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Page 8, column 2:
as follows :

Page 7, column l: In equation (58a), the last bracketed expression
should be corrected as follows:

_2 + 6- 4x0(2 + _2)_

Page 7, column 2: In equation (58b), the last bracketed expression

should be corrected as follows:

÷ 5xo 
In equation (45a) the last term should be corrected

Page 9, column 2: In equation (45c), the factor 2 preceding the second

parenthesis should be deleted; that is, the second term within the
bracket should read

Page 9, column 2: Equation (46a) should be corrected to read as follows:

It is pointed out that the foregoing errors have been corrected in a

subsequent NACA publication (NACA TN 3076 by Nelson, Rainey, and Watkins).
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BUCKLING OF THIN-WALLED CYLINDER UNDER AXIAL COMPRESSION
AND INTERNAL PRESSURE 1

By H._u Lo, HAaom) CRATE, and EDM;ARD B. _CH_VARTZ

SUMMARY

.-b+ ;n_'e._tigation was made of a thi,-u,alled cyclinder under

axial compressiol+ and rarious internal pre._sures to ._tudy the

effect of the internal pressure on the compres._ice buckling ._tress of

the cylinder. A theoretical analysi._ ba._ed on a large-deflection

theory was also made. The theoretically predicted increase of

compressive buckling stress due to internal pressure agrees

.fairly well with the experimental results.

INTRODUCTION

The buckling of thin-walled cylinders trader axial compres-

sion and lateral pressure has been investigated by Fliigge

(reference I) who found that the effect of the internal pres-

sure on the buckling load is negligible. Fltigge's conclusion

is in contradiction to the results of a series of tests, made at

the Langley Aeronautical Laboratory of the NAGA, of two

curved panels under axial compression and various lateral

pressures. These test results, reported in reference 2, showed

an appreciable strengthening effect of the lateral pressure

on the buckling load of the curved panels. The apparent

discrepancy between these experimental results and the

prediction by Flfigge's theory made it desirable to investi-

gate this problem further. Consequently, additional tests

were made of a cylinder under axial compre&+ion and various

internal pressures for which results are presented herein.

A theoretical analysis of this problem is also presented

which differs from that of Fliigge in that the present analysis

is based on large-, rather than small-, deflection theory.

APPARATUS AND PROCEDURES

Test specimen.--The specimen used for the tests was a

cylinder, 32 inches long with a 15-inch inside radius, made

of 24S-T aluminum alloy sheet of 0.0249-inch average

thickness. It was closely riveted around two heavy steel

rings, one at each end. The butt joint of the two longi-

tudinal edges was covered both inside and outside by straps,

0.032 inch thick and 1_6 inches wide, along the total length

of the cylinder. (See fig. 1.)

The two heavy steel rings were made of/2- by 4-inch steel

bar stock rolled to the diameter of the cylinder. Two _i-

by 2-inch spreader hat_ were used to reinforce the ring as

shown in figure I. A ring with a flange, machined fiat, was

fastened to the _- by 4-[nell steel ring to provide an even

bearing surface on which a steel cover phlte was fitted.

+ Supersedes NAC +k TN .'_I2L '+Buckling of 'Fhin-Walle<l Cylinder under A_i;d Con'q)rcsslon
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FtQURm 1.--Test specimen and strain-gage positions,

Three steel blocks were placed on top of the plate. The

applied compressive load was transmitted from the machine

head through the three steel [)locks to the cover plate.

The joint between the cylinder and the (,over plates was

sealed.

Equally spaced along the inside circumference of the cylin-

der at midlength were 16 strain gages, and directly opposite

to them on the outside were 16 more gages. These gages

were placed to measure strains in the longitudinal direction,

Six more gages, three inside and three outside, were placed

to measure the circumferential strains.

Test procedures.--The spe<'imen was subjected to com-

pressive load in the 1,200,000-1)ound universal tcs+ing ma-

chine of the Langley Structures Research Laboratory. Com-

pressed air was used to produce internal pressure, which

could be ma;='_ined at any desired constant value. Th_

pressure was measured by a manometer. The strains wer_

recorded by standard electric strain-gage equipment and

the end-shortening was measured by dial gages.

The c,ylinder was preloadcd and the strain-gage readings

were taken. The three steel blocks w('re so adjusted that

all longitu<linal strain-gage readings nround the cit'cunlfer-

ence of tit(' cylinder were equal.

alld [lllUtllUl[ Pre,_Sllre" I)y II_ll Lo, Harold ('n_te. atl(J E,t'x:lrd B. 6ch'_urlz, !.y_J.

1

.0249" 24S-"I:-

-_ q_"#0.032"
strop, 24S-T
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The compressed air was then let into the cylinder until
he desired internal pressure was reached. The axial com-
wessive load was increased in increments until buckling was
,bserved. At each load increment, all gage readings were
ecorded. The load was then decreased until the buckles

lisappeared and increased a second time to check the reading
)brained the first time. During all these steps tim internal
Jressure was maintained constant.

The axial load was then reduced and the internal pressure
was changed to another value. For each value of internal

pressure the same procedure was repeated.

EXPERIMENTAL RESULTS

A typical experimental result is shown in figures 2(a)
and 2(b) for the case in which the internal pressure was 1_6

psi. In figure 2(a) the compressive load is plotted against
the strain-gage readings for four different pairs of gages,
within the range where the load-strain relation is linear. In

figure 2(b) the strain-gage reading is plotted for all strain
gages at three compressive loadings close to the buckling
load. Figure 2(b) indicates that buckling occurs at a com-

pressive load of 12,700 pounds between strain gages 22 and
23. (Note the intersection of the curves at two consecutive
loadings.) A buckle at this location was observed during the
test. The compressive load at whieh this phenomenon

occurs is considered the buckling load.
Since the buckling occurs locally and not simultaneously at

all the gages, the local buckling strain is obtained by dividing
the buckling load by the slope of the linear portion of the
load-strain curve corresponding to the gage at which the

buckling occurs. The corresponding stress is the buckling
stress. The buckling stresses for various internal pressures
were determined in this same way.

The results are tabulated in table 1 and plotted in figure 3

in terms of the two nondimensional parameters

-- 0"uer R

_¢'---- E t

where a,,, is the buckling stress, p is the internal pressure,

R is the radius of the cylinder, t is the wall thickness, and
E is Young's modulus. Except, for the first test correspond-

ing to _=0.1028 in which the cylinder had undergone no
previous bm'kling, all the tests were carried out on the cylin-
der with possible permanent set.

THEORETICAL RESULTS

A theoretical analysis for calculating the buckling stress

of a cylindrical shell under axial compression and internal
pressure was obtained by a "large-deflection" theory for

/2000_ _ ---

OL 2 x!O'4-_ S trc_n - qoqe roa_,_ls (a)

(a) Linear part of load-strain curve for four typical pairs of strain gagvs.

FIGURE 2.--Typical experimental result. Internal pressure, lt_ psi.
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which details arc giv,n in the _ll)pl,ndix. The largc-defler.t
theory was first advance([ by _,'on K{trnl{llt all,[ Ws

(reference 3) in the study of buckliug stress ()f cylindri

shells llnder axial compression (I)ut without internal pl
sure). This theory was s,"_ ;equently improved by Leg_
and ,Jones (reference 4). In reference 3 the buckling sti
was shown to depend on whether the load was applied b
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TABLE 1

BUCKLIN(_ STRESSES FOR VARIOUS INTERNAL PRESSURES

Experimental Theoret i_al

0.01715

. {_3425

,0514
• 0685

.0856

.1028

O. 19,36 O.
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'_ :n_
:_ .15o
.36,3 .170

.407 ,213

o_ o.[Ta
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FIGURE 3.--Comparison of theoretical and experimental results of the buckling stress at

various internal pressures.

rigid loading machine or by a dead-weight machine. In

the present analysis, the loading machine is assumed to be

rigid.

The existing procedures for computation of the buckling

stress by large-deflection theory involve the solution of four

simultaneous nonlinear equations for each pressure loading.

The numerical work is quite lengthy. The method used in

the present study introduces a fifth equation which governs

the conditions at which the buckling occurs. The fifth

equation is based on consideration of conservation of energy,

which is an extension of Tsien's buckling criterion given in

reference 5. Although a solution of five simultaneous equa-

tions is now necessary, the numerical work is actually

k

.- .>,>i !
I_. J _ TJ=_or_ca] f_esL2 ts -_f-- '

/io • Exper/i'nentol result, first test

td o Exper/mentql resu/t_ sub_equen!

/ "i"I ]
o ./0 20

FIGURE 4.--Theoretical and experimenlal results showimz Iiw iI|CFtHII_'111 O[" blleklintt -.tlq I¢u

due to illlernal prcsslll'e.

reduced to a small fraction of that required if the existing

procedures were used. This redu('tion in labor is made

possible through a proper choice of tlw parameters in the

equations and the process of the computations. The results

calculated by the present method arc presented in table 1

and are represented by the solid-line curve in figure 3. The

curve is cut off at a value of _=0.605 correspomliug to

p_0.169. This constant value of _¢,----0.605 for fi>0.169

is the same as that obtained by the classical theory.

DISCUSSION AND CONCLUSIONS

From the theoretical and experimental results shown, in

figure 3, the internal pressure is seen to have an appre('iabh,

strengthening effect on the cylinder. Although the two

curves obtained from theoretical and experimental results

do not coincide, both show the same trends as regards the

effect of internal pressure on the buckling stresses. If the

increment of the buckling stress A_ due to the presence of

internal pressure (that is, the difference between the buckling

stress with the pressure _, and that without the pressure

(_,)7-o) is plotted against the internal pressure, as shown

in figure 4, a good agreement is obtaim, d between the theo-

retical and experimental results. These data in(lieate that.

although further improvement of the theol T is necessary

for the determination of the magnitude of the compressive

buckling stress, the theory gives a fairly good prediction of

the increase of buckling compressiw, stress that may be

expected as a result of internal pressure. The discrepancy

between the theoretical curve and the experimental ('urve

of figure 3 is believed to be caused by such factors as manu-

facturing imperfections in the spe('imcns, material irregulari-

ties, and energy absorbed by the loading ma('hine, which

have not been included in the theory.

LANGLEY AERONAUTICAL LABORATORY,

NATION2" _kDVISORY COMMITTEE FOR AERONAUTICS_

LANOLEY FIELD, VA., October I2, 19_9.



APPENDIX

THEORETICAL ANALYSIS OF BUCKLING LOAD OF CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION AND INTERNAL
PRESSURE BY LARGE-DEFLECTION THEORY

BACKGROUND OF THEORY

The use of large-deflection theory for shells under axial
compression was first advanced by Von Kb_rmtln and Tsien
(reference 3) in an attempt to explain the discrepancies

between tile buckling loads predicted by classical theory and
those obtained from experimental results. (See, for instance,
reference 6.) The results of reference 3 indicated that

cylindrical shells can be maintained in equilibrium in the
buckled state by a compressive load considerably lower than

that predicted by classical theory. A plausible explanation
of this result is that, before the classical buckling load is
reached during a test, the cylindrical shell "jumps" from an

equilibrium unbuckled state to an equilibrium bucMed state.
The physical phenomena of the jump were further examined
in reference 5 by Tsien.

The treatment of Von Ktirm_n and Tsien in reference 3

was left incomplete, however, in that tbe equilibrium posi-
tions at the bucked state were determined by differentiating

the total potential energy with respect to some but not all of
the physical parameters involved. The resulting equat'ions

gave a relation between the average compressive stress a and
the end-shortening _ in terms of the remaining parameters.
A set of curves of a against E were thus obtained for various
combinations of the remaining parameters.

Improvement of the theory of Von Ktirmhn and Tsien was
made by Leggett and Jones (reference 4), who took the

derivatives of the energy with respect to all the parameters
and thus obtained a single curve between a and _, represent-

ing all equilibrium positions of the cylindrical shell in the
buckled state. The same result was obtained" by Michielsen

(reference 7) in a similar process. Such a curve is shown

by BC of figure 5.
Theoretically, when the cylinder is compressed, the relation

between a and _ follovcs the straight line ODA which repre-
sents the unbuckled state and will reach the point A if

everything is perfect; the cylinder then buckles and the

relationship follows the curve ABC which represents the
buckled state. B(,fore point A is reached, however, some
external disturbance may possibly ('ause the cylinder to j ump
from tim unbut'kled state represented by the point D to the

buckled state represented by the point E. The positions
of D and E on the respective curves depend on the actual

physical conditions of the jump.
If the physical condition whi('h governs the j amp is known

or defined, tit(.' buckling stress corresponding to the point D
can I,_ obtained dirt,ctly without going through the labor of

finding tlu, (.urv(, ABC. This procedure can greatly reduce
the amount of numerical work.

I

lY

FIGURE 5.--Relation between the average compressive stress tt :,Ild the eml-shortc'_fi_!.' e.

In reference 5, Tsien introduced a criterion which governs

the jump DE for the condition of loading obtained in a

rigid testing machine; namely, that the strain energy remains
the same before and after the jump and that the jump occurs
at constant end-shortening. According to this criterion
the line DE must be vertical and must cut the curve ABC

in such a way that the two shaded areas ADG ant[ GBE
are equal. In fact, the area ADG represcnts the additional
energy that is needed to assist the cylinder in jumping from a
condition represented by D to that represented by G and
the area GBE represents the energy that is given up by the

cylinder when it arrives at the lower energy level, point E.
The energy represented by the area ADG is very small,

and therefore a slight disturbance from tile surrounding air

might assist the cylinder to jump from the unl)uckled stat(,
to the buckled state at _ compressive stl'_,ss well twlow th(,

classical hu(.kling stress corresponding to point A.
Since the external disturl)an('c is required to assist tim

(,ylindcr to jump from the state ('errs'st)ending to D to that
cor,'o_ponding to G, a slightly larger external disturbance
can well cause the cylinder to make the transition from
the state represented by D' to that represente(l by B,

except that in the case in which the cylinder jumps from
D' to B the cylinder absorhs the energy of the external
disturt)ance and does not re-emit it. The I)uclding stress

can be then as low as point D'. This fa('g was t)ointt,d

out by Tsicn in r(,fl, rencc 8.
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In addition to tile two criterions just mentioned, there
are still others that might be used. In view of the fact

that the choice of the .buckling criterion is a much less
important factor in the determination of buckling stress
than are such Other factors as, for example, the initial

imperfections, Tsien's criterion of reference 5, as represented
by the line DE, is as reasonable as any other, and the
cboice of this criterion greatly simplifies the numerical work.

Tsien's criterion of reference 5 cannot be applied directly
to tile present analysis, however, because with the presence

of the internal pressure the strain energy is no longer the
same before and after tile jump. In addition, tbe criterion
is applied herein ill quite a different manner from that of

reference 5. In reference 5, a series of values of wave num-
I)er 'J_ and aspect ratio 3 were cbosen and the criterion was
applied to ea('h pair of vahws of n and B; the pair of values
of n and _ which gave the minimum value of buckling load

was considered t- correspond to the buckling condition.
In the present analysis, since the variation of a wittl _ can

be plotted only as a single curve, this criterion need be
applied only once for each internal pressure. The results

correspond to the minimum-potential-energy condition.
In the derivation of the present analysis, the basic equa-

tions in reference 3 are first extended to include the effect

of internal pressure, Tsien's criterion governing the jump
for rigid machine loading (reference 5) is modified, and the

buckling stress is finally obtained.

_b

.fo,A, A

SYMBOLS

A list of symbols follows. Most of the symbols used in the
present report are the same as those in reference 3 ; exceptions

are the use of _ for Poisson's ratio, X for wave length, and
for aspect ratio of the buckled waves.
M half wave length in longitudinal

direction

half wave length in circumferential
direction

parameters used in deflection function
number of waves in longitudinal

direction within length equal to
circumference of cylinder

n number of waves in circumference

p internal pressure
t thickness of cylinder wall
z, y coordinates measured in longitu-

dinal and circumferential directions,
respectively

u component of displacement of a point
on median surface of shell in
x-direction

w component of displacement of a point
on median surface of shell in radial
direction

a measure of average circumferrntial
stress per wave length in longitudinal
direction

end-shortening of cylinder

a average compressive stress
m

B= n aspect ratio of buckled waves

Poisson's ratio

total potential energy

E Young's modulus
_k strain ener_-

B1, B2, . . . B_ _ certain functions of 3
B/, B/, . . . B()

D,, D2, . . . D_ certain functions of o and 2
5D

(D)p=X:; (D represents the functions D_, [)2,
... D_)

5D
(D)_=3 _fl (D represents the functions D1, D2,

• .. Ds)

R radius of cylinder
U'I elastic extensional energ T

W, bending energy
U_ work done by applied compressive load

Wv work done by internal pressure

Nondimensional parameters:

J,
R

r =J, ¥
t

_/"_-r_2

aR
_'--E t

W

1 EtX_X_

7= 1 *

EtMX_

7= ¢"
1
_ EtMX_

R

t

Subscripts:
0

U

C7

(W,, ti'._, I-v3, and W, are defined in the

SaBle manner.)

pertaining to buckling condition
unl)ucklcd state just prior to buckling
buckling condition
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DERIVATION OF BASIC EQUATIONS

Three basic equations are derived in the following analysis to include the effect of internal pressure. They are the ex-
pression for the total potential energy, the expression for the strain energy, and the relation between the end-shortening and

the average compressive stress.
[Ix order to calculate the total potential energy, the work done by the internal pressure should be ini'luded in addition

to the energies I'VI, I'I_, and l_I_, which are given by equations (25), (26), and (27) of reference 3 as:

2 a 2 + 3 2 1 1
-4 /2)+w, [(1-_) (_) +n (-_ A +-fig ],J_+-_ _ _

Etkahb

1 2 1 _ 1
(fo+_ fl) --2n2 (_-_ f2+ _.__],]2+-_ f_ ) (.fo+_ .ft)]+

4"2 B2_4 _4("2 _4D"2 134G2 _4H2 q

s +-s--t (1 + _)_ + (1 + 9y) _÷ (9 + _)_ _ _ i T_-__)__1 (1)

We _ 1 t 2 _+./_,)'l+(1+34)jtf2.+_(1 + 4 .,)

2

{2)

lA'a _[2 (1--u z)/a'X z . _(r f_f2+_ f2 )--2_ _ (fo _ fx)]_) +n _(tt.4=_,)( 3 ftz+-_l 1 e a ' +1
I EtMM

(3)

where a, b, g, and v have been changed to X, Xb, B, and t,,
respectively, to agree with the notation of the present

report and where

1 "2 2 1

B 1 ,2 2

--_}l n

1 2 1 1

1 _ 2[1 "+f2)D=is, n t-_s,

1 2 1

=a
.:..(;-+.+j.)'

The work done by the internal pressure is, for a complete
wave pare,l,

4fx_/'x6Wr----- wp dx dy
J o do

The negative sign is introduced - _cause the radial deflection
w is considered positive inward.

If the same deflection function given in equation (16) of
reference 3 is used, that is,

w (+ ../t'_._t..Jt( mx ny. 1 2rex. 1 2ny",R-_/""4 }" _ cos -iF cos -fi+_ cos -_-±_ cos --R--) +

1"2 2rex
"_ (cos _R- +cos -R/2nY'_ (4)

the work done by the internal pressure becomes

_l'p = --41>RX_X_( f o+ f4' ) (5)

If the total potential energy

¢= W,+ I,l'_- IV3- II'_

is differentiated with respect to J0 and the derivative is set

equal to zero, the following expression is obtained:

f oj .II__ 2 "2 I6T_____6a"2(3 ft +f,f_+f:)_,Ea pR
1

Et •

Substitute this expression into equations (1), (2), (3), and
(5) for B_, _, l_, and W,, respectively, and the followin_
equations are obtained:

:4 [(E)2+ 2.(_)(P_t)+(l_t)"2]+

n_(Bt fl4-_ - B2J,3 f: + B_f_2 f22+ B4 ft J2a+ n_)4f2+)--

n? [(2 B4 + 1)if" + (4 B4 +_).f,:.f:_-t-

H'_ 4E'2. a pR

1EtMM

'C) )3E n''_a 4f':'+'f'f"+f""

14_ =(R)_(Bj_+Bj, I"2+ B&:)n'
1EtXa),_
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IV, _ =8 r/ pR\2 a pR

° pR
n.(E_i) 1 /3 _+ o+ ,\-1j,j: j,)j (,0)

where

'--8 (1 4-¢_) '

1 ____2)221 1 (1 ____4)]B5 6(1_.=) [8 (1

1
Bs= 6(1 --u s) (1 +#4)

Equations (7) to (10) may be expressed in terms of the
nondimensional parameters _', _, p, n, i', and -_ as

IVI=4(E_+2p'_TJ+-F')+,_4D:+,_a(--D3)+_2D4 (I 1)

|I'3---- 87-"+ Su; )5-F _'_/_-2D, (1 3)

where

.,=1,,
B " ,_ 1

D.2=BI+B=o+ 3p'+B4o' +-6 B4o _

D3=(2B.+_) (1 +2p)

D.=(2B.+ I)+ 8 (p+ p_)

D_= B_+ B_(o + p_')

The nondimensional total-potential-energy parameter g is

_!_= [{'1- _ W2-- Hf3 - I'ifp

_*D ='aD ±_"D -- _'_D (15):_ 2--q_ 3T5 4T_ ._ 5

The nondimensional strain-energy parameter - is

¢/= W_+ W.,

=4(7 _ _ '2u7 7_+);q + ,_-, D., --

• 3 _2 t ,. 9L_._( D:_÷_ Dr_-,rf- :. (16)

7

The relation I)etween the end-shortening e and the average
compressive stress can be determined from equation (23) of
reference 3 by integrating; thus,

¢ a 1 3 + o
=(_ .._,.. _ E)___ ]__ _2#2 (4 J'12 f 2 _-- .fl.f2)

where a/E, as determined from equation (24) of reference 3,

together with equation (6) herein is

a pR
E--Et

Therefore, the relation between 7 and 7 in nondimensional
form becomes

R
t

- _ 1
(17)

Equations (15), (16), and (17) are for cylindem ia the buckh,d

state. For cylinders in the unbuckled state, the correspond-
ing equations are

g.---- -- 4(7._+ 2u7,,)5+ _ _) (1 s)

_,, = 4(7.:+ 2p'5,,-_+_-') (19)

_.=_.÷u_ (2o)

EQUILIBRIUM POSITIONS O1? CYLINDERS 1N BUCKLED STATE

The equilibrium positions of cylinders in the buckled sta_e

can be obtained by differentiating the total potential energy
of equation (15) with respect to each of the parameters )1,
_', p, and # and by setting the derivatives equal to zero.
Four simultaneous, nonlinear equations are thus obtained:

_)_ - 1 - ) -- 2(,ff)_D, + (_')D_-- 2.q_D._]if)
a_ ,, r/-

- ,:D._](2 i)D.

(D,)o--,_(D.).] i-= "

a_ _ __

") ] U

(21
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where

and

Let

(D,),= 2 a_(l +2p)

(D_),= B,+ 2B3p + 3B, a_+ 2B, pa

(Da)p=2 (B,+ 1 )

(D,),= 8 (1 + 2p)

(D_),= B_(1 + 2 p)

(D,)B=-O_(3 +p+ p')=2D,

• ' B'' ,_ 1
(D2)n--B1 +B, p+ 3 p +B, p +-_ B,'p'

(D3)_= 2B,'(1 + 2p)

(D_)_= 2B,'

(D3_= B/ + B,'(p + p_)

4 (1-4-#') 3 _ (1 +-_/_4-9 (9_--B_)3 ]

B, 1 I-9 _.+ 0' 0'2 =4L2(+0) (1+902) 3"k9 (__)_]

Bg 11-11 0, t_' t_' ]= L-2 (l--t-0') 3 _'(I-{-9¢F) a_r9 (---+_

, I 3 _
B, =_ (1 +a_) 3

B'-- 1 1
- 6(1 -u') 2 t_'(1+ 30')

4
Bg---- #'

--6(1 --u')

The four simultaneous equations (21) become

7' = (_ f)2(2 D,)-- (,__')Da + 2n'D5 (22a)

7'=(n_)'(2D2)--(n_)(1.SDa)+ D,+_2D5 (22b)

7'= [(17_)2(D,),- (_ _')(D_), + (D,),+ __(D_)0] (22c)

_'-=[(_tr)_(D,),--(r_r>(D_)a÷(DOa+n_CD_)al l--_nD, (22d)

Theoretically these four simultaneous equations can be
solved for _, f, p, and 0 in terms of 7 for a given pressure. If

they are substituted into equation (17), a relation between
end-shortening "_ and the compressive stress 7 is obtaim'd

which represents all equilibrium positions at the buckled
state. In fact, this solution is essentially that obtained by

Leggett and Jones (reference 4) and Michielsen (reference 71
for cylinders with axial compression but no internal pressure.

Practically, however, the solution of the four simultaneous
equations (22) requires a long and tedious numerical process.
If only the buckling stress is required, calculation of only on_,

point on the curve of 7 against _ rather than the whole curve
is necessary. This solution can be obtaim,d by the intr_)-

duetion of one more equation which governs the condition
at buckling.

avc_mN(_ catr_mo_

In reference 5, Tsien gave the following criterion which

governs the condition at buckling: That the strain-energ3
of the buckled cylinder is the same as the strain energy o_
the unbuckled cylinder when the cylinder is tested in ttu
rigid testing machine so that the end-shortening does no_

change during buckling. This criterion is apparentl3

established from considerations of conservation of energy
Although other physical criterions can be used (for instance
see reference 8), the criterion of reference 5 was chosen am

extended to include the case for which the internal pressur,
is present. The choice of this criterion simplifies the nume]
ical work.

When internal pressure is present in the cylinder, work
done by the pressure during buckling. The strain energy i

the buckled state is no longer equal to that in the unbuckle
state, but

¢,=,b. +aW, _2:

where A Wr is the work done by the pressure during bucklin
or

p(w-- w,,)d.r d!t
A W, 1EtMX_ \ t / -- ,o

2

=W,- (W.). ("

Equation (14) can be rearranged as follows:

11%'-_,,= 8(_:+ u7 p-')- _ )% _:DI

Therefore, for the unbuckled state, the last term is elimina_
and

(W,). = 8_+ uT._) (

Then, from equations (24), (25), and (26)

all', = 8_,p(,r --,,'.)--_ t7,__'2D, (
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The buckling criterion becomes (equations (23) and (27))

¢_= _,, +S_,p(_-_.)-_ p,_- D,

or, from equations (16) and (19),

2 -- -- --2 -- -- 1 -- 2=4(7,, + 2_a,,p+ p )÷8(7--a,)_,p---z_ p,I_'D,
p-

(28)

Since the end-shortening remains unchanged during buckling,
that is, 7=7u, the following relation is obtained from equa-
tions (17) and (20):

_ l
a,,=a+_ ,1i-_D1 (29)

If this relation is substituted in equation (28) and if the
--f // "__ i --

relation a =(a---_p)_D1 is used, the buckling criterion

becomes

7'=(,l_)'_(D2--1D,2)--(,_)Da+D.+,12Ds (30)

The solution of the five equations (22a), (22b), (22c), (22d),

and (30) gives the buckling stress for a given internal pres-
sure. The following section presents a very simple method
for the solution of these five simultaneous equations.

METHOD OF SOLUTION

From equations (22b) and (30) and equations (22a) and
(22b), the following equations are obtained:

D3

,1_ 2 (n:.-[ -1 nl 2) (31)

l
D_-_ D_(, _-)

D5
(32)

,'era preassigned value of B, assume various values of p and

ompute ,7_"and _2 from equations (31) and (32). Substitute
hese values in equations (22a) and (22c) to obtain (_-')_ and
_')_, respectively. Plot both (_')_ and (_-')_ against p.

The intersection of these two curves determines a pair of
values _' and p which are called 7'o and po. The correspond-

ing values of (,1_')o and (_2)o are computed and substituted in
equation (22d) from which the pressure p can be calcu-
lated. For each assigned value of _, there are obtained cor-

responding values of a'o and A curve of _'o against i_
can thus be determined. If the following relations are used.

- - 1
,7_,=(7_)o= aoq-_ (,Tt' D,)o

the relation between _-_, and _ is obtained as shown in figure 3.

CUT-OFF BUCKLING STIIIF_S

When equation (31) is derived from equations (22b) and
(30), a factor (_')=0 is also obtained. If this relation is

used instead of equation (31), it can be shown that the

buckling stress _,, can never exceed the classical buckling
stress 0.605 which is independent of pressure.
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