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SHOCK-TURBULENCE INTERACTION AND THE GENERATION OF NOISE!

By H. S.

SUMMARY

The interaction of a convected field of turbulence with a
shock wave has been analyzed to 1yield the modified turbulence,
eniropy spottiness, and noise generated downstream of the
shock. This analysis generalizes the results of Technical
Report 1164, which apply to a single spectrum component, to
give the shock-interaction effects of a complete turbulence field.
The previous report solved the basic gas-dynamic problem,
and the present report has added the necessary spectrum analysis.

Formulas for specira and correlations have been obtained
and numerical calculations have been carried out to yield
curves of root-mean-square velocity components, temperature,
pressure, and noise tn decibels against Mach number for the
Mach number range of 1 to « ; both isotropic and strongly axisym-
metric (lateral perturbationsflongitudingl perturbations = 36/1)
initial turbulence have been treated. It was found that in
either case initial turbulence with a longitudinal component
of 0.1 percent of stream velocity would yield a noise pressure
level of about 120 decibels; the value of lateral component had
relatively little effect.

The present results are applicable quaniitatively to flow in
ducts or channels containing normal shocks; they are presumed
to provide a qualitative quide to the generation of noise by the
shock structure in a supersonic free jet.

INTRODUCTION

The propulsion of aircraft by means of jets gives rise to
intonse noise as an unfortunate byproduct. Programs of
noise abatement are under way, but at present they are
largely empirical: even with the general guide provided
by Lighthill’'s theory (ref. 1), the understanding of the
mechanisms of noise generation is far from complete. It
appears from both experimentel and theoretical evidencs,
however, that the interaction of turbulence with shock waves
must often play a part. On the theoretical side, the genera-
tion of noise by such interaction is pointed out independently
in references 2 and 3. The shock-turbulence interaction
was found to produce, in addition to the noise, an entropy
““gpottiness’ aft of the shock (manifested as a temperature
and density spottiness at constant pressure, ref. 2).

Turbulence, entropy spottiness, and mnoise (pressure
fluctuations) are examples of the three fundamental modes
of small disturbance perturbation of a gas (refs. 4 and 5):
more specifically, the categories are vorticity mode, entropy
mode, and sound mode. The vorticity mode (turbulence)
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and the entropy mode are essentially ‘“frozen’” patterns
(to use Kovésznay’s term) that are convected by the main
flow; the sound mode, however, consists of waves that pro-
pagate in various directions in addition to being convected.

To the first order in the perturbation velocity, there is no
tendency for the modes to interact or for an isolated mode
to spontaneously generate one of the other modes (ref. 5).
(The weak transference of turbulence into noise described
by the Lighthill theory is a higher-order effect (ref. 1).)
The presence of 2 shock wave, however, provides a mecha-
pism for & very strong transference: thus, when any one of
the three modes—turbulence, entropy spottiness, or noise—
encounters & shock, the interaction will give rise to all three
modes, in comparable strength, downstream of the shock
(refs. 2, 4, and 6).

The first of these cases, shock-turbulence interaction, has
been investigated at the NACA Lewis laboratory as an
outgrowth of reference 2 and is reported herein. The anal-
ysis of the earlier paper was concerned with a single spec-
trum wave of a turbulent field and was primarily a study
in gas dynamics. The present paper reformulates the re-
sults and incorporates them in a spectral apalysis; from the
analysis come the quantitative effects of the interaction of a
convected homogeneous field of turbulence with an extended
plane shock front. (Some results of this work are reported
in abbreviated form in refs. 7 and 8.) The perturbation
velocity, pressure, temperature, and density distributions
behind the shock are described in terms of formulas for
their spectra, correlations, and mean-square values; these
are separated into the respective contributions of turbulence,
entropy spottiness, and noise.

Numerical calculations are presented for the root-mean-
square values of the pressure (noise) and components of the
temperature and velocity perturbations for the Mach num-
ber range of 1 to «; one set of calculations refers to iso-
tropic initial surbulence, another set to strongly axisymmetric
initial turbulence (lateral perturbations/longitudinal pertur-
bations = 36/1). The noise pressure level is also presented
on an acoustic scale for several levels of initial turbulence.

SHOCK INTERACTION OF SINGLE SHEAR WAVE

QUALITATIVE DISCUSSION

According to the Fourier integral theorem, a turbulent
velocity field can be represented as a superposition or spec-
trum of elementary waves. A single spectrum wave can be
interpreted physically as a plane sinusoidal wave of shear-

1 Bupersedes NACA TN 3256, “Shock-Turbulencs Interaction and the Generatlon of Noise,” by H. 8. Ribner, 1954.
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ing motion (e. g., ref. 9); a portion of such a wave is shown
in perspective in sketch (2):

v

\

(a) Wave of shearing motion.

A similar wave encountering a shock is shown schematically
in sketch (b),

Shock
(b) Convection of shear wave through shock: original unsteady-flow
problem.

the wave and the shock being viewed ‘“edge-on.” The
wave-shock interaction is analyzed in reference 2, and
what follows first is & brief physical account of the main
results. The wave is supposed to be convected downstream
by the mainstream with velocity U, so that it passes through
the shock. The passage is evidently an unsteady process,
since the intercepts of the inclined lines—the planes of
constant phase or wave fronts—move downward along the
shock; it can be shown that a sinusoidal disturbance ripple
will move along the shock with the same speed V.

The unsteady-flow problem may be treated directly (ref.
4), or it may be converted to an equivalent steady-flow
problem by superposing an upward velocity V (ref. 2).
The conversion is illustrated in sketch (c):

Shear
and
entropy

She& %und
Shock

(c) Transformation to steady-flow problem by superposition of
velocity V.
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The cross velocity V therein has been chosen so that the
resultant stream velocity is parallel to the wave fronts in
the shear wave; the observer then sees what appears to be
a steady sinusoidal shear flow passing through an oblique
shock. This may be called the equivalent oblique shock.
(Addition of the upward velocity V is, of course, equivalent
to transforming to & moving frame of reference.)

Downstream of the shock, the resultant stream flow is
deflected according to the laws for oblique shocks; the stream-
lines are the upper lines in the sketch. The vorticity of the
initial shear wave is convected along these streamlines
together with the additional vorticity generated by the
shock. The net result is & refracted, amplified shear wave
alined with these streamlines. The angle of refraction is
just the angle of flow deflection of the oblique shock.

Superposed on the refracted shear wave is an entropy
wave of the same inclination and wave length. This wavo
arises from the convection of entropy perturbations gener-
ated at the shock, precisely as the shear wave results from
the convection of vorticity. The entropy wave is manifested
physically as a spatial variation of temperature and density
at constant pressure, by virtue of the equation of state.

The nonuniform velocity in the shear flow results in a
nonuniform pressure jump across the shock. The ultimate
effect is that the shock front develops ripples, modifying
the pressure variations, and the resultant pressure variations
propagate downstream as s plane sinusoidal wave (lower
lines in sketch (c)).

The character of this wave depends on whether the
resultant velocity W behind the equivalent oblique shock is
subsonic or supersonic; this in turn depends on the initial
wave inclination through V. When W is supersonic, the
pressure wave is & plane sinusoidal sound wave; it appesrs
28 a stationary Mach wave pattern in the steady-flow refor-
ence frame. When W is subsonic, it may be shown that the
pressure wave, while still plane, is not a simple sound wave,
but rather attenuates exponentially with distance down-
stream of the shock; the resultant disturbance velocity is
not normal to the wave front, and the wave propagates
relative to the surrounding fluid at less than sonic speed.

QUANTITATIVE DISCUSSION

Elementary wave.—Thus far the waves have been dis-
cussed only qualitatively. Elementary spectrum waves of
this sort may be expressed quantitatively in the form

doa=dZ,e%< @)

(All symbols are defined in appendix A.) The wave-number
vector k is directed normal to the wave fronts and its magni-
tude equals 27/wave length. The wave amplitude is given
by the complex quantity dZ.. When « stands for tempera-
ture, pressure, density, or entropy, these are simple scalar
waves. When « stands for the components u, v, w of the
velocity, these are vector waves; two cases may then bo
distinguished: the waves are either irrotational and com-
pressible (sound waves) or rotational and incompressible
(vorticity waves). (See, e. g., ref. 10.) In the first case
the irrotationality condition curl a=0 requires that the
velocity @ and wave vector k be parallel (u, », w proportional
to ky, ks, ks, respectively); the sound waves are thus longi-



a SHOCK-TURBULENCE INTERACTION AND THE GENERATION OF NOISE

tudinal. In the second case the incompressibility condition
div @=0 requires that the velocity « and the wave vector &
be perpendicular; that is,

k1u+lqv+k3w=0 (2)

Thus, the vorticity waves are transverse and have the
character of a shearing motion (see sketch (a)); in the dis-
cussion they have been referred to as ‘‘shear waves.”

Geometric reexamination of prior results.—The shock-
interaction process for a single shear wave is given quanti-
tatively in reference 2, but the results are formulated in two
dimensions, It will be necessary to reexamine the problem
geometrically in order that the results may be reexpressed
in three dimensions.

A perspective view of the initial shear wave in the new
21, 23, Zy-coordinate system is shown in figure 1. The portion
of the shear wave shown is on the downstream side of the
shock front, which is identified with the ay, z;-plane. A plane
passed, through the z;-axis perpendicular to the wave fronts
cuts the shock in the line Or. At a given instant of time
this z;, »-plane corresponds precisely to what is called the
z, y-plane in reference 2. The angle ¢ of the z;, 7-plane with
the horizontal is then the third coordinate in & system of
cylindrical coordinates.

In reference 2 the time was eliminated from the equations
by employing a frame of reference moving with a velocity V'
downward along the shock front, the so-called steady-flow
frame of reference. In the present paper all results refer
to & definite instant of time, {=0. Thus, motion of the
roference frame plays no part, snd the results of the earlier
paper carry over to the present coordinate system on simply

X3

Shock plane

L1

I'1gure 1.—Perspective view of shear wave in relation to reference
frame.
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Figurs 2.—Projective view of shear wave in relation to reference frame.

2

replacing z,y by a,r, respectively. The results of the
transformation are given in the following sections with the
disturbances reexpressed in nondimensional form according
to the scheme
u, v, w=components of velocity perturbation/critical speed
of sound a*
p=pressure perturbation/mean static pressure
p=density perturbation/mean density
7=temperature perturbation/mean temperature
In addition, there are other minor respects in which the
notation has been modified from that of reference 2; for
example, the waves are expressed in complex form.
Initial shear wave (~ initial turbulence).—At time ¢=0,
the velocity field of the initial shear wave is, in cylindrical
coordinates,

du=dZ ez
dv,=dZ,e*= 3)
dv,=dZ e%=

where du is parallel to 2, Jlongitudinal direction), dv,is parallel
to 7, and dv, is perpendicular to » and #;, in the direction of
increasing ¢ (see figs. 1 and 2). The wave-number vec-
tor k£ lies in the 2y, r-plane, making an angle 8 with the r-
aXIs.

Refracted shear-entropy wave (~final turbulence and
entropy spottiness).—The velocity field of the refracted
shear wave (fig. 3) is

dw'=dZile®s  JZ\=X dZ,
d=dZle®s  dZ!=Y dZ, @
do,=dZe®s  dZ,=dZ,

at time =0, where £’ is the new wave-number vector, making
an angle ¢’ with the r-axis. The radial components of %’
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and k are equal (k/=k,), and the further dependence of
k'’ on k is expressed through the dependence of 6’ on 6.
Similerly, the complex amplification factors X and Y de-
pend on k in terms of 6. Expressions for X, ¥, and ¢’ are
given in appendix A.

The perturbation pressure dp’ will be zero because this is
again a shear wave, free of accelerations. The temperature
perturbation associated with the companion entropy wave
(fig. 3) will be

di'=dZe*: dZ,=TdZ, )
With p’=0 (to the first order), the dimensionless density
perturbation p’ will be just the negative of the dimensionless
temperature perturbation 7/, according to the linearized
equation of state. The form of the function I is given in
appendix A.

Aside from the change in wave inclination, the description
of the refracted shear-entropy wave in terms of the initial
shear wave depends entirely on the amplification factors X
and Y and the function 7. Such functions play a role
similar to the “transfer functions” of the theory of servo-
mechanisms (ref. 11), and it appears appropriate to carry
the name over to the present field.

Generated sound wave (~ noise field).—The shear-entropy
wave downstream of the shock is accompanied by a plane
irrotational pressure wave (sound wave) of different in-
clination (see fig. 3). For small inclinations 6 of the initial
shear wave, this pressure wave attenuates exponentially with
distance from the shock; for inclinations greater than a
certain critical value 6., (see appendix A), the pressure wave
is unattenuated. The critical wave inclination 6., corre-
sponds to the attainment of sonic speed in the mean flow
behind the “equivalent oblique shock’ referred to in the
qualitative discussion.

The velocity field can be represented in the form

du’=dZ e = dZI=xdZ,
dol=dZe" = dZ]=1dZ, ()
dvg=dZ e = dZ;=0

where k'’ is the wave-number vector, making an angle 6’/
with the r-axis; again the radial component matches that of
k; namely, k =k, The sound-wave angle 6’/ and the
transfer functions x and T are specified functions of the
shear-wave angle 6; moreover, for 0<6<f,, x and T are
functions of z;, showing an exponential decay to zero as
Z—> o,
The pressure perturbation may be written

dp"=dZ,e%¥ = dZ,=PdZ, @)
where P=_P(z;) is a transfer function defined in appendix A;
like x and T, P decays exponentially with z for 0<6<4,,.
The corresponding density and temperature perturbations
are proportional to p’/; they may be obtained from the
isentropic property of the sound wave as p’’=p’’/y and
'=p" (y—1)/v.
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Transformation to Cartesian coordinates.—Expressions
for the velocity field in Cartesian coordinates will be needed.
The transformation from cylindrical coordinates is effected
by means of the relations

dZ,=dZ, cos ¢p—dZ, sin ¢ }
dZw=dZ, sin o+dZ, cos ¢
where primes (~ refracted shear wave) or double primes

(~ sound wave) may be inserted throughout as needed.
The transformation results in

®

gﬂlggl{da=dZae‘5‘5, where a=u, v, w} ©

 da’=dZ,e%"%, where the values of dZ.
for a=u, v, w are, respectively,

Ehdj¢a=xaa

Shear L (10)
dZ,=Y dZ, cos ¢—dZ, sin ¢

| dZ,=Y dZ, sin p-+dZ, cos ¢ )

" da”"=dZ,e* %, where the values of dZﬂ
for a=u, v, w are, respectively,

Sound < dZi=xdZ,
dZi=1dZ, cos ¢

- (11)

| dZ2=1dZ, sin ¢ J
SPECTRAL ANALYSIS OF RANDOM FIELDS

The foregoing relations will be fitted later into a spectral
analysis of the fields of turbulence and noise. Appropriate
analytical techniques can be found in the spectral theory
of random funections; suitable developments of this sort are
given by, for example, Moyal (ref. 10) and Batchelor (ref.
12) for spatially homogeneous fields. The first part of the
present section will be devoted to an interpretation (with
some liberties) of relevant parts of the two papers; the latter
part will be devoted to developments for inhomogeneous
fields and for correlations of a two-dimensional field with
a three-dimensional field.

Figurs 3.—Interaction of shear wave with shock: view in z;, r-plane,
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HOMOGENEOUS FIELDS

Amplitude spectra.—Consider a three-dimensional field
of small disturbance (e. g., turbulence or noise) of unlimited
extent. Let this field be homogeneous in the sense that the
statistical properties do not vary from point to point. The
instantaneous spatial distribution of any physical quantity «
can then be represented mathematically by a Fourier integral
in the Stieltjes form (refs. 10 and 12)

a@=f %247, (k) (12)

where the triple integral goes from — « to « in each com-
ponent of k=(k,, ks, k).
If equation (12) is written in the form

a=| de(k)

then, by comparison with equation (1), da can be identified
with what has been called an elementary spectrum wave.
The Fourier integral is thus to be interpreted as a superpo-
sition of infinitely many of such plane waves. In the inte-
gral the components of k take on all values; it follows from
the significance of k as a wave-number vector that all wave
inclinations and wave lengths appear. An aggregate of vor-
ticity waves with a suitable distribution of amplitudes among
the various wave lengths and inclinations can represent s
turbulent field (vef. 13). Similarly, an aggregate of sound
waves suitably distributed can represent a random noise
field (ref. 10). Finally, an aggregate of the scalar entropy
waves can represent a random field of entropy spottiness.
A combination of these three basic types of disturbance—
entropy spottiness, turbulence, and noise—constitutes the
most general random small-disturbance field that may exist
in o gas (refs. 4 and 5).

Correlations,—Let « be measured at some point P and 8
at some point P a vector distance £ from P; then the space
average of the product af as Poand P vary but their vector
separation £ is held fixed may be defined as the space-average
correlation af(£). Alternatively, the disturbance field may
be considered to be just one of a large numbaer, or ensemble,
of statistically similar fields (e. g., the flow fields of a great
many ‘“identical” wind tunnelsA operated simultaneously);
tho average of «f, with P and P fixed, over all members of
the group, is the ensemble-average correlation. The equa-
tions that follow, from the theory of random functions, refer
solely to ensemble averages, but space averages are desired
in practical applications. The ergodic hypothesis of proba-
bility theory equates the space average to the ensemble
average provided that, at any instant, the disturbance fields
« and B are stationary random functions of position; that is,
the disturbance fields are spatially homogeneous.

In what follows, the term ‘“cross-correlation” will be ap-
plied for azB, the term ‘self-correlation,” or simply
“correlation,” for a=g.

Correlation and power spectra.—The cross-correlation
af (£) (like @ or B, indvidually: see eq. (12)) may be ex-
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pressed by means of the Fourier integral as a spectrum of
plane sine waves:

aB(O—[ etlapldl (13)

where [ef] is & function of k, and dk is an abbreviation for
dleydksdks. The differential e*%[af]dk may be regarded as
the contribution to the correlation made by spectrum com-
ponents with wave number between k and k-+dk. The
function [ef] is called the “spectral density’”’ when a=g, the
“cross-spectral density’”” when a8 (ref. 11). The array of
nine spectral densities signified by [«f] when « and B are
limited to mean u, v, or w is the ‘“‘spectral tensor” of the
velocity field and is commonly written as Ty of ;. (The
corresponding array of the nine veloeity correlations af (£)
is the “correlation tensor,” commonly written as Ry(§).)

Equation (13) includes as a special case the self-correlation
or mean-square relation

?=f[aa] dk,  where £=0 (14)

If « were a velotity component (say u), then o would be
twice the space-average kinetic energy per unit mass associ-
ated with u. The spectral density [ae] is in this case an
energy density (per unit mass, per unit wave number). For
similar reasons, where spectra of the kind defined by equation
(14) have ocecurred in physics (e. g., in the harmonic analysis
of radio noise), they have generally been called energy,
intensity, or power spectra.

Correlation spectrum in terms of amplitude spectra.—
The rather analogous forms of equations (12) and (13) are
of interest. HEquation (12) expresses the spectrum of the
amplitude of the fluctuating quantity «; this may be termed
an amplitude spectrum. Equation (13) expresses the
spectrum of the correlation of « with g; this has been termed
a correlation spectrum. The complex magnitude dZ.(k) of
the amplitude spectrum fluctuates in an apparently random
manner as k is varied (refs. 10 and 12). The magnitude
[e:Bldk of the correlation spectrum, on the other hand, varies
smoothly with %, since the correlation is & smoothed or
averaged quantity (ref. 12). The amplitude spectrum gives
no direct information concerning averaged (i. e., statistical)
properties of the disturbance field, whereas the correlation
spectrum leads directly to expressions for correlations and
mean-square values (see eqs. (3) and (4)). One-dimensional
spectra and scales of turbulence can also be determined
(e. g., ref. 14).

It would be desirable to formulate the shock-turbulence
interaction problem directly in terms of correlation spectra,
but formidable difficulties stand in the way. It has been
simpler to start with the shock interaction of a single shear
wave, which deals with amplitude spectra, and to infer from
this the changes in the correlation spectra. The whole
procedure depends on the following relation (refs. 10 and 12)
which connects the two kinds of spectra, namely,

[af] dk=dZ¥(k)dZp(k) (15)
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where dZ(k) is associated with the wave-number range
between k and k-}-dk, and the bar represents the ensemble
average. This relation is fundamental to the spectrum
analysis of the present paper. Its significance is this: the
single-wave analysis (summarized in an earlier section) pro-
vided the change in amplitude of an individual spectrum
wave in the form dZ.—dZ., say, and similarly, dZs—dZ;;
equation (15) provides the means for determining therefrom
the corresponding change in the spectral density: [«f]->[a’8].

INHOMOGENEOUS FIELDS

The spectral representation of a spatially homogeneous
rendom field is given by equation (12):

«@= #dZ,®)

A corresponding possible representation of an inhomogeneous
field is

(@)= f =47, (k,2) (16)

where dZ., now depends on position; the gound field behind
the shock is of this character. The following spectral
analysis of such inhomogeneous fields is a development of
Moyeal’s treatment of homogeneous fields (ref. 10).

Let «(z) and $(2") be inhomogeneous fields

a@=fe-*s-fdz: ®2) )

B@)= [ e =dz,k o) a8

where equation (17) is an alternate form of equation (16).
The correlation of « and 8 for fixed positions z and z’, re-
spectively, can be formed by taking the ensemble average
of their product:

«®BE)= f f FCEEDaZ (e, DAZH,E)  (19)

The operations of integration and averaging commute, so the
averaging bar may be regarded as placed over the dZ’s alone
on the right side.

Equation (19) could immediately be simplified if the fields
a(z) and B(z’) were homogeneous; in that case the important
relation

dZE® dZs @) =I[apl dkdk’ sk’ —F) (20)
where
8(k'—B=0 for k' =k
= o for k'=k
and

| s—par—

would hold (ref. 10), according to the spectral theory of
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random functions. The simplification can still be achieved
by replacing the inhomogeneous fields by ‘“equivalent’
homogeneous fields that match, respectively, at the points
% and 2’. This is accomplished by freezing dZi(k,z) in
equation (17) at the value dZ%(k,z) while allowing z to vary
in the exponential, and correspondingly freezing dZ; in
equation (18).

‘When applied to the so-defined equivalent homogeneous
fields, equation (20) reads

dZ2 (k%) dZa(k 2"y =B Al 5k’ — ) @1)

where the ~ over [«f] signifies the functional dependence on

Z and 2’. Upon substitution into equation (19) and integra-
A

tion over k' there results, with £ =2/—2,

«DBGE)— f et [of] i 22)

The spectral density [«f] can be evaluated by integrating
equation (21) over ¥':

(ol dk=dZ% (, ) dZs (&, 2) (23)
where the integral property of the s-function,
[~ rarse—par=r®

has been used, with f(¢’) an arbitrary function.

Equations (22) and (23) for inhomogeneous fields are of the
same form as their counterparts, equations (13) and (15),
respectively, for homogeneous fields. In the homogeneous
case the dZ’s are functions of position, and equation (23)
mplies a corresponding dependence of [#B] on position.
Moreover, the correlation «(Z) 8(2) depends on % and 2’
iseparately as well as on their separation £.

CORRELATION OF TWO-DIMENSIONAL FIELD WITH THREE-
DIMENSIONAL FIELD

The local perturbations of the shock face from thoe mean
(x5, 75) plane constitute a homogeneous two-dimensiona
field of the general form

81, 25, 7= f HATED 0 1) (24)

where z, has been fixed at the value Z{. It may be desired
to correlate such a field locally with a three-dimensional field
(e. g., the turbulent velocity field). To this end, equation
(24) is rewritten in the form

p)= [ s [ ams, 19 |

Now, if 2, in e~*8 is fixed at the value Z;, 8 will be general-
ized to a three-dimensional field (elementary wave number
k’) that matches the original two-dimensional field in its
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plane of definition 2;=%,. This “equivalent’’ field may be
written

pe)= [ o= az)
where (25)
dZs(k)=€""3 AWk}, k)

Equation (25) is of the form of a three-dimensional homo-
geneous field and may be used in place of (24) in equations
(13) and (15) to provide the correlation of 8 with any three-
dimensional homogeneous field in the common plane 2,=%;.

SHOCK INTERACTION OF SPECTRUM OF SHEAR WAVES
(TURBULENCE)

The interaction of a single shear wave with a shock has
been discussed in detail. With this as the basis, the statistical
behavior of a spectrum of shear waves representing turbu-
lence will now be derived; the procedure will make use of
the spectral-analysis relations of the last section. The
problem is formulated as follows: given the spectra (and
hence correlations and mean-square values) associated with
the turbulence convected into the shock, to calculate there-
from the spectra, correlations, and mean-square values
associated with the turbulence, entropy spottiness, and
noise in the flow downstream of the shock.

DIAGONAL TERMS OF VELOCITY SPECTRUM TENSOR

The respective spectrum tensors for the turbulence and
noise downstream of the shock each consist of nine elements;
of these the three diagonal terms are most important since
they lead to the mean squares of the velocity components.
The relatively simple derivation of the first diagonal term
and the sum of the second and third will be carried out in
the prosent section. The derivation of the complete tensor
is carried out in appendix B by a more formal procedure.

Turbulence fleld—The shock interaction effects have
been expressed in terms of relations between wave amplitudes
on opposite sides of the shock (egs. (9) and (10)). Cor-
responding relations between spectral densities (elements)
on the two sides can be obtained by use of equation (15).
Some preliminary manipulation is required; thus multiply
both sides of equations (10) by their complex conjugates,
and add the last two; there results

dZXdZ,=|X"dZ3dZ, (26)
dZPFdZ+-dZ, 2= Y [dZ,dZF+-dZ3dZ, 27
But by geometry (fig. 2),
dZ,=dZ, tan 6
AZ¥=dZ* tan ¢
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and also, by the coordinate transformation (8),
dZYdZ,+dZ23dZ ,=dZtdZ,+d 257,

Thus, equation (27) becomes

dZXZH-dZ 22, =Y |*—1) tan® 0 dZ¥Z,+dZ¥dZ,}-dZ%dZ,,

(28)
Application of equation (15) yields

[w'v'] dk'=| X" [uu] dk
{01+ w'w]}d'=(Y*—1) tan’ § [wu] dk+-{ [vo]+[ww] } dk
' (29)

These are the desired expressions relating diagonal elements
of the spectrum tensors of the turbulence on opposite sides
of the shock.

Noise fleld.—If operations similar to those of the last
gection are applied to equations (11), there results

[w'"u"dk" =|x|* [uu]dk 5
0
{0+ [w'"w'"]} A" =] [* tan?6 fuu] dk ©0

These equations relate the diagonal elements of the spectrum
tensor of the noise generated behind the shock to the longi-
tudinal spectral density of the initial turbulence ahead of
the shock.?

MEAN-SQUARE YELOCITY COMPONENTS

Turbulence field.—The mean-square velocity components
follow directly from integration of the spectral density (see
eq. (14)). Integration of both sides of equations (29) yields

&= [ | XPeua db
31
B f (Y [*—1) tan®6fuu) dk

Thus, the mean-square velocity components behind the
shock (primed values) are given in terms of those ahead of
the shock, the single-wave transfer functions X and Y, and
the longitudinal spectral density [uu] of the initial turbulence.
Note that X and Y are functions of % in terms of 8 (see
appendix A).

Noise fleld.—Similarly, integration of equations (30)
yields the mean-square velocity components in the noise
field:

77— [ x|
(32)

7w "=f|T|’ tan? oluu] dk

Here again, x and T are functions of % in terms of 4.

# Direct expressions for the speotra downstream of the shock may be desired, froo of the unequal volume eloments dk, d&’, or dk”/. ‘This may be effected in eq. (20) by dividing both sides
by di’; then (since df is ghorthand for dkidksdhs, and simflarly for dk) the ratio di/dk’ may be interpreted as the Jacobtan (say J7) for the transformation from £ to . Upon evaluation,

sl
m
8imflarly, In eq. (30) divide by d&” and Interpret dk/dk'" as the Jacoblan (say J*) for the transformation from k to }’. Upon ovaluation
oot & Y

J

“mcoste o6
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MEAN-SQUARE PRESSURE

The first-order pressure field is associated solely with the
noise field: the pressure field associated with the turbulence
is of the second order in velocity and may be neglected in
comparison® The spectral density of the noise pressure
can be related to the spectral density of the longitudinal
velocity in the initial turbulence; the relation is obtained by
multiplying both sides of the second of equations (7) by
their complex conjugates, averaging, and applying equation
(15) to each side:

[p"'p" 1k =|P|* [uuld @3

The integration of both sides of equation (83) yields the
mean-square pressure in the noise field as

77— 1Pl 9

MEAN-SQUARE TEMPERATURE

The temperature perturbations in the noise field, because
of the isentropic relation, are equal to (y—1)/y times the
pressure perturbations; thus, the relations corresponding to
equations (33) and (34) may be written down at once.

The temperature perturbations associated with the entropy
spottiness behind the shock require a separate analysis.
The spectral density of the temperature perturbations can
be evaluated by operating on equation (5) in the now-
familiar manner (see remarks preceding eq. (33)); the result
is

[+ 1dE'=|T|*luu] dk (35

The integral relation obtained from equation (35) is

7 TP (36)
This equation evaluates, for the region behind the shock,
that part of the mean-square temperature spottiness asso-
ciated with the entropy spottiness.

MEAN-SQUARE DENSITY

It is unnecessary to write down special expressions for the
density field: the respective contributions of entropy spotti-
ness and noise to the density perturbations are related to
the corresponding temperature and pressure perturbations
by p’=—+" and p’’/v, according to the small-perturbation
form of the equation of state.

CORRELATIONS NOT JOINTLY INVOLVING TURBULENCE AND NOISE

Attempts at simplification.—If the spectral density
[«f](k) is known, the corresponding two-point correlation
af(%) can, in principle, be obtained by means of equation

(13). In this fashion, for example, the longitudinal velocity
correlation in the turbulence behind the shock may be
expressed, with use of equation (29), as

u'_u'@=f |X |2 wr] ¢ de 37)

or

~[ 1w ar (38)

(See footnote 2, p. 7, for significance of J’.)

Either of the forms (37) or (38) may prove awkward
because of the admixture of k and %’ in the integrand (e. g.,
[uu] 18 ordinarily most simply expressed as a function of £).
However, it is possible to find a fixed vector £ that satisfies
the relation %’-£’=k-£; this gives the more convenient
relation

T )= | X[ ek (39)
where §=m¢,, &=4§, &=¢f. In all the self- or cross-
correlations involving properties of the turbulence and
entropy spottiness behind the shock, whether they be
velocity components, temperature, density, or entropy, the
transformation %'.£'=k-f can be made to simplify the
exponential.

The physical interpretation of the relation between £ and
£’ is this: if two fluid particles upstream of the shock are a
vector distance £ apart, after convection through the shock
they will be a vector distance £’ apart. Put another way, a
“box’ of turbulent fluid of edges &, £, & will be compressed
on passing through the shock and will emerge downstream as
a shorter box of edges &, &, &. Therefore, equation (39) in
effect expresses correlations in the space downstream of the
shock in terms of equivalent correlations in a stretched space
upstream of the shock.

The analog of equation (37) for the correlations of proper-
ties of the noise field involves f'/-£’/ in the exponential,
rather than %’-£’. Here no great simplification appears to
be possible in general:* there exists no fized vector £ that
satisfies the relation E'/-£’/=E-£. This lack reflects the
nature of the transformation from %k to k'/: the respective
components of the two vectors are not in fixed proportions,
but instead vary with the inclination of k. The particular
coordinate compression £—£’ that works for the turbulent
field (it expresses the change in dimensions of a fluid “box”
convected through the shock) will not work for the noise
field. An exception occurs when £’/ is chosen parallel to the
shock plane (radial direction, #,=0). Then k".£"'=Fk. ¢,
and since k. =k, it follows that for this case k’/-£"/ =}-£/".

The integral for a particular correlation simplifies con-
siderably when £ (or £/, or £’’) is taken in the direction of one

3 The local pressure fleld assoclated with turbulence, although weak by aerodynamic standards, may be strong by acoustic standards. If the turbulence (e. g., In 8 boundary layer) s
convected past a stationary microphone, a strong responss can be observed; the phenomeneon is called “‘psuedo-sound.” The noise sensatfon produced by wind blowing past tho enrs i3

presumably a similar effect assoclated with turbulent separation of the flow.
" 4 A partial aimplification is Ly b (B —k0E,
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of the coordinate axes, say z;, In the former case, k-£
becomes k£; and the exponential can be replaced by cos
kit, since the imaginary sine component will integrate out.
Similarly e%’-¢'’ can be replaced by cos k;’¢”’.

Cross-correlations.—The phase angles of the transfer
functions must be considered in formulating cross-correlations.
For example, the correlation of local temperature with
longitudinal velocity in the entropy and turbulence fields
behind the shock is readily obtained as

0= [ (T6m)* (X lun ik

- f TXe @0 [u] dle

The integrand, except for the exponential, is even in the
wave inclination 8; the phase angles 5, and 8, (in the notation
used) are odd in @ (both properties can be inferred from the
symmetry of the wave-refraction process with respect to 6).
Accordingly, the imaginary sine term in the exponential will
integrate out, and

FHO= [ TX cos (s s)fualdl “0)

The corresponding relations for other cross-correlations can
be written down by analogy.

CORRELATIONS BETWEEN TURBULENCE AND NOISE

Cross-correlations between the turbulence and noise fields
require & special treatment, partly because of the inhomo-
gencity of the noise field, and partly because of the non-
parallelism of the physically associated waves. In what
follows, an expression for the correlation of noise pressure
with longitudinal turbulent velocity will be derived. From
this the qualitative variation of the correlation with distance
downstream of the shock will be inferred.

The refracted shear wave (~k’) and pressure wave (~k'’)
associated in an elementary interaction process have different
inclinations (fig. 3). As a consequence, the formal applica-
tion of the relations given in the section SPECTRAL
ANALYSIS OF RANDOM FIELDS leads to difficulty: the
spectral density of any correlation appears to vanish accord-
ing to equation (21). Actually, the formulas are inapplica-
ble to correlations involving mutually inclined waves; this
will be brought out clearly in the following derivation of the
applicable formulas. For simplicity the derivation will be
limited to the correlation of turbulent longitudinal velocity
u’ at point ¢’ with noise pressure p’/ at point z'/; extensions
to other cases are straightforward. The derivation will first
be carried out as though the noise field were homogeneous
(no variation of transfer function P with gz), and then will
be adapted to take account of the actual inhomogeneity.

The respective Fourier integrals may be written

w @)= [or =iz, @)= [ =azaw)
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p@)= [ ot raz,
The correlation may be formed as the ensemble average of
the product u'p’’:

V@)= [ [ o€ roazpz,l) @

where the bar has been taken inside the integral, since the
operations of averaging and integration commute. Equation
(7) and the first of equations (4) may be used to simplify
the right side:

dzz@odz,cé”)ﬂ*@z’@dzz@dzu@ 42)

where L::\” bears the same relation to £ as k'’ does to k. By
virtue of equation (20), equation (42) reduces further to

AZ4E)Z, (k") =X ©PBuulsb— bk b
if the fields are homogeneous. Substitution of this relation
into equation (41) and integration over % result in

T @)= [ 652 X@PEualdl

gince the s-function eliminates all values of l_: but £ and

similarly all values of £’/ but £’/. Finally, the equation may
be generalized to apply to the actual inhomogeneous pressure
field, according to equation (23) and the discussion preceding
it, by ertmg P (k) as P (k, z,) and using the value appro-
priate to :c

Equation (43) is the general relation for the two-point
correlation of longitudinal turbulent velocity ' with noise
pressure p’/. The striking feature is the difference of the
exponential term from those in equations (13) and (22); this
constitutes an a posteriori demonstration of the mapphca—
bility of those equations.®

If the turbulent velocity and noise pressure are corfela.ted
locally (z’’=2’), the expression simplifies to

(43)

T )= [ £H O X WP 5w dk (44)

since ky =k;, ky'=k;. Directly at the shock, 2;=0 and the
right side simplifies further; the integration can readily be
carried out for isotropic turbulence, and a nonvanishing
correlation will be obtained. Behind the shock (zj>0),
the exponential oscillates sinusoidally; for a given wave
inclination the behavior is essentially like cos Ckz{, where
Cis a constant. For z{ very small, the cosine is near unity
over the significant range of k (the range for which [uu]>>0).
Hence the correlation is only slightly diminished at small
distances behind the shock. At somewhat greater distances
the oscillatory nature of the cosine begins to be felt before
[uag] dies out, and the correlation falls off noticeably. Finally,
at very large distances, cos Ckz; oscillates over a great

# However, ed. (43) Is cquivalent to that which would result from eq. (13) or (22) upoa replacing the pressure wave by a locally equivalent shear wave parallel to the actnal shear wave, as

discussed In ref. 8
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many periods as k& covers its important range, and the plus
and minus contributions to the integral cancel each other;
thus at these large distances behind the shock the noise-
turbulence correlation falls to zero.

INTERACTION OF TURBULENCE WITH AN OBLIQUE SHOCK

All the foregoing analysis may be applied to an oblique
shock by treating the latter as & normal shock with a super-
posed cross-velocity which is to be ignored. The coordinate
system should be oriented so that the z,-axis is normal to
the oblique-shock front (on the downstream side), and the
x5~ and z;-axes lie in the shock front with the z;-axis in the
plane of the stream-velocity vector and the z;-axis. The
component of the stream velocity in the z;-direction is the
U velocity of the equivalent normal shock. From here on
the analysis for the normal-shock case may be applied.

Ordinarily the turbulence spectrum tensor will be defined
(as &}, say) in a system zj, z;, x; with the zj-axis alined
with stream direction, and it will be necessary to transform
3}, to the new system i, s, z3. If the shock angle of the
oblique shock is ¥, the primed and unprimed axes are related
according to the following scheme:

I ' I l n

ru=sin ¢ T13=0 T3=C0S ¥ (45)
m=0 =l T=0 -

3= —C08 ¥ r1y=0 m=sin ¢

[, R, . §

where ry; is the cosine of the angle between z; and z;. The
transformation is effected by the formula

D ==TtmT’s n@; J (46)

where the repeated indices © and j are to be summed over.
The diagonal terms in the result are relatively simple:

&y, =®1, sin’P+&3, cosP—sin ¥ cos ¥ (15+31)

Boy=P0s CY)) |

Byy=2}; cos’P+dy; sin*y+-sin ¢ cos ¥ (Bist+P3)

The coordinate transformation whereby &;; goes over
into &, may be illustrated most simply by choosing &;; to
correspond to isotropic turbulence; in that case, ®;; has the
general form (e. g., ref. 12)

&= F) (k81— kik)) (48)
Substitution into the first of equations (47) yields

$u=F(k") [(k*+-k:") sin® Y+ (ks> +-k7%) cos®P+2kiks sin ¢ cos ¥]
=F(¥') [k*+(ks sin ¢+ cos ¢)7] (49)

In the preceding equations, kj, %;, k3 are the components
of the wave-number vector in the primed coordinate system;
these are related to the components k,, ks, ks in the unprimed
gystem precisely as zj, 3, z; are related to 1, 73, 25 in equa-
tions (45). As & consequence, equation (49) can be readily
shown to reduce to )

2u=F(k) [E+H] (50)
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The corresponding element of equation (48) is
B =F(") [k’ k7] (51)

Thus the tensor elements &,; and ®;, have the same functional
form, reflecting the isotropic property of invariance under
rotation of coordinates. This particular example of the
coordinate rotation applied to isotropic turbulence is trivial
in that the result could have been written down in advance
without recourse to the transformation equation. Never-
theless, it illustrates the formal application of the trans-
formation and, in addition, serves as a check on the first of
equations (47) in yielding the required invariance.

CALCULATIONS

Numerical calculations have been carried out for flows
in which the turbulence incident on the shock is (1) isotropic
and (2) strongly axisymmetric. An account of the iso-
tropic case follows. The more complicated axisymmetric
case adds little of interest and is therefore left to appendix C.

MEAN-SQUARE VELOCITY COMPONENTS IN TURBULENCE FIELD

The equations that jointly relate the upstream (unprimed)
and downstream (primed) mean squares are

W= f [un] dk (62)
F=fISl’ ‘;‘(’f;&; [wu] d (53)

n2 g’ in? — —
=15 T ) AT (50
The first of these is just equation (14) with a=wu; the last two
result from substituting into equations (31) the expressions
for |XI* and |Y]* from appendix A. So far the equations
have not been specialized to isotropic initial turbulence.

‘When the initial turbulence is isotropic (i. e., has spherical
symmetry), its longitudinal spectral density [uu] has the
general form (e. g., ref. 12, eq. (3.4.12))

[uw]=E*F (k) cos? (65)

where F(k) is an arbitrary function of k. (F(k) will ulti-
mately cancel out in forming ratios.) It is appropriate,
then, to go over to a form of spherical polar coordinates:

kl————k Sin 0
ke=k cos 0 cos ¢ (56)
ky=k cos 0 sin ¢
dk=Fk* cos 6 dk dop d
Equations (52) and (53) may now be written
—_— had r /2
B2 fo KAF (k) dk L "o fo cos8 da (57)

—_— ® r x]2
=2 ﬁ AT (k) dk f " de f 8|2 cost’ cos0ds  (68)
0 0

where the factor of 2 and the limit #/2 result from the sym-
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metry in 6. Division of equation (58) by (57) yields, since

x/3
f cos®0 do=2/3,
0
— 3 /2
u 2/—'u,_’=§f |S)? cos?6’ cos 6 df (59)
o
In a rather similar fashion, equation (36) yields
— —_— /2
i = (1 + f |S|sin?¢’ cos 0 de) (60)
o

where use has been made of the initial isotropy u*=r*=u?,
and final axisymmetry »"2=u".

The transfer function S in equations (59) and (60) is a
measure of the amplification of a single spectral component
in passing through the shock; the associated phase angle is
5, (not relevant here). S, like the other transfer functions, is
a complicated function of § that does not lend itself to ana-
lytic integration. A numerical tabulation of S and §, against
0 is given in tables I (c) to (k) for the respective Mach num-
bers of 1.10, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and «; these
tables were used in conjunction with numerical mtegratlon
to evaluate equations (57) and (58). (S reduces to 1 for all
6 at M=1.)

MEAN-SQUARE TEMPERATURE IN ENTROPY FIELD

The derivation of 73/u? is parallel to that of u3/u?, equa-~

tion (53) being replaced by equation (36). The result is
(analog of eq. (59)):
— 33— /2
7=l f ITJ? cos® 6 db 61)
0

The transfer function 7' and the associated phase angle
5r (not relevant here) are tabulated against 8 in tables I (c)
to (k) for the various Mach numbers. The tabulated values
used in the numerical integration of equation (61).

MEAN-SQUARE PRESSURE IN NOISE FIELD

Because of the similarity of equations (34) and (36), the
mean-gquare pressure can be written down by inspection of
equation (61):

=3 f P} cos® 6 df (62)
The integration has been performed numerically with use
of the definition of P in terms of II (appendix A) and the
values of II against § tabulated in tables I (a) to (i), appro-
priate to = @, Thus, theintegral as evaluated refers to the
asymptotic mean-square pressure far behind the shock.

RESULTS AND DISCUSSION

The results of the celculations of the preceding section are
shown in figure 4 for Mach numbers of 1 to «; this figure
ovaluates the disturbance field—both turbulence and noise—
downstream of a shock when isotropic turbulence is con-
vected into the shock. The velocity perturbations, on a
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root-mean-square basis, are in percent of stream velocity
ahead of the shock (thus the basis is the same on both sides
of the shock); the temperature and pressure perturbations
are in percent of ambient dehind the shock.® The velocity
curves refer solely to the turbulence component, the tem-
perature curve to the entropy component, and the pressure
curve to the noise component of the field behind the shock.

The curves show that isotropic turbulence is somewhat
transformed in passing through a shock, the longitudinal
and lateral components no longer being equal; the selective
effect is, however, mild compared with that of screens or
wind-tunnel contractions (cf., e. g., ref. 14). In addition,
although the incident flow was assumed isothermal and isen-
tropic, the downstream flow possesses an entropy spottiness,
which is a “frozen” convected pattern like the turbulence.
The root-mean-square temperature associated with the en-
tropy spottiness, in percent of ambient, is seen to be not
much less than the root-mean-square velocity of the initial
turbulence, in percent of free stream.

In the theory the entropy spottiness is spatially correlated
with the longitudinal component of the turbulent velocity
everywhere behind the shock. In practice it is to be ex-
pected that the correlation will soon be destroyed by eddy
intermixing as the combined fields are convected down-
stream from the shock; this intermixing, being second order,
is neglected in the linear theory. Directly at the shock, the
noise pressure likewise is correlated with the longitudinal
component of the turbulent velocity. According to the
earlier qualitative examination, however, this correlation
falls off with distance behind the shock, reaching zero far
back.

The peculiar hump in the curve of root-mean-square
noise pressure against Mach number just above M=1 has
commanded special attention. In order to delineate the
shape accurately, additional numerical computations (be-
yond those for the other curves) were made at A/=1.05 and

AM=1.01. These were supplemented by an analytical study
which established that the curve varies like (M —1)'/* as M—1
‘515 L:clerul valoc:l | ;E
-3 [ ~Turbulence
~12 bry ] LT e — .
g} %.u/ Longitudinal velocity I~
2 ' —"Enfropy
E 8 —[ 'L i | spottingss
& [Temperature e |__—oNoise
2 - ke —
A J\r“//&-
S L4+ Fressure
| o
0= z 3 4 5 6
Speed ratio, m
L1 ] 1 1 1 1 1 1 |
iz 15 2 25 3 4 3 Py

Initial Mach number, A/

Fraure 4.—Disturbances produced behind shock by interaction with
isotropic turbulence. Turbulent intensity just before shock, 0.1
percent. Root-mean-square velocity in percent of initial stream
velocity ahead of shock; root-mean-square temperature and pressure
in percent of ambient behind shock.

§ For the clrcumstances of figs. 4 and §, namaly, longltudlml component of initial turbulence equals0.1 percent of stream veloclty, the dimensional quantities plotted are asfollows in terms
of the nond{mensional symbola used In the analysis: longitudinal velocity, percent initial stream velocity, 0.1 '\/u"/u’, Interal veloolty, percent initial stream veloclty, 0.1 V773 v3/uf; temperature,

porcont amblent, 0.1 V fut; pressure, percent ambient, 0.1 1/ mpIar,
41307”—-57——45
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Fiacure 5.—Disturbances produced behind shock by interaction with
. strongly axisymmetrcic turbulence. Longitudinal intensity, 0.1 per-
cent; lateral intensity is 3.61 percent just before shoek. Root-mean-
square velocity in percent of initial stream velocity; root-mean-square
temperature and pressure in percent of ambient.

from above, approaching the limiting value of zero. The

precise asymptotic expression is

0.1 ’mpllﬂ
u:l

where the omitted next-higher-order term is O[(A4—1)*4).

Figure 4 applies when isotropic turbulence flows into the
shock., Figure 5 (prepared from calculations described in
appendix B) applies when strongly axisymmetric turbulence
flows into the shock; the specifications for the turbulence
were taken from theoretical calculations of the modifications
in initielly isotropic turbulence that had passed through
damping screens and & wind-tunnel contraction (ref. 10, four
screens, K=2, M=1.5). The calculated deviation from
isotropy is based on idealized conditions and is probably an
extreme upper limit to what might be encountered in a wind-
tunnel test section. The longitudinal component of the
incident turbulence is the same for both figures—namely,
0.1 percent of free-stream speed—but the lateral component
is 8.61 percent for figure 5 against 0.1 percent (isotropic) for
figure 4. Despite the wide disparity in the lateral compo-
nent, however, comparison of the two figures shows no great
change in the curves. HEvidently, the lateral component of
the turbulence flowing into the shock has little effect, and the

8 1/4 — 1\
01m(> MMM (63)
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Fieure 6.—Noiss generated by shock-turbulence interaction (isotropic
turbulence).
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(b) Stagnation pressure upstream of shock, 1 atmosphere.

Fiaure 6.—Concluded. Noise generated by shock-turbulence inter-
action (isotropic turbulence).

intensity of the remainder of the disturbance field behind the
shock depends almost solely on the longitudinal component,
regardless of the degree of anisotropy. The shock-induced
change in the lateral component itself, however, depends on
the deviation from isotropy, being appreciable for the iso-
tropic case and quite negligible for the extreme axisymmoetric
case.

The noise generated by the shock-turbulence interaction
is measured by the curves of root-mean-square pressure.
This is best indicated by use of an acoustic scale as in figure
6. Here the noise pressure level is plotted in decibels above
the standard reference base of 0.000204 microbar for several
levels of initial isotropic turbulence. According to the pre-
ceding paragraph there would be little difference for strongly
axisymmetric turbulence of the same longitudinal intensities;
the difference between figures 4 and 5 corresponds to no
more than 4 decibels at the Mach numbers (1.5, 3, and )
for which there are comparable data.

The reference static pressure behind the shock is different
for the two parts of figure 6. In figure 6(a) the ambient
pressure behind the shock is constant with Mach number
(1 atm): this situation may be approximated in an exit jet
of an aircraft in flight. In figure 6(b) the stagnation pres-
sure ahead of the shock is constant at 1 atmosphere, so that
the static pressure behind the shock diminishes markediy
with increasing Mach number; this situation is roughly
characteristic of many wind-tunnel flows. It is seen that
even at a longitudinal component of turbulence of 0.01 per-
cent, the noise level is severe; and at 1 percent the noise
Jevel exceeds 130 decibels, which is of the order of the
threshold of pain, over much of the Mach number range.

These remarks all refer to the asymptotic noise level an
“Infinite” distance behind the shock, since the attenuating
part of the pressure waves has been neglected (in practice,
this distance may be taken to be twice the longest significant
wave length). For an initial Mach number of 1.5, the noise
level is predicted to be some 17 decibels greater directly
behind the shock where the attenuation is nil.

The local pressure level (proportional to the energy density)
of the noise field in the region of shock-turbulence interaction
is one aspect of the noise problem. Lighthill (ref. 3) has
investigated another aspect, namely, the flux of acoustic
energy radiated from the interaction region as a result of
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the convection of any specified volume of turbulence through
o weak plane shock segment (1<M<1.3); the turbulence
need not be homogeneous. The two quantities, energy
density and flux of energy, are not simply related unless the
wave pattern is simple, for example, parallel plane waves
or concentric spherical waves.

CONCLUDING REMARKS

The quantitative effects of the interaction of 2 convected
homogeneous field of turbulence with an extended plane
shock have been calculated, including the pressure level of
the noise generated in the process. The assumed conditions
are closely approximated in & supersonic wind tunnel or duct
with a normal shock: the shock, together with its images
in the walls (if the latter are nearly parallel), behaves sub-
stantially like an extended plane shock for the purposes of
the analysis. The approximation is still quite good for plane
oblique shocks for that portion of the incident turbulence
whose eddies are small compared with the tunnel diameter

(spectral wave length < tunnel diam.), and probably fairly
good even without this restriction on eddy sizc.

The propulsive free jet emitted by a turbojet, ram-jet, or
rocket engine is turbulent, but the turbulence is far from
homogeneous. In addition, only local segments of the shock
structure that may occur aft of the nozzle can be considered
gensibly plane. The shock-interaction noise generated by
turbulent eddies smaller than such shock segments can per-
haps be estimated from the curves presented herein. Esti-
mates of this sort refer to the sound pressure level within
the jet and nearby outside; they provide no direct informa-
tion on the sound pressure level far from the jet as a function
of distance and direction, or on the total acoustic power
radiated by the jet.

Lewis Friear ProrursioN LABORATORY
NarioNar Apvisory COMMITTEE FOR AERONATUTICS
CreveLAND, Onlo, June 3, 1954

APPENDIX A
SYMBOLS
The following symbols are used in this report: (In appendix | m ratio of speeds before and after shock,
B some alternate symbols are defined and used in certain me T DM?
parts.) —2+(r—1)A
a function defined in ref. 2 N number of damping screens
a* critical speed of sound P transfer function for sound waves (pressure
b function defined in ref. 2 effect),
Fk) arbitrary function of & P=—%’Y{1ﬁﬂ SB(Z g sec ¢
. 4a?® sin® 6412 cos® © T+1)m—(v—1)
G®) screen-effect function, G(8)= 25?0 & o7 O . pressure perturbation
H(o) contraction-effect function, mean static pressure
o) 1,2 1 R perturbation velocity correlation tensor (special
O= e T o _case of af(f))
J’ Jacobian of transformation from Ty _ direction cosines
, o dE 1 S transfer function for shear waves, tabulated in
ktok,J'=a5=0r tables I(c) to (k) (eq. in ref. 2)
J Jacobian of transformation from £ to &7, T 2r—1)(m—1)? e tan 6—17°--(b tan )
ol o o Vo m—g— Vo Ot O
dE” m cos? ¢ 06" ogggg
. drop
K screen coefficient, K dyiiﬁgrgresggre T Transfer function for entropy waves (tempera-
k amplitude of k: F=/+k+MH=k1k, ture effect) T'=Te®T’
k, radial component of k, k,=—F%, cot 0 U stream velocity downstream of shock
k wave-number vector, k=Fk;, ks, ks; also, U, stream velocity upstream of shock
k=P, k,, 0 in cylindrical coordinates U, 9, W nondimensional disturbance velocity compo-
dk volume element in wave-number space, nents in directions ;, 3, 25, respectively;
dk=dk,dk,dk, w v w_components of velocity perturbation
! contraction parameter. 1 final stream speed *o critical speed of sound a*
! P YLy S initial stream speed V- cross-stream velocity (sketch (c))
. vy disturbance velocity compouent in radial di-
A contraction parameter, e
rection/a
l— final stream-tube width Vg disturbance velocity component in ¢-direction/a*
" initial stream-tube width W resultant of U and V
M Mach number.upstream of normal shock dWs (complex) wave amplitude in two-dimensional
M, Mach number downstream of normal shock field
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x transfer function. X— Sefts 05 ¢ Oer critical value of 8 for which W=speed of sound
e cos 0 K wave-number vector, K==k, ks, &3
z position vector, z=x,=1,, 25, 23 B screen, parameter, p=1-}a,+K
Y transfer function, Y =Se': sm o v screen parameter, v=1-+a,—a,K
’ ) s g ] £ separation of two points, £=2—z
dZ, (complex) wave amplitude associated with o, o function tabulated in table I (defined in ref. 2)
dz, (complex) wave amp]@tude assoc.ia.ted w-ith a 11} transfer function for sound waves, J=H¢">
dZ, (complex) wave amplitude associated with v, density perturbation
o, B may stand for u, v, w, 1{, 2p1, or T p mesan density
o sereen parameter, o}=;7 for K>1 - temperature perturbation
— . + ) mean temperature
«B(® correlation of « and B at a separation £ (k) perturbation velocity spectrum tensor (special
[aB](®) Fourier transform of EE©: interpreted as case of [af](k))
spectral density of B (0) ) commmon longitude angle of wave normals g, £,
g M . k', k'’ in polar coordinates
w 3 - s
cos* 8 . (cos &' —e—1*/38,,8in §')
Tk perturbation velocity spectrum tensor (special x transfer function, x==1f cos 6
case of [ag]k) : -
v ratio of specific heats (taken as 1.4) T transfer funection, T=g(sm 0’+e' By cO8 0’
3, phase angle of I (eq. in ref. 2) - smé
3 phase angle of X and Y, tabulated in tables where
I(c) to (k) (eq. in ref. 2) n=1, 0<0 <0,
Sp phase angle of l;l’, tabulated 1: tables I(c) to (k), —0, 8, <0 Sg
Br=tan‘1<———>: 0<6L+ .
cot 6—a 2 ¥ acute angle between oblique shock and upstream
€ contraction parameter, e=08/3 flow direction
0 shear-wave inclination ahead of contraction, S .
1, ubscripts:
©=tan™! (Etan 9) a, B may stand for u, v, w, p, p, Or 7
0 shear-wave inclination ahead of shock (see fig. 3) %9, m,n  may stand for 1, 2, or 3; used to replace « and 8
g shear-wave inclination behind shock (see fig. 3), When. ¥, v, w are replaced by w, s, %, ro-
0'=t&n_1(m tan 0) Spectlvely
6" sound-wave inclination behind shock (see fig. 8), | Superscripts:
tan Mt 0 0o * complex conjugate
o7 1—M3 - = ! refracted shear-entropy wave
" T ” sound wave
¢’—cot™18,, Oa_<_052 A disti ishing mark
APPENDIX B

COMPLETE VELOCITY SPECTRUM TENSORS

The first and the sum of the second and third diagonal
terms of the spectrum tensors of the velocity field behind the
shock are obtained in the text by use of a simplified approach.
Other terms are occasionally of interest; for example, the
separate values of the second and third diagonal terms
are needed for a description of anisotropic turbulence. The
complete spectrum tensor for each field (turbulence and noise)
will be derived herein by a more comprehensive procedure.

Turbulence field—It will be convenient to replace the
symbols u, v, w by i, Uz, us, 2nd to replace a and 8 by 1, 7,
which take on the values 1, 2, and 3 instead of %, v, and w.
With this notation and the use of equations (8), equations
(10) can be transformed to

dZ\=XdZ,
dZ;:(Y—l)dZ, c0s ¢+dZ:

dZy= (¥ —1)dZ, sin p-+dZs

By introduction of the geometric relations (figs. 1 and 2)

de=dZ1 tan @
t&ll €= _k]/kr
B1)
cos p=—rhfk,
sin g=—"kyfk;

all three equations may be represented by the single expres-
sion

=Xzt @1 (-45) aziraz. | a—s0 @2)
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where
b {1, =1
L0, i1
Multiplication of the complex conjugate of equation (B2)

by the corresponding equation with subscript 7 and by k%
yields, after averaging,

L¢W=k3|xlzl(i—zxﬁ5u 84y (1—814) (1—5,) X
U8k k)| T —11|dZ P+t dZEdZ,+
ko k2L —Y*)dZFdZy+ ki sk (1—Y ) dZ,dZF] +
Su(l—81)X*[ken ke, 2 (1 — X) [dZ, P+ KA dZEdZ,) +
81y (1—81) X[keo e 2 (1 — Y% [dZ, P+ dZdZE] (B3)

Now, if in equation (15) the symbol for the spectral
tensor is changed from af to the more conventional symbol
&, application to equation (B3) yields

q’;jdk,= {% M]X|2¢11511511+(1 —51{) (1—51]) [k?chjlY—l IQ‘I’H—I—
kr®y -l 3 (L—Y*) @y Eer B, B2 (1—T) 3]+
Ous(L—0817) X*[ker ey 3 (1—T ) Byy +ht 1)+

51;(1--5”)X[klkgks,(l“—Y*)‘I’11+k¢‘I’1f]} (B4)

The elements of the turbulence spectrum tensor ®;; may be
exhibited in expanded matrix form:

¥ s
7= k:.

Eiksk? (1-Y*) &nt-

bkl 1—Y) o

EpIXP e | X0 [kl (1-0) St | X*[Rabakl (- 1) 20t
k& k} 2n]
E} Pt Elut
B V-1 ¢t Ekaka |Y—1[2 Bt

bkl (1-7*) &ut-
bkl (1-¥) &7,

k! SutRE| Y —1]3%u+
Erkak} (1—Y*) St
bk (1Y) 2p

The matrix is Hermitian; that is, the missing elements are
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the complex conjugates of the respective elements diagonally
opposite; that is, &% =&}, and so forth.

It can be shown, by use of the continuity relation k&y=
ks®4=0 (summed over repeated index), that after some
reduction

@k ) ' —| (7P—1) %0 T2+ 2 |

in agreement with the second of equations (29).
Noise field.—With use of equations (B1), the three equa-
tions (11) may be represented by the single expression

dZ’I=X d«Zlali—T (k]]!fa) le (1_611) (Bs)

where again the subseripts 1, 2, 3 replace u, v, w, and §,,=0
or 1 as before. Starting with this equation, the spectral
tensor &]; may be derived in & straightforward manner by a
procedure parallel to that leading from equation (B2) to
(B4). The result is

% 0" =00 e { It o TG (00 —80)—

% |X|lTl[511(1—511)k1+511(1—5u)kt]} (B6)

(The valid range of this equation has been limited to 6., <
ol < g(l%l > tan 0,,,) by use of the simplification xT*=x*T=

|x}]T|, which fails outside that range.)
The expanded form of equation (B6) is

[x [t —[x|[Tlkikeak?  —|x||T[Rikesk?
Bl = e[ttt [Ttk
—IxlITlkdesky  — [Tk TSRS
The diagonal terms yield

FLdE"=|x|*®y, dk
4 » 2 kg
(‘i’n‘{“‘;’aa)dl_c”:lﬂ P‘I’n d]_c

since k3-+k?=Fk3?; these are in agreement with equations (30).

APPENDIX C
CALCULATIONS FOR AXISYMMETRIC INITIAL TURBULENCE

If the turbulence in the settling chamber of a supersonic
wind tunnel is considered to be isotropic, by the time it
reaches the working section it will be axisymmetric, with the
longitudinal velocity perturbations very much less than the
lateral perturbations; the change is due to the effects of the
damping screens and the contraction (refs. 9, 13, and 14).
The shock-interaction behavior for a particular case of ex-
treme axisymmetry will be calculated herein as a matter of
interest.

According to reference 14 (with a slight change in nota-
tion), if the longitudinal spectral density in the settling cham-
ber (station A’) is written as

[uulo=x«*F(x) cos® © (isotropic turbulence)

then the longitudinal density in the working section (station
A) is given by

[uu]=r*F(x) cos® OGF (0)H(0) (axisymmetric turbulence)
(C1)

where x is the wave number at 4’, 6 is the associated wave
inclination, NV is the number of damping screens, G(6) de-
pends on the screen pressure-drop coeficient K, and H(0)
depends on the parameters [; and L defining the wind-tunnel
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contraction. (See appendix A for the functional forms.)
In what follows, N=4, K=2, ,=24.92, and 5L=0.3186."
This set of values corresponds (in theory) to an axisym-
metric turbulence at station A4 (just upstream of the shock)
such that the root-mean-square lateral velocity component
is 36.1 times the root-mean-square longitudinal component
(see table I, p. 46, ref. 14). The ratio 36.1:1 is clearly an
extrene deviation from isotropy.

The effects of the changed form of [uu] on the integration
procedure will be illustrated by considering the mean-
square longitudinal velocity in the turbulence. The relevant
question is (53), with [wu] being given by equation (CI1).
Trom the form of equation (C1) it will be convenient to carry
out the integrations in terms of k, rather than k; the trans-
formation is

k=g ds=rs

Equation (35) then assumes the form

Zdrde cos ©dO

i [Isr o GH cost 040 [ T
1

The last two integrals appear in the expression for u, the
mean-square longitudinal velocity at station A’ (the ex-
pression is of the form of eq. (57)); thus, equation (C2) may
be simplified to

F'

”2) f |sp < o8 0 @Heosb0do (03

The variable of integration may be changed from © to 6 by
means of the transformation

1 cos’O
dew/—cosﬁdg

This results in the alternate form

SR

On numerical evaluation, the integrand of equation (C3)
was found to have & sharp peak near the upper limit, and

2 2
4 COS B'GN cos? O cos® 64O

cos® § cos’d . [e €4
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that of (C4) a sharp peak at the origin. The peaks were
avoided by dividing the range of numerical integration
among the two equations: (C3) was used over the range
066, and (C4) was used over the range 5°<6<90°,
where 6, is the value of © corresponding to §==5°.
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TABLE I—WAVE ANGLES AND TRANSFER FUNCTIONS

(a) M=1.01 (m=1.01669) (abbreviated table)

8, &, a’,
deg deg deg I
7.92542(0cr) 8. 056 —8L 944 1. 6345
7.95000 8.031 ~—8L 281 1.3923
7.97500 8.108 —80.958 13017
8. 00000 8.132 —80. 757 12363
8, 25000 8.356 —70.278 . 9132
8.43786 8.677 —78.471 . 7870
8. 05023 9.007 —70. 662 . 532§
9, 48271 9. 618 —758.111 . 4633
9. 97514 10,138 —73.636 .38
10, 48767 10. 659 —72.339 .3232
11,0 1L 179 —7L 045 2178
125 12,702 —067. 445 .1002
14 14.224 —684.014 .1383
15 15. 239 —61.783 L1142
20 20,307 —50. g0 .
25 25. 385 —40. 502 . 0251
30 30.412 —30. 164 L0124
35 35. 447 —19.9018 . 0057
40 408 —9.739 . 0019
46 45.474 384 —. 0001
50 466 10,460 —. 0011
56 56, 444 20, 495 —. 0014
60 60. 409 30.403 —. 0014
65 65, 361 40,461 —. 0012
70 70. 303 50.401 —. 0008
75 75.235 (0. 320 —. 0005
80 80. 161 70.223 —. 0002
85 85. 082 £0.114 —. 0001
0 90 [ S R,

(b) M=1,05 (m=1.03398) (abbreviated table)

a, ¢, 8,
deg deg I
16.323(0 ) 17.61 —72.39 L5216
18, 400 17.69 ~70. 59 12371
16.630 17.04 —03. 59 . 9905
16,036 18.27 —66.81 . 8376
17,240 18.569 ~-05.35 . T307
17, 549 18.02 —64.05 . 6409
18,162 19.58 —0L 74 . 5330
18,776 20.23 —59.68 .4508
19,388 20.88 —57.72 .3876
20, 001 21,53 ~—55.88 vy
25 28,83 —42 64 L1367
30 32.04 —30,76 . 0011
35 37.20 —10. 49 . (0257
40 42.29 —8.62 . 0076
45 47.31 L8 —. 0018
7

50 52,26 12,30 —. 0058
55 57.14 22,44 —.0071
60 6L 06 3241 —. 0087
Gb 63,72 42,23 —. 0055
0 7L 44 5L.93 —. 0039
75 76.12 61. 53 —. 0024
ol 80,76 7..08 —. 0011
85 85,39 80,54 —. 0003
o0 90 90 ————

aTheso values apply for =0 only.

() M=1.10 (m=21.169083)

8, deg &, deg | 67,deg S hig T 8,, deg | 3r, deg
0 0 0 1.145 «1.8667 | —0.008792 0 180.00
] 5.84 —28.75 1.145 +1. 6508 —. 008788 .40 156.00

10 11.65 —45.45 1.148 a1, 648 - .90 129.76

15 17.39 —57.07 11523 1. 5318 —. 003767 L1 97.30

18 20.80 -—6L.89 1.157 *L 4779 —. 008770 Lot 70.12

20 23.05 ~64.51 1.181 ], 4392 —. 008780 .70 41,00

20. 288 23.356 —64.83 1.181 =1, 4338 —. 003783 .62 36.37

20. 538 23.65 —A5.14 1.162 «], 4238 —. 008788 .51 29,73

20, 804 23 95 —~85.45 1.162 *1.4233 —. (003789 .37 2107

21.07200e) | 2425 —B5.75 1.163 14179 —. 003701 0 0

21.100 24.28 ~B84 45 1.161 1.2582 —. 007808

21. 400 24.62 —6L 1155 . 9378 —. 005845

21.800 25.08 —53.41 1.152 . 7620 —. 004770

22. 200 25. 50 —56.34 1.149 .68511 —. 004111

2. 560 25.90 —54. 69 L 147 . B780 -

24,048 27.55 —48,95 1141 . 3856 —. 002511

25. 536 20,18 —44.07 1.136 L2778 —. 0018580

27.024 30.81 —39.59 1.130 . 2066 —. 001428

23,512 32.42 —35.88 L125 .1581 —. 001037

30 34.02 —3L.36 Li21 L1187 —. 000873

35 39.30 —18.76 1165 .0448 -

40 44. 45 —7.08 1. 090 0105 —. 000101

45 49. 48 3.98 1.075 —. -

50 54.33 14.58 1.080 —.0125 —. 000176

55 59,08 4.7 1. 047 —.0141 -

60 63.72 34.68 1.0356 —.0129 —. 000307

65 63.28 44.28 1025 —. 0103 —. 000346

70 7271 53.68 1.018 —. 0072 —. 000374

75 77.09 62.91 1.009 —. 0043 —. 000395

80 8L 42 72.01 1. 004 —. 0020 —. 000408

85 86,72 81,02 1001 —. 0005 —. 000416

00 20 20 —— 0 | el 3 <+
(@) M=1.25 (m=1.42857)

0, deg &,deg | ¢7,deg S 1 T Sy deg | 31, deg
0 0 0 1. 300 1. 6867 —0. 04059 0 180. 60
5 7.12 —13.66 1.302 e, 6453 —. 04054 1.57 163. 64

10 14.14 —28.09 L.307 o1 5840 —. 04040 293 148.17
15 20,95 —36.66 1.317 «], 4882 —. 04018 4,04 125,09
20 27.47 —45.31 1336 al, 3634 - 4.47 09.05
23 3L23 9. 70 1.353 €1, 2928 —. (4000 4.11 76.76
25 33.67 —52.33 137 ], 2468 —. 04019 322 53.40
26 34.87 —53. 57 1.383 o1, 2229 —. 04039 22 34.30
28, 300 35.22 —53.93 1.387 «1.2172 —. 04048 1.67 25. 44
26.668(0c) | 35.65 —54.35 1392 1. 2108 —. 04059 0 0
28. 742 35.75 —51.38 1.373 . 969 —. 03281

28. 828 35.85 —50.07 1.388 884 —. 02980 -

28,014 35.95 9. 05 1.360 .822 — 02774

27 36. 05 —48.156 1.358 T3 —. 02813

2.5 38.64 —44.27 1.338 593 —

28 37.22 —41.28 1328 484 —. 01630

29 38.38 —36.35 1.307 3484 -.01287

30 39.52 —32.16 1.293 . 2614 —. 00953

35 45.01 —158.45 1.238 . 0858 —. 00276

40 50.16 —1.88 1.185 —. 0007 —. 00004

45 55.01 10.13 1157 —. 0261 -. 00157

50 59. 57 21.02 1.123 -—. 0337 -

55 63.80 3L 10 1094 —.0327 —. 00316

60 67.99 40. 54 1.088 —.0277 —. 00360

65 71.92 40,48 Lo47 —.0211 —, 00392

70 78. 7L 53.03 1.030 -.0143 —. 00414

75 70. 38 88.37 1017 —. 0084 —. 00430

80 82. 96 74.29 1.008 —. 0038 —. 00440

85 38, 50 82,18 1.002 —. 0010 —. 00446

90 80 0 | ... ———- [, g v

For £=w, values should be replaced by ¢, All other_values are independent of .



31, deg

[

8, deg

T

g | ssssz s
2| gsegs gerae
by E¥a]s 8
3 | oAssd
85 5
& mmwwm 8
Froroi

8

1480
1354
1138
0910
—. 0514
—. 0357
—.0228
—.0128
0057
—.0014

8

() M=2.0 (m=2.66067)

6", deg

L 446
L34
L5
1.160
L1112
Lom7
10350
1.030
L016
1.007
1.002

(h) M=3.0 (m=3.85714)

& deg

25888
sddue

6", deg
0
—5.
1L
18.
22
25,
2.
27
2.
28,

6, deg

25
28
b {4
7.5

£HIRD

&, deg
85
7]
04
54
58
™
a3
20
63

BRIRE IHBBRBR
SNERE 2HI8Rgs

8, deg

A9 BBRRIRE

v

8BIBABERBS
CEERBREEE

3'7 deg 67', deg

&, deg | 8r, deg

Bttt

v

T

T
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TABLE I.—WAVE ANGLES AND TRANSFER FUNCTIONS—Continued

s

8§

(6) Af=15 (m=1.86207)

6", deg

(8) AM=2.5 (m=3.33333)

B
-t

¢, deg

a953
Hens

¢,deg | 67,deg

|RIRBRIBAR
cugvgd Ly

6, deg

CRLEE

8, deg

8223
cwgrrHaddd

#8892 382BR

REIB
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aThese valucs apply for x==0 only. For T=e, values should be replaced by 0. All other values are Independent of z.
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TABLE I—WAVE ANGLES AND TRANSFER FUNCTIONS—Continued

701

(1) M=4.0 (m=4.57143) () M=6.0 (m=5.20829)
0, deg & deg | 07,deg S o &, deg | 3r, deg 8, deg ¢ deg [ 87,deg 8 i3 T &, deg | &r, deg
0 0 0 1,781 1. 6667 —0. 4515 0 180. 00 0 0 0 1.810 «]. 6667 -0. 5188 0 180.00
b 21.80 -5, L 795 1, 5269 —. 44 13.95 170.28 b 2475 -—5.14 1.827 «]. 4000 -—. 5128 16.32 170. 44
10 38.87 ~10.85 1.837 «1, 2248 —. 4327 22,90 159. 60 10 42.89 ~10.28 1.879 o], 1422 ~. 4926 25.67 150.90
15 50,77 —15.95 Lo17 o, 0087 —. 4029 25.94 146. 55 16 54.69 —15.41 1. 930 < 8059 —. 4401 27.61 146,71
20 58,09 —~2L22 2.059 s, 6107 —. 3418 23.38 127.01 20 62.46 —20.52 2,163 s, 4878 —. 3404 2.32 125,78
aL091 60, 4 —~22.38 2.108 < 5444 —. 3204 21.88 120.57 21 63.69 —21. 55 2.216 e 4164 —.3131 19. 85 118,95
22,182 6L 70 —23,50 2. 164 «, 4780 —. 2045 10.95 112,15 2 64.84 -—22.57 2 282 s, 3360 —. 2852 16.75 109.37
23,273 63,04 —24. 64 2,251 , 4090 - 17.48 99.12 23 65,91 —23.60 2.413 s, 2500 —. 2145 12.87 88.38
2.5 63,29 —24.88 2.280 - 3978 —. 2014 16.91 95.02 23.247 (0)| 66.16 —23.84 3.604 . 6205 —. 5199 0 0
24.0 63,83 —25.40 2.411 = 3072 —. 2670 15.77 80.18 23. 250 66.16 —22.95 3.162 .4074 —, 3415
24,3 (0)| 4.2 —25.78 3.288 . 6600 —. 45156 ] 207 648.21 —20.14 2,648 .1602 —.1346
24,370 64.22 —24.47 2.988 4797 —.3281 347 66.20 —18.62 2.5611 . 0069 —.(815
24,400 04,28 —-2.77 2.743 —. 2303 23. 447 66.36 -16.39 2.373 0342 —. 0280
24,404 644,32 —~20.70 2,553 2250 —. 1645 23. 547 66. 46 —14.68 2,201 —. 0016 —.0013
24, 500 684,36 —19.84 2,492 1900 —. 1308 23,647 66.56 —13.21 2,232 —. (267 -
24, 604 64,42 —18.55 2.413 1451 —.1001 24 66.01 —2.11 2,008 —.0799 —. 0693
24,084 64,53 —16.87 2.827 - 25 67.85 —-.03 1,898 —. 1425 —.1298
24,760 04,62 —16.85 2,273 0685 —. 0476 7 69. 57 8.83 1.690 —~. 1801 —. 1804
24,764 64,63 —15.45 2,284 —. 0448 30 71.80 21.20 L1514 —.1861 —~.3141
5 64, 87 —12,67 2,161 0111 —.0078 35 74.83 34.49 1340 —.16850 —, 2396
28, 260 65.12 —~10.20 2.084 —. (258 —.0182 40 TI.25 44.17 1,233 —.1370 —.2523
25,773 85, 63 —5.95 1971 -—. 0739 — 45 79.25 5.7 1.161 —. 1100 ~. 2597
27,182 66, 93 2.64 1.780 -—.1338 —.1038 50 80.985 88.05 1111 —. 0859 ~. 2644
28, 591 88,13 9.22 1.676 —. 1573 - 55 832.43 63. 40 1.0675 -—. 0850 —. 2677
20 69.25 14,70 1,501 —. 1670 —. 1474 60 8.75 6311 L.050 —. 73 -7
36 72,66 20,37 1.3 -—-.1618 —. 1702 65 84.94 72.34 1.032 —.0375 —. 2716
40 75.39 39,04 1.274 —. 1384 —.1840 70 86. 05 76.23 1,019 —. 0207 —. 2728
45 77.68 48.24 1192 -, 1129 -, 75 87.09 79.87 | <1010 —.0116 —. 3737
50 789,60 55.07 1.135 —. 0880 - 80 88.08 83.34 1004 —. 0051 —. 2742
b6 8L29 60.92 1083 —. 0678 —. 2115 gg g. 05 {83. 70 1.001 —. 0013 —. 2745 i
................. - p {
i1} 82,80 648,08 1,063 —. 0485 —. 2140
65 84.18 70. 68 108 —. 0342 —. 2158
70 85,46 74.04 1.024 —. 0218 -.2171
75 86, 65 78.92 1013 —.0122 —.2180
80 87.70 82,71 1.008 —. 0054 —. 2186
85 63,90 86.38 1002 -—.0013 —. 2189
90 00 00 JUNCIUEE, U [ 2
(k) M=o (m=6.00000)
8, deg & deg ¢, deg S o T 8, deg | 3r, deg
0 0 ] 1.833 “1. 6087 —0. 5832 0 180. 00
] 7.70 =500 1853 a1, 4503 —. 5754 18.67 | 170.58
10 48, 61 —10.00 1.918 «1. 0602 —. 5484 28.05 { 160.10
15 58,12 —15.0 2.045 °, 7105 —. 4873 28,51 | 146.687
20 03,40 —20.0 2.280 - 3637 —. 3253 19.33 | 123.90
20, 552 68.03 —20.55 2.317 <. 3140 —.2889 17.12 | 119.67
2L 104 668,64 —2L.10 2.357 « 25567 —. 2420 14.29 | 114.51
650 67.23 —2L.66 2.401 « 1810 —. 1761 10.35 | 107.57
22, 208(er) | 67.70 —22.21 2 449 . 0000 . 0000 0 0
182 68.73 —4.93 1.971 —. 1588 —. 1686
24.156 69, 61 2.45 1.822 —.1875 —. 2064
25.130 70.44 8.09 L7211 —. 1093 —. 2301
28. 104 7L.21 12.78 1.643 —. 2038 —. 2464
27.078 7094 16.85 L5 —. 2039 —. 2386
28,052 7263 20. 47 1 525 —. 2018 —. 2680
29,028 73.28 2.72 1.470 —. 1681 —. 2766
30 73.80 26, 69 1.438 —. 1935 —. 3819
35 76,61 8.8 1287 —.1638 —.3021
40 7877 47.74 1.192 —.1334 —. 3127
45 80. 54 54.76 1130 —. 1060 ~. 3190
50 2.4 60. 54 1.087 - —.3232
83 8.3 65.48 1.058 —. 0819 —. 3260
60 84 50 69. 82 1037 —. 0449 —. 3281
85 85.56 BT L1023 —. 0308 —. 3295
70 88,53 77.31 1013 —. 0196 —. 3306
75 87.44 80. 66 1007 —. 0109 —. 3313
80 88.32 83.80 1.003 —. 0048 —. 3318
85 80.18 8. 66 LooL —. 0012 —.3321
20 4] 20 cmmee | emmmme | cemammman v -

o These values apply for =0 only. For 7=, values shonld be replaced by 0. All other values are independent of .
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