=t. 

w r variable. A, w i l  with a= -o.$ ix-f: .=0.2; y-l :  

r a  
mooni ~L-CW 1, ~le~we-torsion (h ,  showing dependency of F OD z., the 

location of the center of gravity. 
1 

i 
A ,  airfoil with r-7ji a=-0.4; K-I: 4M ~ 1 - l ;  wz R z variable. 

I 2 ,  c. :! ~ : i  i x  ,,:I , : . c = - o  4; Y -  1 : z-;ar!fib!p. 
4 'L2 6 

this - =- .- .A- upper h i i i h  *sotild sriilicr: . -..--.- to ch:lnge :he coudition 
from violcpt fluiter & complete rest, no ;axe of transi- 

---c------- 

tion>eing observed experimental cases 2 and 3 
are corn~ared with theoreticid results ~ v e n  by the 

C,  airfoil wlih r =  -;: 0=-0.4;  .-1; y-1; r variable. 
100 cur 

peat themselves satisfactorily. Next, that the influ- 
ence of the internal friction obviously is quite appreci- 
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F I Q ~ E  16.-Case 2. Wing B. Theoretical and experimental curves gtving fluttar 

vdodty a a g a h t  frequency ratio:- Meron-deflection @, h ) .  

0 -2 -4 .6 .8 1.0 /.2 1.4 
Wh,'Wd 

Fzalo~lr 16.-Ces 1. Wing A. Theoretical and expecimental curves giving flutter 

veloclty s egdnst frequency ratio 2- Deflection-tonion. 

to temporary vibrations at much lower speeds than 
that at which the violent flutter starts. The above 
experiments are seen to refer to cases of exaggerated 
unbalance, and therefore of low flutter speeds. It is 
evident that the hteI'naI friction is less important at 
larger velocities. The friction does in all Cases kncrease 

FIGURE 17. -c~ 3. Thooretical curve giving flutter velocity against the fre- 

,,,, ratio e. T ~ O  exmrimentaI U ~ S ~ B ~ I B  area IS lnds5nite due t~ the im- 
W B  the speed at which flutter starts. portance. of internal Mction at very small velocities. ~orsion-aileron [a, 8). 
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EVALUATION OF cp, 1 -- - - loy 
1-x cos 8- 41-z2 sin 6 poS8=1  --- 

- xL x-cos e cos b=c 

- 1 [- 1-2 ~ - C X - J ~ J ~ - C ~  
- 4 ~ 2  log - log x- 5-C -1 

v -  - 

I - c - y  xldx? 
= - 2c log 1 

(x-c) c 41 -X,~(X-xi) 

dxl + zJ--- [Putting x, =c.os 01 
(xl-x) JI -x: 

x - - 9 - ------- - 1-z cos O+ J E 2 s i n  o Coso=l 

10s cos 8-2 I cns *=r  

5 C - x  
= cos-'c + = log -- 41-9 1-CX- 41-2 41-c2 

-- 2 ~ -  
(p - -2c log (1 -cx- JI -2 JI -c2) +2c log (x-c) 

-- 
(1 -cx- jl-2 41-c2 

=2 (x-c) log x-C 1 
EVALUATION OF c p ~  

-- - (x'-c)2{logl(x-xl)'+ (y- yJ21 
2 

- - log[~z-~ , )~+ (y + ~ , ) ~ l ) l t  

$1 =COS 6, yt= sin 19, dxl = -sin 8d8 

2% 
- p,= - J 1 - c 2 ~ ~ - ~ o s - ' c ( x - 2 c )  ,/m 

+ (X-C)~ log (I -ex-- 41-x2J- 
- (x-c)* log (x-c) 

EVALUATION OF T3 

S(Z-C) JI -2 dx 

-S(Z-C)S log (x-c)dz; z=cos B, dz= -sin Ode 

elvr (x-C)d2= Jl -C2 (cos 0- c)  sin2 Bd0 S 
+ oos-I c 5 (COS 0-  c) (COS 8- -24 sin2 edl  

-- 
+(? log (I-CX- 41-141 -CP) 

-- (x-c'4 4 log (2-c) 
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- - - COS-lc cos3 0 sin 0 3 8 sin 8 cos t9 [ 4 +4(Z+ 2 
1 3 - 

+%(3c cos-'C -a J L  -CZ) sin o(cos2 e+ 2) 

""i-*) (i + 

sin B cos 8) . +(cos-'c - 2c2 cos-'c + - 4 2 

ABILITY AND THE MECHANISM OF FLUTTER 23 

I +2 ( (x-C) log ( I  -m- dl - x 2 j D ) d z  

/ +~b--c)c ix+:!  ens-lc S sin lode 

I + (2-e)' log (I -ex- 4 1 - 9  J1 -c2) 

-S 
Now 

T5= - (2-c). log (ZC) + 2 COS-lcsdn 2Bd8 I -- 

I + (x-c)' log (I -C+- J1 -x2 41 --cy 
P + 4-J (COS 8-c)d8 

2 cos-'c =- 
2 (8- sin 8 cos 8) + 4 1  -e2 sin 0 

cos 8=1 

-C  41-c201 cos e=e 


