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TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED 
CYLINDRICAL BEAMS l 

By BIGRXARD BUDIANSKY and EDWIN T. KRUSZEWSICI 

SUMMARY of the secondary effects by means of numerical results for 
hollow beams of rectangular cross section of various lengths, 
widths, and depths. 

The variational principle, differential egua,tions, and bound- 
ary conditions considered appropriate to the analysis of trans- 
verse wibrations of hollow thin-walled cyFindrica1 beams are 
shown. General solutions for the modes and frequencies of 
cantilever and free-free cylindrical beams of arbitrary cross sec- A 

tion but of uniform thickness are given. The combin.ed inJEuence An 

of the secondary e$ects of transverse shear deformation, shear Hag, As 

and longitudinal inertia is shown in the form of curves for ni 

cylinders of rectangular cross section, and uniform thickness. (’ 

The contribution of each of the secondary effects to the total E 

reduction in the actual frequency is also indicated. G 
I 

INTRODUCTION K 
The elementary theory of bending vibration is often in- L 

adequate for the accurate calculation of natural modes and 
frequencies of hollow, thin-walled cylindrical beams. Such Ni 
secondary effects as transverse shear deformation, shear lag, T 
and longitudinal inertia, which are not consiclered in the CJ 
elementary theory of lateral oscillations, can have apprc- a 
ciable influence, particularly on the highor modes and b 
frequencies of vibration. The effects of transverse shear a,,, b, 
deformation and of rotary (rather than longitudinal) inertia i, .i, m, n 
have been studied by many on the basis of the original invcs- 
tigations of Rayleigh (ref. 1) and Timoshenko (ref. 2). 

kn 

Anderson and Houbolt (ref. 3) have presented a procedure 
for including the effects of shear lag in the numerical calcu- ks 

lation of modes and frequencies of box beams of rectangular 
cross section. However, there does not appear to exist a k RI 
general solution for the vibration of hollow beams that in- P 
corporates the influence of all the secondary effects men- S 

tioned. 

SYMBOLS 

cross-sectional area 
l?ourier coefficient 
effective shear-carrying aroa 
parameter defined in equation (30) 
constant 
modulus of elasticity 
shear modulus of elasticity 
moment of inertia 
geometrical parameter defined in equation (29) 
length of cantilever beam, half-length of frec- 

free beam 
parameter defined in equation (38) 
maximum kinetic energy 
maximum strain energy 
half-depth of rectangular beam 
half-width of rectangular beam 
Fourier series coefficients 
integers 

frequency coefficient, w PL4 
li- 

EI- 

J 

--.- 

coefficient of shear rigidity, i pG 

coefficient of rotary inertia, -‘. 
J 

fS 
L z 

perimeter of cross section 
distance along periphery of cross section (see 

fig. 1) 
wall thickness 
longitudinal displacement in x-direction 
vertical displacement in y-direction 
longitudinal coordinate 
vertical coordinate 
y-coordinate of center of gravity of cross section 
shear strain 

The purpose of the present report is threefold: First, to t 
exhibit the variational principle, differential equations, and u(v) 
boundary conditions appropriate for the analysis of the w(x) 
uncoupled bending vibration of hollow thin-walled cylindrical 2 

beams; second, to give general solutions for cantilever and ?I 
free-free cylinders of arbitrary cross section but of uniform 75 
thickness; and finally, to show quantitatively the influence Yzs 

1 Supersedes NACA TN 2682, “ Trmsverse Vibrations of Hollom Thin-Walled Cylindrical Beams” by Bermrd Budimsky and Edwin T. Eruszewski, 1952. 

I 

b 
263036-64 
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longitudinal strain 
inclination of normal with vertical (see fig. 1) 
Lagrangian multiplier 
mass of beam per unit length 
mass density of beam 
longitudinal direct stress 
shear stress 
natural frequency of beam 
natural frequency of beam calculated from ele- 

mentary beam theory 
Kronecker delta (1 if ;=j; 0 if i#j) 
constraining relationship 

BASIC EQUATIONS 

Assumptions.-The problem to be considered is that of 
the natural bending vibration of a thin-walled hollow 
cylindrical beam whose cross section is symmetrical about at 
least one axis (see fig. 1). The transverse vibration is sup- 
posed to take place in the direction of this axis of symmetry 
of the cross section so that no torsional oscillations are 
induced. 

In the present analysis, the following simplifications are 
in traduced: 

(a) Changes in the size and shape of the cross section are 
neglected. 

(b) Stress and strain are assumed to be uniform across the 
wall thickness. 

(c) The small effect of circumferential stress upon longi- 
tudinal strain is neglected. 

In accordance with statements (a) and (b), the distortions 
of the vibrating beam are completely described by the 
vertical displacement w(z) of a cross section and the longi- 

(a) 

(a) Typical cross section. 
(c) Cantilever beam. 

I 
(4 ?" 

(b) Sign conventions. 
(d) Free-free beam. 

FIGURE I.-Coordinate systems and sign conventions. 

tudinal displacement u(x,s) of each point of’the median line 
of the beam wall. 

The longitudinal and shear strains are given in terms of 
u(z,s) and w(z) as 

and 
bu dw . 

-h=b~+z sin 0 

and the corresponding stresses become 

and 
bu dw 

7 .,=G -+- sin B bs dx 

(2) 

(4) 

where B is the inclination of the normal with the vertical (see 
fig. 1). 

In elementary beam theory, where the effects of all shear 
distortion are neglected, the longitudinal distortion u(x,s) is 
related to the vertical displacement W(X) by 

where c is the y-coordinate of the center of gravity of the 
cross section. In the present report, however, ~(2,s) is 
allowed to be perfectly general, so that shear distortions (and 
consequently the so-called shear-lag and transverse-shear- 
deformation effects) are fully taken into account. Further- 
more, because cross sections are not constrained to remain 
plane, the inertia effect associated with motion in the 
longitudinal direction is more properly designated as the 
effect of longitudbal inertia than the effect of rotary inertia. 

Variational principle and geometrical boundary condi- 
tions.-The variational equation to be written is appropriate 
to beams whose ends are either fixed, simply supported, or 
free. For some such beam vibrating in a natural mode, the 
maximum strain energy is 

where u&s) and w(x) are the amplitudes of displacement for 
the particular mode considered. The maximum kinetic 
energy is 

pt&uZds dx (6) 

where w is the natural frequency of the mode under considera- 
tion and p is the mass density of the beam. The second 
term in equation (6) constitutes the contribution of longi- 
tudinal inertia to the kinetic energy. 

A natural mode of vibration must satisfy the variational 
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equation 
S(U---T)=o (7) 

where the variation is taken independently with respect to 
~(2,s) and W(X) and with the provision that both U&S) and 
w(z) must satisfy the geometrical boundary conditions of 
the problem; furthermore, ~(2,s) must be periodic in the 
coordinate s with-a period-equal to the perimeter p. The 
geometrical boundary conditions are w=O and u=O at a 
fixed end and only w=O at a simply supported end. At a 
free end no geometrical boundary conditions are imposed. 

Differential equations and natural boundary conditions- 
Equations (5), (6), and (7) in conjunction with the usual 
procedure of the calculus of variations yield the following 
simultaneous integrodifferential equations for u and w: 

bu dw 
G+Zsin 0 >I +ptw%=O 

az-z sin 8+$:Z sin2 0 ds+pW2w= 0 1 . 

(8) 

(9) 

where 

P= pt ds (10) 

and the boundary equations at each end of t.he beam are 

$&(&)6uds=O 

2-j-g sin 0 
> 

sin tI ds 6w=O (12) 

At a fixed end, both boundary equations (11) and (12) are 
satisfied by virtue of the fact that the geometrical boundary 
conditions require that both 6u and 6w be zero. At a simply 
supported end 6w=O, but, since Gu(z,s) is perfectly arbitrary, 
the variational process forces the equality 

Et *=O (13) . dX 

Finally, at a free end, since there are no geometrical con- 
straints, both 6u and 620 are arbitrary and hence the varia- 
tional process forces, in addition to equation (13), t.he 
equality 

*+* sin 0 
bs dx ,, 

sin 0 ds=O (14) 

Equations (13) and (14) constitute so-called “natural 
boundary conditions” because they are automatically satis- 
fied as the result of a variational process. Equation (13) is 
recognized as the condition of zero longitudinal direct stress 
while equation (14’) simply stipulates that the total vertical 
shear force vanish. 

Thus to summarize, the appropriate boundary conditions 
required for the solution of equations (8) and (9) are 

Fixed end: 
w=o 

u=o 
Simply supported end: 

w=o 

Et *co 
bX 

Free end: 
u+gz sin e bs dx siu 0 tls=O 

Et “=O 
bX 

The integrodift’crential equations (8) and (9), which specify 
equilibrium in the longituclinal and transverse directions 
respectively, can, of course, be written directly without 
recourse to the variational principle. 

GENERAL SOLUTIONS FOR CYLINDERS OF UNIFORM WALL 
THICKNESS 

The following exact solutions for cylinders of uniform wall 
thickness are carried out by means of Fourier series in con- 
junction with t,hc application of the variational conclition 
(eq. (7)). This procedure, which does not rcquirc explicit 
consideration of the natural boundary conclitions, was 
believed to be more espcdient than a direct attack upon the 
simultaneous intcgrocliffcrential equations (8) and (9) awl 
all their associated boundary conditions. 

Cantilever beam.-The geometrical boundary conditions, 
for a cantilever beam, as previously shown, arc 

w(0)=u(0,s)=0 

(see fig. 1). Appropriate assumptions for the displacements 
w(2) and U(X,S) arc 

m 
w(x)=C+ C b,s cos s 

n=1,3,5 
(15) 

and 

u(x,s)= 5 
2nas 

fl: umn sin F cos p (16) 
m=1,3,5 7b=o,1,2 

The condition u(O,s)=O is satisfied by each term of cqua- 
tion (16) ; the conclition 

w(O)=C+~=?& bn=O (17) 

is introduced into the variational procedure by means of the 
Lagrangian multiplier method. The choice of the particular 
trigonometric functions used in the Fourier series (15) and 
(16) was guided by consideration of the orthogonality 
required for the simplification of expressions in the strain 
energy. The constant C is needed in the expression for 
W(X) in order that w(L) be unrestricted. 

II 
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Using equations (15) and (16) in equations (5) and (6) 
yiclcls 

U-T= 

‘1‘0 make equation (18) stationary ant1 at the same time 
sntisfy the constraining relationship 

it is sufficient to set 
s(Cr-T-x~)=O (20) 

where the variation is with respect to the (G’S, b’s, and C 
considered as independent variables; here x is a Lagrangian 
multiplier. This variational process results in the following 
equations: 

i--l 9L 
pw” bi-(- 1jT - -T-& pw’C--x 

=o (i=l, 8, 5, . . .) (21) 

‘?(I +~oj)a,,+Gt(~~)2~n,j+ 

*. 2 LP Gty-Ajbi-wzptP(l +G~~)cT~~=o 

(i=l, 3, 5, . . .) 
(.i=O, 1, 2, . . .) (22) 

wh cre 
=o (23) 

An=; 2nrs 
sinesin tls 

P 
(241 

AS= t sin’ e (1s (25) 

With the use of the nondimensional parameters 

k 2-pL4 w2 
B EI (26) 

EI 
lCB2= AsGL2 (27) 

I I lCB,2’--- 
ptL2- AL2 (28) 

161 
K2=ASp2 

and 
2 2 Bi2=i2-kR12kn2 ; 

0 

equations (21), (22), and (23) may bc reduced to 

(29) 

(30) 

.=gl 2 $1 z3 A,an+; ($)’ k2 bi-; k,2b,- 
9 I 

- (- ljiil -$ kg2C-$0 (i=1,3,5,. . . ) (31) 

(k,‘B,“+K2j2) (1+602) aij+K2 $z Ajijb,=O 
(i=l,3,5, . . .) 
(j=O, 1, 2, . . .) (32) 

kB2 .=q3 5 $ (- l)?b,,fk$c+g;=O 
I 7 

(33) 

For j=O, equation (32) becomes 

kS2 
[ 

2 2 i2-kB2knr2 - 01 t&t”= 0 (i=1,3,5, . . .) (34) 
* 

Equation (34) is not couplecl to any of equations (31) to 
(33). A given value of ato corresponds to the amplitude of 
the ith mode of longitudinal oscillation, and if this value of 
a,, is not equal to 0, then equation (34) simply gives the 
frequency of this longituclinal mode. Consequently those 
equations in equation (32) for values of j=O are not asso- 
ciated with transverse bending and so are ignored henceforth. 
For the remaining values of j (that is, j#O) equation (32) 
yields 

-K2 ;1”L A,ij 
‘{f=IC,2Bt2+K2j2- bt 

(i=1,3,5,. . .) 
(j=l,2,3,. . .) (35) 

Substituting the expression for eij in equation (35) into 
equation (31) and solving for b, gives 

(- 1) 
52 LQ 

b,= 
2 ;; k,2C+m 

N, 
(i=1,3,5, . . . ) (36) 
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where 
m  

i2?r* 1 
N”=F j-f-- 

c 
T&=1,2,3 

(37) 

In the appendix this expression for Nr is shown to be equivalent to 
co 

Ni+ B&i;! $ Bi4k,2 
J&2- 

’ kB2 A s o=1,2,3K2n2(ks2Bt2+K2n2) -2 c (38) 

Since the series in equation (38) is considerably more quickly convergent than that in equation (37), equation (38) should be 
used in actual numerical calculations of Ni. 

Substitution of equation (36) into equation (33) and the constraining-relationship equation (19) gives the following tw: 
homogeneous equations in C and X: 

kd[1+k,2ng5(;)2&] C+ [Ifk~2,~,j(-l~~$~]~=0 
I 7 

[ 
l+kB2 2% C-1) 

T&=1,3,5 

Finally the condit.ion for a nontrivial solution for C and X gives the frequency equation 

which the frequency paramekr k, must satisfy. Since the - 1 symmetrically vibrating _ free-free beam is obtained from 
terms of the infinite series which appear in t.he frequency 
equation contain k, itself, the roots of equation (40) are most 
conveniently found by trial. Fortunately the infinite scrics 
in equation (40) as well as the series in the definition of hr, 
converge rapidly so that only a few terms are needed to 
evaluate them with sufficient accuracy. 

equation (39a) by setting X=0 and is 

Once k, has been determined for a pasticular mode, the 
corresponding mode shape can be found by letting C= 1 and 
solving either of equations (39) for X and then finally evaluat- 
ing b, and alj successively from equations (36) and (35). 

Free-free beam-symmetrical modes.-If the origin of a 
free-free beam of length 2L is taken at the midspan (see fig. 
I), the form of the Fourier series assumed for W(X) and U(Z,S) 
when the beam is undergoing a symmetrical mode of vibra- 
tion may be exactly the same as that assumed for the 
cantilever beam of length L (see eqs. (15) and (16)). The 
only difference in the ensuing calculations is that the con- 
straining condition (19) is not introduced. Consequently, it 
can be readily seen that the frequency equation for the 

(3 W 

Ggb) 

kB2 

After a particular root k, is found from equation (41), the 
shape of the corresponding symmetrical free-free mode may 
be obtained from equations (36) (with X=0) and equations 
(35). 

Free-free beam-antisymmetrical modes.-Consider a 
free-free beam of length 2L undergoing antisymmetrical 
vibrations. Explicit consideration need be given only to the 
right half of the beam (see fig. I), and for this half-beam the 
only geometrical boundary condition that must be imposed 
is that w(O)=O. The spanwise displacement ~(0,s) is unre- 
strained by virtue of antisymmetry. 

Appropriate assumptions for the displacements W(X) and 
U(X,S) are then 

w(x)= 2 b, sin 
7&=2,4,6 

~+L% (42) 
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and 

m=O,2,4 n=l,2,3 
(43) 

The linear portion Cx of the expression for W(Z) is needed in order to give the beam sufficient freedom at the tip (x=-L). 
The choice of the particular trigonometric function in the series expansion for ~(5,s) was, as in the case of the cantilever 
beam, guided by consideration of the orthogonality required for the simplification of the expressions in the strain energy. 
The zeroeth term in the series for u(z,s) in the s-direction was omitted because it only leads to the frequency equation for 
longitudinal oscillations. 

Using equations (42) and (43) in equations (5) and (6) yields 

The variation of equation (44) with respect to the a’s, 
b’s, amI C gives, after suitable simplification, 

(B,‘kS’+K2j2)aij-K’ :L A,ijb<=O (i=2,4,6, . . .) 
(j=l,2,3, . .) (45) 

2 2 
3 ‘2-. k,‘k,,‘k B2 ; 01 ~0j-K~ 6 AjjC=O 

(j=1,2,3, . . .) (46) 

m 1 Lt in3r2 pAu.--II ii’r2 
Z.3 @  As 4 ’ a’ 2 ks2 2 0 

biff kB2 bi- 

(-l)i/2 ;; kB2PL=0 (i=2,4,6, . . .) (4’71 

1)“‘2 b,+ $ kB2(;rL=0 (48) 

From equation (45) 

K2 3% Ajij 
%=BTkA2+K2j2 bi (i=2,4,6, . ) (49) 

(j=1,2,3,. . .) 

which, except for sign, is the same expression as that ob- 
tained for t,he cantilever and symmetrically vibrating free- 
free beams (eq. (35)). From equation (46) 

K2?)A.’ 
2s 33 

%=~,2ks2+K2j2 c (j=1,2,3,. . .) (50) 

Substitution of equation (49) into equation (47) gives 

bi=-(-I)i/2; ‘&CL (i=2,4,6,. . .) (51) I 

(44) 

where Ni is defined in equation (37). 
Substitution of equations (50) and (51) into equation (48) 

and simplification gives as the frequency equation for the 
antisymmet~rically vibrating free-free beam 

(52) 

After a particular value of kB is found from equation (52), 
the shape of the corresponding antisymmetrical free-free 
mode may be obtained by giving C the arbitrary value of 
unity and calculating the b’s and u’s successively from 
equations (51), (50), and (49). 

Discussion of parameters--The parameters entering in 
the frequency equations merit discussion. The unknown 
natural frequency is contained only in the frequency co- ~. 
efficient kg, which is defined by the formula w=kB 

-\i 
EI 
jLi3’ 

and is in common use in beam-vibration a.nalysis. The 
parameters k, and k,, are ident.ical with t,he shear and 
inertia parameters defined in reference 4, which considers 
the effect of only transverse shear and rotary inert.ia ou 
beam vibrations. The quantit.y As which appears in the 
present definition of ks is actua,lly the effective shear-carrying 
area when plane sections are constrained to remain plane; 
that is, when shear lag is neglected. The remaining param- 
eters appearing in the present derivation, namely, A/As, 
K, and Al, API . . . are essentially shape parameters which 
actually depend only on the contour of the cross section; 
as shown in the appendix, 

and 

As 1 - 
A =!i ,-F2,3 Am2 

and the An’s are simply the Fourier coefficients of the 
function sin 0, which is dependent only on the shape of the 
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cross section. These shape parameters are related to shear- 
lag effects and their interaction with transverse shear 
and longitudinal inertia. 

The effect of longitudinal inertia is associated vith the 
parameter k,. If the effect of longitudinal inertia is to be 
neglected, it is sufFicient to set kRr equal to zero in the final 
frequency equation. If k,, iS equal to zero, R, becomes in- 
depend&it of k,: AjQkkiable~ &nplification in a trial-and- 
error solution for the natural frequency then results since, 
with R, independent of kB, t’he infinite summation contained 
in Ni is also independent of kB and need be calculated only 
once for any particular beam. As is shown in t.he following 
sectian, the effect of disregarding the influence of longitudinal 
inertia may often be negligible. 

Without, presentation of details, it may be mentioned that 
for the case of a circular cylinder, which has no shear lag, 
all the A,‘s except r-l1 va.nish and the frequency equations 
(40), (41), and (52) may be put into closed forms identical 
to those given in reference 4. Again, if in t,he general fre- 
quency equations k, is set equal to zero, the equations may 
be put into closed forms equivalent to those of reference 4 
where only rotary inertia is considered. 

RESULTS FOR CYLINDRICAL BEAMS OF RECTANGULAR 
CROSS SECTION 

In order to show quantitatively the efl’ects of shear lag, 
transverse shear deformation, and longitudinal inertia on 
the natural frequencies of hollow thin-walled cylindrical 

beams, numerical calculations have been performed for 
cylinders of rectangular cross section oscillating as free-free 
beams. The calculations have been limited to symmetrical 
modes of vibration, and consequently the frequency equation 
(41) is applicable. For rectangular cross sections the quan- 
tity Ni may be put,into closed form as shown in the appendix, 
gnd this closed-form version of Nt was used in the calcula- 
tions. A value of E/G equal to 2.65 (appropriate for 
aluminum alloys) was assumed. 

The results of these calculations are shokn in figures 2, 3, 
and 4. In figure 2, the ratio of the natural frequency w t,o 
the natural frequency w. obtained from elementary beam 
theory is shown as a function of the plan-form aspect ratio 
L/b for cross-sectional aspect ratios of 1.0, 3.6, and 00. 
The contribution of each of the secondary effects to the total 
reduction in the natural frequency for the cross-sectional 

aspect ratios :=3.6 and 1.0 can be seen in figures 3 and 4, 

respectively. The cross-sectional aspect ratio of i= m 

corresponds to the limiting cnsc of a beam where the effects 
of transverse shear deforma.tion and longitudinal inertia are 
negligible and therefore the reduction in natural frequency 
is due entirely to shear lag. 

The dashccl lines in figures 3 and 4 show the reduction in 
frequency due to the inclusion of the effect of only transverse 
shear deformation as obtained from reference 4. 

The long- and short-(lash lines are calculated from the 
frequency equation (41) with k,,=O and consequently 

14 2 6 IO 14 2 
L/b L/b L/b 

(a) First symmetrical mode. (b) Second symmetrical mode. (c) Third symmetrical mode. 

FIGURE 2.-Change in the natural frequency of a symmetrically vibrating free-free cylinder due to the inclusion of secondary effe&. 

I I 



8 

1.C 

I 

.E 

iJ$j 

.4 

2 

0 

REPORT 1129--~A~Iox4L ADVISORY COMMI~Y~EE FOR AERONAUTICS 

Effects included: 
-- - Transverse shear (ref. 4) 
--- Transverse shear and shear log 

Transverse shear, shear lag, and 
longitudinal inertia 

I I I I I 
6 IO 14 

L/b 
FIGURE 3.-Contribution of transverse shear deformation, shear lag, 

and longitudinal inertia to the reduction in natural frequency for 
b -=3.6. 
a 

represent the reduction in natural frequency when both sheal 
lag and transverse shear deformation arc taken into account.. 
Thus the hatched area between the clashecl ancl the long- and 
short-dash lines may be considered as showing the additional 
reduction in natural frequency when the influence of shear 
lag is considered. Finally, the solid lines are calculnt,ecl with 
km taken into account, and consequently the shaded area 
shows the additional influence of longitudinal inertia in 
reducing the frequency. 

Examination of figures 3 and 4 and the curves for E= ~0 in 

figure 2 shows that the influence of shear lag increases as the 

.8 

.6 

I 2d symmetric 

w 3d symmetrical 

Effects included: 
--- ~ronsverse snear (rer. Lt, 
--- Transverse shear and shear lag 

I.--_ _ .-- - ~ronwerse 5 -hear, sheor log, and 
longitudin 01 inertia 

I I I I I I 
6 IO 14 

L/b 
FIGURE 4.-Contribution of transverse shear deformation, shear lag, 

and longitudinal inertia to the reduction in uatural frequency for 
b -= 1.0. 
a 

cross-sectional aspect ratio increases; lvhcreas the influence 
of transverse shear ancl longitudinal incrt,ia decreases with 
increasing cross-sectional aspect ratio. Incleed, it appears 

from the results for $=3.6 that for this aspect ratio the 

effects of longitudinal inertia may already be considered 
pra.ct~icall~ negligible. 

A word of caution concerning the interpretation of figures 
3 and 4 may be in order. Since in sonic cases the depth of 
the hatching increases with increasing L/b, it might appear, at 
first g1anc.e: that, the shear-lag effect increases wi:ith increasing 
plan-form aspect ratio. However, if the additional effects 
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of shear lag are considered on a percentage basis with the 
dashed line as a base, it will be found that shear-lag effects 
actually reduce in percentage with increasing L/b. A similar 
criterion should be used in judging the influence of longi- 
tudinal inertia. 

CONCLUDING REMARKS 
i, ._ :.. li -- ,._ - . ._ ., ,, ._ 

The numerical calculations show that secondary effects 
have appreciable influence on the natura.1 frequencies of 
rectangular box beams of uniform wall thickness. These 
results constitute an indication of the probable inadequacy of 
elementary beam theory for the vibration analysis of actual 
aircraft structures of the monocoque and semimonocoque 

APPENDIX 
TRANSFORMATION OF PARAMETERS 

Expressions for As/A, I, and K2.-If sin 13 is expanded into 
a Fourier series 

2nm sin B= 2 A, sin ~ 
n=1,2,3 P 

type and emphasize the need for practical calculat’ion pro- 
cedures for such structures that would take into account 
transverse shear deformation, shear lag, and, when necessary, 
longitudinal inertia. The general solutions presented for 
cylinders of uniform thickness, as well as t,he numerical results 
for rectangular box beams, should be useful in the assessment 
of the accuracy of any procedure of this kind that may be 
developed. 

LANGLEY AERONAUTICAL LARORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., January 21, 1952. 

the Fourier coefficients A, are the same as those defined in 
equation (24); that is, 

The effective shear area A, (eq. (25)) can now be written 
as a function of the Fourier series expansion for sin e as 

As= 

With the ‘use of the appropriate orthogonality conditions, 
equation (A3) becomes, after the integration is performed, 

As=$,$~,A,L~=$ 2 An2 Transformation of expression for N*.-In equation (37) 
, 9 - n=1,2.3 Ni was defined as 

or 

G44) 

The moment of inertia I of a cylinder is defined as (see 
fig. 1) 

I= p 
s 

y2t ds-Aij2 
0 (A51 

where 3 is the y-distance to the center of gravity of the cross 
section and is given by 

But y’ 8 S sin ads 
0 (A71 

or 

(-N 

n.nd, consequently, 

With the use of equations (A8) and (A9), the expression 
for I in equation (A5) becomes 

(Alo) 

With the series expansion for I in equation (AlO), the param- 
eter K2, as defined in equation (29), becomes 

(All) 

N, = i27r2 ---&&K’ &,=~2,3k,2B”:n2-; k,’ 8ks2 s 1 C&4 

The infinite series that appears in this expression converges 
as A,’ and therefore is a relatively slowly converging series. 
In order to increase its rate of convergence, the following 
transformations are made. 

By adding and subtracting A,‘/K2 inside the infinite 
summation in equation (A12) and using equation (A4), the 
equation simplifies to 

By adding and subtracting An2/K2n2 inside the infinite 
summation in equation (A13) and using equation (All), the 
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expression for Nt can be transformed to 

i27r4 i2?r2 A m A2 ‘k2 N’=m B’-m A, Bi4ks2n=~2,3K2n2(ks2Bi2+K2n2)-2 B (A14) 

The infinite series in equation (A14) converges as An2/n4 and therefore is considerably more quickly convergent than the 
series in equations (AS?) and (AIS), which converge as An2 and A,2/n2, respectively. 

Closed form of Ni for cylindrical beams of rectangular cross section-For a cylindrical beam of rectangular cross 
section, with dimensions as shown in figure 2, it is possible to write the expression for Ni in a closed form. The param- 
eters for such a cross section become 

As=4at 

A=4(a+b)t=pt 

A,=0 (n even) 
1 

(Al 5) 

4 2nnb =n?r cos ..-. 
P 

(n odd) 
J 

or 

With equations (A15) the parameter Nj shown in equation (A12) becomes 

cos2 2n*b 
P ; k,” -- 

2: Bi2+n2 

4rmb cos ~- 
; kB2 -- 

6416) 

(A17) 

Each of the infinite summations in equation (Al7) can now be written in closed form as shown in reference 5, and the 
closed exnression for N, then becomes 

I 

Ni zzz  ; ; ;  
K P rk “-izB; 2 2 ftanh - 2 Bi 1 ; -- 2K kB2 s cash ; Bi w3) 
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