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SMALL BEtiDiNG ’ ANti S!iiiiZ’iCiiING OF SANIiWICti-TYPE SliELLS 

By ERIC REISSNER 

SUMMARY 

A theory has been developed for small bending and stretching 
of sandwich-type shells. This theory is an extension of the 
known theory of homogeneous thin elastic shells. It was found 
that two e$ects are important in the present problem, which are 

not normally of importance in the theory of curved shells: (1) 
The eject of transverse shear deformation and (2) the e$ect of 
transverse normal stress deformation. The jirst of these two 
e$ects has been known to be of importance in the theory of plates 
and beams. The second e3ect was.found to occur in a manner 
which is typical for shells and has no counterpart insat-plate 
theory. 

The general results of this report have been applied to the 
solution of problems concerning flat plates, circular rings, 
circular cylindrical shells, and spherical shells. In each case 
numerical examples have been given, illustrating the magnitude 
of the ejects of transverse shear and n,ormal stress deformation. 

The results of this investigation indicate the necessity of 
taking account oj transverse shear and normal stress in sandwich- 
type shells, as soon as there is an order-of-magnitude difference 
between the elastic constants of the core layer and of the face 
layers of the composite shell. It was found that the changes due 
to transverse shear and normal stress deformation in the core 
may be so large as to be no mere corrections to the results of the 
theory without transverse core jlexibility. 

The actual magnitude of the changes is greatly dependent on 
the geometry and loading condition of the structure under con- 
sideration so that no general rules may be given which indicate 
for which elastic modulus ratio the changes begin to be signijicant. 

Solutions of problems in the present theory may in general be 
obtained by mathematical methods which are similar to those 
employed in the theory of plates and shells without the eject of 
transverse shear and normal stress deformation included. The 
present work does not include consideration of buckling and 
finite de$ection ejects. 

INTRODUCTION 

In this report an extension of the classical theory of small 
bending and stretching of thin elastic shells is considered. 
Instead of a homogeneous shell, investigation is made of a 
shell constructed in three layers: A core layer of thickness h 
with elastic constants EC, G,, and ve and two face layers of 
thiclmess t with elastic constants Ef, c;l,, and vP In the 
developments certain restrictive assumptions are made which 
somewhat limit the general applicability of the results. In 
so doing formulas are obtained which are as compact as 

possible while still describing the essential charact,eristics‘of 
the sandwich-type shell. 

The thickness ratio t/h is assumed small compared with 
unity; at the same time the ratio E,t/E,h is assumed large 
compared with unity. This latter assumption means that 
the face material is so much stiffer than the core material 
that the contribution of the core layer to stress couples and 
tangential stress resultants of the composite shsll is negli- 
gible. It is known that for flat plates these assumptions 
necessitate the taking into account of the effect of transverse 
shear deformation. (See, for instance, reference 1.) The 
same would be expected to be true for curved shells, and the 
present report, therefore, gives a system of equations in 
which this effect is incorporated. 

A further effect which, it appears, has not been considered 
previously in the analysis of small deflections of sandwich 
structures is the effect of transverse normal stress deforma- 
tion. In the present report it is shown that this effect arises 
in a manner which is typical for shells and has no counterpart 
in plate theory. It may be likened, roughly, to what happens 
in the bending of curved tubes. 

The process by which the general results of this report are 
obtained is as follows: First, each of the face layers of thick- 
ness t is assumed to behave like a thin shell without bending 
stiffness. The loads applied to. these face shells, henceforth 
called face membranes, are of two kinds: (1) External loads 
and (2) loads caused by the stresses in the core layer. Next, 
the core layer of thickness h is assumed to behave like a three- 
dimensional elastic continuum in which those stresses which 
are parallel to the faces are negligible compared with the 
transverse shear and normal stresses. On the basis of these 
two assumptions three steps are carried out. First, the 
equilibrium equations of the core layer and of the face layers 
are obtained. Then an appropriate expression for the strain 
energy of the composite structure is derived. Finally, Castig- 
liano’s theorem of minimum complementary energy is used to 
obtain the relationswhichconnect stress resultants and couples 
of the composite shell with the quantities which describe the 
state of deformation of the composite shell. 

The system of equations which is obtained in the foregoing 
manner is specialized for the following cases: 

(1) Flat plate 
(2) Circular ring 
(3) Circular cylindrical shell 
(4) Spherical shell with axisymmetrical deformation 

I 1 
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In each case a number of problems are solved explicitly and 
the appreciable effect of transverse shear and/or normal stress 
deformation is illustrated numerically. 

This work was conducted at the Massachusetts Institute 
of Technology under the sponsorship and with the’ financial 
assistance of the National Advisory Committee for Aero- 

SYMBOLS 

core-layer thickness 
face-layer thickness 
curvilinear coordinates on middle surface of com- 

posite shell 
distance coordinate measured along normal to 

middle surface of shell 
coefficients of linear element on middle surface of 

shell 
principal radii of curvature of middle surface of 

shell 
direct stress resultants in upper face membrane; 

n=1,2; m=--1,2 
direct stress resultants in lower face membrane 
tangential components of external load intensit.y 

on upper and lower membranes 
normal components of external load intensity on 

upper and lower membranes 
components of transverse shear stress in core layer 
component of transverse normal stress in core layer 
values of transverse shear stresses for [= + h/2 ; 

n=1,2 
values of transverse normal stresses for { = &h/2 
values of t,ransverse shear stresses at middle sur- 

face of shell 
t,ransverse shear stress resultants 
direct st.ress resultants parallel to middle surface 

for composite shell; n=1,2; m=1,2 
stress couples for composite shell ; n = I,2 ; m= 1,2 
tangential components of external load intensity 

for composite shell; n= 1,2 
normal component of externa1 load intensity fol 

composite shell 
external load intensity term defined by equa- 

tion (22) 
strain energy 
elastic moduli of isotropic face-layer material; 

v= Vf 
elastic moduli in transverse direction of core-layer 

material 
effective tangential components of displacement 

of elements of composite shell 
effective normal component of displacement of 

elements of composite shell 
effective components of change of slope of normal 

to middle surface of composite shell 
component of strain ( cfrn = ar,/ EJ 

C*=2tE, 
D*=(1/2)t(h+t)2E, 
c=c*/(l-v2) 
D bending stiffness factor (D = D*/( 1 - vz)) 
x, Y Cartesian coordinates in plane of flat plate 

r, 0 
a 

polar coordinates in plane of flat plate 
radius of circular ring, cylindrical shell, and spher- 

ical shell 
x, 0 surfa.ce coordinates on cylindrical shell 
XI, Xp, Al2 parameters defined by equation (63) 
p=?T/l 
1 half wave length of sinusoidal load distribution 
ml, m2 quantities defined by equation (197) 
k complex quantity defined by equation (200) 
9, 0 surface coordinates on spherical shell 

iti 
quantity defined by equation (74) 
parameter defined by equation (190) 

I-GENERAL THEORY 

STATICS OF SANDWICH-TYPE SHELL 

In order to derive a complete system of equations for the 
shell composed of face layers and core layers it is necessary 
first to consider separately the statics of the face layers and 
that of the core layer of the shell. Combination of the results 
obtained for these two component,s of the composite structure 
must and will lead to those differential equations of equilib- 
rium which hold for elements of a shell, whether this shell 
is of homogeneous or nonhomogeneous construction. In 
addition, however, relations are obtained which are charac- 
teristic of the sandwich-type shell. 

Coordinate system on shell.-A curvilinear coordinate 
system (El, &, {) is introduced as follows: Let & and Ez be 
coordinates on the middle surface of the composite shell and 
let { be the distance of a point of the shell from its middle 
surface, measured along the normal to the middle surface. 
In order that this system of coordinates be an orthogonal 
system, choose the &, & curves as lines of curvature on the 
middle surface (in the case of shdls of revolution the lines 
of curvature are identical with the meridians and parallzls 
on the middle surface). 

The linear element in the forgoing system of coordinates 
is of the form 

ds2= oL12 (~+~~)zdt,2+~22(l+~)~d~~2+d~2 (1) 

where LYE and (Y~ are the coefficients of the Iinear element on 
the middle surface and RI and Rz are the principal radii of 
curvature of the middle surface (see fig. 1). Formulas for 
the calculation of the quantities (.y, and R, are contained in 
texts on differential geometry. They are collected, together 
with other results, in reference 2, which deals +vith the 
theory of homogeneous thin shells. 

Statics of face layers.-The face layers are treated as 
thin shells of thickness t and it is assumed that the bending 
stiffness of these thin shells about their own middle surface 
may be neglected. (This, of course, means that no local 
buckling phenomena are considered in the present work.) 
Because of this neglect from now on they will be designated 
as face membranes. 

The middle surfaces of the face membranes evidently are 
given with reference to the three-dimensional system of 

curvilinear coordinates by <=i (hft) and c = -i (h+t). 
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FIGURE l.-Element of composite shell, showing coordinates and dimensions. 

From equation (1) it follows that the linear element on the 
middle surfaces of the face membranes is given by 

The components of external load int,ensity on the upper 
and lower membranes are designated by plU, pzu, and pU and 
by P II, Pzz, and g2, respectively (fig. 2). The core-layer 
stresses which act on the upper and lower membranes are 
given as 71cU, Qua, and ar, and by 71rl, 72tl, and arl,respectively. 
Finally, the direct stress resultants in the upper and lower 
face membranes are designated by NI1,, N,,,, NZIU, and 
N,,, and by NIIZ, NIZI, N2, 1, and NZz2, respectively (fig. 2). 

Froum Z.-Element 01 composite shell, showing location and orientation of stress resultants 
in race layers and core layer and orientation of external loads. 

There are then three equations of force equilibrium for the 
elements of each of the two membranes. Writing 

the equations for the upper-face membrane are the following: l 

The corresponding equations for the lower-face membrane 
are 

(8) 

As bending moments and transverse shears are assumed 
not to be acting in the individual membranes the moment 
equilibrium equations become the symmetry relations 

(10) 

Before analyzing the state of stress in the core layer it is 
convenient to see what relations follow from equations (4) 
to (9) for the composite shell. 

Statics of composite shell.-It may be seen that, in viaw 
of the fact that all face-parallel stresses in the core layer are 
neglected, the following expressions for the face-parallel 
stress resultants and couples of the composite shell are 
obtained: 

N,,=( 1 +s) Nnu+( 1-z) Nm (11) 

Nu=(l+z) Nm+(l-~)Nzz (12) 

1 These are obtained from the corresponding equations of reference 2 with C+ changed to 
OL”. and with stress couples and transverse shear stress resultants omitted. To make up for 
this omission, the loads on the two membranes arc assumed to act nt their middle surfaces. 
this means terms of the order t/R are neglected (but not terms of order h/R). 



4 REPORT 975-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

In the same way the following expressions are obtained 
for components of external force and moment intensity: 

Further, a load term of the following form will be 
encountered: 

which bears a relation to equation (20) similar to that which 
equation (21) bears to equation (19). This last term would 
represent, for a homogeneous shell, the average transverse 
normal stress at any stat’ion of the shell, assuming that the 
loads pU and cl2 alone are responsible for this stress. For a 
homogeneous isotropic shell this term is of no importance. 
For a sandwich-type shell, as will be seen, it may sometimes 
be of importance. 

In order to obtain force and moment equilibrium equations 
for the composite shell the face-membrane equilibrium 
equations (4) to (9) are combined suitably. Adding equa- 
tions (4) and (7), and (5) and (8), respectively, the two equi- 
librium equations for the force components parallel to the 
middle surface of the shell are obtained. In order to reduce 
them to known form (see reference 2) the following relations 
are used between the core-layer-surface shear stresses 7nru 
and 7,cl and the transverse shear stress resultants Q1. and Q2. 

(23) 

(24) 

Equations (23) and (24) will subsequently be shown to be 
in agreement with the usual definition for the transverse 
shear stress resultants by consideration of the stress distri- 
bution of the core layer. 

With equations (23) and (24), there are obtained by com- 
bination of equations (4) and (7), and (5) and (8)-carrying 
out addition as well as subtraction-the following four 
equations : 

aff2Nn ~fflN2, 
at, + 

-+NN,z $-Nz, ~+a,a, 
at2 2 1 

($+pl)=O (25)* 

bazN12 hN22 

atI + at2 
aa2 

+NZI G-N~~ =+ aa1 ay1a2 (&+p2)=0 (26)* 

aa2iwl 
ab 

+ a&f21 651+M1z~-M~2~+alrul(ml-Q1)=0 (27)* 
2 1 

bffzM12 + aam 
~+A~2,~-M~,~+,l,z(m2-Q2)=0 (28)* 

a.5 9 1 2 

Two further equations are obtained by adding and sub- 
tracting, respectively, equations (6) and (9). Adding equa- 
tions (6) and (9) and taking account of equations (1 l), (14), 
and (20), there follows: 

(2% 

In order that this reduces to the correct equation of trans- 
verse force equilibrium as given in reference 2, one must have 

-cw2[( l+~)(l+~)uru- 

(l-~)(l-$)+y+%g (30) 

Equation (30), just as equations (23) and (24), can again be 
verified independently by consideration of the state of stress 
in the core layer. On the basis of equation (30), equation 
(29) is written in the form 

The last equation, use of which is required for the sand- 
wich-type shell and which has not previously been given, 
is obtained by subtracting equation (9) from equation (6). 
Taking account of equations (15), (US), and (22), there 
results 

(32) 
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Provisionally, there is written 

(33) 

and it will subsequently be shown that at, represents the 
value of a< at the”-~~~dl~-B~rface of-the shell. .- Combining- 
equations (33) and (32) yields 

(34)* 

Equation (34) has no relation to the sixth equation of 
equilibrium for an element of the shell which expresses the 
condition of moment equilibrium about the normal to the 
middle surface. That equation which, as is known, is an 
identity when resultants and couples are expressed in terms 
of stresses does not occur in the present derivations, or 
rather it is contained in equations (12), (13), (16), and (17), 
which give explicitly the slight differences between N,, and 
Ntl, and A&,, and M2,. 

Stress distribution in core layer--In order to verify 
indepcnclently equations (23), (24), and (30), as well as for 
the subsequent derivation of appropriate stress-strain rela- 
tions, it is necessary to determine the distribution of stress 
in the core layer. 

Assuming that the components of stress u,, uz, and 712 in 
the core which would contribute t,o stress resultants and 
couples of the composite shell are of negligible importance,2 
these components of stress may be set equal to zero and 
only the components of transverse shear stress and trans- 
verse normal stress ~,r, car, and al may be retained. The 
differential equations of equilibrium for these three remain- 
ing components of stress in the system of curvilinear coordi- 
nates defined by equation (1) are obtained, from the general 
form of these clifIcrentia1 equations in reference 3, in t.lic 
following form : 

g[(l+gyl+;;) TN]=0 (35) 

(36) 

The values of the three stress components at the middle 
surface ({=O) are designated by the subscript ~TL. Integra- 
tion of equations (35) to (37) then gives 

(38) 

(W 

1 it is for ttiis purpose that the order-of-magnitude relation hE./tE&l is assumed. 

(l+$)(l+&u~~- 

& [& (a;)+& (f$$%$j (40) 

The transverse shear stress resultants Q1 and QZ are 
obtained from equations (38) and (39) in the form .: .- ..:I 

(hSt)Tnfm 
=y?ih+t 

(4 

(41) 

2% 1 
2 

The integration must be extended over the thickness of the 
core layer and also over half the thickness of the face layers, 
in accordance with the prior assumption that the stresses 
Tnfu, Tnfr, ur,,, ancl url may be taken to act at the middle 
surfaces of the respective face membranes. 

Now, as intended, the proof is carried out of equations 
(23), (24), n.nd (30), which were used t,o obtain the difl’er- 
ential equations for the composite shell. 

To verify equation (23), from equations (38) and (39) 
for the left-hand side of equation (23), the following equa- 
tion is obtained: 

Tnfm Tnfm h+t ~~-~ -=-- ‘nfm 
h+t 

‘+2R, 
l-h+t 

2Rn 
Rn 1- %  ’ 

( > 2% 

and this, in conjunction with equation (41), verifies equation 
(23). 

To verify equation (24) in the same manner, from equa- 
tions (38) and (39) for the left side of equation (24)) the 
following equation is obtained: 

and this, in conjunction with equation (41), verifies equa- 
tion (24). 

To verify equation (30), equation (40) is used to write for 
t,he left side of equation (39) 

and this, in conjunction with equation (41), verifies equa- 
tion (30). 

The section on the stress distribution- in the core layer is 
concluded by listing the form which eqnations (38) to’.(40) 
for the stresses in the core layers assume for “thin” shells, 
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that is, for shells for which h/R<l. From equations (38) 
and (39), in conjunction with equation (41), it follows that 

form alaz(l &$$) (1&g) d&d.& and that the stresses 

(42) * 

J 
From equation (40), in conjunction with equation (41), it 
follows that 

It is necessary to note for some of the following considera- 
tions that, in view of equation (31), instead of equation (43a) 
there may be written 

It is seen that in this approximation the transverse shear 
stresses are uniform across the thickness of the core layer, 
while the transverse normal stress is composed of two terms, 
one uniform across the thickness and the other varying 
linearly across the thickness. 

No further calculations are needed with reference to the 
state of stress in the composite shell. The next step is to 
complete the system of differential equations for stress re- 
sultants and couples by deriving an appropriate system of 
stress-strain relations. 

STRAIN ENERGY OF SANDWICH-TYPE SHELL 

In calculating the strain energy of face membranes and 
core layer it is assumed that both are isotropic and elastic, 
with elastic constants E,, vr= v, G,=E#( 1 +v) and EC, v,, 
G,=E,/2(l+v,). Poisson’s ratio for the face membranes is 
written without a subscript, because, in view of the assumed 
stress distribution, there is no explicit occurrence of Poisson’s 
ratio v, for the core layer. 

The strain energy for the composite shell is the sum of the 
strain energies for the face membranes and for the core layer 

ll=II,+II, (44) 

For the purpose of obtaining stress-strain relations, both 
II, and II, are expressed in terms of stresses rather than in 
terms of strains. 

Strain energy of face layers.-Considering that the element 
of area on the middle surfaces of the membranes is of the 

in the membranes-&e-the stress resultants divided by the 
membrane thickness t, there is obtained, from well-known 
principles, the following relation: 

I&=; ss &, PL2+N22u2- 2vNmJL+ %I+ v)N12u21 X 

(45) 

Equation (45) is transformed into an expression containing 
stress resultants and couples of the composite shell by means 
of equations (11) to (18) which lead to the relations 

(46) 

’ +-~)N,,,=N,,-&Mu 
J 

with corresponding formulas for N,, and Nz2. Note t,hat 
equations (46) and corresponding equations can be used to 
calculate the stresses in the two different face membranes, 
once stress resultants and couples in the composite shell are 
known. 

In what follows attention will be restricted to cases in which 
h/R<<l. Then, with the two const,ants C* and D* defined by 

C*=2tE, 

D*=;t(h+tilE, 
3 

(47) 

the following expression for II, is obtained: 

l-I,=; SSI & [N,,2+N222--vN~~N~2+2(1+v)N~~21+ 

It may be remarked that equation (48) could have been 
given directly, by analogy with known results for the 
isotropic homogeneous shell. 

Strain energy of core layer--With the stresses ul, (r2, and 
712 assumed to vanish, there results for the strain energy of 
the core layer 

h+t 

Again the terms r/R compared with unity are neglected and, 
consistent with this neglect, the values of the stresses 7nl and 
at are taken from equations (42) and (43). 

The value of at may be chosen from either equation (43a) 
or equation (43b). The form of the results depends some- 

(4% 

what on which of the two equations is selected, in the sense 
that the meaning of the deformstion quantities which are 
to be determined depends on which of the two equations is 
taken. This question is decided in the following manner: 
As all resultants and couples enter the expression for the 



. -..- : 

SMALL BENDINd AND &RETCHING OF SANDWICH-TYPE SHELLS 7 

strain energy only as themselves and not in differentiated 
form, except when equation (43a) is used, the selection of equa- 
tion (43b) for at is proposed, thereby excluding derivatives of 

stress resultants and couples from the expression for the 
strain energy II. 

Introducing then equation (43b) into equation (49) yields 

(50) 

I ,r The,integration with respect to {is carried out and equation (50) becomes 

(51)* 

It was to be expected that the terms containing the 
modulus of rigidity 0, would occur in the foregoing form. 
The contribution of the present report up to this point, 
besides giving the new equation (34) for ur,, is thought to 
be the determination of the form in which the effect of 
transverse normal stress deformability manifests itself in 
the strain energy of the sandwich shell. 

STRESS-STRAIN RELATIONS FOR COMPOSITE SHELL 

In what follows a system of stress-strain relations for the 
composite shell is obtained by the use of Castigliano’s theorem 
of minimum complementary energy. The manner in which 
the theorem is used here appears to have been employed 
first by Trefl’tz (reference 4) for the purpose of avoiding 
geometrical considerations in the derivation of the stress- 
strain relations for thin homogeneous shells with small 
deformations, without consideration of the effects of trans- 
verse shear and normal stress deformation. 

Assuming for the present purpose that all boundary 
conditions for the shell under consideration are stress con- 
ditions, the theorem consists in the statement that among 
all statically correct states of stress the actually occurring 
state of stress makes the strain energy of the system a 
minimum. In the application of the theorem the fact is 
taken into account that statically correct states of stress 
only are to be compared, by means of the Lagrangian 

multiplier method. pefore minimizing II an integral is 
added ‘to it which contains the six equilibrium equations 
(25) to (28), (31), and (34), ‘each of the six equations multi- 
plied by a Lagrangian multiplier. It can then be shown, by 
using Castigliano’s theorem with prescribed boundary 
displacements instead of with prescribed boundary stresses, 
that each of the six multipliers has the meaning of one of 
the displacement quantities which occur in the shell problem.3 

With the foregoing understanding of the meaning of the 
multipliers, the multiplier of equation (25) is designated by 
ul; that of equation (26), by us; that of equation (27), by 
PI ; that of equation (28), by pz; that of equation (31), by w; 
and finally that of equation (34), by k. It is known that 
ul, u2, and w represent the effective components of displace- 
ment in the &, &, and { directions, respectively. Further, 
it is known that & and pZ represent the angles through which 
the normal to the middle surface of the shell turns toward 
the & and .$ curves, respectively. There is no immediate 
simple geometrical interpretation for k and, while such inter- 
pretation in terms of an average transverse normal strain 
might be deduced herein, k is considered as an auxiliary 
variable presently to be eliminated. 

Combining now equations (44), (48), (51), and (25) to (28), 
(31), and (34) in the manner indicated, the following varia- 
tional equation results : 

(52) 

3 For the special cw? of the flat plate this has been carried out explicitly in reference 1. For the cnse of the homogeneous shell, without effect of transverse shear and normal stress delor- 
mation, the proof has been given in reference 4. The proof for the more genord case which is here considered is not included as it does not offer any clearer insight into the problem and tends 
to lengthen the analytical discussion. 
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The variations in equation (52) are carried out and deriva- it has been assumed that all stresses are prescribed at the 
tives of variations in the double integral are eliminated by boundary and therefore their variations vanish at the bound- 
integration by’ parts. The line integrals along the boundary ary. 
which occur due to this integration by parts vanish, because Tbe resultant variational equation is 

sN i%-vNll 
22 

1 h2 U1 aa W + h-!-t - --- 
C* ----ala2 dE, R2 ff2 at2 

sN 
12 

20 fV)N12 1 &+ ul aal 1 &+ U2 affz + -- --- 
c* a2 al2 ffla2 at2 a1 at1 ala2 at, 1 

sM Ml1 - vM22 1 ah 1 
11 

D* ffl at1 
p2 aal I -+ 

-- --cqa2 ain (h+t)R, a1a2 1 
sM M2z-vMll 1 ah 

22 
D* a2 at2 

p,dor,+Lk + 
-- --(Y~cQ bC;, (h+t)R, ala2 1 

sM 2(1+V)M12 -- 
12 

1 ah I I% aal 1 ai% I I32 -- aa2 + - --- 
D* ff2 ata a1a2 at2 al at1 ala2 at1 1 

As all nine variations in equation (53) are independent of 
each other, it follows that the contents of all nine brackets in 
equation (53) must vanish separately. Thus the following 
nine stress-strain relations are obtained for the sandwich 
shell, indicating with an asterisk those which appear in final 
form, 

2 1+ 
c 

@SW* Nz 1 [ (h +w* -_ 
12EcR12 C* ‘-12E,R,R, = 1 

(h+t)C* N,, 1 1 (h+t)C* -_ 
12E,Rz2 C’* ‘-12EcR1Rz = 1 

1 h -_ 
ff2 a4; + 

Mu--Mzz- 1 a@, I 82 aal k 1 -__-p 
D* a1 ab aa2 a.5 aa2 @St)& 

(54) The system of equations (54) to (62) may be brought into 
a slightly more concise form as follows: Define the quantities 

1 (h+t)t E/ ~- 
““2 R12 E, 

(55) 1 (h+t)t E, - 
‘“‘2 Rz2 E, 

(56)* 1 (h+t)t E, 
xl2=z R,Rz E, 

(5 7) and eliminate k from equations (57) and (58) by means of 
equation (62) and the equilibrium equation (34). Retain 
equations (56) and (59) to (61) in their original form and 
write for equations (54) and (55) 

P-33* 
(h+W* 
12E,R1 ’ 

-QL+,+; 2-2 (h+t)Gc 2 

Ufm ------ 
EC - aI”a, (hit) 

(53) 

(Sl)* 

(62) 

It ma,y be verified that the meaning of the quantities ul, up, 
20, &, and pz is as has been indicated by comparing equations 
(54) to (61) with the corresponding equations of reference 2 
for the homogeneous shell with E,=G,= a. 

(63) 

(64) * 
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(h+ t)C* -- 
12E,Rz q (65)* 

Equations (57) and (58) become, since according to equation 

_ (47) D*l(h+t)E,=(~)t(hSt)~~/E,, : - ~_ _~ x./r ~~. 

(l+xI)M~I-(v--x1*)M22=D* ( i g+$-g>+g s 
c 1 

033 * 

(l+~z)M22-(v--x,z)M~1=D* ( ; g+-& gg+g s 2 c 2 
(67) * 

With these last transformations there is obtained a system 
of equations which is formally equivalent to the correspond- 
ing system of equations for the homogeneous shell. The 5 
equilibrium equations (25) to (28) and (31) and the 8 stress- 
strain relations (56), (59), (60), (61), and (64) to (67) are 
used for the determination of 13 quantities: Five stress 
resultants Nn, Nz2, N1,, Q1, and Qz; three stress couples 
Al,,, Mt,, and MIz; and five displacements and changes of 
slope uI, uz, w, p,, and Pz. The quantity ucrn which occurs 
in the sixth equilibrium equation (equation (34)) may be 
determined directly, once the shell bending and stretching 
problem has been solved. 

It is seen that the effect of transverse shear deformation 
enters equations (60) and (61) only and that, when G,= 03, 
these equations give the values of the known theory of 
homogeneous shells without transverse shear deformation 
(references 2, 3, and 4). 

The effect of transverse normal stress deformation enters 
equations (64) to (67) only. It is seen that it is, in part, 
responsible for the occurrence of apparent stiffness factors 
C*/(l+const. X) and D*/(l+const. X). Thus, according to 
equation (63), the effect of finite EC is to make the shell more 
flexible in bending and stretching than it would be with 
E,= co. This effect, however, is present only in curved 
structures and not in plates and straight beams, a.s the 
quantities X have one or both of the radii of curvature in the 
denominator. A further effect of finite EC is occurrence of 
the external load terms q and s in the stress-strain relations. 
Both these effects represent, roughly speaking, what happens 
to the shape of an element of the composite shell if the length 
of the core fibers in transverse direction is changed, without 
any stretching or compressing of the face-membrane ele- 
ments. 

Having derived the general system of equations for the 
small bending and stretching of sandwich-type shells, it 
remains to apply these equations to specific problems which 
may be of interest and to determine the quantitative effect 
of the terms which are characteristic of the sand with-type 
shell. Some of this work is done in part II of the present 
report, which follows. 

It may be stated once more that for these specific applica- 
tions the five equilibrium equations (25) to (28) and (31) and 
the eight stress-strain relations (56), (59), (60), (61), and 
(64) to (67) are used. 

II-APPLICATIONS OF GENERAL THEORY 

FLAT PLATES 

The problem of the flat plate is considered first in order 
to show that the results of reference 1 are contained in the 
present results and in order to solve some problems in the 
theory of plates which have not been solved in reference 1. 

Rectangular plates--Using notation which is customary 
in plate theory there is set 

,5=x Ez=Y Q1=(YZ=l R,= R,= w 

u1=u U2’V Pl=PZ I%=& 

Nn=Nz Nz=Nz, hL=Nu &1=&z 038) 

&2=&u Mn=M, Mu=M,, M22=W, 

p,=pz P2=Pu m,=m, m2=mu 1 

The equilibrium equations (25) to (28) and (31) become 

(6% 

z+$$+p=o 

aMzu aMu 
bX + dY 

-&,-I- mu=0 

The stress-strain relations (56), (59), (1 
to (67) become 

N-vN=C** I Y bX 

N II _ vN =..C* ?! z 
bY 

2(1+ v)N,,=G* 

Qz=(h+t)Gc (sz+$) 

Qu=(h+t)G (&+g) 

M-vM=D*bPz z Y ax 

Me&=D*bP’ u z aY 

(70) 

1, (61), and (64) 

(7 1) 

(72) 

(73) 

As in the small-deflection theory of homogeneous plates,, 
the equations for stretching (equations (69) and (71)) are 
independent of the remaining equations for transverse bend- 

Ii - - - - -..--.. 
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ing. Equations (69) and (71) for the stretching are not 
affected by the elastic properties of the core layer. 

Equations (70), (72), and (73) have been treated in refer- 
ence 1 by means of a stress function #, which, together with 
the deflection w, was taken as one of two basic variables. 
In what follows an alternate treatment is given, in which the 
problem is reduced to three simultaneous equations for the 
quantities p,, &, and w. On the basis of these three simul- 
taneous equations a problem not considered in reference 1 
is treated, namely, the bending of a rectangular plate which 
is simply supported on all four edges. This same problem 
has also been solved by Donnell by a method which differs 
from the one employed here. (See reference 5 where the 
case of the homogeneous plate is considered.) 

To reduce equations (70), (72), and (73) to three simul- 
taneous equations for /3=, &, and w, first a quantity w is 
defined by 

Introducing equation (72) into the first of equations (70), in 
view of equation (74), there is obtained 

w-/-V~W= -q/(h+t)G, (75) 

where v2 = a2/aX2+b2/&J2. 

Next, QZ, M,, and M,, are taken from equations (72) and (73) 
and the result is substituted in the second of equations (70). 
This gives, after slight transformations, 

(76) 

In an analogous manner the following further equation is 
obtained : 

*vzg,z(h+t)C,8,+~[~-a(l+t)G~w]+m,=o 
lfv 

(77) 

In order to solve equations (75) to (77) two equations are 
next obtained involving w and w only. Differentiating 
equation (76) with respect to 2 and equation (77) with respect 
to y and adding the two resultant equations, in view of equa- 
tion (74), give 

and, making use of equation (75), 

(78) 

The following procedure may now be carried out: (a) 
Solve equation (78) for w, (b) with this value of w solve equa- 
tion (75) for w, (c) substitute w and w in equations (76) and 
(77) and solve for ,& and &, and (d) eliminate extraneous 
terms in & and &, by considering equation (74). 

Before deriving the solution of a problem along these lines, 
the explicit differential equation for w which follows by 
combining equations (75) and (78) may be given 

1 1 am, v2v2w=n “f5 dx 
r ( 

am, 
-+- 

aY )I -& (79) 
Note that the effect of transverse shear occurs on the right 
side of the equation only. In order to compare the magni- 
tude of the p terms on the right of equation (79), assume that 
relevant changes of p occur over distances of order 1 (where 
1 may or may not be a representative diameter of the plate). 
Then, as order-of-magnitude relations, there result 

c (80) 
V’q 

--=O F& (h+t>G (-)J 

From equations (SO), it, follows that transverse shear ceases to 
be a, secondary effect as soon as 1 is of order Ja ,iE,IG, or of 
smaller order. 

Bending of rectangular plate with simply supported 
edges.-The edges of the plate are assumed to be at x=O,a 
and y=O,b and along these edges moments and deflections 
are assumed to vanish. Further, 

mz=my=O 

where 

q=ii Iishn sin X,x sin pny 
m=1 7x*=1 

A,= ma/a 

3 h =ndb 

(81) 

(8% 

From equation (78), it follows that 

w=-l- x7, -?EL 
D L2fP?12 

sin X,X sin ~~y+o,, (83) 

where wh is a harmonic function. Putt iug equation (83) into 
equation (75)) 

which is integrated to 

w=+ cc (~,f&y 
D(xm2+~nz) 

If-+t)G, 1 sin X,x sin f.~~y-/-w~ 

where wh is the general solution of V2wh= -wh. It is to be the Navier solution for the plate wit.hout transverse shear 
expected and may be shown explicitly that for the plate deformation, the particularintegral is the complete solution 
which is simply supported all around wh= wh=O and, as in of the problem. 

(84) 
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Equation (84) may be rewritten in the more explicit form 

11 

C srz EI 
ymn ‘+y(l-?)c. [m2+nyd/b2>]2 sin y x sin T!Z y b (85) 

‘When G,= ~0, equation (85) reduces to Navier’s solution 
WN. Equation (85) is more jreadily interpreted by means of 
the ratio w/wN of deflection with and without transverse 

shear deformation. On the basis of equation (85)) there may 
be obtained the following equation (86), 

Dv2wN 
W -= wN-OGZ+ (h+t)tE, \J2?“N 

WN WN 2(1-v2)G, u)N 

2 ET 
=l+y (I-vz)Gc 

Setting ~~/2(1-~~)=5.4 and (E,/G,)t(h+t)/d=~, equation 
(86) takes on a form which contains as a special case Donnell’s 
result of equation (18) of reference 5. 

For the case of a uniform load intensity q=Constant and 
for the center of the plate (x=a/2, y=b/2) equation (86) 
becomes 

-- sin m7rl2 sin nrl2 
W r2 Ef (h+t)t L;L; mn[mz+n2(a2/b2)] (87) 

-=‘+, (I-vy2)Gc a2 WN sin mr/2 sin n7r/2 
cc mn[m2+n2(u2/b2)12 

The ratio of the series is 1.98 when u/b=l, and the ratio of 
the series is 1.11 when u/b=1/2. 

For the case of a concentrated load at the center of the 
plate the deflection ratio at the point of load application 
assumes the form 

(sin ma/2 sin 7~7r/2)~ 

Now it is easily shown that the numerator series in equation 
(88) does not converge and consequently w/wN= 03 in this 
case. A more detailed consideration shows that in any plate 
theory which takes transverse shear deformation into 
account the deflection under the point of application of a 
concentrated load must become infinite in contrast with what 
happens when transverse shear deformation is not taken into 
account,. This diflerence, of course, vanishes as soon as the 
load intensity becomes finite, and then the theory with trans- 
verse shear deformation taken’into account is more accurate 
than the theory which does not take into account this effect. 

For the sake of numerical illustration take again the 
square plate (u/b=l) with uniform load distribution. 
According to equation (87), the deflection at the center’ is 
increased because of transverse shear by the factor 

-=1+g 7 E,(h+t)t W 

WN ’ G, u2 (874 

Take h=l.O inch, t=O.l inch, a=10 inches, E,/Gc=200, and 
v= l/3. Then, according to equation (87a), wIwN= 1 j-2.3, so 

83%?44--50-3 

cc 
cc 

ymn sin mrx/u sin nay/b 
m2+n2(u2/bz) 

ymn sin m?rx/u sin nrylb 
[m2+n2(u2/b2)]2 

W 

that in this case the deflection with transverse shear is more 
than three times the deflection when shear deformation in 
the core is neglected. 

Returning now to equation (84) for w and equation (83) 
for w and substituting these two equations in equations (76) 
and (77) in order to determine the changes of slope & and &, 
after slight transformations there results 

1 (89) 
Equations (89) are remarkable for the reason that they are 
not affected by transverse shear deformability. According to 
equations (73), the same is then true of the bending and 
twisting couples Mz, MU, and M,,. It is not easy to see 
why, in this statically indeterminate problem, the magnitude 
of the internal forces does not depend on the elastic proper- 
ties of the core. The analysis, however, shows that, the 
distributions of Mz, MU, and M,,, and therewith.of Q, and 
Q,, remain the same as those obtained under the assumption 
that G,= co. In this connection the following remark may 
be made. 

Evidently the following three boundary conditions, 
w=Mz=&=O along the edges x=O,u, have been satisfied. 
In order that the last of these three conditions be satisfied 
there are necessarily nonvanishing edge values of the twisting 
couples M,,. The same is true in the theory without trans- 
verse shear deformation, where, however, no alternative 
possibility exists; as in that theory only the boundary condi- 
tions w=M,=O are relevant. For the present system of 
equations three boundary conditions must be formulated for 
every plate edge. Thus, it is possible although mathemat- 
ically complicated to solve the problem of the rectangular 
simply supported plate with the edge condition &=O 
replaced by the condition Mz,=O. In that case, which will 
nut be pursued here, there evidently will be a distribution of 
internal stresses which is modified by the effect of transverse 
shear deform&on. 
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Cylindrical bending of plates.-As a further relatively 
simple example of application of equations (70), (72), and 
(73) problems are considered for which 

d( )/by=0 

b( )/bx=d( )/dx=( >’ 

Mzy=Qu=mu=&=O 

MU = vM, 

and where consequent.ly the problem reduces to the following 
system of equations : 

Qz’+y=O 
MS’-Qz+m,=O 

Qz=(h+OGc@z+w’) 
(1 -vz)M,=D*& 

> 

1 
(9 1) 

Note that in order to obtain the problem of the sandwich 
beam from equations (90) and (91) the only changes which 
are necessary amount to setting v=O in equations (91). 

To set into evidence the effect of finite values of c’, in 
equation (91), the following system of equations is deduced 
from equation (91) : 

Dp” 
Dw’v=y+m~--(h+t)Gc 

(95) 

Solutions to the following problems are listed: 
(1) Simply supported plate of spun 1 currying a toad 

g= qO cos TX 11. Boundary conditions : w ( f l/2) = M,( f l/2) 
=o. 

a2 EI (h+t)t 
‘+T (1 -v2)Gc 12 1 cos TX/~ 04 (96) 

The factor in brackets may again be written in the form 
1 +5.4@, with fi= (E,/CJ/[(h+t)t/Z2], using the notation 
suggested in reference 5. As the problem is statically 
determinate as far as moment and force are concerned there 
is no modification of M, and QZ due to the finite value of B,. 

(2) Simply supported plate of spun 1 currying a uniform 
load q=qo. 

From this there is obtained for the center deflection, 

1 (9% 

It is seen that the correction factor for the center deflection 
is almost the same as that for the cosine load curve (equation 
(96)), the only difference being ‘a change of the factor 
n2/2=4.93 into 24/5=4.80; that is, a reduction of the shear 
correction factor by at most 3 percent is present. Note 
that according to equation (87a) the shear correction factor 
for the square plate of width a=1 is more than twice as 
large as the shear correction factor for the plate strip of 
width 1. 

(3) Built-in plate of spun 1 currying a uniform loud y=yO. 
The boundary conditions are : w( f l/2) = p,( * Z/2) = 0 (and 
not w/(&1/2)=0). 

w=3% {[($- 1]-2[ ‘+(h$%J2][($>‘-llj (“) 

From this there follows for the center deflection, 

w(O)=g& (h+t)t 1+24 (&G, 12 1 000) 
Comparison of equations (100) and (98) shows that for 

the built-in plate the effect of transverse shear deformation 
is very much more pronounced than it is for the simply 
supported plate, a factor 24/5 in the latter case being replaced 
by a factor 24 in the former case. A somewhat similar per- 
ccntage increase must take place in going from equation (86) 
for the rectangular plate with all four edges simply supported 
to a formula (which has not yet been derived) for the rec- 
tangular plate with all four edges built in. As a further 
result in this problem of the built-in plat,e, by putting equa- 
tion (99) into equation (93), it is found that the moment 
function M, does not contain any terms depending on the 
effect of transverse shear deformation. This again is some- 
what surprising as in this case it is not possible to determine 
the moment function by statics alone. As a problem where 
the moment distribution is in fact dependent on t,he effect 
of t,ransverse shear there may be mentioned the problem of 
the cylindrically bent plate with both ends built in, which 
carries a load yl=plx instead of the load yo= yo. This 
problem also may be solved by means of equations (92) to 
(95) * 

Circular plates; rotational symmetry.-As no examples of 
solutions of circular sandwich-plate problems have as yet 
been published and as it is of some interest to determine in 
which way the shear correction factors change in going from 
a problem for the plate strip to the corresponding problem 
for the circular plate, the equations for axisymmetrical trans- 
verse bending of circular plates are briefly discussed. 

Polar coordinates r,B are introduced and notation which 
is customary in plate theory is used. As a consequence of 
equations (70), (72), and (73), the following system of equa- 
tions is obtained: 

drQ,/dr+ry=O 

drM,ldr-Mo- rQ,+rm,=O 
(101) 

Q,=(h+t)Gc(~r+dw/dr) 
M,-vMe=D*dfl,ldr 

MO-vM,=D*&/r 

(102) 

(103) 
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According to equation (79), the equation for the deflection 
w will be 

1 1 drm bVTW=pfZ 7 -$ (104) 

where V’=(l/r)d[r d( )/dr]/dr. Having found w by means 
of equation (104), & may be determined from “.~.~ . . .._~ _., -’ ..- .,... _~ .~. . . . . --. Qr L&=-g+-- _ dw -,+~srp dr (105) 

and therewith M, and Me are obtained from equations (103). 
In the present problem it seems to be somewhat more 

convenient to proceed as follows: Combine equations (101) 
and (103) to obtain as equation for the change of slope p,, 

Having P,, MT and Me are found from equation (103) and 
Q,, from the second of equations (lOl), 

M,= D (g+f Pr ) 
(167) 

00% 

Finally, with this value of Qt, w is found by integrating 
equation (102), 

w--S P&+(h+~jG, 
( > 

pg +a& 
(109) 

c 

Deflection of circular plate with built-in edges-The 
bending is now considered of a plate with transverse load 
q=gn(r/u)” and with m,=O. First, from equation (106), 

Dpr=c, i+cz ; 
0 -l+c3 $ log, f+w:b2 (gn+3 

(110) 

Attention is restricted to complete plates with no con- 
centrated load at the center, and consequently it is necessary 
to set c2=c3=0 in equation (110). This gives 

DP,=c~ f+w;&2 (i)n+3 (11Oa) 

Putting equation (110a) into equation (109)) there results 
for the transverse deflection w 

D f= -[2 (g+&y$&y (;)n+4+c4]+ 
D 

a2(h+t)G, [ 
2C’fg& (;)n+2] 

Taking the case of a plate of radius a with built-in 
that is, with the boundary conditions 

/3,(a)=w(u)=O 

there results 

DP,= (n+ :g+ 2)2 [(g”+“-a] (113) 

and 

Dw= 

(114) 

From equation (1.14) there follows for the deflection at the \ 
center of the plate 

4 

D W(“)=2(n+2)T,+4)2 IL + [ 
(n+4j2 EY @+t)t (115) 
n+2 (I---vv2)Ge CL’ 1 

Consider the following special cases: 
(1) Uniform load distribution qn=pa. From equation 

(115), there follows for the ratio of deflection with and 
without transverse shear deformation 

w(O) (h+ t)t 
bm G, = _ = ’ + ’ (1-5, G, a2 (11’3 

Equation (116) may be compared with equation (100) for 
the deflection of the infinite plate strip of width I with built-in 
edges. Setting 1=2u, it is seen that, while the transverse 
shear correction factor for the strip has a value 6, the corre- 
sponding factor for the circular plate is 8. This is consistent 
with the earlier comparison between the simply supported 
strip and the simply supported square plate, except that 
there the change is from 4.8 to 9.7. 

(2) Linearly increasing load distribution q=p,r/a. From 
equation (115), it follows that 

w(O) 25 EI (h+W 
b-@)lGc = m =I+3 (I-v2)Gc a2 0 17) 

showing that the correction effect is only slightly greater 
than in the’case of the uniform load distribution. 

(3) Load increasing linearly from edge to center, q=qo+ 
q,(r/a). ((1, = -qJ. From equation (I 15), it follows by 
superposition that 

D w(O)= Poa4 (h+t)t 
2X2X16 l+’ (l--~~G, 7 1 - 

cw4 25 E, (h+t)t 
2X3X25 ‘+T (l-v2)G, a2 1 

D W(@=3;~;u;o [ 1 +t$j$) (1 -E;&7 c 
@y] (118) 

Comparing the factor 3000/387=7.76 which occurs in equa- 
tion (118) with the corresponding factors 8 and 8.33 in 
equations (116) and (117) it is seen that, in the foregoing 
three problems at least, there is little difference between the 
transverse shear stress correction factors in the case of three 
different loading conditions for the circular, clamped-edge 
plate. The fact that this agreement should not be expected 
to hold generally follows again by considering the case of a 
point load at the center of the plate, for which the shear 
correction factor would again be infinite. 
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The examples of this section should be augmented by tbe 
solution for the circular plate of radius a, which carries a load 
distributed uniformly over a smaller circle which is concentric 
with the boundary of the plate. 

CIRCULAR RINGS 

As the simplest example of a curved sandwich structure 
there are considered in this section stresses and deformations 
of circular rings in their own plane. As was found in the 
general developments of part, I of this report, in a curved 
sandwich structure there will be the effect of both transverse 
shear and normal stress deformation. (The effect of trans- 
verse shear stress deformation on homogeneous circular rings 
has been considered by Beskin in reference 6.) 

Ring sector acted upon by end bending moments.-As a 
first problem on circular rings, which illustrates the’ effect of 
transverse normal stress deformation, there is taken this 
basic case for which, as is lmown, there must be the same 
stress distribution at all sections 0 = Constant of the ring. 

According to equations (120) and (121), 

There are set for the relevant coordinates and variables 

&=ae Lx,=1 

RI’= a ul=‘u 

P1=P Nll=N 

&I=& Mll=M 

Pl=P ml=m 

b( )/b(=d( )/ade=( )‘/a 

x,=x=;[(h+t)t/a21 (EJEC) 

(119) 

The equilibrium equations (25) to (28)) (31), and (34) 
reduce to the following equations: 

N’+Q+ap=O 

Q’-N+aq=O 

M’-aQ+am=O 

arm = s - Wl(h + WI 

(120) 

(121) 

The stress-strain relations (56), (59), (60), (61), and (64) 
to (67) reduce to the following equations: 

(Ifi X)N=i c* [vr+w+W] (122) 

Q=(h+t)Gc [,+; W-v)] (123) 

(l+h)M=$ D*(B’+&) (124) c 

The load terms p, q, m, and s are given, according to 
equations (19) to (22), by 

(125) 

N=Q=O 

M=M,, 

cry,=-M,,/(h+t)a 

(126) 

Equations (122) to (124) become 

vl+w=o 
(127) 

/3f(W’-v)/a=O 

(1 +x)Mo= D*P’/u (128) 

The significant result of this consideration is contained in 
equation (128), which maJr be written in the alternate form 

M=nl,=~ &z D* * (129) 
,+L (h+t)t El --a 

2 a2 EC 

Thus, in this case of pure bending the transverse flexibility 
of the core is responsible for a reduction of the bending stiff- 
ness factor D*= ()$)t(h+Q2E,which is obtained exactly when 
EC=0 and practically when EC is of the same order of magni- 
tude as EF Equation (129) shows that the reduction of D* 
is significant whenever EC is so small that the ratio EC/E7 is 
of the same order of magnitude as the ratio (h+t)t/a2. 

As a numerical example take the following values: h=O.9 
inch, t=0.05 inch, a=20 inches, and E,/Ec=lOOO, for which 

indicating a reduction in bending stiffness of about 6 percent. 
Changing a from 20 to 10 inches changes the effect from 6 to 
24 percent. Changing Ef/Ec from 1000 to 2000 increases the 
effect from 6 to 12 percent. Altogether it may be said that 
this effect is of noticeable magnitude for some geometrically 
reasonable structures when the modulus ratio Ef/Ec is of the 
order 1000 or more. Assuming aluminum face layers with 
E,= 10’ psi, this means that EC= 1 O4 psi, which is well within 
the range of some present-day core-layer materials. 

Comparing equation (129) with the earlier formulas for 
the effect of transverse shear stress deformation, for instance 
with equation (116) in which a represents the plate radius, 
and observing that G, = ($)E’,, it is seen that the correction 
terms are of the same form, the difference being an appreci- 
ably larger numerical factor in the expression representing 
the shear effect. 

Closed circular ring acted upon by uniform radial load.- 
Having rotational symmetry, d/do=0 and v=P=O. Also set 
p=m=O. The remaining equations permit the determination 
of the stresses in the face and core layers in a way which 
depends on the extent to which the load is applied to the 
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outer  (upper )  a n d  inner  ( lower)  face membranes .  E q u a t ion 
(12)  becomes  

N = a q  (130)  

F rom  equat ions  (121) ,  it fo l lows that 

u tm = s -  [M l ( h + W  (131)  

T h e  s t ress&ram re lat ions’(122)  to (12& j  give-  ‘. ‘- ‘. ‘~ -  

a n d  
(132)  

j& D * d-  
l +XaE ,  * (133)  

A  c losed circular r ing sub jec ted to a  un i form rad ia l  l oad  
distr ibut ion q  is s t ressed not  on ly  by  a  un i form axia l  force 
N = a q , as  wou ld  b e  expected,  but  in  add i t ion is s t ressed by  
a  un i form bend ing  m o m e n t M , the magn i tude  of wh ich  is 
g iven  by  equa t ion  (133) .  T h e  exp lanat ion  of this result  is 
that for a  r ing with relat ively soft core  the c i rcumferent ia l  
stress distr ibut ion d e p e n d s  o n  the extent to wh ich  the 
externa l  rad ia l  l oad  is app l ied  to the inner  a n d  outer  forces, 
respect ively.  Rough ly  speak ing,  for a  suff iciently f lexible 
core  layer  the l oad  q,, goes  predominant l y  into the outer  
face layer,  wh i le  the l oad  q l  goes  predominant l y  into the 
inner  face layer.  

Accord ing  to equat ions  (46),  the stresses in  the two face 
layers a re  g iven  by  

1  N u = z  N + h + t L M  

(134)  
1  

N,=,N-,+, L M  
J 

Accord ing  to equat ions  (130)  a n d  (133)  a n d  in v iew of the 
def in i t ions of D* a n d  X , this m a y  b e  wri t ten 

Comb in ing  next  equat ions  (131)  a n d  (133) ,  for the trans- 
verse no rma l  stress in  the core  layer,  the fo l lowing express ion  
is ob ta ined  : 

For  a  specif ic examp le  assume  that the rad ia l  l oad  is 
app l ied  ent i re ly to the inner  face of the r ing so  that p U = O  
and,  accord ing  to equa t ion  (125) )  

p=( l -% )y, 

W ith q  a n d  s g iven  by  equat ions  (137) ,  equat ions  (135)  a n d  
( 1 3 6 )  b e c o m e  

It is seen  that the flexibil ity of the core  layer  increases the 
c i rcumferent ia l  stress in  the l oaded  face layer  in  the rat io 
(1+2X) / (  1  + X )  a n d  decreases  it in  the u n l o a d e d  face layer  
in  the rat io l/(1 +X) ,  whe re  X  is de f ined  by  equa t ion  (119) )  
c o m p a r e d  with the equa l  va lues of these stresses w h e n  
E ,=  co. 

Cons ider ing  once  m o r e  the numer ica l  da ta  unde r  the sec-  
t ion ent i t led “R ing  sector ac ted u p o n  by  e n d  bend ing  
m o m e n ts,” it is found,  for instance, that the stress in  the 
inner  face layer  m a y  b e  abou t  6  or  12,  o r  2 4  percent  h igher  
t ,han the cor respond ing  stress ca lcu lated wi thout  tak ing into 
account  the t ransverse flexibil ity of the core  layer.  

R ing  sector ac ted u p o n  by  rad ia l  loads  p U  a n d  pL,  un i form 
in c i rcumferent ia l  d i rect ion a n d  with van ish ing resul tant  q.- 
Aga in  it is assumed  that d (  ) /de=O,  m = p = O  a n d  n o w  in 
add i t ion t#hat q = O , so  that, accord ing  to equa t ion  (125) ,  
the on ly  nonvan ish ing  l oad  term is s. Further,  it is assumed  
that the ends  e =  &  cx of the r ing sector a re  f ree of stress, 
that is, N(  f a )  =  Q (  f a )  =  M(  &  a)  = O . T h e  ord inary  theory 
of c ircular r ings wou ld  then ind icate the absence  of de fo rma-  
t ions in  the ent i re r ing. In the present  case  there is found  
a  type of de format ion  pecu l iar  to the sandw ich  r ing, wh ich  
m a y  pe rhaps  b e  c o m p a r e d  to the act ion of a  B o u r d o n  gage .  

So lv ing  first equat ions  (120)  a n d  (121)  a n d  sat isfying the 
e n d  condi t ions of the r ing sector, 

N = Q = M = o  
040 )  

U [ m = S  

T h e  stress-strain re lat ions (122)  to (124)  a re  theu 

v’f w = O  

a @ + - W I-v=0 

i 

(141)  

@ ‘=-s /EC 

Assum ing  s i ndependen t  of 0, f rom equa t ion  (141)  there is 
ob ta ined  by  integrat ion,  wi th constants of in tegrat ion A ,, 
A*, a n d  As,-  

p = + e + A , 
c 

v= - -a$e+A la+Az  cos e + A , s in 6  
c 

~ = a - $ -  A 2  s in o-  A 3  cos 9  
c I - . (142)  
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As a specific example consider a complete ring, slitted 
radially at the section 8=1~, so that (Y=T. Prescribe fur- 
thermore the symmetry conditions p(O) =v(O) =w(O) =O. 
Under these conditions there is obtained from equation (142) 

E&i=-se 

E,v = --a.$&-sin 0) 

1 

(143) 

E,w=as(l -cos e) 

From equations (143), it follows that t,he radial slit, which 
is of zero width before the loads pll and pl are applied, opens 
under the action of the loads to a width given by 

v(--?r)--v(T)=2Ta +2aa (1+%) g (144) 

For a numerical example take a= 10 inches, h= 1 inch, t=0.05 
inch, EC=lO,OOO psi, and q,=20 psi, and obtain 

v(---?r)--v(r)=O.132 inch (1451 

The foregoing three examples of ring analysis have been 
discussed in some detail, because they illustrate relatively 
simply the effect of transverse normal stress deformation in 
the theory of curved sandwich structures, without involving 
at the same time the effect of transverse shear stress 
deformation. 

Bending of semicircular ring by end shear forces.-A 
problem is now considered in which both the values of EC 
and G, affect the result of the a.nalysis. In the equilibrium 
equations (120) and (121) all external load terms are set 
equal to zero and then, by integration and from the boundary 
conditions, that is, from 

N($)=M(j: ;)=o 

&(A ;)=its 1 (146) 

The following expressions for N, M, and Q are obtained: 

Q= Q,, sin e 
N= Q,, cos e 1 (147) 

M=-a&,, cos e I 
The stress-strain relations (122) to (124) become 

(1 +X/3)&,-, cos e=(C*/a)(v’+w) 

Q. sin ~Y=(h,+t)G,[p+(w’-~)/a,] 

t 

(148) 

L(l+X)Q,a cos e=(D*/a)p’ 

Integration of the last of equations (148) gives 

D*p=-ua2(1+~)Q,, sin e (14% 

where a constant of integration has been eliminated by means 
of the symmetry condition /3(0)=0. Substituting equation 
(149) in the second of equations (148), 

$ (w’-v>=Q,, sin e[&+u2($X)] 

=Q,,sin e&[l+i@$$(g+$)] (150) 
c 

Simultaneous solution of equation (150) and the first of 
equations (148) for v and w gives as general expressions for 
v and w, 

v =Ae cos e+ Al sin e+ Az cos e 
3 

(151) 
w=Ae sin e-(A,+B) cos e+A, sin e 

where A, and A2 are arbitrary constants of integration and 
A and B are found to be 

As further conditions, it is prescribed that v(0) =v(rr/2) =O, 
which makes Ap=A1=O in equation (151). There remains 

v=Aecos e 

W= Ae sin e-B cos e 3 
0 53) 

Of particular interest are the values of w(nj2) and w(O), 
the first of these giving the radial deflection of the point of 
load application, the second giving the cha.nge of radius at 
right angles to the applied load. It is found t,hat 

w 0 21: 
2 =pp="Qoa3 ~ 2 4D* 

[ 1 +I @+Ot '-7-G 
2 

~(~+~)+~(1+$)] 

(154) 

1 Qoa3 w(O)=-B=-~~ [ 
,+J @f@ -7-5 -(~+&go+g)] 2 a2 

(155) 

Equations (154) and (155) contain the interesting result 
that, for this problem, transverse shear and transverse normal 
stress affect the outcome formally in nearly the same way. 
If the generally unimportant terms with D*/a2C* are omitted, 
which amounts to the usual assumption of circumferential 
inextensibility of the ring, then the effects of finite EC and 
G, occur in exactly the same way. 

For a numerical example take h=O.9 inch, t=O.O5 inch, 
a=20 inches, E,/E,=lOOO, and EjlGC=2000. This gives 

DY 1 (h+v- -=- 
aV* 4 u2 

1 
1770 

xc& (h+Qt El 1 - -=- 1 (h+tN -%- 2 
2 a2 EC 16.8 -a26,-16.8 2 

The factors in bracket,s in equations (154) and (155) become 

1+3x;6 ,)=1.18 

and 

l+l6.8 16.8 1770 1+2_1 l+3x;6 ,)=1.18 
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Thus, in the present example the flexibility of the core is 
responsible for an 18-percent increase of deflection-load ratio, 
and of this 12 percent is due to transverse shearing and 6 
percent to transversenormal stress. Compared with these two 
effects the elfect of circumferential extensibility of the com- 
posite ring is seen to be negligible. As a further numerical 
illustration, it is noted that reducing the ring radius a from 
20 to 10 inches, with all other data unchanged, changes the 
18-percent correction to a 72-percent correction. 

Bending of complete circular ring under action of two 
concentrated radial forces at 0=f?r/2.--The solution of 
this problem may be obtained by superposition of the solu- 
tions for the semicircular ring under the action of end shear 
forces Q0 (equations (146) to (155)) and under the action of 
end bending moments M, (equations (126) to (129)). 

The first step consists in determining M,, in terms of Q0 
such that the sum of the p’s from equations (129) and (149) 
assumes the value zero for e=?r/2; that is, the value of the 
superimposed bending moment at 0=7r/2 must make the 
tangent to the deflected ring at this point horizontal. Com- 
bining equations (129) and (149) in this manner, there is 
obtained 

?I- 1+x 
2 D* aMo--g a2Qo=0 

or 
Mo=@/daQo (156) 

It may be noted that equation (156) is a further case of a 
statically indeterminate problem where transverse shear and 
normal stress flexibility do not affect the internal force and 
moment distribution but affect only the state of deforma- 
tion of the structure. 

Further, the radial deflections w(?r/2) and w(0) due to the 
action of M,, are calculated, in order to combine them with 
equations (152) and (153). Integrating equations (129) and 
(127) with the boundary conditions v(O)=v(?r/2)=0, there 
is obtained for the displacements due to Mo, 

D*w=-(1+X)M,,a2 1-g cos e 

I 

(157) 
D*v =(l+X)Moa2 

and, in particular, 

D*w (0) =(I +h)Moa2 

D*w G =-(l+h)M,,aZ 
0 

(158) 

Combining equations (158) with equations (154) and (155) 
and taking M, from equation (156), there follows for the 
resultant displacements 

w(;)=gf {(p) (l+N+~[x~+~(l+~)]~ 

Q 3 
i 

059) 
w(O)= -- ;: ~(~-~)(l+x,+~[x’-;(l+~)]~ 

where A~=@$$ 2 has been put as a further ‘abbreviation. : 
e 

Equations (159) may be written in the alternate form 

w ; =0.149-&$ 
0 

Q 3 lSh+5.+~+&(1+$)]) (160) 

Q 3 w(o)=-o.137+ 
I 

1+~+3.6+-%(1+$)-j{ (161) 

When X=X0=0 and when the composite ring is assumed 
axially inextensible, which amounts to putting D*/aV*=O in 
equations (160) and (161), then equations (160) and (161) 
reduce to well-known results of circular-ring analysis. 

Comparing equations (160) and (16 1) for the closed circular 
ring with equations (154) and (155) for the open semicircular 
ring, it is noteworthy that for the semicircular ring X and X0 
occur with equal weight, while for the closed circular ring the 
influence of X0 is considerably greater than the influence 
of X. Thus, for the closed circular ring the effect of 
transverse shear deformation is much more important than 
the effect of transverse normal stress deformation, while 
for the open semicircular ring both effects occur in a much 
more nearly equally important way. 

For a numerical example of the use of equations (160) and 
(161) take again the values for the numerical example given 
in the section entitled “Bending of semicircular ring by end 
shear forces.” This gives for the expressions in braces 

l+I$ 
2x5.29 5.29 

16.8 . 16 8 +m=l.“9 

and 

Thus, while the effect of transverse stress deformation for the 
open circular ring amounted to 18 percen , the corresponding 
corrections for the closed ring are 69 and 50 percent, 
respectively. 

The next step in the analysis oi sandwich-type circular 
rings would be the general solution of the system of equations 
(120) to (124) for arbitrary load distributions. This, evident- 
ly, is possible and further specific examples of interest) might 
be analyzed on the basis of the general solution. 

CIRCULAR CYLINDRICAL SHELLS 
In this section the general system of equations of part I 

of this report is restricted to the equations of the theory of 
circular cylindrical shells. The treatment of sandwich-type 
shells of this kind is shown to be not appreciably more 
diacult than the analysis without the effect of transverse 
shear and normal stress. 

As specific examples, some problems of rotationally sym- 
metric deformations are treated. In particular the influence 
coefficients are obtained for a semi-inhnite shell acted upon 
by bending moments and transverse forces at one end of the 
semi-infinite shell. With these influence coefficients an 
explicit solution is obtained for the problem of the infinite 
circular cylindrical shell acted upon by a pressure band of 
zero width. 

._. 

:‘~ . . ,, , 
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In the general equations of the problem there are set for 
the relevant coordinates and variables, 

li=ae .$2=x R~=u 

Rz= a, NlI=Ne Nzz=Nz 

Q,= Qe Q2= Qz Mn=Ms 
I 

J&2=& 

Pl=Pe 

m,=m, 

u1=v uz=u 
(162) 

P2=Pz ml=mO 

Pl =ps pz =pz 

al=@= 1 

The equilibrium differential equations (25) to (28), (31), 
and (34) become 

(163) 

(164) 

(165) 

The stress-strain relations (56), (59), (60), (61), and (64) to 
(67) become? withX2=X12=0,X1=(1/2) [(h+t)t/a*](E,/EJ=A, 

i g+z+(g$ 
c 1 

! 
(166) 

2(1 -I- v)Nzs=C* 

Qs=(h+t)Gc ( PO+; g-i) 

' Qx=@+OG (Bz+$f) 
I 

(167) 

(l+x)Me-vM,=D* 

When G,=E,= CD (and therewith X=0) equations (163), 
(164), (166), (167), and (168) reduce to the known system of 
equations in which deformations due to transverse stresses 
are neglected. The solution of the present system of equa- ’ 
tions is not essentially more diEcult than the solution of the 
system with G,=E,= co. In particular also here there may 
be obtained a trigonometric double-series solution, as a 
generalization of Navier’s solution for the flat plate (references 
7 and 8). 

For this trigonometric double-series solution there is set, 

4=x c clmn sin me sin nxll 

pe=x 7, pomn cos me sin nxll 

pz=x C p,,, sin me cos nxll 

mZ=C C mzmn sin me cos nxll 

ms=C C mamn cos me sin nxll 

s=c c smn sin me sin nxll 

w=rn 7: wmn sin me sin nx/l ‘\ 

v=yl 7, vnla cos me sin nxll 

u=rn 7 %nn sin me cos nxll 

p,=r, 7 pz,, sin me cos nx/l 

&=x 7, pemn cos me sin nx/l I 

Qz=>x Q,,, sin me cos nxll 

Qe= X7, Qomn cos me sin nx/l 

(N,, No)=~,> (N,,,, Nemn) sin me sin nxll 

Nzs= Cx Nzomn cos me cos nx/l 

(Mz, MS) = y,T (M,,,, Mom%) sin me sin nxll 

Mze=>x Mzolnn cos me cos nx/l 

I 

(16% 

(170) 

(171) 

When equations (169) to (171) are substituted in equations 
(163) to (168) there remains for every value of m and n a 
system of 13 simultaneous equations for the 13 Fourier 
coefficients which occur in equations (170) and (17 1). 

A system of only five simultaneous equations for the five 
Fourier coefficients in equation (170) is obtained if first 
equations (163) and (164) are reduced to five equations for 
the five unknowns w, v, u, & and Ps, by means of equations 
(166) to (168). 

For the present, the task is not carried out of obtaining the 
deformation and internal stress Fourier coefficients of 
equations (170) and (171) in terms of the Fourier coefficients 
of the load terms in equation (169). Instead, the axisym- 
metrical case, to which equations (169) to (171) reduce when 
sin me and cos me are interchanged throughout, and then only 
the terms for m=O are taken, is treated separately. 

Axisymmetrical deformation of circular cylindrical shell.- 
In equations (163) to (168) set 

b( )/be=0 a( )Dx=( 1’ 

Nze=Qs=Moz=O 

v=&l=O mo=ps=O 

(172) 
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and then the following system of equations has to be dealt 
with : 

N,'+p,= 0 

Qz'-(Ne/c4+q=O I 
(173) 

Ml-: Qz+ m,=O~ . 

I 

.: ._ 

u~m=S~MS/(h++)u 
(1.74) 

( > 
1-f; NV-vN,=C* [~+g&fJ 

(175) 
NT- vNe=C*u’ 3 

Qz=(h+QGc(&+w’) (176) 

(l+X)Ms-vit&=D*s/aE, 

My-- vMe= D*pz 1 
(177) 

The system of equations (173) to (177) may be reduced to 
two simultaneous equations for pZ and QZ, as follows: First, 
express M, in terms of fiZ by means of equation (175) and 
substitute the result in equation (174). From the first of 
equations (177), it follows t,hat 

Mo= i$ =+(l f;)*;SaE (178) c 

and this, introduced into the second of equations (177), gives 

M =(l+VD* p I+ vD*s 
= 1+x-vZ = aEc(lt-x-VY2) (179) 

Equation (179) is introduced into the first of equations (174) 
and, restricting attention to shells of uniform section prop- 
erties, there is obtained 

~~~~~~:8~-Q~=-m~-u~~(~~*~-v2) (1 so)* 

To obtain the second of these equations, first, introduce 
into equation (176) the value of w’ which follows from 
equation (175)) giving 

& =P,++[(l+$)N&vN,‘--;$;;“‘I (181) 
E 

In equation (181), No’ and N,’ are taken from equation 
(173) and, after slight transformations, there is obtained 

$(l+$)Qz'++~+Pz=-$(q'+!$) (182)* 

Comparing equations (180) and (182) with the correspond- 
ing equations without the effect of transverse shear and nor- 
mal stress deformation, it is seen that the effect of transverse 
normal stress, which is represented by X, merely somewhat 
modifies some of the coefficients of the left sides of the 

I 
corresponding system of equations with E,= 00. In con- 

trast with this, the effect of finite Gc is to introduce a new term 
into the left sides of these equations. This new term may 
be of appreciable importance, as will be shown. 

Having solved equations (180) and (X32), Mz and MO are 
obtained from equations (179) and (178), respectively; Ne 
follows from equation (173) in the form 

No=a(Qz'+q)' ’ (183) 

and w follows from equation (175) in the form 

w=(alC*)Kl +X/3)a Qz’+q+ vf p&4 (134) 

The following examples illustrate the use of equations (178) 
to (184). 

Infinite circular cylindrical shell with periodic load distri- 
bution--In specialization of equations (169) to (171), set 

q=p; sin ~2 s=s, sin ~2 

I 
(185) 

pz=p, cos CLX mz= m,, cos px 

w=w, sin px u=u, cos px Bz=Pw cos 1.1~ (186) 

Qz= Qv cos PX Nz=N,, sin px Ne=Ne,, sin px 

Mz=Mz,, sin px Alo= MO, sin px I 
(187) 

By introducing equations (185) to (187) into equations 
(180) and (182)) two simultaneous equations are obtained 
for the amplitudes QZ, and &,, as follows: 

To simplify the fur%her discussion, by setting in equation 
(188) m,p=s,,=p,p=O, there is obtained fpr &, and QZ, 

(18% 
Qzp=$ K 

The quantity K is given by 

1 -I (190) 

where use has been made of the relation P = ?r/l. In equation 
(190) the term X/3 will usually be of little importance. The 
other two variable terms represent the effect of transverse 
shear deformation and of shell curvature, respectively. 
When the radius a is so large that ~4/(h+t)2u2<A, theshell 
behaves under the action of the given load essentially as a 
plate strip. The effect of transverse shear is important as 
soon as the term (2/p2) (Z2/u2)[t/(h+t)](E,lQJ is not small 
compared with 1. 
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Before evaluating a numerical example the following fur- 
ther formulas which are readily obtained from equations 
(179), (183), and (184) are listed:” 

M,-3 K 

I (191) NW= aq,(l -K) 

wp=~[++~)K] 

Equations (191) show that in tbis problem not only is the 
deflection increased because of the effect of transverse shear, 
and with that the hoop stress resultant No,, but now also an 
effec.t is found on the bending-moment distribution M,,, in 
the opposite sense. The effect of transverse shear is to reduce 
the magnitude of the bending moments in the shell. This 
result is in contrast with what was found for the examples 
which were worked out iD the sections on plate analysis and 
circular ring analysis and is therefore of particular sig- 
nificance. 

Equation (191) for w, may be compared with the corre- 
sponding expression for a simply supported plate strip of 
width I, with sinusoidal load. The result for this case must. 
follow from equation (191) in the limit a+ = and agree wit,h 
equation (96), which was previously obtained. To compare 
the last of equations (191) with equation (96), the last of 
equations (191) is written in the form 

1+x 1 (hf@ E, +($ --- 
1+x--v2 2 l2 Cr. 

(192) 

Equation (192) reduces to the equivalent of equation (96) 
if in it a+ 00. 

From a comparison of equations (192) and (96), it is 
further concluded that the correction due to transverse shear 
is greatest in this case when a= 00, so that,, in this case, the 
curvature of the sh311 tends to reduce the additional sheal 
deformation, below the value obtained for the simply sup- 
ported plate strip. 

For a first numerical example, t’ake h=l inch, t=O.05 
inch, u=lO inches, 1=20 inches, E,lG,=200, E,/E,=lOO, 

v=l/3, and x=5 l l.05Xo.05 loo=0 025 
100 

. . The factor K of 

equation (190) becomes 

=(1+0.008+3.86+54.5)-‘=0.01685 

while without transverse shear and normal stress deformation 

(K)G,=EC=m=(1+54.5)-‘=0.0180 

The correction in this case amounts to about 6 percent. 
For a second numerical example, change the above 

moduli ratios to E,lGc=2000, E,IE,= 1000. This gives 

K=(1+0.08+38.6+54.5)=0.0106 

instead of K=O.O1685. The correction in this case amounts 
to 0.0180-0.0106 

0.0106 
Xl00 ~70 percent. Thus again a case is 

found where omission of the effect of transverse shear defor- 
mation would give results which could not be used. How- 
ever, it is noted that the effect of transverse normal stress 
deformation is quite small and may here safely be neglected. 

If the foregoing values of K are introduced into equations 
(191), it is seen that the percentage corrections apply to the 
bending-moment value directly but that for hoop tension 
and radial deflection the corrections are very small indeed. 
In fact, in order that there be appreciable corrections due 
to transverse shear on hoop tension and radial deflection, it 
is necessary that the half wave length of the sinusoidal load 
p be so small that K is at least of magnitude 0.25 or more. 

A case of approximately this kind is obtained if the half 
wave length I is changed from 20 to 10 inches and the moduli 
ratios are again taken as E,/E,= 100, E,IC,=ZOO. Then, 

K=(l +0.008+0.965+3.41)-‘=0.1865 

whereas 

The percentage change of K and therewith of Mz is slightly 
more than 19. The percentage change of No and w is about 
4.5. 

The foregoing numerical examples show that the effect 
of transverse shear may be significant in cylindrical sand- 
wich-shell analysis and that moreover its magnitude will 
not in general be predictable by the analysis of an equivalent, 
flat-plate or straight-beam problem. 

For the infinite circular cylindrical shell with load p= 
CJ,COS JLX the essential results are given by equations (190) 
and (191). These results may be extended directly to the 
loading condition 

(193) 

By superposition, from equation (19 1) the following formulas 
are obtained : 

Mz=C(gnl~cl.~VL cos ~,a: 

Ns=aCq,(l -K,) cos p,x 

> 

(194) 

w=(u”/C*)~a,[l-(I-tX/3)K,]cos~,x 

The values of K, are obtained from the formula 
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Having the solution for the infinite shell with periodic load 
distribution, it will be only necessary to add to this the gen- 
eral solution of the differential equations without external 
load terms, in order to obtain the complete solution for any 
edge condition of the axisymmetrically stressed circular 
cylindrical shell of hnite length. This additional solution 
will now.be obtained. .., ,, . . 

Finite circular cylindrical shell acted upon ‘by’- e&& mo- 
ments and forces-To solve equations (180) and (182) 
with right-hand sides equal to zero, equation (182) is differ- 
entiated twice and &” is substituted from ‘equation (180). 
This gives 

or 

where 

Qx’v-2m12Q,“+4m24Qz=0 (196) 

m1=k li 
P/2 (1 +X/3)(h+t)ac-i (1 +xl;)(h+t) aJ __-- 

J 
Ef (197a) 

4 P/4 J 1+x--v2 1 
m2= a*D* (1 fX)(l +x,3)= J(h+Qa * J 

1+x-vZ 
~ (1+x)(1+x/3) 

(197b) 

The auxiliary equation corresponding to equation (196) is 

r”-2mm12r2f4m2”=0 (198a) 
or 

r2= m12f Jm,“-4m24 (198b) 

The solution of equation (196) occurs in two different forms, 
depending on whether r2 of equation (198b) is real or not. 
According to equations (197) and (198b), y2 is complex as 
long as 

m14<4 m24 I 
or 

1 
2 (h+&3)& [ 1 “< 4[1--w+Nl 

j 

(199a) 

(h+t)%2(1 +x/37 

To clarify this condition, neglect X (which is of very little 
importance here) and equation (199a) then becomes 

(199b) 

When equation (199) holds, a quantity k may be defined by 

k= rn12+iJe (200) 

and the four roots of the characteristic equation are k, H, -k, 
and -E, where a bar indicates the taking of conjugates. The 
solution of equation (196) may be written 

&z= Cle-‘d”+ Ele-h+ C2e”+ e2eL (201) 

Where equation (199) does not hold, which is the case for 
very small values of UC/E, only, all four roots of equation 
(198a) are real and of the form 

k2=-k, 

ka=d m12- Jm14-4m22 
I 

k4=-k3 J 

and the solution of equation (196) can be taken in the form 

Qx= Ale”lx+ A2emk1’+ A3ekaz+ A4emkaz (203) 

Before applying either solution to a specific problem, there 
are noted the following relations which follow from equation 
(200) : 

ki=jk(2=2m22 

I 
(204) 

k/-z= &Jm12f2m22 

Semi-infinite shell acted upon by edge bending moment 
and shear forces-The following boundary conditions hold: 

M,(O) =i’++h”y&yO) =M, 
3 (205) 

B(O) = Qo 
while for X= m these same quantities vanish. (For the same 
problem without the effect of transverse shear and normal 
stress, see reference 9.) 

Of particular interest in this solution are the values of 
deflection w(0) and change of slope /3=(O) at the section where 
the loads M, and Qa are applied.4 

Taking first the case E,/Gc<2a/t for which equation (201) 
applies, it is seen that the conditions at infinity require that 

c2== E2=o (206) 
so that 

Qz= Cle-kZf ??le-xz (207) 

The values of pZ may be obtained by integration from 
equation (180) in the form 

Cl+ ND* l + x _ v2 bzy$ e-kx+;2 e-b (208) 

where two constants of integration have been discarded to 
satisfy again the conditions at infinity. 

With equations (207) and (208) there is obtained from the 
boundary conditions (equations (205)) that 

C,+E=Qc 

3 
(209) 

(G/k) + @i/i) = --2Mc 
4 Without transverse shear and normal stress deformation these relations are 

w(o)=&+=o+~~~o] 

in agreement with equations (236) of reference 9, where the homogeneous shell is considered. 
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This determines C, and a1 in the form 

c =kQo+lkl”ncr, 
‘1 

k-z 
(210) 

E =~Qo+lklznii, 
1 -- 

k-k 

\ , 

Equation (210) is introduced into equation (208) and there 
is obtained as the first of two “influence coefficient” formulas 

(l:+;~~:P.K’)= -& [ Qo+(k+%Mo] (211) 

The second of these formulas follows from equations (184)) 
(207), and (210) in the form 

c’* w(0) 

1+x/3 .z =-[ lk12Mo+@+~)Qo] (21‘4 

Equations (211) and (212) may be written in more explicit 
form, using equations (204) and (197). The results a.re 

MO> = - J& J 0 +X/3)(1 fx-4 1+x Q,+ 

(2 13) 

and 

w(O)=- J& (l +x/;~~+v2~Mo- 

a&l+;jq-J”“* ~+x-v~ C*la2Gc 
az,” (l+x)(l+X/3)+(h+t)(l+X/3) Qo 

(214) 

Neglecting the generally small effect of finite EC in equa- 
tions (213) and (214), that is, putting X=0 in these equa- 
tions, there may be written instead 

(215)* 

aJ1-v2M-g 4 4(1-v2)C* 
w(“)=-~m o C* ,J~D* J 

(2 16)* 

Equations (215) and (216) contain the noteworthy fact 
that the correction factors for the effect of transverse shear 
are independent of the ratio t/h of face-layer thickness to 
core thickness. The complete formulas of course must and 
do contain the influence of the core thickness h. 

It is further noted that, while equations (211) to (216) 
have been derived for the case that m14<4m24, for which the 
complex solution holds, they are also valid, as is readily 
shown when 4m24 2 m14. 

Comparing equations (213) and (214), and (215) and (216) 
with the equations listed in footnote 4 it is seen that: (1) 

The effect of transverse shear modifies the deflection due to 
Q. and the rotation due to M, but not the other two coefh- 
cients, (2) the effect of transverse normal stress enters all 
four coefficients but only in a minor way, and (3) the reci- 
procity relation that the deflection due to MO is the same as 
the rotation due to Q. is carried over from the theory with- 
out the extra effects. 

For a numerical example the following data are chosen: 
f=O.l inch, h=l inch, a=10 inches, E,lE,=lOO, Ef/Gc=200, 

1 1.1x0.1 
v=1/3. This makes X=-2 100 100=0.055, and, from 

equation (197)) 

1 
ml=10 o’1x2oo =O 426 

1.018X1.1 ’ 

4 J l-0.09 m2= 100X1.21X1.018 -0.294 

Then, according to equation (204), 

lk12=0.173 k-@=fi JO.182+0.173=0.84 

while without transverse shear deformation (m,==O) the 
value of k+?i=O.59. According to equations (211) and 
(212), the effect of transverse shear in this case is to in- 
crease the rotation due to the edge moment in the ratio 
0.84/0.59=1.42, an effect of 42 percent. The same increase 
is found for the deflection due to the edge shear force. Ro- 
tation due to the shear force and deflection due to the 
moments are practically unchanged. Likewise, the effect 
of transverse normal stress in this case is of negligible 
importance. 

As a further numerical example there is chosen t=0.05 
inch, h=l inch, a=20 inches, E,lE,=lOOO, E,IG,==2000. 

1 1.05x0.05 This makes A=2 400 1000=0.065, and, from equa- 

tion (197), 
1 

ml=20 2000=0.483 

m”=JilhSx20 . J 
4 ‘l-;2;‘=0.218 

From equation (204) then 

lk/2=0.095 k$~=,/~ &.234+0.095=0.82 

while without transverse shear deformation (m,=O) the 
value of k+z=O.44. Thus the effect in this case is to in- 
crease edge rotation due to edge moment and edge deflec- 
tion due to edge shear force in the ratio 0.82/0.44=1.87, an 
effect of 87 percent. 

Infinite circular cylindrical shell acted upon by transverse 
line load.-Calculation is restricted to the determination of 
deflection and bending moment at the section x=0 where the 
line load of intensity 20, is assumed to act. The result of 
the foregoing paragraph may be used as follows. Consider 
the infinite shell cut in two parts at the section z=O and 
assume a bending moment MO of such magnitude that the 
slope /3=(O) is zero. According to equation (211), this gives 
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Mo=-,=_J2 Qct4 
k+k ml2 m22 

(217) Equations (217) and (218) become, with equations (204) and 
(W, 

and therewith I A 

+$) a2 
C* 

J 
c* 1+X-vz cija2 1 

m (1+x)(1+x/3)+- iqzp ~. 

JJ 2 
c* 1+x--2 C*/a2 1 

a2D* (l+A)(l+X/3)+oC;: iqp 

To give these formulas a somewhat less unwieldy appear- 
ance, the effect of finite EC, that is, X=0, may again be neg- 
lected, as is permissible in most cases; and there may be 
written 

(22 1>* 

Some numerical examples are as follows. 
Taking t=O.l inch, a=10 inches, E,lG,=200, and v=1/3, 

transverse shear deformation reduces MO to 1142.05 times 
the value which holds when G,= ~0 ; that is, there is about a 
30-percent reduction in MO. At the same time the deflection ~_ 
under the line load is 3.05/J2.05=2.14 times what it is when 
G,=a; that is, there is an increase of about 115 percent in 
w(O). 

Taking t=0.05 inch, a=20 inches, and E,/Gc=200j MO is 
decreased by a factor 1/4/5=0.89, while w(0) is increased by 
a factor 1.5/1/1.25=1.34. 

Taking t=0.05 inch, a=20 inches, and E,/G,=2000, MO 
is decreased by a factor l/43.62=0.526, while w (0) is 
increased by a factor 6.25/43.62=3.29. 

Equation (220) for w(0) may be compared with equation 
(116) for the circular plate of radius a. This comparison 
shows that, while for the plate both the ratios t/a and (h+t)/a 
enter into the correction factor, the correction factor for the 
cylindrical. shell contains the ratio t/a only; that is, the 
corrections (but not the results) are independent of the ratio 
of face-layer thickness to core thickness in this case of a 
cylindrical shell. : 

SPHERICAL SHELLS 

In conformity with customary usage, the following nota- 
tion is introduced: 

&=a+ 

cY2=sin 4 

Nzz=Ne 

Q2= QB 

M,z= M,e 

ml= m,+ 

‘u2=v 

t2=ae 

RI=R2=a 

Nn=Nu=N+a 

M,,=M+ 

Pl=P, 

m2= m. 

P1=Ps 

a,=1 

Nn=N+ 

QI=&+ 

Mzz=Ms 

p,=pe 

u,=u 

P2=Pe 

(220) 

(223) 

/ 

Attention is here restricted to problems with rotational 
symmetry and the following relations are used: 

d( )/de=0 

N+~=Q~=M+e=p,=m~=v=Ps=O 1 
(224) 

The differential equations of equilibrium (25) to (28), (31), 
and (34) become, setting 

a( )l~~=~( )l&=( 1’ 

(sin d, N+)‘-cos C#J Ne+sin ~YJ &++a sin 4 p+=O (225) 

(sin C$ Q+)‘-sin 4 (N4+Ne)+asin 4 q=O (226) 

(sin 4 M+)‘-cos #J MO--a sin cp &++a sin + m+=O 
(227) 

urm+(M~S-Ms)/(h+t)a--s=O (228). 

The stress-strain relations (56), (59) to (61), and (64) to 
(67) become, if there is set in accordance with equation (63) 

1 (h+t)t E, ~I=~2=~12=-z --a--- E=X (22% 

(l+$) N+--(v-g) No=C* el+g &) (230) 

(l+$)No--(~--$)No=C*(” Cot:+w+z$-) (231) 

(232) 
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(l+x)M+-(v-A)Mo=~(B+‘+-&) (233) 

(l+~)Ms-(v-A)M+=~(&s cot ++&) (234) 

There is first given a simple special solution of this system 
of equations and then a generalization is obtained of the two 
simultaneous equations for Qm and /3+ which are fundamental 
in the theory of homogeneous isotropic shells. 

Uniform stress distribution in a spherical shell.-Set in 
equations (225) to (234) p+=m+=O and assume that N+, Ne, 
Q+, M+, and MO are independent of 4. Fromequation (225) 
it follows that: 

N,=No=No Qs=O 

From equation (226) it follows then that 

No=; aq 

(235) 

(236) 

and from equation (227) it follows that 

M+=Mo=M” (237) 

Equation (228) gives 

at,=+2M,/(h+t)a (2 33) 

In equations (230) and (231) set u=O for reasons of sym- 
metry and obtain 

or, with No from equation (236) and X from equation (229), 

(C*/a)w=(1/2)(1-v)aq (240) 

Equation (232) is identically satisfied when &=O. Equa- 
tions (233) and (234), in conjunction with equation (237), 
give 

(241) 

Then, from equation (238), 

(242) 

Equation (242) may be compared with equation (136) for 
the circular ring. 

According to equation (46), there are obtained from equa- 
tions (236) and (241) the following expressions for the stress 
resultants in the outer (“upper”) and inner (“lower”) face 
layers : 

(~+f$)Nu=n($+~+;;-~ 

i 

(243) 
(1-g) Nl =~(;-~+;;-y> 

Comparison of these results with the corresponding results 
for the circular ring (equations (135)) shows that for given 
values of p and s there is a greater difference between N, and 
NI in the spherical shell than there is in the circular ring, 
the reason being the relatively larger influence of the s-term 
in equation (243). 

For a specific example, it is again assumed that the radial 
load is applied entirely to the inner face so that pll=O and, 
according to equations (29) and’ (22), 

Substitution of equation (244) in equat #ion (243) gives 

1 (244) 

As a numerical example, taking X=0.0595, as in the ex- 
ample given in the section entitled “Closed circular ring 
acted upon by uniform radial load,” and v=1/3, it is found 
that the factor in N1 which contains the effect of the core 
flexibility is (1+0.36)/(1+0.18)=1.15. Thus, where for the 
circular ring there was a 6-percent stress increase, there now 
is a 15-percent stress increase for the spherical shell. 

,Reduction of axisymmetrical problem to two simultaneous 
equations for Q+ and &-The fundamental results of refer- 
ence 10 for homogeneous shells may be readily extended to 
sandwich shells, as follows: 

Equations (225) and (226) are used to express N+ and No 
in terms of Q+. 

N+=cot d Qm+Fdd (246) 

Ns = Q+'+ 3’2(4 (247) 

In equations (246) and (247) the functions F1 and Fz are 
given by 

F,;=- sin: 6 S(5! cos 4--p, sin 4) sin + d+ (248) 

F,= &+ [(sin 4 FJ’+ap+ sin $1 (24% 

Next the displacement components u and w are expressed 
in terms of Q+,, by means of equations (230)) (231), (246)) 
and (247). 

Subtraction of equation (231) from equation (230) gives 

$&‘-cot $J u)=(l+v)(N+-Ns) 

=(l+v) [-C&d’-cot 4 Qe)+Fl-E;l 
(250) 
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Equation (112) is integrated to 

(C*/a)u=-(l+v)(Qo+F,) 
where F3 is given by 

(2.5 1) 

(252) 
_. .~....~,. . _ ., _. .,, _ . I ,.. 

Equations (251) and (252) are introduced into equation 
(231) and the following expression is obtained for 20: 

(C*,a)w= (1, +X,3) (cot 4 Q++ &+‘I + F4 (253) 

where F4 is given by 

F,=-$t$&+(l+v) cot 4 Iij+(l+;) F2-(v-k) Fl 

(254) 

Equations (251) and (253) are introduced into equation 
(232) for Q+ and the first of the two simultaneous equations 
for Q, and /?+ is obtained in the form 

(h $) G, ~ =a,+& [( l+;)B:ut. 6 Q++Q+‘)‘+Fd’+ 

(1 +v)(&,+J's)] 

whic.h may be rearranged to read 

Q+"+cot 4 Q+'- G, ~h+t~~1+X,3~ 1 Q++ 

& Pm= Fd+) (255) 

When X=0 and GC=a and when no external loads are 
present, this equation checks with the first of equations (g) 
on page 469 of reference 9. 

The function F5 is given by 

$7 Jl+v)F,+& 
5 - 

1+x/3 (256) 

Introducing the operatoi 

L=( )‘+cot r$( )‘-cot2 +( ) 

equation (255) may finally also be written 

where 

c* (L-PI)Q,+~+~,~ P+=Fdd (25 7)* 

‘I= 
2tE, ~ -- 

h+t G, (258) 

The second of the two simultaneous equations is obtained 
somewhat more directly as follows: Write equations (233) 
and (234) in the form, ‘.: 

D*/a ’ 
M+=1-v2+2X(1+v) C 

(l+X)P~‘+b--X) cot 4 Psf 

I. 
p+v> &] (25 9) 

D*/a 
M@=1-v2+2x(1+v) (1+x) cot 4 &b+(v--x)&‘+ 

u+4 k] (260) 

Introduce equations (259)and (260) into the moment equili- 
brium equation (227) and obtain 

D*/a 
1 - v2+ 2X(1 + v) 

(l+v) -$I--aQ++am+=O (261) 

Again, using the operator L, this may be written in the form 

c 
L- v--x 

lsx ~+-~[1-~~+2~(1+v)]&~=F&~) (262)* 
> 

The function FB is given by 

Fs=-(l+v)$---$[l-v2+2X(1+v)]mm (263) c 

Equation (262) may be compared with the second of 
equations (g) on page 469 of reference 9. 

Analysis of edge effect for spherical shell.-The special 
case of no distributed surface load and no concentrated load 
at the apex of the shell is obtained by setting 

F,5=F6=~ 

Following again a known procedure from the theory with- 
out transverse stress deformation, there may be set 

(264) 

with corresponding formulas for @ ’ and @p”. Introduction 
of equation (264) into equations (257) and (262) gives 

Q?+(a,+;-acot 4) QL+&?,=O (26’3 

B’+&f ; +-cot2+3+-v2+2X(l+v)]Ql=0 

(267) 

Assuming that cot +. is not large compared with unity 5 
and that the effect of the edge loads is restricted to a narrow 
edge zone so that ( Q1 I<< 1 Q” 1, 1 p, I<< 1 PI” I, equations (266) 
and (267) may be simplified to 

c* Ql"-~;,QI+ 1 +x,3 P~=O (268)* 

LV-$* [l-v2+2h(l+v)] Ql=O (269)* 

3 When cot SI>> 1 the shell is termed a “shallow” shell which is not considered in what 
follows. 
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Equations (268) and (269) show that the influence of finite 
&(X#O) in the edge-effect problem consists, except in ex- 
treme circumstances, in minor modifications of the results 
for E,= to . The quantity cc, which represents the influence 
of finite Qc and which is approximately 

2tE, 1 --- 
‘l=h+t G, 1+x/3 (270) 

may, however, in practical cases be large compared with 
unity and not of negligible influence on the results. 

Equations (268) and (269) may be compared with equa- 
tions (180) and (182) for the cylindrical shell. This com- 
parison shows that the influence of finite (7, in the edge-effect 
problem is of the same nature for the spherical and cylindri- 
cal shells. Thus, results of the same quantitative nature 
will be obtainable as in the section on cylindrical shells under 
the headings entitled “Finite circular cylindrical shell acted 
upon. by edge moments and forces” and “Semi-infinite shell 
act,ed upon by edge bending moment and shear force.” 

This work is not herein carried further to specific applica- 
tions. It is apparent that such applications may be worked 
out with hardly any more difficulty than when the effect of 
the core deformability is not taken into account. 

CONCLUDING REMARKS 

A system of basic equations has been derived for the analy- 
sis of small-deflection problems of sandwich-type thin shells. 
This system of equations reduces to Love’s theory of thin 
shells when the transverse shear and normal stress deforma- 
bility of the core of the sandwich is of negligible importance. 
The system of basic equations has been applied to a number 
of specific problems from the theory of plates, circular rings, 
circular cylindrical shells, and spherical shells, and it has 
been found that the effects of both transverse shear and trans- 
verse normal stress deformation may be of such magnitude 
that an analysis which disregards them gives values for deflec- 
tions and stresses which are appreciably in error. 

Numerical calculations have been in the nature of sample 
calculations, illustrating both the use of the equations and 
the possible eflects of using them. Examples have been 
chosen from the point of view of relativa simplicity as well 
as with the thought to illustrate most clearly the conse- 
quences of the extra deformations which have been taken 
into account. It is unavoidable that, in so doing, some of 

the examples may be of little interest for aircraft structural 
analysis and that some problems may not have been analyzed 
which would have well fitted within the contents of this 
report and which at the same time would have been of con- 
siderable practical importance. 

The general analysis has been restricted by the following two 
order-of-magnitude relations : (1) t/h<1 and (2) tEf/hEC>> 1, 
where t is the face-layer thickness, h is the core-layer thick- 
ness, Ef is the elastic modulus of the isotropic face-layer 
material, and E:, is the elastic modulus in the transverse 
direction of the core-layer material. Therewith it is felt 
that very likely nearly all situations have been covered in 
which the effect of transveme core flexibility is of signifi- 
cant practical importance. It is evident, however, that if 
desired the theory could be extended so as to include cases 
where one or both of these two order-of-magnitude relations 
are not satisfied. The main limitation of the present analy- 
sis is the omission of all finite-deflection and instability 
effects. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 
Cambridge, Mass., May 26, 1947. 
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