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A SECOND-ORDER SHOCK-EXPANSION METHOD APPLICABLE TO BODIES OF REVOLUTION
NEAR ZERO LIFT'

By CrLarence A. SyveErrsoN and Davip H. Dexnis

SUMMARY

A second-order shock-expinsion method applicable to bodies
of revolution near zero lij. .s developed. Expressions defining
the pressures on noninclined bodies - ¢ derived by the use of
characteristics theory in combination with properties of the flow
predicted by the generalized shock-expansion method. This
result is extended to inclined bodies to obtain éxpressions for the
normal-force and pitching-moment derivatives di-zerc angle of
attack.
tions between the ranges of applicability of the second-order
potential theory and the generalized shock-expansion method—
namely, when the ratio of free-stream Mach number to nose
Sfineness ratio is in the neighborhood of 1.

For noninclined bodies, the pressure distributions predicted
by the second-order shock-expansion method are compared with
existing experimental results and with predictions of other
theories. For inclined bodies, the normal-force derivatives and
locations of the center of pressure at zero angle of attack pre-
dicted by the method are compared with experimental results for
Mach numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3
cones and tangent ogives were tested alone and with cylindrical
afterbodies up to 10 diameters long. In general, the predic-
tions of the present method are found to be in good agreement
with the experimental results.  For noninclined bodies, pressure
distributions predicted with the method are in good agreement
with existing experimental results and with distributions ob-
tained with the method of characteristics. For inclined bodies,
the normal-force derivatses per radian (for normal-force
coefficients referenced to body base area) are predicted within
+0.2 and the locatrons of the center of pressure are predicted
within +0.2 body diameters. On the basis of these results, the
second-order shock-expansion method appears applicable for
values of the ratio of free-stream Mach number to nose fineness
ratio from 0.4 to 2.

INTRODUCTION

The flow about bodies traveling at high supersonic speeds
was investigated by Eggers and Savin (ref. 1). They found
that under specified conditions such flows could be consid-
ered as locally two-dimensional and could be treated by a
generalized shock-expansion method. This method has
been applied to nonlifting and lifting bodies of revolution in

i+ Supersedes NACA TN 3527 by Clarence A. Syvertson and David H. Dennis, 1956.

The method is intended for application under cndi- | Widely used.

references 1 through 4. It was found that the generalized
shock-expansion method accurately predicted the flow about
pointed bodies of revolution when the hypersonic similarity
parameter (ratio of Mach number to body fineness ratio)
was greater than about 1. This method is, therefore, par-
ticularly useful in the treatment of flows about bodies travel-
ing at relatively large Mach numbers. At lower speeds, the
second-order potential theory of Van Dyke (ref. 5) has been
( (See, also, his hybrid theory for .dightly in-
cimned bodws, ref. 6.) The anplication of this tleows to
bodies traveling at ‘arge M.ach numbers is often limited,
however, by the restriction that the maximum slope of the
body must be somewhat less than the slope of a free-stream
Mach line.

The ranges of applicability of the generalized shock-
expansion method and the second-order potential theory do
not always overlap, and there remain, therefore, flows at
certain combinations of Mach number and body shape which
cannot be treated by either theory. Normally, these in-
termediate flows are encountered when the hypersonic
similarity parameter based on nose fineness ratio is in the
neighborhood of 1. Since this is a range of practical inter-
est, additional theoretical methods are needed. Some of
this need has been fulfilled by the hypersonic small-dis-
turbance theory (refs. 7 and 8). In its present state of
development, however, this theory has application only to
limited classes of noninclined bodies of revolution. For
example, due to the series form used to represent the pressure
distribution, it cannot be applied to the nose-cylinder
combinations commonly employed for missile bodies. In
large part, then, the need for a theory applicable at values of
the hypersonic similarity parameter near 1 still remains.

The present report develops a theory intended to fulfill
this need. It is developed by an iteration procedure which
employs the generalized method of references 1 through 4 as
the first approximation. This theory is therefore called a
second-order shock-expansion method. Expressions are
derived which define the pressures on noninclined bodies of
revolution. KExpressions are also obtained for the normal-
force and pitching-moment derivatives at zero angle of
attack. Predictions of the method are compared with those
of other theories and with experimental results.
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SYMBOLS
A body cross-scctional area
Ag body base area
B function defined by equation (B15)
O,y characteristic coordinates
. normal-force
(v normal-force coefficient, ———————
9. A5
Oy pitching-moment moment about bor'y vertex
coefficient, q.Apd
; pressure coefficient, P=Pe
d body diameter
£ entropy
f fineness ratio  (Fineness ratio of the nose section
is f2)
{ body length
M Mach number
» static pressure
s total pressure
q dynamic pressure
8,n rectangular coordinates (streamline direction and

normal to streamline direction, respectively)

2,70 cvlindrical coordinates (2 measured from vertex
of bady and ¢ from windward meridian)

T vexcer-of-pressure position (measured from body
vertex) v

a angle of attack, radiafes

B function defined by equation (12)

¥ ratio of specific heats (1.400 for air)

) flow deflection angle

n function defined by equation (9)

A loading (defined by eq. (14))

A function defined by equation (B16)

U Mach angle (are sine 1/M)

v Prandtl-Meyer expansion angle

g shock-wave angle

¥ function defined by equation (13)

Q ratio of cross-sectional area of streamtube to that

at M=1 (see eq. (B17))
SUBSCRIPTS

© free-stream conditions

L2.3.4, conditions evaluated at various points in flow field

a afterbody

¢ quantities evaluated for cone tangent to the body

8 quantities evaluated by generalized shock-ex-
pansion method

v quantities evaluated at vertex of body

o guantities evaluated along downstream face of
shock wave

tev quantities evaluated for cones tangent to body
vertex

tex quantities evaluated for cones tangent to body

at station z
THEORY
In the present development of a second-order shock-
expansion method, attention will be restricted to bodies of
revolution. It is recognized, however, that the procedure
used herein may, in the future, find application to other three-
dimensional shapes.

The present method is & refinement of the generalized
shock-expansion method of references 1 thirough 4. On the
surface of a body of revolution, immediately behind a corner,
the generalized method represents a first-order solution for
the flow and the present method gives ‘he second-order
solution (see Appendix A). Before proceeding, therefore, it
is well to orient the present analysis with a review of the
approximations involved in the treatment of the flow about
bodies of revolution with the generalized method. These
approximations may be listed as follows (see, o. g., ref. 4):
(1) Disturbances incident on an oblique shock wave are
largely ebsorbed therein, and hence, reflected disturbances
arc negligible; (2) the flow appears locally two-dimeusional;
(3) surface streamlines may be taken as meridian lines. In
the intermediate range of supersonic speeds of interest he-e,
the first approximation is particularly well justified (see, re?,
9), and it will not be considered further. As a consequence
of the second approximation, a so. 1tion given by the general-
ized method satisfies the contintity equation only approxi-
mately.? Although th: sontinuity equation does not appear
explicitly in the following analysis, it is this approximation
that is refired by the present method. The third approxi-
mation applies ¢nly to inclined bodies of revolution, since
for noninclined bodies, meridian lines are, of course, the exact
streginlines. In the present investigation, attention will be
restricted to bodies near zero lift. Under this restriction to
infinitesimal angles of attack, an analysis has shown that the
deviation of true streamlines from meridian lines has negli-
gible effect on surface pressures. In the following develop-
ment, therefore, the use of meridian lines as streamlines will
be retained.

NONLIFTING BODIES

The generalized shock-expansion method was developed
for nonlifting bodies of revolution from the method of char-
acteristics (ref. 2). This development may be summarized
with the aid of the equation for the streamwise pressure
gradient (see, e. g., refs. 2 and 9).

op_ 2vp O_ 1 Oop (1
Jds s8in 24 ds cos u OC,

In the generalized method the pressure is considered constant
along first-family Mach lines (refs. 1 and 4). As a conse-
quence, the right-hand member of equation (1) is approxi-
mated by zero, and the equation can be integrated to yield
the well-known Prandtl-Meyer relation. The objective of
the present analysis is to refine this approximation to the
right-hand member of equation (1). To this end, consider
the flow about a body of revolution which has a pointed nose
and over which the flow is everywhere supersonic. The
problem will be simplified by approximating the profile of
the body with a series of tangents to the original contour
(see fig. 1). It might be noted that Ferrari (ref. 10) sug-
gested a similar scheme with a body whose profile was made
up of chord lines joining points on the original contour.
While either approximation is permissible, the tangent body
was selected here so that the conical flow at the vertex will

2 In the treatment of two-dlmensional flows, the first approximatlon is used but continuity
is exactly satisfied.
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Ficure 1.—Approximation of body shape by a tangent body.

be correct regardless of the degree of approximation used
downstream of the vertex.

The generalized method gives the exact change in surface
pressure around the corners of the tangent body but predicts
no change along the straight-line elements. The present
problem reduces to the determination of the pressure varia-
tion along the conical frustums.

Since along these surfaces 08/0s=0, equation (1) has the form

op__ 1 op
s~ cos u oC}, 2)

The problem now is to find an approximation to the right-
hand member of this equation. One approximation is a
power series in s. Such an approximation would yield, of
course, the surface pressure as & function of s, and thus, the
power series could be written equally well in terms of pres-
sure, p. For reasons which will become apparent later in
the analysis, a combination of the two series will prove
advantageous. Thus, the pressure gradient will be written

0 ;
P (Potp) (So+8is+ 8+ . . )
where P, and S, are constants for a particular frustum
element. This equation is readily integrated to yield an
exponential variation in pressure 3

p——Py 1 Oe(SM+Sx—2-+SR§+ .. ) @

where C is the constant of integration. Conditions must
now be sought to evaluate the constants in this equation,
For this purpose, the flow over a single conical-frustum
element, such as shown in figure 2, will be considered. The

Fiouvre 2.—Flow about_a frustum element.

3 It might be noted that Ehret, Rossow, and Stevens (ref. 11) found that pressures on ogives
correlated according to the hypersonic similarity law could bo represented approximately by
an exponential function of distance,

subscript 1 will be emploved to designate conditions imme-
diately upstream of the corner preceding the frustum; the
subscript 2, conditions immediately downstream of the
corner; the subscript 3, conditions at the downstream end of
the frustum. The first boundary condition to be applied is
relatively obvious, and it is

P=p; at s=s,
Thus equation (3) becomes

(1= | _ (s
)e[So(a—szH-Sx = ]

p=—DPy+(p,+P, 4)

It is also apparent that, if the conical element shown in
figure 2 were extended indefinitely downstream rather than
ending at point 3 (see dashed line in fig. 2), then the pressure
on this extended surface would approach some hmiting value.
If the element were considered to be infinitely long, then the
only effect the flow upstream of point 2 will have on the flow
at infinity is to produce an infinitesimally thin layer on the
surface across which the entropy varies. It is readily
demonstrated, however, that there is no change in pressure
across this layer and that the flow outside the layer is conical.
Thus, a second boundary condition is

D>Pe 88 §—> @

where p. is the pressure on a cone tangent to the original
body at the same point as the frustum clement. This
condition gives the result

Po:‘*pc (5)

provided, of course, the constants, S,, are negative. These
constants, S, are now all that remain to be determined and
they may be evaluated in terms of the various derivatives of

pressure evaluated at point 2. Thus,
_(op )
_*Ds 2
T pe—pe
— in)
S1=*&—So2 e (6)
D2
&
So=— 2| N2 g5 Lo
2 Pe—D2 J

at s=s; and so forth for additional terms.

At this point, it is well to comment on the choice of the
series used to approximate the pressure gradient. For
example, had the series been written entirely in terms of 8,
then a simple Taylor series for the pressure would have
resulted. While the present approximation can be reduced
to a Taylor series for small (s—s,), it has added features which
are desirable. In particular, it is apparent that, within the
framework of the approximation involved in the use of
conical frustums rather than a curved body, the boundary
conditions in pressure at both s=sg, and s— o have been met
exactly. It is primarily because of the particular choice of
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series which led to the exponential form that it was possible
to employ the boundary condition at s— . The meeting of
this condition is relatively important from a practical view-
point since it serves to limit the possible error involved in
the use of a series approximation. For example, had a
Taylor series been used and all boundary conditicns applied
at s=s;, then the error for a given approximation could
increase indefinitely with distance from the corner. With
the approximation chosen, however, the error must be
limited since at large s, the solution again becomes exact.
This added accuracy is not obtained without incurring
certain restrictions, however; since, as previously noted, the
coefficients S, must be negative. This condition must be
satisfied for the present results to be applicable.

In the following analysis, only the first term, S,, in the
series will be retained, and thus only the first derivative of
the pressure at point 2 will be required (see eq. (6)). As
found in Appendix B, an expression defining this gradient is

op\ _ By s ) 3@&(91’
(bs = \a, sin §,—sin 6§, +Bl 0,55 ), (7)
where

__ypM?

B—z(Mﬂ—l)

and © is the one-dimensional area ratio or

—_ +1
1+<’—’—1> M2 -
gLl N2/

With the application of these results, the pressure along the
conical frustum is given by

p=pc— (Pc—p2)e”" (8)

where

_[op r—I,

"“(&f 2 (Pe—P2) €08 8 ®)
It is apparent that, in order to apply equation (8), the
pressure (and Mach number) on the surface of noninclined
cones must be known. These quantities may be determined
from the results of reference 2 or reference 12. For con-
venience, the surves shown in figure 3 have been plotted
from the results of reference 12.

By application of equation (8) on successive elements,
the pressure distribution on the tangent body can be de-
termined. In particular, the pressure at each of the points
of tangency may be calculated and applied to the original
body. The procedure is as follows: First, the elements
of the tangent body are selected and the coordinates (z,r) of
each corner determined. The first element is tangent to
the body at the vertex, and the flow over this element is
thus conical. For the first corner, then, the pressure, p,,
and the Mach number, M, (see fig. 2), are the same as at
the vertex of the original body. The pressure, p,, and the
Mach number, M, may then be determined with the
Prandtl-Meyer equations. The pressure gradient, (9p/0s)s,

may be determined from equation (7) since, for the first
corner, (0p/ds), is zéro. The tangent-cone pressure, p., may
be obtained from reference 12 or figure 3. With the various
factors in equation (8) thus evaluated, the pressurc at the
tangent point and at point 3 (see fig. 2) can be calculated.
In like manner, the pressure gradient at point 3 can be
determined by differentiation of equation (8), or

-G

(Ds 3 DPe—P2 0s/y (10)
With the pressure and pressure gradient at point 3 known
(the Mach number may also be calculated from the pressure
in the usual manner), the factors in equation (8) may be
determined for the next element, This process is, of course,
repeated for each element of the tangent body.

The procedure just described is not difficult to apply;
however, further simplification can be obtained by the use
of a “two-step” tangent body. This body consists of a
cone tangent to the original body at the vertex and a conical
surface tangent to the body at the station where the pressure
is to be calculated. With this two-step body, the second
surface is a variable depending on the station in question on
the original body. For this approximation, equation (8)
becomes

P=Pc (pc'—ps)e_w (11)

__xsiné,—rcosd,
7 €OS §—& Sin &

B, Q, siné
v= (pc_pa) (63 sin 61;) (13)

The subscript, s, denotes quantities at the station on the
body as evaluated by the generalized shock-expansion
method. With equation (11) it is possible to obtain, very
rapidly, a first approximation to the pressure distribution.

The second-order shock-expansion method has been de-
veloped to predict the pressures on & noninclined body of
revolution. In the following section this method will be
extended to lifting bodies.

where
(12)

LIFTING BODIES

For inclined bodies of revolution, a second-order shock-
expansion method would involve not only & revised expression
for the pressures, but, in addition, a revised approximation
to the shape of the surface streamlines. It is recalled from
the results of Eggers and Savin (vef. 1) that, according to the
generalized method, surface streamlines may be approxi-
mated by geodesics. For bodies of revolution, the pertinent
geodesics are simply meridian lines (refs. 1 and 3). While
this result is exact for noninclined bodies of revolution, it is
only an approximation in the case of inclined bodies. A
refined approximation corresponding to a second-order
method undoubtedly could be obtained by graphical integra-
tion of the momentum equations employing the pressure
distribution given by the generalized method. However,
it seems at present that this procedure would involve
extensive calculations. If attention is restricted to bodies
near a=0, it can be demonstrated that the deviation of the
true streamlines from the meridian lines will not influence
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Fiavre 3.—Curves defining Mach number and pressure on the surface of noninclined cones (ref, 12).

surface pressures. The approximation of meridian lines as
streamlines can, in effect, be retained and relatively simple
expressions can be obtained, therefore, for the initial slopes
of the normal-force and pitching-moment curves. To this
end, the expression for the normal-force derivative can be

written
1
f Ardz
(1]

where the subscript, =0, has been omitted for simplicity of
notation and where A is the nondimensional loading on a thin

dCy_ 2

da A, (14)

disk normal to the body axis and having unit radius. This
loading A is given by the equation
-2 ("d(p/p.)
A-—%Mm27r JO do . COS ede (15)

The problem then is to evaluate d(p/p_)/da. The develop-
ment given previously which led to equation (3) also applies
to bodies at infinitesimal angles of attack. Equation (8)
also applies; however, the variables in this equation must be

considered as dependent on angle of attack. By differentia-

tion of equation (8), there is obtained

UDPe) (1 — o) HUBAP) 1oy PP 0 0
(16)

_d(P:/p.)

da
at n=0 (i. e,, z=2x;). By the application of this condition to
equation (16), the last term (involving dn/da) is eliminated.
The term, d(p,/p,)/da may be evaluated with the aid of the
Prandtl-Meyer equation

d(pafp.) _M[d(pifpo) _p 1 AP)], pr 1 d(Pry)
de M| da Do Pr; da Pw Pr, da

Ferri (ref. 13) has shown that the entropy (and hence the
total pressure, p,) on the surface of an inclined cone is con-
stant (independent of ). When equations (15), (16), and
(17) are combined, then, the integrals of the terms involving
dpi/de and dp,/da will be zero (since f

g

This equation must satisfy the condition d(z/f =)

17

kg

cos ¢ do=0).
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Equation (15) may therefore be written

2 (T —ndpdpa) | M d(p/ps)
A—yﬂ{mzwﬁ[(l e da*+e ")\l e ]cos¢d<p(18)

The only terms in cquation (18) that are functions of ¢ are
d(pe/ps)/daand d(py/p,)/da. These two terms may be evalu-
ated in terms of the normal-force derivative of the tangent

¢ .
cone, -~ ;and in terms of A;. After performance of the
da |y
necessary manipulations, there is obtained
Cy! A
A=(1—e™ ") (tan a)d Y424, (19)
de ’tcz N

It is apparent from equation (19) that dCy/da for cones must
be known before the loading, A, can be evaluated. Fortu-
nately, results for cones are available from reference 14 and
have been plotted for convenience in figure 4. The loading,
A, may thus be calculated in the same manner as the zero-
lift pressures. In this case, A, for the first corner is simply

dCy
(tan é§,) o
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o

As before, a first approximation to A can be obtained with
the two-step bodv. This approximation gives

dCy
do

A=(1—e %) (tan §) +(%—> (e7#%) (tan 6,,)%% (20)

In Appendix C, it is shown that equation (20) leads to very
simple results for certain common body shapes,

With the loading, A, known, the normal-force derivative
may be evaluated by integration of equation (14). In like
manner, the pitching-moment derivative can be determined
from the equation

d(7m_—21r t

E—-A—Bg , Arz dx (21)

where the contribution to the pitching moment of the varia-
tion in local axial forces with angle of attack has been neg-
lected since it is small for slender bodies (see ref. 15).

A second-order shock-expansion method for bodies of
revolution has been developed to predict the pressure dis-
tribution and the normal-force and pitching-moment deri-
vatives at a=0. The results are relatively simple in form
and may be applied to a given body with only a moderate
amount of computations required. Simplified cxpressions
based on an additional approximation have also been pre-
sented which further reduce the amount of work required.
It should be noted, however, that open-nosed bodies and
pointed bodies which produce shock waves other than the
one at the vertex require special forms of the method. The
necessary equations for these cases are contained in Appendix
B. In addition, there are several restrictions on the present
method which should be mentioned. First, it i1s apparent
that if the exponential variation of the pressures is to be
valid, then the pressure gradient just downstream of the
corner must have the same sign as the pressure difference
p—ps. This condition, which derives from the previously
noted restriction that the constants, S,, in equation (4) be
negative, is given by n>0 in the general case and by ¢ >0
for the simplified method. There is an additional restriction
on the simplified method, and that is that the two-step
bodies must be real bodies (i. e., the intersection of the two
tangent lines must not occur at negative values of z or 7).
This condition is given by 82>0. When =0 or gy=0,
all equations reduce to those given by the generalized
shock-expansion method.

It remains, of course, to determine the accuracy of the
second-order shock-expansion method and to define its range
of applicability. There are sufficient data available, both
from experiment and from characteristic solutions, with
which the predictions of the method for zero-lift pressure
distributions can be compared. However for the case of
lifting bodies, sufficient data are not available, and for this
reason, the experiments next discussed were conducted.

EXPERIMENT

An experimental program was conducted to determine the
initial slopes of the normal-force curves and the centers of
pressure for a series of nose-cylinder combinations. The
tests were designed, of course, to permit a check on the
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accuracy of the predictions of the second-order shock-

expansion method just developed. It is recalled that the

method is intended for application at values of the hyper-

sonic similarity parameter, M_/f, in the neighborhood of 1.

The tests cover a range of M _/f, from 0.43 to 2.09.
APPARATUS AND TESTS

The tests were conducted in the Ames 10- by 14-inch
supersonic wind tunnel at Mach numbers of 3.00, 4.24, 5.05,
and 6.28. For a detailed description of this wind tunnel
and its aerodynamic characteristics, see reference 16. Nor-
mal forces and pitching moments for the test models were
measured with a strain-gage balance. The balance consisted
of a model support sting on which the moments were meas-
ured at four points. From these four measurements, the
normal forces and centers of pressure were determined and
checked. Measurements were made at nine angles of attack
from —2° to +4° at cach test Mach number. At each
angle of attack, the values of T/d and Cy/a were calculated.
These values were plotted as a function of angle of attack,
and the intercepts at a=0 of the resulting curves gave the
values of d(y/de and Z/d at a=0.

Wind-tunnel calibration data (see ref. 16) were employed
in combination with stagnation-pressure measurements to
obtain the stream dynamic pressures. Reynolds numbers
based on the maximum diameter of the models were

Mach number | Reynolds number
million
3.00 ‘ 0.79
1.24 .72
5.05 .35
6.28 ‘ 15
MODELS

Cones and circular-are tangent ogives of fineness ratios
7, 5, and 3 were tested alone and with eylindrical afterbodies
having lengths of 2, 4, 6, and 10 diameters. The models
were made of polished steel and each had a base diameter of
I inch.

ACCURACY OF TEST RESULTS

Stream Mach numbers in the region of the test bodies did
not vary more than 40.03 from the mean values at Mach
numbers up to 5.05. A maximum variation of =+0.05
existed at the highest test Mach number of 6.28.

The accuracy of the test results is influenced by uncertain-
ttes in the measurement of moments and in the determination
of the stream dynamie pressure and angle of attack. These
uncertainties resulted in estimated maximum errors in the
normal-force derivatives and centers of pressure as shown
in the following table:

‘ R

‘ Mo | dCylda ‘ Zid —!

| 3.00 +0.15 +0.10
4.24 +.15 +.10
505 +20 | %15
6. 28 : +.25 ‘ +. 20 ‘

It should be noted that, for the most part, the experimental
results presented herein are in error by less than these esti-
mates.

438638 ~£8——2

RESULTS AND DISCUSSION
NONLIFTING BODIES

The second-order shock-expansion method has been devel-
oped primarily to treat flows characterized by values of M., /7,
near unity. Accordingly, the method has been employed to
obtain the zero-lift pressure distributions at M, /f.=1 for
several different body shapes. In this and all subsequent
applications of the present method to curved bodies, the
tangent bodies employved were formed by elements tangent
to the original bodies at stations #/1,=0, 0.1, 0.2, . . ., 1.0.
The tangent-body approximation is required only if the body
profile is curved since for cone-cylinders, and for the cylin-
drical section of any nose-cylinder combination, the present
method yields results in closed form.

The results of these calculations are shown in figure 5 along
with distributions obtained with the generalized shock-

2.0
1.5
1.0
s L ]
.5
(a)
0
4
g Second - order
& shock - expansion method
Sttt ----- Generalized
2 shock-expansion method
2 —-— Method of characteristics
Lol
22
2 |
& RS -L\ ,/— -Method of characteristics, also
| ~— ~‘\
{b) b
0
3
2 .
\ _ "~ ""Hypersonic small-disturbance
\.\/ theory
-~ - \\_4
]
I = N ——
) R B e it s e
(c Method of characteristics, also-*
0 2 4 6 B8 10 12z 14 16 18 2cC

Station, x/{,

(a) Cone-cylinder, M, =3.00,

fn:3

(b) Sears-Haack body, M, =3.00,
fn=3

(¢} Ogive-cylinder, M =3.00,
fa=3

Freure 5—Surface-pressure distributions for various bodies at

Me/fr=1 and a=0.
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expansion method (ref. 2). Distributions obtained with the
method of characteristies (refs. 11, 17, and 18), which are
considered to be exact, are also shown. It is apparent in
figure 5 that the present method provides an improvement
over the generalized method. The differences in the distri-
butions obtained with the present method and those obtained
with the method of characteristics are almost indiscernible.

In figure 5 (c), comparison is also made with the predic-
tions of the hypersonic small-disturbance theory (ref. 8).
The curve shown was calculated by three terms of a power
series representation of the pressure distribution. As noted
in reference 8, additional terms will be required before this
method will accurately predict the pressures on an ogive.
The small-disturbance theory does have a certain advantage
in simplicity for, if the coeflicients of the series expansion
arc known, the pressure distribution can be caleulated very
easily. This advantage is partially offset by the restriction
that the series method requires the body profile to have con-
tinutous derivatives up to the same order as the number of
terms used in the series.  With this restriction, the theory
cannot be applied bevond the nose-cvlinder juncture of the
body (fig. 5 (¢)).

To investigate the accuracy of the present method at
values of MM, /f, other than 1, the comparisons shown in

o Experiment (ref 3) Second -order

figure 6 have been made. Here, the predictions of the pres-
ent method and those of the generalized method are com-
pared with experimental results for fineness ratio 3 and 5
tangent ogives at Mach numbers of 3.00, 4.24, and 5.05.
The values of M, /f, range from 0.60 to 1.68. The experi-
mental results were taken from reference 3. For all cases
shown, the predictions of the present method are within the
accuracy of the experimental data. It is also apparent that
the predictions of the present method tend to approach
those of the generalized method as M./f, becomes appreci-
ably greater than 1. At M_/f,=1.68, for example, the pre-
dictions of the two methods differ only slightly.

In figure 6, comparison is also made with the second-order
potential theory (ref. 5) for conditions where this theory is
applicable (i. ¢, M./f,=0.60 and 0.85). It is somewhat
surprising that the present method is as accurate as the
second-order potential theory cven at the relatively low
value of M. /f, of 0.60.

The results presented in figures 5 and 6 indicate that the
present method fulfills its intended purpose by providing an
estimate of the pressures on noninelined bodies of revolution
for values of M,/f, near 1. At values of M_/f, as low as
0.60 the present method provides results comparable in
accuracy with those obtained with the second-order potential

— — — — Generalized — — Second-order potential

shock ~expansion method shock-exponsion method theory
J2 T I I
Mep=300 Myp=4.24 Mg=505
| )
\ Mm/)glz,eo S M /f,=85 <\ Mg/f,101
.08
\ N
Y \ \
N\
N\
N N
.04 Y R
N AN N
\\ N N
N

o SN

G
/
/

///

~ N ~
N
~ T
504 >
5
8
v 3
5 [ 1
2 10=300 My=4.24 M=505
— | |
a My /ty=1.68

My/ty7141 N

I AN AN

. T

\
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Station ,x/1,

6 8 1.0 0 .2 4 6 .8 1.0

FI1GUReE 6.—Surface-pressure distributions for noninclined tangent ogives.
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theory. At values of M. /f, approaching 2, the predictions
of the present method and those of the generalized shock-
expansion method differ only slightly. It remains now to
investigate the applications of the method to inclined bodies.

LIFTING BODIES

The experimental results obtained in the present tests are
given in tables I and IlI. Predictions of various theories
arc also tabulated. These include the predictions of the
present method (with various approximations), the general-
ized shock-expansion method (ref. 3), first-order potential
theory (refs. 6 and 19), Van Dyke’s hybrid potential theory
(ref. 6), and Newtonian impact theory (sce, ¢. g., ref. 20).
Solutions with the second-order potential theory employed
in the application of the hybrid theory were obtained with
the aid of reference 21. (Additional results obtained with
the first-order and hybrid potential theories and with
Newtonian impact theory may be found in reference 22.)
With the exception of the two potential theories, all theories
have been applied throughout the entire range of test
variables. The potential theories cannot be employed, of
course, if the free-stream Mach angle is less than the body
semivertex angle.

Normal-force derivative.——The experimentally determined
normal-force derivatives and the predictions of the various
theories for the bodies tested are shown in figures 7 (a)
through 7 (f). Curves for the first-order potential theory
are not shown in figure 7 sinee, in all except a few cases, the
predictions of this theory did not differ signifeantly from
those of the hybrid potential theory (see tables T and IT). In
general, the present method predicts the normal-force
derivatives at zero angle of attack essentially within the
accuracy of the data (within about +0.2 per radian) through-
out the entire range of test variables. In addition, the
present method appears to provide the most consistently
accurate results of all the theories presented in figure 7.
The accuracy of the method at low values of M./f, can be
explained partially by examination of the predictions of
the method for the limiting case of very slender bodies. In
this limit, it can be shown from cquations (7) and (9) that
the term, n, approaches infinity. From equation (19), then,
the loading, A, may be written

dr

A=2tan §=2 o (22)

dCy

=2 (see fig. 4). With the substitution of this

since
iter

equation In equation (14), there is obtained

dC dr) J‘ld‘ N
de A,;f(2 ””_A (23)

This result is, of course, the well-known prediction of slender-
body theory, which is known to be accurate for slender bodies
at low supersonic speeds. Thus, the accuracy of the present
method at low values of M_/f, can be attributed, in part,
to the fact that it reduces to slender-body theory in the
limit.

From the results given in figure 7, several observations
can be made concerning the accuracy of other theories. For
example, it might be expected that the potential theories
would be more accurate than the other theories when the

parameter vMo?—1 tan §, is appreciably less than 1.  For
the f,=7 cone at M.=3 (fig. 7 (a)), however, this parameter
is only 0.20, and yet, for the longer afterbodies, the hybrid
potential theory is appreciably more in error than the present
method.  As found in references 2 through 4, the generalized
shock-expansion method gives accurate results when M.(fis
greater than about 1. Caution should be expressed here,
however, for the significant parameter is truly M./f and not
Mo{f,. The results shown in figure 7 indicate that although
Mo [f, may be appreciably greater than 1, for cases where
the afterbody is sufficiently long to reduc, M./f below 1,
the predictions of the generalized method may depart
appreciably from the experimental results. In general.
impact theory gives acceptable results only for nose sections
without afterbodies.

Center of pressure.—The experimentally determined
centers of pressure and predictions of the various theories
for the bodies tested are presented in figure 8. The present
method predicts the location of the centers of pressure essen-
tially within the accuracy of the data (within about +£0.2
body diameters) throughout the entire range of test variables
In addition, the present method again provides the most
consistently accurate results of all the theories presented.
In general, all observations made previously regarding the
reliability with which the various theories predict the normal-
force derivatives can also be made in the case of the centers
of pressure.

Ranges of applicability. —Several parameters are useful
for defining the ranges of applicability of the various theories.
The ranges of these parameters covered by the present tests
are shown in the following table:

Parameter Range
Mo 3.00 to 6.28
‘ ! 3to17
1 In ' 3to7
la i Otol0
My lf ; 0.18 10 2.09
Mg 'fn 0.43 to 2.09
-\l';\»lxc;ii tan do 0.20 10 2.12

The second-order shock-expansion method was found to
be applicable throughout the ranges of variables shown in
the table. Both d(y/da and Z/d were predicted within
+0.2. The present tests did not reveal the limits of appli-
cability of the method. 1t was indicated, however, that
the method may apply to relatively low valuos of M_/f,
(or VM _?—1 tan é,), since, in the limit of very slender bodies,
the method reduces to tho well-known slender-body theory.
The upper limit of the method is dictated by the condition
specified in the development—namely, 7>0 (sce eq. (8)).
Calculations have revealed that this condition will be
violated if v M_*—1 tan §, is appreciably greater than 2.5.
It should also be noted that the application of the present
method to boattailed bodies presents a special problem
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Yo

since neither p. nor ‘
da |1

(8) and (20)). In practice, however, it has been found by
comparison with results given in reference 23 that the use of
Pe=p, and x|

¢ ® da Elcr
having moderate amounts of boattail.

The present tests also reaffirmed the conclusion given in
references 1 through 4, that the generalized shock-expansion
method is applicable when A _/f is greater than about 1.
At values of M_/f appreciably greater than 1, no significant
differences between the predictions of the generalized and
second-order methods were found. The ranges of applica-
bility of these two methods overlap and thus include most
flows about pointed bodies of revolution throughout the
intermediate- and high-supersonie speed ranges.

Application of the potential theories is, of course, limited
by the condition that yA_*—1 tan é, must be less than 1.
Even at the lowest values of vM_2—1 tan . covered by the
present tests, however, neither the first-order nor the hybrid
potential theory was found to provide consistently accurate
predictions of dCy/da or Z/d. The calculations performed
also revealed no significant differences in the predictions of
the two theories at values of A _?*—1 tan &, less than
about 0.7.

is defined in this case (see egs.

=2 gives reasonable results for bodies

Second - order

o Experimen! Ten-step solution
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APPROXIMATIONS OF THE PRESENT METHOD

As noted in the development of the present method, a
simplified solution for bodies with curved proiiles can be
obtained by the use of a two-step tangent body. This
approximation has been applied to the ogive-cylinders of the
present tests. By the use of additional approximations to
the loading, A, the simplified solutions for dCy/da and ¥/d
can be obtained in closed form as discussed in Appendix C.
Examples of the accuracy of the approximate solutions are
shown in figure 9. While the approximate methods do not
vield results so consistently accurate as those obtained with
a more complete solution, the approximate methods may still
be useful to obtain rapid estimates of dCy/da and Z/d. In
this connection, these quantities can be estimated for ogive-
cylinders in a few minutes with the aid of the results given in
Appendix C.

CONCLUSIONS

A second-order shock-expansion method applicable to
bodies of revolution near zero lift has been developed. For
noninelined bodies, the pressure distributions obtained with
the method were compared with existing experimental
results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of
pressure at zero angle of attack determined with the method

were compared with the predictions of other methods and

shock—expansion method:

— — — Approximate closed solution
of Appendix C.

—~— —— Two-step approximation

12 12 3
] T .
f_‘f Mg=300 1\ My=505
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Fieure 9.—Accuracy of approximate solutions for ogive-cylinders (a=0).
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with experimental results. Cone- and ogive-cylinders with
fineness ratios from 3 to 17 were tested at Mach numbers
from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose fineness ratio
(i. e., the ratio of free-stream Mach number to nose fineness
ratio) from 0.43 to 2.09. These comparisons led to the fol-
lowing conclusions:

1. For noninclined bodies, the present method predicts the
pressure distributions within the accuracy of experimental
results. At values of the Iypersonic similarity parameter
based on nose fineness ratio as low as 0.6, the present method
is as accurate as the second-order potential theory. At
values of the parameter approaching 2, the predictions of

the present method differ only slightly from those of the
generalized shock-expansion method.

2. For inclined bodies, the normal-force derivatives and
the locations of the center of pressure at zero angle of attack
predicted with the present method are in good agreement
with the experimental results throughout the entire range of
test variables. Within this range, the present method
vields results more consistently accurate than those of
other available theories.

AMes AEroNaUTICAL [LABORATORY
NATIONAL Apvisory COMMITTEE FOR AERONAUTICS
MorrerT Fikup, Cavrr., Oct. 12, 1955

APPENDIX A

POWER SERIES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has been demon-
strated by comparisons made over & wide range of flow
parameters. It is also informative, however, to examine
briefly the mathematical accuracy of the method. For this
purpose, the model shown in figure 10 is useful. From the
vertex to point 1, the body is conical. Between points 1 and
2, the surface is deflected by a small angle, e. At any point
downstream of point 1, the physical deviation of the body
from a conical surface may be given in terms of the angle, e,
and the distance, As, measured from point 1. Similarly,
flow parameters at any point downstream of point 1 may be
expressed in terms of e and As. Before developing such an
expression, it should be noted that for this model (and within
the restriction that the flow is everywhere supersonic), the
present method provides an exact solution for the surface
flow in several limits. For example, the present method is
exact for all values of As when e=0. For As=0 and As— o,
the method is exact for all values of e.  For arbitrary values
of As and ¢, of course, the present method is not exact.
However, the general accuracy of the method can be demon-
strated by expressing flow parameters in the form of a
Taylor series in the two independent variables, ¢ and As.
The dependent variable used to define the flow may be any
one of several parameters. Pressure and velocity are among
those most commonly used. In the present analysis, how-
ever, the Prandtl-Meyer angle, », is considered the dependent
variable. It should be recognized that the value of the
Prandtl-Meyer angle at a point will define the Mach number,

Ficure 10.—Model for order analysis.

pressure, veloecity, and other such parameters. We have

then the series
. o

v:vl+(g‘:)lm
s (52) o2 (o) ana+(32) @ J+
%[(gs) as) +3( o8 zaa> (As)%dﬂ(aa%a A
£ <e3>]+ an

Each of the derivatives is evaluated at As=e=0. When
e=0, it is apparent that the flow parameters are constant
along the surface and independent of s. Therefore, all
derivatives with respect to s alone are zero. When As=0,
it is also apparent that (0v»/08);=—1 and that all higher
derivatives with respect to & alone are zero. We have then
the problem of evaluating the cross derivatives. The
second-order cross derivative, (0%/ds 06), may be evaluated
with the aid of equation (B14), from which (dv/d¢), may be
determined ; namely,

Ov bp) —1 &
5&)2—77 (E)S 27‘]\]‘[0 *“1 sin 61

It is also apparent that

(or5)=ai(s2),
ds 5/, 6\ s

Hence, by virtue of equation (A2),

—sin 62> (A2)

(A3)

in the limit as 8,—4;.

—Cos 51

oA M—1 (44)

MzE—1 —
(%), (V3121 tan 8) 1]

As noted in Appendix B, equation (B14) is not an exact
solution for the pressure gradient since a term,

NP1 (op)d
208 us Js Ncos p\OC,/ b

was neglected in the derivation (see eq. (B11)).

In the
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present analysis, both 0p/0(; and the interval of integration,
(85—%4)/b (see fig. 11), are of order ¢; hence, the neglected term
is of order . Equation (A2) is accurate to the first order
in ¢, therefore, and equation (A4) is exact. With the sub-
stitution of equation (A4) in equation (A1), and with the
application of the other results previously noted, there is
obtained

cos &

)’1\“11 —1

[(\ M?—1 tan s )—1] (As) (o) +
0{(As)%(e),(A8) ()]

The generalized shock-expansion method of references 1
through 4 gives the result that y=» —e The generalized
method gives the Prandtl-Meyer angle mathematically
accurate to the first order of the independent variables e and
As and, therefore, immediately downstream of the corner,
gives a first-order solution for the surface flow. The present
method adds the coefficient of the term involving (As) (e) in
equation (A5) and, hence, gives the Prandtl-Meyer angle

v=y,—

(A5)

mathematically accurate to the second order of the independ-
ent variables ¢ and As. In general, therefore, immediately
downstream of the corner the present method gives a second-
order solution for the surface flow, and therefore, it has been
termed the second-order shock-expansion method.

The foregoing analysis considered only expanding flows
about the corner. If ¢ is positive, then the shock wave
emanating from the corner must be considered. The result
obtained is essentially the same, however. For positive ¢ a
term of 0(¢®) must be added to equation (A5) to account for
the difference between the Rankine-Hugoniot equations and
the Prandtl-Mever equations. Alternately, the term, —e,
in equation (A5) can be replaced with the change in Prandtl-
Meyer angle between points 1 and 2 as given by the Rankine-
Hugoniot equations. The second-order term in either case
is identical, however, as equation (A4) may also be obtained
by differentiating equation (B21). (It may also be obtained
by differentiation of the exact pressure-gradient equation,
eq. (B18))

APPENDIX B
EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY OF REVOLUTION

CONVEX CORNER
Along a streamline in axially symmetric flow the following
relation holds (see eq. (1))

op_ 06 1 op__ —\ sin g b;p )

08 o5 Tcos w204 cos g a(*+‘ (B1)
From this equation, we may also write
op_ op | 0 o
VA C TR (B2)
and
08 _sinpusind cosp Dp_x el (B3)

20 v A \ds T O

Consider now the flow in the region of a convex corner on a
body of revolution as shown in figure 11. Between points
4 and 5, we may write,

,r-Mach lines
o

Streamline ----- -

N,

Fictre 11.—Flow about a convex ecrner on a body of revelution,

from equation (B1)

AP s ey |1 0:0)
fm A (6:—b)= )\cos;u(b(’l ds

If points 4 and 5 are near to the surface, equation (B4) may

be approximated by
~(° DP)
—Bs—d)= f A Cos p (a(”l ds

(Bs)

(B4)

P2dp  ps—P2_ Pa—Pi_
. Ao N

Jpy

Since the flow between points 1 and 2 is strictly of the
Prandtl-Meyver type,

J " (%zvl—w:&)—él (86\
)
We may also write from equations (B2) and (B3)
5P P) st op ) ( )] '
Ao )\o <a ) b= [(a = 2 ¢ (B7)
P4_px:l OpYy _Cos I:(ap> — (9_‘?) ]
A] A| b('] 1a_ X] as 1 Al a'e 1 . (BS)

sin uosm 8 b COS o

S5 —62—{—( ) b=8,— - ™

>~

(3.0
| 08 2 z 0s 2_]

(B9)
(5G]

(B10)

. Pe)) N sm B sm 8y COS
64_‘61.*_(301)0/”6I r = A

When equations (B6) through (B10) are substituted into
equation (B5), there is obtained
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()]s

D(’l) ds (B11)

If it is assumed that a first approximation to the flow is
given by the generalized shock-expansion method, then the
right-hand member of equation (B11) may be neglected.
Equation (B11) may thus be written

op A\ N a\ . . . .
(a—s>2-—)\2 (—a—s>2—m [(5) SIN g, sIn §;—SIN y, Sin 62]—{—
o GGG ]
COS up <>\1> <b> I:(as 1 M s/, (B12)

In the limit as the streamline between points 4 and 5 ap-

proaches the surface, the ratio, a/b, may be evaluated in
terms of the one-dimensional area ratio

(sm 2
b sin g, SZZ

With the substitution of equation (B13) into (B12), there is
obtained after combination of terms

(gi) (gz) B2 (—— sin §,—sin 62>-|—
B, @ 92) _ 95_)]
Bl ()] @

2 098,& [(ap) —a (Dé)] p2 COS [(91?)
2 s 2 )1 os 1

SIN py sin 8. b— sin u; sin 61
r r

)\LOSu

(B13)

where
__ypM?
B=sar=1 (B15)
and, of course
2y
(r+1)
. 1+ 4|ty
(B17)

e
2

Equation (B14) represents only an approximate evalua-
tion of the pressure gradient. More exact evaluations may
be found in references 10 and 24. These more exact results,
of course, require numerical or graphical integration.

CONCAVE CORNER

In most cases, the tangent bodies used in the application
of the present method will have convex corners. There is
a possibility that concave corners may be encountered.
In the event that the original body does not have sharp
concave corners, equation (B14) will still suffice since the
flow along the surface is still isentropic. However, if the
original body does have sharp concave corners, then the
pressure gradient for this case will also be required. This
result can be obtained in the same way as equation (B14);
however, the shock wave emanating from the_corner must
be considered after the manner described in reference 9.
The expression defining the pressure gradient in this case is

AT It 00} (@), {2 (o e}

op .
6‘5)0 [Sln (0’

8,) sin §,—sin (e—85,) sin 6d]+<ap> { <g§> [gz%d%;f—“)]-l—( F) cos (6—34, )}—

Pa__ sin (0—34,) op . F % . . B
> {(p >[ tan 5, :I (b cos (o 6u)} +(1+%Mu2)yzl(an>usm (6—8,) (B18)
where
(Dp) (7_'_1) p.M,2 sin (6—38,) cos (6—8§,) B19)
06 [ sin (6—84) cos (e— 6d)+< ) cos? (6—8,) :I
sin (¢—3§,) cos (c—& Y+1/ M2 sin? (6—3,)
and
4 Y—1 5.,\ .
F:(m>(1+7 Mu ) Sin ((7—5")
[(v+1) tan (8,—3,) cos (¢—35,) —sin (¢—86,)] M,2 sin? (¢—35,) +sin (¢—35,) (B20)
14-[1—2 sin? (¢—4,) +2 tan (6,—8,) sin (¢—35,) cos (¢—8,)] M 2 sin? (¢—3,)

In these equations, o is the shock-wave angle with respect to
the body axis, and (dp,/On), is the variation of the total
pressure normal to the surface just upstream of the shock
wave. The subscript, u, refers to conditions upstream of
the shock wave, and the subscript, d, refers to conditions
downstream. Equation (B18) represents the exact solution

in the usual sense. All effects of the interaction between
shock waves and Mach waves are therefore included. In
order to be consistent with other parts of this analysis,
these effects should be neglected. In addition, since equa-
tion (B18) is intended for application to a tangent body, the
body curvatures, (08/3s), and (08/0s)y, will be zero. Tt
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may also be noted that the first step of the tangent body is
a cone tangent to the vertex of the original body. For this
approximation then, there will be a small layer near the
surface of the tangent body for which (0p,/on)=0. With
these approximations applied to equation (B18), a simplified
result can be obtained which will suffice for the present
purposes.

bp) [ tan uy
(bs Ttan(e—6,) r

ZB,, [sin (6—6,)sin &
sin (o —84)

¥ Siﬂ 6d]+

91)) [ B, sin(e—3é,) + F)cos(a—a,,) tan pg
s/ B, sin(e—5y) sin(o—4§,)
For a body with a concave corner, a special form must

also be used for the loading. Just downstream of the corner
and before the first convex corner
( F)B 1A u

(B21)

(B22)

and, thereafter,

d(’N

A=(l—e ") tané do

+0 ‘"Al—{—( %%) GA, (B23)

where

_ [M,2sin? (¢—8,)—1]2
—(Pd/Pa){[('Y—l)Mfsin2 (6—6,) +2]M 2sin? (o — ﬁu)} (B24)

The corresponding equations for open-nosed bodies of
revolution are similar. The pressure gradient at the leading
edge may be determined from equation (B21) with M,=M.,
8,=0, and (p/ds),=0. The loading on the exterior surface
is given by

A=(l—e™") tan @5

dex +)‘ze‘"A1 Ps

A P

_&&>
) T (B25)

where A, is the loading at the leading edge, or

4 sin ¢, CO8S o,

dCy
A= —

sin {g,—

8,) cos (o,—

(B26)

A=(1—e™") tan 5_#
(y+1) l:l—

and J is defined by

J (M ? sin? g,—1)?
T (p/pIM P sin® o [(Y— 1M, ? sin? 0,4-2]

For bodies with concave corners, and for open-nosed

(B27)

sin a, COS a,

L ]

bodies, the total pressure is not constant on the surface
when the bodies are inclined. This variation in surface
total pressure leads to the term involving A, in equation
(B23) and the term involving A, in equation (B25).

APPENDIX C
EXTENSIONS OF THE APPROXIMATE METHOD

This analysis is based on the approximate or two-step
method previously mentioned. The basic equations of this
method are equations (11), (12), (13), and (20). Before
proceeding with this analysis, it is convenient to write down
the expressions for the function g8 (see eq. (12)) for several
types of bodies. These expressions are presented in the
following table:

EXPRESSIONS FOR 8

Body For nose section For eylindrieal afterbody
Z $in 8,~r o8 3 . z
Any body S eoss—zsmnd 2fq sin &(E) —COS 8,

(1)

Cone-cylinder (Not required)

Ji+ar
Tangent-ogive- L 1+4‘N(2i}£_1)
cylinder — R
3 T
Tangent-paraboloid \/f"’+(1—l£) fn(2 K_l>
cylinder T VTat

In general, the equations for the normal-force and pitching-
moment derivatives may be integrated in two parts—one
part for the nose section and one for the afterbody. Thus,
with the loading defined by equation (20)

QC}E—%C’V}Y +Gle‘02fn(l_.e—02fn) (Cl)
O |nose
ac, dC, q
E=—d_¢;— nose—-ﬁi e~ Grh [(1 +G2fN)_(1 +G2fn+G2fa)e_G2f"]
(C2)
where
2 Pysin2u dCy| .
T eC0s 8, P, SN 2, da e eraces B C3)
and
(,=2y,sin §, ‘ (Cq)

The additional subscript, @, refers to functions evaluated
for the afterbody (i. e., §=0). Thus, from equation (13),

V(Pi,/P) M, Q,
2(1_1’:,,/1%)(@ sag_ 1) qu

‘l’a = (C 5)

The terms G, and @, are functions of M., and §, alone.
These functions have been evaluated and the results are
shown in figure 12,
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When equation (C6) is substituted in equations (14) and (21),
equations are obtained in closed form for dCy/da and
dC,/da. These equations involve constants which are com-
plicated functions of the nose angle 3, (or nose fineness ratio
fa). These functions can be expanded in a series in terms of
8,; the leading terms of these series are constants independent

of 5,. In view of the approximate nature of this analysis,
the use of the leading terms will suffice, Thus there is ob-
tained
A _T g 8 iy
da g~ 15 O 15 UH4GD () ) (€9
1d0) 4 g 4 (40
fn do ogtz'e— 15 G4 15 do ter (CIO)

To the accuracy of this analysis, these equations also repre-
sent the solutions for a tangent paraboloid. These equa-
tions have been evaluated for a range of Mach numbers
and nose fineness ratios. The results are presented in figure
13. It is apparent that with the aid of equations (C1), (C2),
(C9), (C10), and figures 12 and 13, dCy/da and dC,/da for
ogive-cylinders can be evaluated approximately in a few
minutes.

2.3

22 4

o]
R
I~
I
N

Semivertex ungle,SV,deg

(a) Function, G,
(b} Function, G,

Ficure 12.—Curves defining functions &; and G. (Appendix C).

For the special case of cone-cylinders, equations (C1) and
(C2) represent a closed solution of the general method as
well.

By the use of an additional approximation to A, results
in closed form can also be obtained for ogival nose sections.
Such an approximatjon is

AN -b\

N

5 6

7

10

4 [(1—G3) dCy —G{I (tan 8)?
A=G@; tan §, (ﬁ)uﬁ& tan s+ ta’;” 5,
(Co)
where
_Ps, sin 24, -y,
@s= P, sin 2#,ae €D
and
G=2(1—¢ %) (C8)

Nose fineness ratio, 7,

Fictre 13.—Curves defining normal-force and pitching-moment
derivatives for tangent ogives as predicted by approximate closed
solution of Appendix C.
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TABLE .—_NORMAL-FORCE DERIVATIVES AT ZERO ANGLE OF ATTACK

First- Van Second- | General- | New- Ficst- | Van Second-order shock- | Gener-
Nose order Dyke order ized tonian | Experi- order { Dyke expansion method alized
shape Mo | fa |potential | hybrid shock- shock- impact ment poten- | hybrid shock- | New-
theory | potential |expansion expansion| theory Nose Mo |/, tlal | poten- expan- | tonian | Experi-
theory | method | method shape theory | tial Ten- | Two- | Ap- | sion |impact| ment
R theory | step step | pen- /method| theory
solution| spprox-|dix C
Cone, [3.00| 0 | 197 1.68 191 1.91 1.99 1.07 imation
fa=T - 2 2.49 2.49 2.47 275 | .. 2,52 -
. 4 2. 50 2. 50 2.70 3.59 2,69 Ogive, |3.00| 0| 2.53 2.53 2.39 216 | 2.23 | 3.67 1.97 2.51
. 6 2,38 2,39 2.80 4.43 | ... 2.78 Sa=7 -- 2 265 2.65 2.72 2,35 | 2.42| 4.94 - 2,72
B 8 230 2 29 284 528 | | - | 4 257 | 257 | 28 | 243 | 260 622 | ... | 284
. 10 2 25 2.95 2.86 6.12 | __.___ 2, 84 . 6] 246 2.46 291 2.46 | 253 | 7.49 R 2.84
- 8 2. 42 2,42 2.94 2.48 2. 54 8.76 ——- [
2 0 1w 1.86 1.89 L.88 1.69 183 - {0] 240 | 240 | 204 | 248 [255) 1008 | ... | 285
- 2 2. 53 2. 54 2.44 264 | ... 2.38
- 4 2 74 2.74 2.73 3.30 2,68 424 0| 2.64 2.64 2.40 220 {225) 3.29 1,97 2,40
. 6 271 2.72 2.88 414 | _..__. 2.86 - 2, 2.906 2.97 2.77 245 | 251 | 4.34 [ 2.64
- 8 2.62 2 62 2.96 488 | ...\ _____. - 4 3.02 3.02 2.95 2.58 | 2.64| 539 - 2.92
.. 10 253 2.53 3.00 564 | .. 2 85 -- 6] 295 2.95 3.04 2.65 | 271 | 6.44 aeea 3
- 8 2.86 2.87 3.09 2.689 2.75 7.49 ——-- .
5051 0] 192 1.95 1.88 1.88 1.99 L9t - Jwo| 27 | 28 [ 311 | 271 (277 | 854 | __ | an
- 2 2.53 2.54 2.41 258 | ... 2.35
- 4 2.81 2.82 2.72 3.33 2.65 506, 0| 267 2.7 2.38 2.23 | 2.24| 3.08 1.97 2,20
- 6 2.88 2.89 2,89 305 | ... 2.86 .- 2 3.06 3.07 2.7 2.62 | 253 4.01 - 2,68
. 8 2.84 2.84 2,99 4.67 | ...t .. - 4! 3.19 3.20 2,99 260 | 270 | 494 ———- 2,86
. 10 2.75 2.76 3.05 535 | ... 3.06 - 6] 3.18 3.19 3.1 2,79 | 2,81 | 5.87 c—-- 2.4
.- 8] 3.11 3.12 3.17 285 | 287 6.8 - R
6% 0 188 164 1.88 1.88 1.9 1.02 - 110 302 | 302 | 32 | 288 J260| 773 | ... | 302
- 2 2,49 2.53 2.38 251 | .. 2.31
. 4 2.86 2.88 2. 68 3.14 | ... 2.58 628 0 265 2.65 2.35 224 | 218 281 1.97 2.23
- 6 3.08 3.06 2.89 378 | ... 2.81 - 2| 313 3.10 2.73 2.54 {248 3.59 - 2.58
.. 8 3.07 3.10 3.00 441 | ______ 1 .. -- 4] 3.41 3.34 2.95 2.73 | 2,67 4.37 R 2.83
.- 10 3.04 3.07 3.08 504 | ... .. 2.99 - 6| 3.% 3.43 3.09 2.8 | 280 | 515 U 2.96
_ - - 8| 3.49 3.43 3.17 2.94 | 2.8 5903 o .—
Cone, 3.00 0 1.95 1.96 1.88 1.88 1.98 1.83 -~ (10} 3.43 3.38 3.21 299 | 2903 6.7 3.4
% - Z ;: gf ;' :’g ‘;’i gg ;: g:; o 2:22 Oglve, |3.00| 0| 266 | 265 | 2.35 215 (222 3.22 1.95 2.47
N 6 2.58 2 59 3.02 502 | .. 2.90 Ja=5 . 2| 2.08 2.97 2.84 248 [ 255! 4.68 —— 2.75
B 8 246 2.48 3.08 608 | ... | . 4| 292 2.91 3.06 2,61 2.68 | 6.13 R 2,95
. 10 2.41 2 42 3.10 712 3.0t - 6] 2.80 2.79 3.15 2.67 2.74 7.58 ———- 3.01
- 8 2.72 271 3.19 2.69 2.76 9.03 o .
4.24 0 1.9 1.95 1.87 1.87 1.98 1.82 - 10 2.69 2.68 3.20 2.70 2.77 | 10.48 .- 3.06
. 2 2,68 2.70 2.54 277 | ool 2. 46
B 4 2,08 2 99 2.01 3.68 | ... 2.84 4.24 0 2.69 2. ﬁ? 2.30 2.16 2.16 | 2.84 1.85 2.35
. 6 3.00 3.02 3.11 4,58 3.01 - 2| 3.28 3.23 2.80 2.54 2.54 3.08 R 2.76
B 8 292 2.03 3.92 540 | | .. .- 4| 3.4 3.38 3.06 274 | 2.74| 512 - 2. 96
B 10 281 2.82 3.27 6.9 | .. 3.91 - 6| 3.41 3.36 3.19 2,84 |28 625 R 3.01
- 8 3.32 3.26 3.25 2.90 2. 90 7.38 - .
5.05 0 1.86 1.95 1.87 1.87 1.91 . 10 3.22 3.16 3.28 2,93 2.92 8.52 [ 3.18
.- 2 2.66 2.70 2. 51 2.69 2.48
. 4 3.06 3.09 290 3.52 2,80 506 0 o ——— 227 2.15 2.10 2.63 1.95 2.18
| 6 am 3.21 3.13 434 3.2 = | Bp e | s | 277 0 253 ) 248 361 ) L. | 2.66
s 38 3.19 3.2 516 | eees | o S B B B L I B T I A
I T 3.10 3.35 X 3.26 ] 8 e e | 810 280 P24 556 | 32
- 8 - - 3.28 2.96 [ 291 6. 54 [ .
6.28 0 1..80 1.96 1.88 1.88 1.98 1.83 - 10 R eem 3.32 3.01 2.96 7.51 R 3.2
.- 2 2.59 2. 69 2.46 2.60 2.49
B 4 3.09 3.16 284 3.32 2.72 6.281 o .. R 2.23 2,11 1.09 | 2.37 1.95 2.12
B 6 3.34 3.40 3.08 404 2,08 .- 2] ... - 2.70 2,47 1236 3.16 I 2.57
B 8 344 3. 50 324 e || .- 41 ... ——— 2.97 2.7 2.50 | 3.%4 R 2.78
B 10 3.43 3. 50 3.33 5.49 | ... 3. 22 - 6| --.. - 3.13 2.8 | 274 4.73 - 3.01
- 8 . JR— 3.23 295 | 2.8 5. 52 R .
Cone, [300| o0 | 188 1.9 1.83 1.83 1.95 1.86 = (2O em - |82 ) 301 (289 630 | ... | 3.3t
n=3 | 2] 297 2.9 2.74 318 | .. 2.72 ogive, |3.00| 0| ... | ... | 210 | 206 |1.00| 250 | 186 | 298
- 4 3.16 3.18 3.13 4.4 | ... 3.15 =3 . 2| ... . 2. 87 2,60 | 25| 4.06 . 2.98
- | & 30 3.0 3.2 58 3.2 o 4] sy 0| 313 | 282 | 275 5683 | ... | 325
-- 81 2% .91 3.36 L e | 8] o b oo | 828 | 292 |284| 710 | ... | 32
. 10 2.82 2.84 3.40 860 | _..____ 3.37 N 8| ... o 3.27 2.96 |28 | 876 . o
424 0 1.78 .99 1.85 1.85 1.83 - [0 o) o) 328 | 297 [280)10.32 | ___. | 3.32
- 2| 2m 3.04 2.66 2.94 2.55 424 0 o | .. 210 | 1e8 |18 216 | 1.8 | 200
~ | 4| 34 3.53 .10 4.04 a.12 e b2 een | s | 276 | 246 | 231 38 | ... | 28
- | 8] 3.8 3.65 3.33 S14 iz o | 4] o | o | 308 | 270 |2 440 | . | 31
- | 8 3a 3.58 3.45 8B | e | 8] ceo | aeo. | 324 | 283 |268| 5853 | ... | 3.2
. 10 3.40 3.47 3.52 7.33 | ... 3.45 . 8 o . 3.32 2.89 2,74 6.65 L L
505 0 1.7 2,05 1.86 1.86 1,95 1.88 ORI I 3.36 | 2282 278 7.77 | ... 3.34
- i ;-g g-gg ; g‘ﬁ : ?; ------ g f: 506 of oo .o | Les | 188 |L7| 197 | 18 | 20
- ' . e ' . . 2| ---- . 2. 59 282 |217| 29 .- 2.66
- 8 3.72 3.0 3.31 4.7 | ... 3.4 B e . 290 255 | 241 3.82 o 2,08
- 8 3.82 3.96 3.46 570 | .. . N 6l L 3.05 268 | 253 474 3.16
- 10 3.76 3.90 3.55 6.66 | ____.. 3.63 B gl .. o 3.13 2.75 | 2.60 | 567 o .
6. 28 o | ... | ... 1.88 1.88 1.88 PO IS U0 3N I IO 3.17 2.79 | 264 6.59 - 3.38
T B B 2.5 2.67 2.58 62| 0| ..o | .} L | n72 [165| 177 | 18 | Ls3
- Al e e 2.95 3.46 2.87 b2 el | 282 | 206 [1.09] 250 | ... | 24
S R e 3.2 4.25 3.19 | el o) o 268 | 22 |218( 322 | ... | 2.8
R N BTSN P EEPES 3.40 N e S o 1 8] coee | eeee | 270 | 286 |220) 394 | .. | 267
T B L I [N 3.52 588 | oo a3 | 8 e | | 2w | 242 | 235 a67 | . | ..
- 10 ... ——— 2.80 2.45 [2.38| 5.39 ———- 2,80
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TABLE II.—CENTERS OF PRESSURE AT ZERO ANGLE OF ATTACK

; [ — 1
Ficst- Van Second- | General- | New- Van Second-order shock- | Gener-
Nose order Dyke order ized tonian Experi- First- | Dyke expansion method alized
shape Mw | fa |potential; hybrid shock- shock- impact ment Nose order {hybrid| | shock-| New-
theory | potential |expansion cxpansion theory shape Mo | fa | poten- | poten- expan- | tonian | Experi-
theory | method | method tial tial Ten- | Two- | Ap- | sion |impact| ment
o theory | theory | step step | pen- method| theory
solution| approx-dix C
Cone, |3.00| 0 | 46 467 4.67 4.67 1.67 4.75 imation
a=7 . 2 5.32 5.34 5.39 5690 | ... 5. 56 - -
. 4 5 34 5.32 5.7 670 | ... 563 Oglve, 3.00 0] 3.69 3.66 3.73 3.59 3.58 4.17 3.17 3.7%
N 6 5.00 5. 00 5.99 7.70 5.85 fo=7 - 2 3.85 3.82 4.23 3.93 3.91 5.16 - 4.12
) s | 4 163 611 o T o 4] 3e2 | 359 | 450 | 412 |420| 615 | | 432
. 10 4.42 4.41 617 0712 | ... ... 6.32 . [ 3.2 3.26 4.63 4.23 4.21 7.14 4. 40
- 8 3.04 3.00 4.70 4.28 4.26 814 I .
4241 0 4.67 4.67 4.67 4.67 4.61 |10 2007 | 203 | 474 | 4.3t {420 914 | ... | 4.5
. 2 5. 41 5. 41 5.40 5. 61 5. 55
. 4 5.72 572 5.88 6. 59 A 6. 00 4.24 0 3.80 3.76 3.7 3.66 3.63 4.11 3.17 3.7
- P 5.60 5.68 6. 20 757 6. 40 . 21 4.26 4.21 4.30 4.10 4.06 5,06 - 4.08
B ] 538 5.38 6. 40 855 | ... o .- 4] 4H 4.29 4.65 4.40 1 4.35) 6.02 - 4.76
10 5.00 500 6. 53 9. 55 . 6.39 . 6 4.2 4.15 4.87 4. 60 4.55 6.99 U 4.98
. 8 3.86 3.80 5.00 4.73 4.68 7.97 e
5.05 0 4.67 4.67 4.67 4.67 4.71 R 10| 3.53 3.48 5.08 4.81 4.76 | B.96 . 516
- 2 5.46 5. 44 5.39 5.57 5.45
B 4 592 5.89 5.80 6. 40 5. 86 5050 0] 3.8 3.77 3.7 3.66 [3.64 | 404 3.17 3.7
o 6 6.04 .00 6.25 7.53 6. 28 - 2 4.40 4.31 4.34 4.15 4.13 4. 96 I 4.32
B 8 501 5.87 8.51 845 | ... - 4 4.61 4.53 4.73 4.52 4. 50 5.91 - 4. 86
} 10 5. 62 558 6 60 9.48 o 6. 55 .- 6] 4.57 4. 48 5.01 4.79 4.76 6. 87 - 5.10
- 8 4.34 4.26 5.19 4.98 4.96 7.85 -
6 28 0 4.67 4.67 4.67 4. 67 4.67 4.74 . 10| 4.04 3.95 5.31 512 | 500 883 5.23
- 2 5.46 5.42 5.35 5. 50 5. 40 i
- 4 8.04 5.98 5.88 6.41 | ... 5. 80 6.28 0 3.88 3.74 3.72 3. 64 3.62 3.97 3.17 3.65
B 6 | 638 6.30 6.29 735 | ... 6.31 ] 2| 450 | 437 | 431 | 414 |414] 485 | ... | 420
T g ! s 6. 40 650 83 | ... 4] 48 | 474 | 474 | 455 (455| BTT | ... | 470
Tl 64 6,32 681 o2 | . 6.74 .| 6] 505 | 4904 | 505 | 488 |48 671 | ... | 510
_ I R . - e .l 8| 503 | 492 | 527 | 513 | 515 7.67 | .. | ----
Cone, |300] O | 333 3.33 3.3 3.33 3.33 3.35 - (10| 48 | 474 ) 542 | 532 |5.34) 864 | oo 5.58
fp=b o0 i : g 2 3‘; : gg ; o : 2‘; oOgive, |3.00| 0| 260 | 268 | 268 | 260 260 281 | 230 | 270
. 6 3’ 3 3' 75 4' 66 6' s | 4’ 53 =5 - 2! 3.00 3.00 3.42 3.03 3.01 3.87 PO 3.02
. ) - y - - - 4 2.88 2.88 3.55 3.28 3.26 4.85 3.35
- 13 ‘; ﬁs Z ?3 :‘;’;2 ;;i ----- e |6l 266 | 256 | 373 | 342 |330] 5.8 | . | 350
e . . ! : ) - 8 2.30 2.29 3.83 3.49 3.46 6.82 R
4.24 0 3.33 3.33 3.33 3.33 3.33 3.26 - 10| 216 2.156 3.88 3.53 | 3.50 7.82 . 3.76
-- ':’ ‘:'i‘i ::’i’ : ‘;{‘) ‘;' ﬂ - ‘: 23 4241 0| 274 | 266 | 266 | 250 {259] 28 | 230 | 270
o 6 4‘ © 4'41 485 6' 10 408 2 3.28 3.2 3.24 3.08 3.08 3.74 315
- . . . . 4 3.48 3.43 3.62 3.42 3.43 4.68 . 3.50
R A 4.16 5.08 L L e 61 339 | 3.3¢ | 387 | 366 367 565 | .. | 375
-0 3 3.8 5.2 8.06 | ..o 5.30 08! a1z | 306 | 408 | 38 [382| 663 | .o | ..o
5. 06 0 3.33 3.33 3.33 3.33 3.33 3.38 .- 10| 2.76 2.70 4.13 3.02 | 392 7.61 4.09
- 2 | 410 4.04 4.00 415 3.99 5050 00 ... | ... | 26 | 258 |257) 27 | 230 | 270
4 4.59 4.52 4,62 506 | ..._-. 4. 54 ) 2 o o 3.93 3.08 3.09 3.66 3.20
- | 8| 480 4.72 4.92 6.00 5.08 R VO N 365 | 348 [3.49| 458 | | 373
- 8 4.74 4.65 5.21 6.95 S I .
10 4.48 4.42 5.43 7.92 5.25 -8 8 8.77 | 878 5.5 e
- . y . e T © . 8 4. 15 3. 98 3.99 6. 50 - I
6. 28 0 3.33 3.33 3.33 3.33 3.33 3.25 - 10 - —.-- 1. 4.12 414 7.47 4.06
- 2 4B 4.04 3.95 1.07 4.12 6281 0| .. | .. | 262 | 255 |25 | 272 | 230 | 262
S T B T T I B 4.48 B S R R 310 | 305 [306) 350 | ... | 313
- g gg 2‘:3 ‘;‘; 2-:‘; 4.95 el o se2 | 347 1340 4 I Y
o . y . MBS B - 6 - 3. 3.80 3.85 5.36 R 4.00
L ; 10 529 5.14 5.52 7.7 | .- 5.32 - 8 o o 4.9 4.06 412 6.30 B L
Core, 30| 0 2.00 2.00 2.00 2.00 2.00 2.08 Sl Wt Ml M 4% (438 7% ) oo | 4R
n=3 - 2 2.67 2.63 2.62 2.8 | ... 2.70 Ogive, 3.00 0 R 1. 59 1.56 1.56 1.70 1.35 1.65
. 4 2.85 2.80 3.02 379 | 3.10 =3 . 2| .- 2.12 203 1204 2.59 2.12
o [ 2.61 2.57 327 4.76 | ... 3.10 _ 4 L L 2.43 234 | 235 | 3.53 . 2.45
-- 8 225 2.20 3. 40 5.74 [ - 6] .- 2.60 252 |2.54 | 451 2.49
- 10 2.00 1.96 3.48 6.72 | _.__.. 3.51 - 8 R R 2. 68 2.62 2.64 5. 49 R
4240 0| 200 2.00 2.00 2.00 2.00 2.19 |0} ) e | 278 ) 267 2680 647 .. ) 2680
.- 2 2.74 2.65 2.58 27 1 - 2.68 4.24 0 - I 1. 56 1.52 1.52 1.61 1.35 1. 58
. 4 3.20 3.08 3.05 3.63 | ... 3.18 . 2 R 211 1.08 2.01 2.43 N 2.17
- 6 334 3.26 3.38 4.56 | ... 3.35 . 4 e 2.51 234 1238 334 - 2.44
. 8 323 312 3.61 552 | ...} .- - 6| ... R 2.76 258 {2.64| 4.28 . 2.75
- 10 2.94 2.84 3.77 6.49 | ... 3.82 . 8 L R 2.93 2.74 2.80 5.24 I -
5.05 0 2.00 2.00 2.00 200 2.10 - 10 - 3.03 2.84 2.91 6.22 3.12
- 2 2.77 2. 65 2.55 2.68 2.52 5.05 0 . - 1.55 1.51 1.48 1.58 1.35 1.47
- 4 3.35 3.19 3.02 3.52 3.2 . 2 - 2.26 1.96 | 1.97 | 235 e 2.25
- (] 3.67 3.50 3.42 4.43 3.37 .- 4 R I 279 2.32 2.35 323 S 2.75
- 8 3.74 3. 56 an 537 | e | aioo- - 6 e P 3.19 2.59 2.63 4.16 P 3.15
. 10 3.58 3.43 3.82 6.33 3.8 - 8 - 3.49 2,77 28| 511 PR R
.28 0 2,00 2.00 203 - 10 o R 3.73 200 | 266 | 6.08 - 3.60
- 2 2.49 2.59 2.52 6.28| 0 - U 1. 52 1.50 | 1.45| 1.53 1.35 1.53
-- 4 2.98 3.37 3.16 e 2] .. - 2.08 1.90 | 1.88 ) 2.25 R 2.10
- 6 3.40 4.23 3.50 - 4 [ R 2.45 2.24 2.2 3.09 - 2.45
- 8 3.7 513 | aeen ] eeeee- - [ 3 S ————- 27 249 | 240 3.9 - 2.66
. 10 | cooen | aemaes 3.08 6.07 3.77 o 8 R ——— 2.87 2.67 | 2.67] 4.92 . U
- 10 ——- R 2.98 2.79 1281 587 — 3.05
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Positive directions of axes and angles (forces and moments) are shown by arrows
Axia Moment about axis Angle Velocities
Force -
ipara!lt)al 1‘ Linear
. : Sym- | 'O 8XI8 . : Sym- Positive Designa- |Sym-| (compo- |
Designation boi | symbol | Designation | "p 1" | girection tion | bol |nent alongl Angular
axis) i
e S E—
Longitudinal________ X X Rolling_______ L Y—2Z Roll _ r e | u foop
Lateral .. . ___. ______ Y Y Pitching .. _. M Z—X Piteh ... _. g v q
Normal SRR B 1 zZ Yawing. __.___ N X—Y Yaw. .. v o w r
L.
Absolute coefficients of moment Angle of set of control surface (relative to neutral
A N position), 5. (Indicate surface by proper subscript.)
=& 0m=" =
S " geS gbS
(rolling) (pitching) (yawing)
4. PROPELLER SYMBOLS
D Diameter . P
.. lu flicien =
p Geometric pitch P Power, absolute coefficient Cp poy )
p/D  Pitch ratio I %
v’ Inflow velocity C, Speed-power coefficient = Pt
Vv, Slipstream velocity T " Efficiency
T Thrust, absolute coefficient 07:;';!;2ﬁ n Revolutions per second, rps
. . 1%
) Q Effective helix angle=tan™! ,2,,,“)
Q Torque, absolute coeflicient Co=—; xri

i DP

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=550 ft-lb/sec
1 metric horsepower=0.9863 hp

1 mph=0.4470 mps

1 mps=2.2369 mph

11b=0.4536 kg
1 kg=2.2046 1b
1 mi=1,609.35 m=5,280 {t
1 m=3.2808 ft
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