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AERONAUTIC BYHBOLS
1. FUNDAMENTAL AND DERIVED UNITS

#
%
Metric English
Symbol Abi B Abb
v s hrevia- o revia-
Unit tion Unit tion
Iength . .. __ { meter_ ... ... ... e m foot (ormiie) .__ .. .. ft (or mi)
Time______.. ¢ secend. L L aeeo- 3 second (or hour)__.____ | sen (or hr)
Force...___._ v weight of 1 kilogram.__.._ kg weight of I pound.____._1 Ib
Power. _ .. ___ P horsepower (metrie) _.._ .. .. . . ! homepower.... .. __..| hp
Sueed v {kilome“c-er:« per Nour. .. _ .. i kph ' rmiles perhour .. ___ .. mph
OPeet- oo o - meters persecond.__ .. ___;  10ps feet persecond........| fps
2. GENERAL SYMBOLS
Weight=myg v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s* Deunsity (mass per nnit volume)
or 32,1740 {t/sec? Standard density of dry air, 0.12497 kg-m™*s® at 15° C
Mass— 5% and 760 mm; or 8.002378 Ib-ft~*sec?
i Specific weight of “standard” air, 1.2255 kg/m® or
Moment, of inertin==mk*® (Indicate axis of 3.07651 Ibfou ft
radius of gyration & by proper subseript.)
Coeflicient of viscosity
3. AERODYNAMIC SYMBOLS
Ares Lo Angle of setting of wings (relative to thrust line)
Ares of wing % Angle of stabilizer setting (relutive to thrust
Gap v line)
Span 4] Resultant moment
Chord ‘ Q2 Resultant angular velocity
b Vi . .
Aspect ratio, g B Reynolds number, r where { is a linear dimen-
True air speed sion {e.g., for an airfoll of 1.0 {t chord, 100 mph,

standard pressure at 15° C, the corresponding

. 1 r
Dynamic pressure, zpV? L , . s
¥ pressure, g Reynolds number is 935,400; or for an sirfoil

. . L a ¢l 100 mps, th i
Lift, absolute coefficient (7 == of 1.0 m chord, 100 mps, the corresponding
N Reynolds number is 6,865,000
D » ) H
. 2 L ole
Drag, absolute coefticient Cp==5 @ Angle of attack
s € Angle of downwash
. . D , f < infinite as i
Profile drag, shsolute coefficient CDO:_% ay Angle of attack, fnu_nxte aspect ratto
- oy Angle of attack, induced
_— . D 1 : T
Tnduced drag, ahsolute coefficient Cp, == g Angle of attaci, absolute (measured from zero-
?)U‘ lift position)
3 o ~ b3 My T ‘ nolo
Parasite drag, abaslute coeflicient Cp,==2 g4 Flight-path angle
s RS
Cross-wind forea. ahsolite coefficient .= —Q
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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

By THEODORE THEODORSEN

SUMMARY

The aerodynamic forces on an oscillating airfoil or
airfoil-aileron combination of three independent degrees
of freedom have been determined. The problem resolves
itself into the solution of certain definite integrals, which
~ have been identified as Bessel functions of the first and
second kind and of zero and first order. The theory,
being based on potential flow and the Kuita condition,
18 fundamentally equivalent to the comventional wing-
.section theory relating to the steady case.

The air forces being known, the mechanism of aerody-
namic instability has been analyzed in detail. An eract
solution, involving potential flow and the adoption of the
Kutta condition, has been arrived at. The solution is of
a simple form and is expressed by means of an auxiliary
parameter k. The mathematical treatment also provides
a convenient cyclic arrangement permitting a wuniform
treatment of all subcases of two degrees of freedom. The
Jlutter velocity, defined as the air velocity at which flutter
starts, and which is treated as the unknown quantity, 1s
determined as a function of a certain ratio of the fre-
quencies in the separate degrees of freedom for any magni-
tudes and combinations of the airfoil-aileron parameters.

For those interested solely or particularly in the numeri-
cal solutions Appendix I has been prepared. The rou-
tine procedure in solving numerical examples is put
down detached from the theoretical background of the
paper. It first 1s necessary to determine a certain number
of constants pertaining to the case, then to perform a few
routine calculations as indicated. The result is readily
obtained in the form of a plot of flutter velocity against
Sfrequency for any values of the other parameters chosen.
The numerical work of calculating the constants is sim-
plified by referring to a number of tables, which are in-
cluded in Appendiz I. A number of illustrative examples
and erperimental results are given in Appendir I1,

IHTRODUCTION
It has been known that a wing or wing-aileron strue-
turally restrained to a certain position of equilibrium

becomes unstable under certain conditions. At least
two degrees of freedom are required to create a con-

of & single degree of freedom would be damped out by
the air forees. The air forces, defined as the forces due
to the air pressure acting on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstationary potential flow. A wing-
section theory and, by analogy, a wing theory shall be
thus developed that applies to the case of oscillatory
motion, not only of the wing as a whole but also to
that of an aileron. It i1s of considerable importance
that large oscillations may be neglected; in fact, only
infinitely small oscillations about the position of
equilibrium need be considered. Large oscillations
are of no interest since the sole attempt is to specify
one or more conditions of instability. Indeed, no
particular type or shape of airfoil shall be of concern,
the treatment being restricted to primary effects. The
differential equations for the several degrees of freedom
will be put down. Each of these equations contains a
statement regarding the equilibrium of a system of
forces. The forces are of three kinds: (1) The inertia
forces, {(2) the restraining forces, and (3) the air forces.

There is presumably no necessity of solving a general
case of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applying to the
case of unstable equilibrium. This restriction is par-
ticularly important as the expressions for the air force
developed for oscillatory motion can thus be employed.
Imagine a case that is unstable to a very slight degree;
the amplitudes will then increase very slowly and the
expressions developed for the air forces will be appli-
cable. It is of interest simply to know under what
circumstances this condition may obtain and cases in
which the amplitudes are decreasing or increasing at a
finite rate need not be treated or specified. Although
it 1s possible to treat the latter cases, they are of no
concern in the present peoblem. Norv is the internad
or soltd friction of the structure of primary concern.
The {ortunate situation exists that the effect of the
solid friction is favorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, as this case constitutes a sort of lower

dition of instability, as it can be shown that vibrations | limit, which it is not always desirable to exceed.

3

. 78
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Owing to the rather extensive field covered in the
paper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These potentials
are treated in two classes: The noncirculating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as *‘circulatory”
potentials. The magnitude of the circulation for an
oscillating wing-aileron is determined next. The

F16URE 1.—Conformal representation of the wing profile by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of motion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The solution
of the problem of determining the flutter speed 1is
finally given in the form of an equation expressing a
relationship between the various parameters. The
three subcases of two degrees of freedom are treated
in detail.

The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for future investi-
gations.! Such secondary effects are: The effects of a
finite span, of section shape, of deviations from poten-
tial flow, including also modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix II similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by a supporting mechanism, with external springs
maintaining the equilibrium positions of wing or wing-
aileron. The experimental work was carried on
largely to verify the general shape of and the approxi-
mate magnitudes nvolved 1 the theoretically pre-
dicted response characteristics.  As the present report
is limited to the mathematical aspects of the flutter
problem, specific recommendations in regard to prac-
tical applications are not given in this paper.

} The effect of internal {ricticn is in some cases esseutial; this subject will bs

contained in a subsequent paper.

>

VELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We shail proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily represent the wing by a circle (fig.
1). The poteniial of a source e at the origin is given
by

= 2
1"""47r10g (x2+y )
For a source ¢ at (z;,%:) on the circle
o=z log {(@—a)*+ @w—w)?)

Putting a double source 2¢ at (x;,7) and a double
negative source —2e¢at (x,,—7,) we obtain for the flow
around the circle

(—2)?+ (y—w)?
(—z)*+ (y+u)?

The function ¢ on the circle gives directly the sur-
face potential of a straight line pg, the projection of the
circle on the horizontal diameter. (See fig., 1.) In
this case y=+/1—2? and ¢ is a function of z only.

We shall need the integrals:

flo @—z) -y —y)?
Ea—z) + Y+

=1
4 o og

dz, =2(x—c)log N—2/1—z% cos™lc

and .
(x 271) + (’y yl) — —
fl g G T Ty @ Odn=—VI=d1=2
,.cos-lc(a: 2¢)VI—2+ (z—c)*log N
1—cz—1-2Ji=¢

where N=
. z2—¢

The location of the center of gravity of the wing-
aileron z, is measured from a, the coordinate of the
axis of rotation (fig. 2); xs the location of the center

h
pLd

-4

‘Axis of rotation
c.g.of aileron”

+/ l
FIaURR 2.—Parameters of the airfoil-aileron combination.

of gravity of the aileron is measured from ¢, the coordi-
nate of the hinge; and r, and r4 are the radii of gyration
of the wing-aileron referred to @, and of the aileron
referred to the hinge. The quent:ties z3 and ry are
“reduced” values, us defined later in the paper. Tho
quantities a, z., ¢, and s are positive toward the rear
(right), A is the vertical coordinate of the axis of rota-

! tion at a with respect to a fixed reference frame and is

positive downward. The angles « and 8 are positive
clockwise (right-band turn). The wind velocity v is to
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the right and horizontal. The angle (of attack) «
refers to the direction of », the aileron angle g8 refers to
the undeflected position and not to the wind direction.
The quantities r, and 75 always occur as squares.
.Observe that the leading edge is located at —1, the
trailing edge at +1. The quantities a, ¢, Z4, 2, 7a,
and 75, which are repeatedly used in the following
_ treatment, are all dimensionless with the half chord &
as reference unit.
The effect of a flap bent down at an angle 8 (see fig.
2) is seen to give rise to a function ¢ obtained by sub-
stituting —v8b for ¢; hence

¢ﬂ=?%é[\/1 —zfcos™lc— (z—c) log N]

To obtain the effect of the flap going down at an
angular velocity B, we put e=— (x,—¢)8b* and get

ah2
¢£,==%%[\/1 — 1 —2%+ cosle(z — 2¢0) /1 — 2

—(z—¢)? log N}
To obtain the effect of an angle « of the entire air-
foil, we put ¢= —1 in the expression for ¢, hence

_ p,=vabyT =7
To depict the airfoil in downward motion with a veloc-
ity & (+ down), we need only introduce % instead of a.

Thus .
@; :hb '\/1 —x?

Finally, to describe a rotation around point ¢ at an
angular velocity &, we notice that this motion may be
taken to consist of a rotation around the leading edge
¢= —1 at an angular velocity & plus a vertical motion
with a velocity —&(1 +a)b. Then

:p.;=g——l::1r(:v+ 2)V1I—2—a(l+a)b?/1—27
= dbz(%x_a)\/'l —x?

The following tables give in succession the velocity
potentials and a set of integrals ? with associated con-
stants, which we will need in the calculation of the air
forces and moments.

VELOCITY POTENTIALS

Pa=vab+/l —2?
o= BoyT= :

Q= db"’(-;—x - a)\/l —x?
¢B=':-_v6b[\/1 —x* cos™le~ (z—¢) log N]
o= BEINITEVITR (2 20) 41 7 cos o

—{(x—¢)? log N|

N=1—cr——\/i——z"\/l—cz
z—¢

where

1 8ome of the more difficult integral evaluations are given in Appendix I1I.

GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER

R
B

INTEGRALS
1 b , +1 b
‘J; <p<,d27= - §vaﬂ f—x qpa(].l:=§va1r
"1 b, +1 b
jc tp;’.dI= — §hT4 J:_l qai.d$= -zhr

1 ‘
f oadz = &b, f J:’ padz = — 4t 72

+1 b :
f—l gogd‘l:: - §?)ﬁT4

+1 B,
1:1 ppde = — E'ﬁTl

+1 b
f-[ Calz—c)dr= — Fracr

! b
ﬁ ppdz = — 5-vBT;
1 X
J; ppde=— 5—BT;
1 b L
f galr—c)dr=— QU&TI
[
Lo b; +1 )
J; iz —c)dz= "gth f_l ez —c)dz= —ghcw
1 +1
f vale—c)dr=ab'Ty f'l va(z—c)dz = &b Ty
+1 - b
f_l es(x—c)dz = —508T;

+1 297"
f_1 eile —c)dz= --%M’

1 b
J; pp(x—c)dz= —5 8T,

1 b2 .
[Ceste—paz=—For,
. CONSTANTS
T,= —gJi—_&’(2+c2) +¢ cos™le
Ti=c(l—c%) — v1—c*(1+c%cos e+ c(cos™c)?
Ty=— (—81— +<:2) (cos™¢)2+ ;}c VI—¢* cos™e(7 +2¢?)

— 51—t (56+4)

Ty= —cos lc+ecy1—¢*
Ty= ~ (1—¢%) — (cos™'c)*+ 20/ 1= ¢ cos™'e
Te=T;

T, = —(é-{»c“’) cos“c+%c VI =7 +2¢%)
Ty = —% V1=c® 22 +1)+ccoste

1M1/ —s 1
T9='2‘ 3 \/1—6 +al, =”2‘(_2’+'1T4)

where p= —é(w/chZ)

Tw=+1—c+cos'¢

Tu=cosle(1—2c)++/1—¢ (2—¢)

T=+1—c (2+¢c)—cos™ ¢ (2¢c+1)
Ta=3(~ Ty~ (~a) T}
oo 11

FETE I-Ti o ]
FRRC NI SO Y SO MEENTS
The velocity potentials being known, we are able to
calculate local pressures and by integration to obtain
the forces and moments acting on the airfoil and

alleron.
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Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure 1s, except for a constant

w0
Pr=—2p + DS;)
where w is the local velomty and ¢ the velocity poten-
tial at the point. Substituting w=v+g—‘: we obtain

ultimately for the pressure difference between the
upper and lower surface at z

Op , Op
p=-2(0 5+
where v is the constant velocity of the fluid relative to

the airfoil at infinity.  Putting down the integrals for
the force on the entire airfoil, the moment on the flap

74
XY
1
Xo x,
b,x +AT -AT
~

' FIGURE 3.—Conformal representation of the wing profile with reference to the
. circulatory flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

+1
P= —‘Zpbf . pdx
1
M- —Qpbzf ol —0) dz+zpvbf’¢dx
+1 +1
M,= —Qpbzf ! plx—c)ydx+ 2p?)bf 1 edx

41
- 2pb2f i ¢lc—a)dx
Or, on introducing the individual velocity potentials
from page 5,
P= — pb? [vra+ rh— bras— TS — b.l’,ﬂ] 8
My= — pb*| ~oTia— i+ 2Tgba— Lomp -1 7 bﬁ]

b

+ pob? [ ~ T~ Tdh+2Tba— L oTip - sza]

= - pr Td’?a - (2 Tg+ T]) bl)a + 2T13b2d + 3_‘ T5'I)2§
+ G T, —;lr T:.) bof— - 0*T4f + Tk — 7‘11;7;] (1)

~(c—w) T, }bBo+ {—— T,— (c—a) Ty} b°8
—-buw’i“'rrszaj] (1)

VELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces and moments due to a
surface of discontinuity of strength U extending along

the positive z axis from the wing to infinity. The

velocity potential of the flow around the circle (fig. 3)

resulting from the vortex element — AT at (Xy, 0) is |

S\ D SN ¢
=g | 0T xox, T tan X~i

Xo
(-%+Xo)Y
0
=§£ tan™! ‘ Xﬂl
W(XO+E)X+ ¥4

where (X, Y) are the coordinates of the variable
and X, is the coordinate of — AT on the x axis.

. 1
Introducing X, + X, =2y,

or Xo=uro+ v — 1 on the z axis
and X=g and Y =+/1—2% on the circle
the equation becomes
w,,,=—- tln" J1-28uf~1
2w 1—uzr,

This expression gives the clockwise circulation
around the airfoil due to the element — AI' at .

We have: p= 9p(a‘p + Ly b<p

But, since the element — Al' will now be regarded as
moving to the right relative to the airfoil with a
velocity »

Q¢ _ 9¢,
ot bl'o
Hence, p= —2pv ab‘: ax
[1)
Further L
xr »Io\/l_zz
2r 0_<_p Wremsi x.rg)vl —2* (1 —xr)*
AT Op VY0 1+(1—-:nz)(;r02--1)
(1 —xxy)?
_¥n'—1 1
V1—2% (ro—
and
1 :rg — r
=+ - 1
2r vl —am) Ved—1. V" (I =z
AT duy 14 ( —uaf) (e’ —1)
(1 —zrp)*

By addition:
d¢, dp_ar




To obtain the force on the aileron, we need the
integral
x0+x
—_—t
f‘\/-ﬂu 1‘V -z T

f oz b:r)dz
- 1/1'352:[
1
cos r+‘/;;2—_—_—1

_ __AI‘[ )
27l yxo'—
AT Ty A1 —-c”]
21[——sz02—1€08 c+ Vi1

Thus, for the force on the aileron

AP, = — b——(
‘l pU “/

cos“c +

Zo

—1——1 1/1-—:“) or

APC, = p’Ub - [‘/ (cos”’c —y1—=¢?)

Tot 1 l
+ /xo i ‘/1 =t
Integrated, with AT = Udz,

Py=— ——[(cos"c—- V1— c")f

S W rpme 1 Iot1
i +4/1 cj: \/mu——lde"

for c=: —1 we obtain the expression for P, the force
on the whole airfoil

U dxg

1v)

Since U is considered stationary with respect to the
fluid elements
U=1{(vt—x,)
‘where ¢ is the time since the beginning of the motion.
U is thus a function of the distance from the location
of the first vortex element or, referred to a system
moving with the fluid, U is stationary in value.
Similarly we obtain for the moment on the aileron

f Q¢ 'zoo) @t oo
2t e V1—2izi— 1

_ar_ 1 [1041 x2+’”12_x2—c41—x2

2x .Jz
1
—_—— -1
’+ 2 :coc)cos xl

g:w/ T [(zo ~e)y1—¢

( —o)de =5

oy — ¢ -1
+2(l ;moc)cos c]

1
2 S
4 e (cos ™' — .
T (cos™c —cT—¢ )jl

:~ PPT-LN 1= 4
AMa" pbb2 p [‘/—02—;——1{\/1 02(1‘{":‘2‘) ,

- 1 1 fro+1 R
—cos ‘c(c +#)J+—\/——° “le—c¢4/1 —¢? :l
2 2 xo_l(COS RY C)

Putting AT = Udxr, and integrating
_ _ovb? ——z< E)
M= —= {Jl A 1+3

— cog-! 1)] f °_To g

cos c(c+2 ) x/zo?—’——l—deo
N1 +

+ (cos“c— e+/(1 -cz> §ﬁ \/;2_ } Udzy | (V)

Further, for the moment on the entire airfoil around a

f +1( (x-a)dz= —[<1: +2 ) /1-x
ox bxo ‘)T‘/;Uoz L\ Vit

1 ) o ]+‘
+(§—:coa cos™' x " 2”‘/3:0 (2 zoa>

1
. g5 L@
— — aph2 — e
and AM, pvb AI“/ pow R
Integrated, this becomes
w1
g ol
M,= — pvh? JA=1 Udl'o
[ Gl
+
- —pvbzf 2 2h ™ 73 Udz,
1 \/3’70 "1 \/-730 -

- ””b2,ﬁ ”[%\/f:‘i —( 2) e }de(, VD)

THE MAGNITUDE OF THE CIRCULATION

The magnitude of the circulation is determined by
the Kutta condition, which requires that no infinite
velocities exist at the trailing edge,
or, at z=1

0 .
Szlert eat et vat st og) =finite

Introducing the values of ¢,, etc. from page 5 and

, from g page 6 gwes the important relation:

e +1 1

Tm

TII

—rB+b5 6 (V1)

Thisz potetion musr © o ta comply owith the
Iutta conditton, vowh oo oon bad the flow shadl feave
the airfoil at the traiing edgf,

Tt is observed that the relstion reduces to that of the

Kutta condition for stationary flow on putting z,= oo,
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and in subsequence omitting the variable parameters
a, 6: and h' .
Let us write

f J"c°+l Udzy= va+h+b<——1)

T!O 5+lelﬁ Q

Introduced in (IV)

f 25 Ude
7 Jd%
P= — 2xpbQL YEI=1

? Jxetl
ﬁ 'J z—o _“_‘1 Udl'o

“ Mg= —2pvb? (-\/l—cz(l +%)—cos-”‘ c(c +%)>X

from (V)

Udz,
7 —_
g ‘/xﬂwi +l(cos“‘c—c‘/1mcz)- Q
w.JZo+ 1 Udz 2 .
To— 1 0

1.00 7 N O s o
¥ —— =

.80 =

.60

.40

.20 — »

-¢ / . G

0 T4 w2 16 20 24 28 32 36 40
L7k
FIGURE 4,—The functions F and @ against —lE
and from (VI)
f ,————— Uda,
My= —27pvbh? —;- T = Q
f \/ Zo L Udaq
Introducing
) Ud
\/l’g -1 To
J" Jzo-f- 1 Udz,
we obtain finally :
: P=—2p0b2CQ (VIID

Afgz—vab;[(yl“C(l‘f —cos™! <0+2>>O

| +%(cos"l c—-c\/lwc“)]Q= - pb? (T, C~THQ (IX)

M,= 2¢rpl‘b2[(a + %) - %]Q

X)

where @ is given above and C'= C(k) will be treated in
the following section,

VALUE OF THE FUNCTION C (k)
. g
Put U= e 'Lt G0 +7] .
where s=ut (s— ), the distance from the first vortex

element to the ai‘foil, and k a positive constant deter-
mining the wave length,

“then

e— ""od.’ro

® Zo
1 Af2ei~
©= "= ‘/xo +1
f L e‘“" dz,
‘\/To

These integrals are known, see next part, formulas
(XIV)-—(XVII) and we obtain®

XD

——gJJ-i-if—,:Yl

Ok = . a2
”‘EJx_EYo'*"':EYl*’igJo — (it Yo+ (Yi—Jy)
( Ji i) — (Ji+ Yo) — (Y — o))
(Jit Yo)i+ (Y1 —o)?
=J1(J1+ Yu) + Yl(Yx"“Jo)
(it Yo)! + (Y1 —do)?
Yx(Jx+Yo) S (Y1~ Jy)
Do A ATER 6 A AL
where Ji i+ Yo + Yo (V= Jo)
eACH o) T -
F== Y+ (Y, =) (XII)
o Y\ Yo+ i,
G=—TFrer(,—Jr XD

These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

. . 1.

graphically against the argument T in figure 4.
SOLUTION OF THE DEFINITE INTEGRALS IN C BY MEANS OF BESSEL

FUNCTIONS S
We have

«©

K, (2) ==f €728 ¢ oogh nt dt
L]

(Formula (34), p. 51—Gray, Mathews
& MacRobert: Treatise on Bessel

Functions. London, 1922)
where .
K,(t)=¢2 G,(t)
(Eq. (28), sec. 3, p. 23, same reference)
and o
6@ = ~Ta)+| log 2=+ @)
but
V@) =5 Va@ + (og 2 - 4) ()
(wherc Y,.@) 1s from N. Nielsen:

Handbuch der Theorie der Cylinder-
funktionen. Leipzig, 1904).

Hi()

[} i -— L
This may &lso be expressed in Hunkel functions, C: VAOEEW:00)
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Thus, _ _
G. {(x) = [Y (x) (I)]
We have _
Ko (—ik) = f gtk cosh ¢ dt-ﬂf em
: T
or : . ‘
= cos kxdx . ("= sin lca:dz
-~Yu(k)+t Jo (k) = 1/3:2 =) sy
Thus, ‘
‘ : ‘ ci)/z 2k‘xda: Yo ® (XIV)
o 1 S?If”d‘” SFAC (XV)
Fufther,
o, 1z
K, (—1k)= f gtk coeb coshtdt—f ¢ 2xdx
7 1 yzf—1
G (k)= —i5 ¥, (k) ~g J (k)
== j:w‘/a;— S (cos kx+1 sin kx) dz

Thus, ' ‘

LR g (XVI)

R 3‘; s AC NG 341

-+ TOTAL AERODYNAMIC FORCES AND MOMENTS

TOTAL FORCE
From equations (I) and (VIII) we obtain

P= — pb¥(vra+ rh— rbaa — vm — leﬁ)

fh‘b2—rT,,,8]

TOTAL MOMENTS

(XVIII)

From equations (IT) and (IX) we obtain similarly

- M= “pb{’ -—2Tg—T:+T4(a——)}vba+2Txab2

BT~ T\Tig) — - obB T T~ 1T
- Tk |- T uCvact (3~ 0 )

1 1 .
+;Tm'vﬁ+ 62_‘1‘_11115}

832273 O—49——2

(XIX)

From equations (III) and (X) : .
M,=~— pbzl w(é — a,)vb(x -+ wb”(% + (62)& .
+ (T:*‘ Tio)v*B i »l o \
+(Ti= T - Tt 310 b
— (T, +(c—a) Tl>b9[1‘ - (lwb}'i}
42 pv"{;r’(a + %)O { vat bt b(—; - a)d

1 1 -1
'f:‘;Txfﬂ)B‘f“ bzz;rnﬂ} (XX)

' DIFFERENTIAL EQUATIONS OF MOTION

" Expressing the equilibrium of the moments about «
of the entire airfoil, of the moments on the aileron
about ¢, and of the vertical forces, we obtain, respec-
tively, the following three equations:

a: —La—~IgB—blc—a)SsB— Sah— aCut+ M, =0

ﬂ: —Iﬁﬁ Tsa—blc—a)aSs— hS,g BCs+ Mp=0

h: ~ kM~ &8, — BS3—hCy+ P=0

Rearranged:

a: @l BUs+b(c—a)Ss) + hSa+ aCa— M,=0

B:  as+b(c—a)Ss)+ Bls+hSsy+ BCs— Ms=0

h:  @Sa+BSs+hM+hC—P=0

_ The constants are defined as follows:

o, mass of air per unit of volume.

b, half chord of wing.

M, mass of wing per unit of length.

S, Ss, static moments of wing (in slugs-feet) per
unit length of wing-aileron and aileron,
respectively. The former is referred to

_ the axis a; the latter, to the hinge c.

L,,I,}, moments of inertia per unit length of

: wing-aileron and aileron about a and ¢,
- respectively. ‘

Cs, torsional stiffness of wing around e, cor-
responding to unit length.

Cs, torsional stiffness of aileron around ¢, cor-
responding to unit length.

Ch, stiffness of wing in deflection, ccrrespond-
ing to unit length.

DEFINITION OF PARAMETERS USED IN EQUATIONS
wpb? . ) )
=’ the ratio of the mass of a cylinder of air of

a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equa! length along span.
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Pa= \/ IT%)? the radius of gyration divided by b.
xa=%; the center of gravity distance of the wing

L from a, divided by b.
= ‘/ QI—E; the frequency of torsional vibration

___around a.
rﬂ=\/ ﬁ%’ reduced radius of gyration of aileron

divided by b, that is, the radius at

which the entire mass of the airfoil
would have to be concentrated to give

the moment of inertia of the aileron 7.

the

‘REPORT NATIONAL ADVISORY COMMITTEE

¥FOR AERONATUTICS

N ;\?T"’;E:’ . .
Ip :_'j;' + reduced center of gravity distance from c.
v
b
wg = / % frequency of torsional vibration of aileron

around e.

Wy = \/ %; frequency of wing in deflection.

FINAL I'fQUATIONS IN NONDIMENSIONAL FORM

On introducing the quantities M,, Mz, and P,
replacing Ty and 7); from page 5, and reducing to
nondimensional form, we obtain the following system
of equations:

_p T, TN 1o . (1
(A) E [ H( +CL)]Tab (2 +aﬂ—%+3[r;+(c—a)zg—?x~(Cwa);{lx:l%-;ﬁx%]:—Qp—<§—a>T{]
+5K%}-(T‘+Tm)+ii Ia-ax>—~—-2x( 1>£5(@[%“ l’i+<% )a+T~‘—“3’ J.T",e]—-o
. ' . 1 '
®) & [2+(L—a)xﬂ—x»—~(c a)-KJ+a/p T- 37 7 S+ B( - T3>—2—;26T4T“1;x
Cﬂ 1 1 ’ ,‘ 1{ T]Q lO(:IC) Z‘ Tm v 7 £
+8] L LT - TT)]+h 2= 2Ty Y+ 22, PO +( )a+- L ] 0
h‘v}:\:‘ MPb? 2 bz" 5 44 10 8 1)’ 5 3 B
© ‘CVaTa K(l)+abx+,3(x5 “TlK) BbTm +h(1+x) +h1{b
LCUC)[?)O! h+(2 ) vaﬁ‘*”]—nﬂ =0

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable
equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sine functions of the distance s or, in complex

form with 71 as an suxiliary parameter, giving the

ratm of the wave length to 27 times the half chord b:

kL | col
oY €

a=ame
(k +¢)

b= hoei(k +<p)

where s is the distance from the airfoil to the first

and

vortex element, %z =9, and 0 and v, are phase angles

of 8 and & with respect to a.

Having introduced these quantities in our system of
, O\ 2
equations, we shall divide through by (%k) K.

We observe that the velocity » is then contained in
only one term of each equation. We shall consider
this term containing » as the unknown parameter Q..
To distinguish terms containing X we shall employ a
bar; terms without bars do not contain .X.

We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to the coefhicients in the first equation
not containing C(k) or XX, B to similar coefficients
of the second equation, and € to those in the third
equation. Let the first subscript « refer to the first
variable «, the subseript 8 to the second, and & to the
third. Let the second subscripts 1, 2, .3 refer to the
second derivative, the first derivative, and the argu-
ment of each variable, respectively. 1., thus refers
to the coeflicient in the first equation associated with

the second derivative of a and not containing C(k) or
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X; Cy; to the constant in the third equation attached to

k, etc. These coeflicients * are as follows:
al"“ra —L(I-f-a)
1
am(3-0)
Aa3=0
Y rs T z3 T
Am=_;_5 7r7 a)( 8 _ l)

- ‘ABQ——[ 2p (~~ a) T4]

53“; (T4+ Tlo)

" Bu=0
2
1
Bﬁ:=%—st
Bﬁg=-’2iﬂ_2‘T4T“

1 )
Bﬂs%ﬂ—,z(Ts_T4 10)
Bm=““—T1
Bn2=
Bh;;::

Cy="~a (=Aw)
Cu=1

Ga;;:

Cﬁlaig"_Tx (=Bn)

-1
Cﬂ2=—;T4
Cu=0
: 1
Ch1=;+1
Cm 0
Crs=0

1
Y The factor ; or - is not included in these coustauts.

1
IS K
the R’s and I's oa next page.

See the expressions for

i

11

The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanishing of a third-order determinant of com-
plex numbers representing the coeflicients. The solu-

' tion of particular subcases of two degrees of freedom

is given by the minors involving the particular co-
efficients. We shall denote the case torsion-aileron
(@, B) as case 3, vileron-deflection (8, h) as case 2, and
deflection-torsion (h, a) as case 1. The determinant

" form of the solution is given in the major case and in

the three possible subcases, respectively, by:

Boatilsa, Rog+ilos, Run-tils,

D= |Ryotilyay Rog+il,s, Ifb,,+il,,,, = ()

Reatilon Riatilen, Ratila|

~and ) ‘ | E -
o~ | kit Ragira 0 Ot
B | R = e
S Pt et B

3 REAL EQUATIONS IMAGINARY EQUATIONS
el =[] =0 [+ [ | o coves
a2 ~[1572] 0 L | [ oo
moke) ~ || =0 [+ [l | o cue

Nare.~Terms with bars contain X; terms without bars do not contsin X,
The 9 quantities R,,, Ra,e, etc., refer to the real parts
and the 9 quantities I,., I,s etc., to the imaginary
parts of the coefficients of the 3 variables «, 8, and &
in the 3 equations A4, B, ' on page 10. Denoting the
coeflicients of &, &, and « in the first equatlon by p,
g, and r,

Raa+z .,a—“-;[ p+lqu+r(/€”)]

which, separated in real and imaginary parts, gives
the quantities R,, and I,,. Similarly, the remaining
quantities B and I are obtained. They are all func-
tions of ¥ or C(k). The terms with bars R.., R.s,
and R, are seen to be the only ones containing the
unknown X, The quantities € and X will be defined
shortly. The quantities £ and [ are given in the

I following list:

PN
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Rou= —A‘,,JFQ‘,XJr1 2(—% + a)[(%-¥ a)G—JF] (1)

Raﬂ——Aﬁl'i'kgAﬁzw“k1(0.'1"2)[1 G-27 Tloﬁ:l(>

N

Iaq=—%[2(a+—;—> (%-a)mlaj—a,,z] (11)
ﬁ ,,,,~~k[( +3)(1ur+23 706) - Am] (12)

\ ahfj-‘--zz(a+§)F (13)
'I,,.,ui—[%%{ %—G)F+%G}+Baz] (14)
L= 32 (TP +23 TuG)+ Ba | (15)
1. -1 Tap (16)
k[z{(z )F+ @ +C.,z] (17)
Lﬁ,;[;(:rumzzTma)+0,,2] (18)
In=72F (19)

- The solution as given by the three-row determinant
shall be written explicitly in X. We are immediately
able to put down for the general case a cubic equation
in X with complex coefficients and can easily segregate
the three subcases. The quantity D is as before the
value of the determinant, but with the term containing
X missing. The quantities M,,, My, and M,, are
the minors of the elements in the diagonal squares
aa, b3, and ch, respectively. They are expressed ex-
plicitly in terms of R and I under the subcases treated
in the following paragraphs.

‘ Aua+Q X Af:r" A’l"‘ :
D= ' 4ra Ayst QX A =0
A, A Ao+ X

where A,.=R..+11,q. ete.

Bovm—An+32(a43)6 T ®
R, =—Ba1«1@[(—-a G-—F] o
| By — Byt szﬂa+QpX 1T“[Tu(* 2Tm-,EF:| )
(Bor=—B» —1lng ®)
By — ".l—-az[(-l-—@G—lF] )
{ Bep=— Cm-———[TuG 2kaF] A (8)
\RM==-—CM+9,,X—E2G ' : (9)

tions.

. Comgplex vrbic equation in X:

Qs - (QaLsAont Qn Aga-+ UQaAss) X

A+ BaMaat BMop+ BMa) X+ D=0 (XXI)
Case 3, ‘w, B): '
Q@ X2+ (LA ps+ QA sa) X+ Mop=0 “(XXII)
Case 2, (8, h): v x
QX2+ (L Ao+ Arg) X+ M,m——O (XXIII)
Case 1, (b, a):
Qa4 (U doat Qu Am) X+ My=0 (XXIV)

Wal'a br,w,
Q“X“ksz' ( ) )
0,9 _ [ wsrs br,w, 2
B X =k’TM""uzx““( ,r) 5E)
br,w,
Q’IX kszK (("'17'7) )

br.w,
X~; vk )

We are at liberty to introduce the reference param-
eters w, and r,, and the convention adopted is: w, is
the last w in cyclic order in each of the subcases 3, 2,
and 1.

Then 0, (

~and finally

WnTn ) and Q,,;==1, thus for
Wy 1Tyl

2
Case 3, 9.=(9~"—'&) and 5=1
Case 2, 95~(w”r") and Q,=1

W 3
Case 1, Q"z(wu:‘a and Q,=1

To treat the general case of three degrees of freedom
(equation (XXI1)), it is observed that the real part
of the equation is of third degree while the imaginary
part furnishes an equation of second degree. The
problem 1is to find values of X satisfying both equa-
We shall adopt the following procedure: Plot

graphically X against 71c for both equations. The points

of intersection are the solutions. We are only con-

cerned with positive values of % and positive values of

X. Observe that we do not have to solve for k, but
may reverse the process by choosing a number of
values of k& and solve for X. The plotting of X

against llc for the second-degree equation is simple
'}1 '\"}Y{‘L‘f_’é‘; ’

bl

[SERLORRE:
Hl i

s the 15 somewhat mors

i : cialon, However,
the general case is of h'w praciical meorta.nce than
are the three subcases.., The equatlon simplifies con-

siderably, becoming of second degree in X.

Bous L el
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case («, 8). The complex
quadratic equations (XXID)-(XXIV) all resolve
themselves into two independent statements, which
we shall for convenience denote ‘‘Imaginary equa-
tion” and ‘“‘Real equation”, the former bheing of first
and the latter of second degree in X. All constants
are to be resolved into their real and imaginary parts,
denoted by an upper index R or 7, respectively.

Let M,,=M3,,+iM%,, and let similar e\presswns
denote M,z and M.,
Case 3, (a,8). Separating equation (XXII) we obtaln.
(1) Imaginary equation:

(Qulpst+ Qe oo) X+ M7 =0
MI:)A

X= - .Si:lbﬂ'{"gﬂ[aa

(2) Real equation:
| Qup X+ (QuRop+ QRoa) X+ MFp=0
Eliminating X we get
QaQs (M )2 — (QuBop+ QReo) (Ul g+ sl aa) Mo
F+ME o (Qadpp+ 01 00} =0

By the convention sdopted we have in this case:

=) G

Arranging the equation in powers of Q, we have:
Qo[ — Moy (Ropdvs) + MPop T o5%) - Q[ (M 0)*
-Mrch Rmxlbﬂ + IaaRbﬂ) + 2A’«{RchjcwtIbﬂ‘i
+ [_AIIchRaaIaa"}" MRch auz] =0
But we have
(Mfch) - Mlch (Raalbﬁ+ IaaRbﬁ)
—'M ch[RaaIbﬂ""'RaﬁIba +RDBI¢a —RbaIaB —RauIbﬂ "'Rbﬁfaa]
=—M 23 (RaﬂIba+ IaBRba)

Finally, the equation for Case 3 («, 8) becomes:

QGZ(MRchIoaz""MIchRoBIbB) + Qa[—Mlch (RaBIba+ IaﬁRba)
+2MchIa¢Ibﬂ] + MRchIaaz'" MlchRaaIaa = O . (HV)

where

Wy ==wg, and Qg=1

Mnch =RaaRba -Ra&Roa— Iaalbﬁ +IaﬁIbu
M’cn =RaaIbB —RaBIba + IaaRbﬂ— IaﬁRba

The remaining cases may be obtamed by cychp
rearrangement:

Wy ==y

3
Case 2, (8,h) =(‘£ﬁ) T8 =1
A
Qé (M’:a c[‘z“ A/[{chhIrA) + Qﬁ["' Miu (RMch + IothB)
+2Mealoplonl+ Ml os*— MR osl =0 (XXVI)

Muaa = Rbﬁ Rclc— RBARCﬂ— Ibﬂlch + Ithcﬂ
M£a=RbﬂlchwahIcﬂ+ IbBRch"‘ Ithcﬂ
2 .

sz,‘z(“’” o =1

Qa (M Iaa2 M{BRaalaa) + Qh["" bﬂ(RcaIah+ IcaRah) '

F2M Il oal + Ml — MRyl =0 (XXVII)

Mlzﬂ chhRaa '—RcmRah - IchIaa + IcaIali
Miﬁ:Rch aa'—‘RmIah"l" IchRam"'IcuRah

Equations (XXV), (XXVI), and (XXVII) thus
give the solutions of the cases: torston-aileron, aileron-
deflection, and deflection-torsion, respectively. The
quantity @ may immediately be plotted against

where

Wy ==Wqy

Case 1, (h,a)

where

7’;; for any wvalue of the independent parameters.

The coefficients in the equations are all given in terms
of B and 7, which quantities have been defined above.
Routine calculations and graphs giving Q against

% are contained in Appendix I and Appendix II.

Knowing related values of @ and 71;, X is immediately

expressed as a function of Q@ by means of the first-
degree equation. The definition of X and Q for each
subcase is given above. The cyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subcases. '

It shall finally be repeated that the above solutions
represent the border case of unstable equilibrium,
The plot of X against € gives a boundary curve between
the stable and the unstable regions in the XQ plane.

It is preferable, however: to plot the quantity 71c—2 -1)?

instead of X, since this quantity is proportional to the
square of the flutter speed. The stable area can easily
be identified by inspection as it will contain the axis
11

Bx=0 if the combination is stable for zero velocity.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lavcrey Fiewn, Va., May 2, 1934.



" APPENDIX 1 |
PROCEDURE IN SOLVING \IUMLR[CAL EXANIPLES

(1) Determine the R's and I’s, nine of each for a
major case of three degrees of freedom, or those per-

taining to a particular subcase, 4 R’s and 4 I’s.

Refer.

to the following for the R’s and I’s involved in each

case: - : \

The numerals 1 to 9 and 11 to 19 are used for con-

vemence

. (Major ca@e) Three
‘ devrees of freedom

L., 11

1 Ru

2 Ry Lp 12
3 B Ia 13.
4 Ry e 14

5 Ry Ty 15
6 Ry I, 16
"7 Re L. 17

8 Ryp Is 18

9 Ry . I, 19

(Case 3) Torsional-
aileron («, 8)

1 R L. 11
2 B Ly 12
4 R Dn 14
5 Ry Iy 15

(Caseb 2) Aileron-
deflection (B, h)

5 Ry L 15
-8 Rp - In 16
8 Ry Is 18
9 Ra  I. 19

(Case 1) Deflection-
~ torsion (k, )

7 R I 17
9 R, Ia 19
1 R L. 11
S8 Ry Ia 13

It has been found convenient to split the &£'s in two

parts RK=I'+R",

the argumenti—.

14

The quantities I and R’’ are func-

( R”

the former being independent of .

tions of the two in: i«‘pendent parameters a and ¢ only

The formulas are given in the followmg list.

wami2(o+3)|(i0) o7
11
R =i Tl +(a+2)(Tu Tmzv)
R";g=—2(a+§)0‘ L
lT 1
" pa = E? )G———}-
’ 1 [Ty 1,
Rl’bﬂ‘“"%}‘z{ 1<TU TloF>“E(T5_T4Tm)
1Y Rand _%%%G
1
=2\ >G“]
,’cﬂ——%}—([llg 2T10k>
.R’,ch—;]]{;2G

= —2<a+%>{<%—a>F+%GJ+%—a
Lo=~H(a+3)(TuF +37u6 ) +20
+(3-2)7 )
Ton= —2<a+%>F

e G 6 +1(y-1—31.)

Where p=—3 (1 —cr)32

L2 N
Lp= g [ TuF+ 1 16) =TT,

I T”F

{ ——a)F—{-k }+1
ICB=—[(T;13+ F T5°G> -7

B Im, qummuu; 1 given in the

Ica=

appendix and used in the b

W

@

@

(4)
(5)

.

(9)
(11)

(12)

(13)

(14)

(15)
(16)
(17)

(18)
(19)

Alewing cadeulutivns

| are seen to differ from the I's given in the body of the paper by the factor I: - It

may be noticed that this factor drops out in che first-degree eqnations.
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Choosing certain values of a and ¢ and employing |

the values of the 7”s given by the formulas of the report
(p. 5) or in table I and also using the values of # and
@ (formulas (XI1) and (XIII)) or table II, we evaluate

the quantities J and R” for a certain 'nu’mber of%

values. The results of this evaluation are given in
tables III and IV, which have been worked out for
¢=0,—0.2, and—0.4, and for ¢=0.5 and ¢=0. The

range of 71— is from 0 to 40. These tables save the work

of calculating the I’s and R’/’s for almost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities R’ to

* be detertained. These, being independent of ‘l}é] are as

a result easy to obtain. Their values, using the same
system of numbers for identification, and referring to
the definition of the original mdepenuent variables on
pages 9 and 10, are given as follows:

2
R o — = —<§~+a2> (1)
B R L A O KL REY
R o= —’—”Kﬂ+a (3)
R’,.=same as R’ 4)
, re® 1
Riyg= -t 15 (5)
1
Riy=—"2+4=T, (6)
R’ .,=same as R’ (7
R’ s=same as B’ (8)
1
Ra=—1-1 (9

Because of the symmetrical arrangement in the
determinant, the 9 quantities are seen to reduce to
6 quantities to be calculated. It is very fortunate,
indeed, that all the remaining variables segregate them-

I

k
while the more complicated 7 and R’ are functions
solely of ¢ and a. In order to solve any problem it is
therefore only necessary to refer to tables IIT and IV
and then to calculate the 6 values of B’.

The quantities (1) to (9) and (11) to (19) thus

selves in the 6 values of R’ which are independent of

having been determined, the plot of 2 against %; which

constitutes our hod of solution, 3 obianed by
solving the equation Q5242 be==0. The
¢, b, and ¢ are obtained autematically by computation

according to the following scheme:

et

onstants o

i

1‘

et ' Case 3 L T P

.\'w . - . J y’\\/
Fiud procuects 1.5 2.4 11.15
Tion MEp=15—24—5(1115-12.14) ¢ 7
Find products 1.15 2.14 11.5

Then ﬂl’ch=l.l5~—2.l4+11.5——12.4
&nd a= ]14}20),(10)2 A{Ich(S 15)

b= — M ,(2.14 4 12.4) +2MR ,(11.15)
c=M~,,(11)2— M7, (1.11) Find @,
e 1 0(15)+11
Solution: 3= ——(M—),;'L
Similarly R
Case 2
5.9 68 1519 16.18
ﬂIRa,=5.9——6.8——(15 19—16.18)
5.19 6.18 15.9. . 16.8
M ,=5.19—6.18+15.9—16.8
a=M",,(19)*— M’,.(9.19)
. b——-—'—MIm(ﬁ.lS-}JG.S)
+2M~ . (6.18416.8) :
céMRa,,(IS)’ M1,(5.15)  Find 2,
1 2,09)+15 |
X M
and :
Case 1
9.1 7.3 19.11 17.13
M?,5=9.1—7.3 (19,11 —17.13)
-9.11 7.13 19.1 17.3

M 5=9.11—7.13419.1—17.3
(L=MRbp(11)2“Ac’[1b3(1.l 1)
b= — M",(7.13+17.3) +2MP 4(19.11)
C=MRW(19)2—A/IID,5(9.19) Find 2y
1 Q,(11)+19
_—W

2, 1s defined as (w“r

Qs 1s defined as ( for case 2; and

Q, 1s defined as

The quantity Y is K(b ) by deﬁmmon

Since both € and )—( are calculated for each value of

%, we may plot %2 %(— directly as a function of Q. This

quantity, which is propormonal to the square of the
T Lryias b gy g
-~£u\'<_ e Lot i

“\}
Sy sdindlo- i

c oot of the

ahove

", and will denote this

quantity, viz, Ic V
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quantity by F, which we shall term the “flutter factor.”
The flutter velocity is consequently obtained as

bw,r
=F rr
v e

Since F'is nondimensional, the quzmtity 1/

" must

obviously be a velocity. It is useful to establish the
significance of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

2
that «= Iﬁ} and that the stiffness in case 1 is given by

Wa = ‘/ 217%77;5 this reference velocity may be written:

bw,re
vg .JK— = e

: rp'vg"'bz—-

The velocity vz is thus the velocity at which the total
force on the sairfoil wpvs*2b attecking with an arm g
equals the torsional stiffness C, of the wing. This
statement means, in case 1, that the reference velocity
used is equal to the ‘“divergence” velocity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

Up=0Ug 1
§+a

where @ ranges from 0 to-—%- We may thus express

the flutter velocity as
V=0l

In case 3 the reference velocity has a similar signifi-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a }everage 1 b equals numeri-

cally the torsionul stiffness Cjs of the alleron or movable
tail surface. '

In case 2, no suitable or useful significance of the
reference velocity is available,

TABLE [.—VALUES OF T

e=1 c=1% c=0 c=~1g e=—1
1] —0.-1258 —0. 6967 | —1.6967 —3.1418
V] -0, 2103 —1.5707 | —4.8356 -9. 8697
[ -. 05313 —. 8084 | ~3.8375 | —11.1034
Q —~. 6142 ~1.5708 | -~1.6614 —3.1418
G —. 9398 —3.4674 | —86. 8503 ~9. 8607
0 —0.2103 ~-1.5707 | —4.8356 —8. 8897
0 . 0132 -. 1964 | —~1.1913 3. 5343
0 . 0903 ~.3333 | —1.4805 —3. 1416
i) 1. 9132 2.5708 2. 9604 3. 1416
9 1. 2990 3. 5708 8. 3538 9, 4248
b/ 47 TSRS B | . 07068 . 4202 1. 2990 3. 1418

TABLE II.—TABLE OF THE BESSEL FUNCTIONS J,, J;
Ys, Y1 AND THE FUNCTIONS F AND G

Ji(Ji+Yo) + (Y= Jo)

Fiy= BES O
_G(k)_yl(‘h'f-Yu)—Jl(Y|—Jn)
(S1+ Y)Y~ Jo)?
k
-
10
6
4
2
1
.8
.8
.5
4
.3
.2
.1
.05
.025
1]
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TABLE IIL—VALUES.OF R

17

1 e
k 0| Yo % T ¥ 1 | 1% 2 % | 3 5 10 2 10
I . '
0/~ 0. 00564] ~0. 01666] —0. 03529|—0. 14265! —0. 58965 —0. 93856] —1. 72350{ — 2. 5630 —4. 11000] —7. 68720/ —18. 66150 —85.38300] —365. 72000 —1, 528, 2000
B a U - 0 —.00353] —, 00081| —.02208| —. 08005 —.36586| —. 58061/ —1. 08156 -—1. 57407 —2. 51580 —4. 63430 —11, 31010) —51.42490] —219,74000| —017. 35620
: —.4 —.00123| —. 00341 —,00767| —.03084{ —. 12505 —. 19936] —~. 38305 —. 53676] ~,85520] —1.58540{ ~—3.80774| —17.20870] —73.35520f —305.9280
0] 0 —. 00163 —.00452] —.01020( —. 04175/ —. 18016} —. 29384 —, 56223] —.87212—1. 43083| —2. 84088 —7.46300; —38. 20650 ~—172.36360, —741.7972
o —2 O .00030/ .00083] .00184| .00670] .01922] .02266 .01629] —.01400] —. 0603 ~—.29517] —1. 29480 —10.24500] —52. 49020, ~241.3664
P —.4 o o0222) o617 .01338] .05531 .21861 .33014] 50400 .84414 1.30365  2.25014| 4.87340) 17.80470 67.38320]  250. 0548
»
° o 0 .00083] .00229] .00510| .01932| .06410] .08876| 12176 .12260] .12205 —.02000f ~.93535 —10.48070] ~50.16180] —268.7236
0.5 —.2 O .o0214/ 00505 .01336| ,05278| .20325] .31065| .53062] .73222( 1.10233| 1.81135] 3.55230) 10, 14740 31.40620]  101.6340
—.4  0f .00347 .00965/ .02170; .08656 .34361] .53463] .94336 1.34762] 2.00190 3.66013| 8.03235 30.97980]  120.89760|  475.2592
0 0 —.00125| —.00345 —.00763| —. 02890 —.10030| ~—. 14560 —. 22470 —.30200| —.41500] —.60000] ~.04300; —1.62600] ~—2.64000|  —3.6000
R’ M —.2] 0 —.00075 —.00207| —.00426] —, 01734 —, 06018 —.08736] —. 13482 —. 18120/ —. 24000 —.36000] —.56580] ~—.97560(  —1.58400) —2. 1600
—-4| 00 —,00201) —~.G0334) —. 00502 —. 01003) —. 02006 —. 02508 —. 03236 —. 04012 —. 05015 —.06683) —.10030] —. 20060 —. 40120 —. 8024
0 o{ .000771 .00214] .00482] .01949] .08055| .12821 .23541[ 35010 56143 1.05008| 2.54920| 11.66330 49.957001  208.7520
or-—.z ¢ .00080{ .00223) .00503| .02027] .0R329| .13219 .24169] .35836 .57276( 1.08650] 2.57490] 11.70770 50.03000]  208. 8500
P —.4 u{ .00084) .00233( .00523| .02106| .08603) 13616 .24708| .36661) .58410] 1.08286] 2.60669| 11.75220 50.10160  208.9490
da
0 .00013] .000350 .00078] .00321] 01327 .02112] .03878] .05787| 09248  .17296,  .41988  1.02110 8. 22570 34, 3850
0:8{ ~.2) 0 .00013} .00037) .0O0B3| .00334 .0I372] .02177] .03981| 006031 .09434]  .17566|  .42413]  1.92840) 8. 24060 34, 4007
\ —.4f 0 .00014] .00033) .00086| .00347] .01417] .02243| .04084] .06039] .09621) . 17836]  .42837]  1.9357 8. 25246 34. 4169
R ",1 0 .00124i .00343 .772[ . 03101 .12642] 188301 .35807] .52400, .82030] 1.51630{ 3.54070 15.351%¢ 64.02240|  263.2340
b M) o .00031 .00087| .00196 .00783 .03170| .04980; .03935) .13000{ .20440|  .36940) .84970]  3.5505( 14. 56740 59. 3188
R [1 0 .00017| .00047] .00103! 00304 013700 .0193¢, 03177 .04125 .05669] .0B168]  .12881 L 22211 . 36062 L4918
LBl ()] O .00003] .00008] .00015| .0CO65| .002260 .0C328| .005CS| .00680; 00934  .01350] . 02122 . 03659 . 05940 . 0810
o . 01128 ‘03132‘ . 07058 285300 1.179300 1.877100 3. 44670; 5. 126004 8.2‘2()00} 15. 374501 37.32300| 170. 76600 731.44000[ 3, 056. 4000
R M) —.20 O 01178 .03270 07362 .20484 1.21054| 1935400 5. %IR60( 5.24680| 8.35600( 15.61440 37.700201 171, 418400  732.40600| 3,057. 8400
—.4 O .01228) .03408] .0766¢| .30838) 1.250300 1.99360] 3.62:30 5 36760 8552000 15.85440 38.07740{ 172.08680|  733.55200) 2,059, 2800
R O (O] —. 00983 --. 02673 ~-. 050i8! ~~. 24266|—1. 00561 —1. 58246/~ 2. 8 —d4. 20100] —8. 85895 —15. 45965!—30. 84330! — 140. 26370 —509. 41300 —2, 502. 3470
f .6 00660 .01840] 041500 . 1683yl .60850, 1.11453) 2.05320| 3.06224| 4.92530, . 24438 22.54400| 103.67300]  444.86400| 1,881 4900
Rla | O O 0 .00250] .00600) .01420] 05780 20060 .20120| .44040] 60400 .83000{ 1.20000] 188600  3.25200 5. 28000 7. 2000
1 Independent of ¢, ! Independent of a.
w TABLE 1V.—VALUES OF I
1w
[3
- 0 Ho “® ¥ % 1 14 134 2 214 3% 5 10 20 40
¢ [ ]
0 | 0.25000 | 0.25006 | 0.25255 | 0.25578 | 0.27240 | 0.33055 | 0.36855 | 0.44030 | 0.50050 | ©0.60275 | 0.76750 | 1.07920 | 1.70320 | 2.68450 | 3.61750
Tau| ()} —.2] .40000 | .49050 | .49131 | .49302 | .b0189 | .53350 | .55464 | .59472 | .62794 | .68671| .78070 | .96021 | 1.32040 | 1.90140 | 2.45470
—.4| .81000| .81014 [ .Bi037 | .810%6 | .81145| .B2395! .82038 | .84176 .85186 87059 | .00030 | .95763 | 1.07300 | 1.26400 | 1.44e30
0 J17805 | 17874 | .17985| .18219 | .19433 | .23768 | .26645 ! .32132| .366864 | .44690 57526 | .82035 | 1.31213 | 2.10476 | 2.85063
0 | —.2( .30170 | .30212 | .30278 | .30418 | .40147 | .42748 | 44474 | .47761| .50485 | .55300 | .63002 | .77708 | 1.07215 | 1.54773 | 2 00065
I ~.4| .60531 | .60545 | ,60567{ .606l4 | .60857 ) .61724 | .62209 | .63395[ .64303 65908 | .68475 | 73377 | .82313 | .9906a | 1.14163
aft =
[} 13252 | .13317 1 13425 | .13640 | .14742 | 18544 | .20014 | .25611 | .20514 35051 | .46379 | .65073 1 1.05124 | 1.6552¢ | 2.22869
05| ~.2 21297 . 21336 . 21401 . 21530 . 22191 . 24472 . 25894 . 28712 . 31054 34016 41173 . 52929 . 76420 1. 12651 1. 47067
—.4| .29342 | .20354 | .20376 | .20419 | .20640 | .30400 | 30801 | .31813 | .32504 33881 | .35966 | .30884 | .47714 | .50792{ .71260
0 |—.50000 |—. 50060 [—. 50180 |—.50370 | —. 51200 | —.53950 | —.55410 | —.57880 | —.60300 | —.62450 | —.66500 | —.72760 | —.84570 | ~. 94100 { —. 06500
T | () | —.2 [—.30000 |—.30036 {—.30108 |— 30222 | —. 30774 | —. 32370 | —.33246 | ~.34728 | —. 36180 | —. 37470 | ~. 308900 | —. 43656 | —.50752 | —. 56460 | ~. 57500
—.4 [—. 10000 {—. 10012 [—, 10036 [~.10074 { —.10258 | —. 10790 | —.11082 | —. 11578 | —. 12060 | —. 12490 | —. 13300 | —. 14552 | —. 16914 { ~, 18220 | —. 16300
0 .30023 | .30010 | .38088 | .38044 | .38717 | .37023 | .37404 | .3642¢4 | .35601 | .34204 | .31954{ .27606| .191721 .05766 | —. 06080
0 | —.2; .40389 | .40378 { .40359 | .40320 | .40119 | .30397 | .38018 | .38005 | .37240 | .35D11 | .33771| .29683 | .21460 | .08255 ( —.04344
I —.4 | (41755 | .41746 | .41730; .41607 | .41520 | .40871| .40432 | .39586 | .38396 | .3v617 | .35698 | .31671 | .23703 | .10744 | —. 01707
[ 2]
0 07438 | 07435 | .07433 | .07424 | .07387 | .07256| .o7171| .07000 | .06874 | .06644 | .06273 | .05572 | .04168 | .01960 | —. 00327
0.5 ~.2 . 07663 . 07681 . 07658 07651 . 07618 . 07409 . 07420 . 07270 . 07145 . 06925 . 06572 . 05899 . 04548 . 02370 . 00295
~.4 ] .07887 | ,07885| .07882| .07867 | .07848 | QY741 | 07668 | .07528 | .07416, .07205) .06871 | .06226 | .04028 | 02779 | .00728
La| 0 () | .32297 | .32288 | .32273 | .32241 | .32075| .31483 | .31000 | .30342 | .29721 | .28625| .26872 .23524( .16806 | .05978 | ~—.04333
.8 04270 | 04270 { 04270 | .04270 | .04240 | .04150 | .04095 | .03930 | .03904 | .03760 { .03386 | .03080 | .02200 | .00845 | —.00470
Il © (1) | .06830 { .06840 | .06850 07010 | .07370 | .07570 | .07910 | .08240 | .08530 | .09080 | .09940 | .11550 | .12440 ) .13180
.5 . 01125 .01126 .01128 01133 . 01154 .01214 . 01247 . 01302 .01357 . 01405 . 01496 . 01637 . 01903 L0217 .02171
1.50000 | 1.49808 [ 140490 | 1.48844 | 1.45520 ] 1.33800 | 1.26200 | L.11040 [ 00000 | .74950 | .46300 | —.15840 |—1.40630 |—3.36900 |—5. 23500
Zow | ()| —.2{1.70000 | 1.69832 | 1.69562 | 1.68092 | 1.66036 | 1.55470 | 1.48454 [ 1.35002 { 1.24020 | 1.04430 | .73100 | .13264 |~1,06802 |—3. 00460 |—4, 84900
—.4 | 1.90000 | 1.89856 | 1.89634 { 1.80140 | 1.88552 | 1.77050 | 1.70618 ) 1.58244 | 1.48410 | 1.31410 | .99700 | .42370 | ~.72074 |—2. 64020 {—4. 46300
Le| ® (*) | 1.06830 | 1.06690 | 1.06470 | 1.06000 | 1.03580 | .94000{ .89150 | .78190 | .60110 | .52840 | .27380 | —.21640 |—1.20010 |~2. 78550 1—4, 20530
. & 40220 | 40100 | .30%80 | .39450 | .37240 | .20640 | .24640 | .15510 | .07610 | —. 05180 | --. 26030 | —. 65220 {—1.43520 (2. 64380 |—3.79010
Y (O] ()] 1.00000 ] 1.00120 | 1.00360 | 1.00740 | 1.02580 | 1.07900 | 1.10820 | 1.15760 | 1.20600 } 1.24900 | 1.33000 | 1.45520 | 1.69140 | 1.82200 | 1.93000

t Independent of ¢.

1 Independent of a.
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APPENDIX 1i

NUMERICAL CALCULATIONS

A number of routine examples have been worked out |
to illustrate typical results. A ‘“‘standard” case has
been chosen, represented by the following constants:

x=0.1, c=0.5, a=—0.4, 2,=0.2,

/! 1 1

2_. = 2
; ,F?A * rai=0.25, 23 50’ ™" =160
7 .
Wa, wg, wy, variable.

We will show the results of & numerical computation
of the three possible subcases in succession.

160 .
y
4
120/~ ]
N
80
40 O e

o N} 2 3 4 S5 6 .7 8 .8

17k

Figure 5.—Case 3, Torsion-aileron (a, #): Standard case. Showing Q2. agalnst%'

L0

Case 3, Torsion-aileron («,8): Figure 5 shows the Q.

against % relation and figure 6 the final curve

vy ainst Q2 —(""““)2 ( )
* wpr,gb i e wgrg
20
/6
12 ‘
F \\
6 \
A} A
\\ .—/P/
0 20 40 60 80.0 100 120 140 /60 (60
o

F1GURE 6.—Case 3, Torsion-sileron (o, 8): 8tandard case. Showing flutter factor
F against Qa.

Case 2, Aileron-flexure (8, h): Figure 7 shows the

. 1 .. . . r
2; ngainst 5. reintion” and figure 8 the final curvex },\;
[EAPRL P

against Qp= (

-3l
160

Sltis reallzed that considerable care must be exercised Lo get these curves reason-
ably accurate.

18

The heavy line shows the standard case, while the
remaining curves show the effect of a change in the

1 » 1_.
value of x5 to 10 and 160

Case 1, Flexure-torsion (b, a): Figure 9 shows again

012 // ™~
*p Y160 /‘('xa=l/40\
.008 © / \(b)
(c}) ;3\\ Xg= 1/80\

/4 \ (&%)
g o<\\ — \
-.004
~.0085 L | |

2
1/k
FIGURE 7.—Case 2, Aileron-deflection (8, k): (a) Btandard case. (b), {c), (d) indicate

dependency onzps. Case (d), 2s=—0.004, reduces to a point.

the Q, against 751— relation and figure 10 the final result

2
x( ) against @, = ( L 4(‘ﬂ)
(P ab Walo Wy

Case 1, which is of importance in the propeiler theory,

has been treated in more detail. The quantity F'shown
in the figures is x wad
Figure 11 shows the dependency on :"_,_’"=(‘:’71;

figure 12 shows the dependency on the location of the
axis e; fizure 13 shows the dependency on the radius of
gyration r,=r; and figure 14 shows the dependency
on the location of the center of gravity z, for three

1 | different combinations of constants.

o

GLLTS

Detailed discussion of the experunental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are
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restricted to wings of a large aspect ratio, arranged with
two or three degrees of freedom in accordance with the

l4
A\
L2 \\
\\ -
{) (v)
N
8 N
- x,,;=1/80 /
.6
N\ /
/ Xy=1/40
-4 Unstable
L/

2 /,/

p— ]
. @) [¥ Xa=1/160
<] .Q02 004 006 .008 .00 .02 .04
4

FIGURE 8.~ Case 2, Aileron-deflection (8, 4): Final curves giving flutter factor
" against 2 corresponding to cases shown in figure 7.

theoretical cases. The wing is free to move parallel to
itself ia a vertical direction (h); is equipped with an

120

100

80

60
fNn

soH-

20
o \l—_
. s
20 4/
o 2 k) & 4 1Y
1k

< : . . . , 1
FiGure 8.—Case 1, Flexure-torsion (h, ). Standard cas>. Showing Oy against s

axis in roller bearings at (a) (fig. 2) for torsion, and
with an aileron hinged at (¢). Variable or exchange-

“able 3prings restrain the wing to its equilibrium

positivi:.

1.4 ‘\

L2 \
o)

e
\\ )

o 4 8 12 /16 20
LU
FiGURE 10.—Case i, Flexure-torsion (&, «): Standard case. Showing flutter factor
F agninst 2.

We shall present results obtained on two wings, both
of symmetrical cross section 12 percent thick, and with
chord 20=12.7 cin, tested at 0°.

1.50 3
/O\"_,

=
& {
1.00 NN £
. \ //,b@ ] / (
O)‘O J€ /
F \\ 7 cul

.50

S !

Wy /e

FIGURE 11.-—Case 1, Flexure-torsion (A, «): Showing dependency of ¥ on %: The

0 Y% B 2 2
P 1 .
upper curve is experimental. Airfoif withr= ya= —0.4;2=0.2; 4x=.01; —:—; variable.
inr constants:

Wing A, alaminmmn, with 41 00

L' = IV U S

,*\';:4’;‘1”0,' ! llv/l, nird 0()3(\'5,

respectively;
Te2=0.33 and w.=7X2x
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Wing B, wood, with flap, and the constants:

o ©=05, a=—04, z,=0192, rl=0.175,
73=0.019, 7#=0.0079, and w, kept -constant
=17.6X2x

The results for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectively. The abscissas are the fre-
quency ratios and the ordinates are the velocities in

em/sec. Compared with the theoretical results calcu-
lated for the three test cases, there is an almost perfect
3.00
2.50
D
2.00 ,/
— | /
.50 7 S—
V F
/I
P
1.00
.50
0 -2 -4 -6

a
Fiaure 12.—Case 1, Flexure-torsion (A, «): Shewing dependency of F on location
of axis of rotation a. Alrfoil with r—%‘. 2=0.2x _i_; %;_;_; @ variable,
agreement in case 1 (fig. 15). Not only is the minimum
velocity found near the same frequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a small value of the velocity to a definite upper
limit. It was very gratifying to observe that the upper
branch of i not oniy existed but thut it Was
remackabiv cennite. A sl ineresse i speed noar
this upper ;n-nt M)uld suifice to change the roudltlon
from violent flutter to ‘complete rest, no range of transi-
tlon “being observed. The experimental cases 2 and 3
are compared with theoretical results given by the

dotted lines in both figures (figs. 16 and 17).

e oUTrVe
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The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-

2.00
1.50
\A,
r Y
100 \\ ™
. B \\
.50 : —
AN
0 5 7.0 .5

1' .
FIGURE 13.—Case 1, Flexure-torsion (b, «): Showing dependency of F on the radius
of gyration ra=r.

A, sirfoll with a= —0.4; x=33 £=0.2} f—’;—l: r vatiable.

[
B, airfoil with a= —0.4; x—%i =02 Z=1,00; r variable.
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F1aUuRE 14.—Case 1, Flexure-torsion (A, a): Showing dependency of F on z,, the
location of the center of gravity.
A, airfoil with r—% a=~0.4; x= 43\0‘ ——;-'rvanable
l

L@t 1z ariable
v a=—0.4; k= rala r variable.

: 1
C,airfoll with r=—-1 a=—0.4; k=
airio. T 2 a 0.4; « 100

G, airtoll wilh e

. W .
i Zlw1; T variable.
w2

peat themselves satisfactorily. Next, that the influ-
ence of the internal friction” obviously is quite appreci-

7 This matter is the subject of a paper now in preparation.
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able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the ailbron are very low, and no steps were taken to
eliminate the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject
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FigURE 15—Case 1. Wing A. Theoretical and experimental curves giving flutter
veloclty 2 against frequency ratio 2—’: Deflection-torsion.

to temporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiments are seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all cases increase
the speed at which flutter starts.
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FIGURE 18.-—Case 2. Wing B. Theoretical and sxperimental curves giving flutter
velocity ¢ against frequency ratio z—:- Atleron-defiection (8, b).
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FIGURE 17.—Case 3. Theoretical curve giving flutter velocity against the fre-
quency ratio :’-,-:- The experimental unstable area is Indefinite due to the im-
portance of internal friction st very small velocities, Torsion-gileron («, B).
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