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A SECOND-ORDER SHOCK-EXPANSION METHOD APPLICABLE TO BODIES OF REVOLUTION

NEAR ZERO LIFT l

By CLARENCE ._. SYVERTSON alld DAVID II. DENNI,q

SUMMARY

A second-order shock-e_msion method applicable to bodies

of revolution near zero lift os de_'.eloped. Expressions defining

the pressures on noninclined bodie_" __e derived by the use of

characteristics theory in combination with properties of the flovf

predicted by the generalized shock-expanSion method. This
result is extended to inclined bodies to obtain _pressions for the

normal-force and pitching-moment derivatives at zero, angle oJ

attack. The method is intended for application u_der c'_ndi-
tions between the ranges of applicability of the second-order

potential theory and the generalized shock-expansion method--

namely, when the ratio of free-stream _Iach number to nose

fineness ratio is in the neighborhood oJ I.

For noninclined bodies, the pressure distributions predicted

by the second-order shock-expansion method are compared with

existing experimental results and with predictions of other

theories. For inclined bodies, the normal-force deri_utives and

locations of the center of pressure at zero angle of attack pre-
dieted by the method are compared with experimental results for

Mach numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3

cones and ta'nge_t ogives were tested alone and with cylindrical

aflerbodies up to 10 diameters long. In general, the predic-

tions of the present method are found to be in good agreement

with the experimental results. For noninclined bodies, pressure

distributions predicted with the method are in good agreement

with existing experimental results and with distributions ob-

tained with the method of characteristics. For inclined bodies,
the normal-force derivatiC/es per radian (for normal-force

coejq_cients referenced to body base area) are predicted within

+0.2 and the locations of the center of pressure are predicted

within -4-0.2 body diameters. On the basis of these results, the

second-order shock-expansion method appears applicable for

values of the ratio of free-stream Mach number to nose fineness

ratio from 0.4 to 2.

INTRODUCTION

The flow about bodies traveling at high supersonic speeds

was investigated by Eggers and Savin (ref. 1). They found

that under specified conditions such flows could be consid-

ered as locally two-dimensional and could be treated by a

generalized shock-expansion method. This method has

been applied to nonlifting and lifting bodies of revolution in

references 1 through 4. It was found that the generalized
shock-expansion method accurately predicted the flow about

pointed bodies of revolution when the hypersonic similarity

parameter (ratio of _'Iach number to body fineness ratio)

was greater than about 1. This method is, therefore, par-
ticularly useful in the treatment of flows about bodies travel-

ing at relatively large Mach numbers. At lower speeds, the

second-order potential theory of Van Dyke (ref. 5) has been

widely used. (See, also, his hybrid tb.eor)' for _4ightly in-
_c'im_'bo_s, ref. 6.) The ag,;),:,,:ation of this t_l_O:L=_ to

bodies traveling at 'l_.rge _ach numbers is often limited,

however, by the restriction that the maximum slope of the

body must be somewhat less than the slope of a free-stream
Mach line.

The ranges of applicability of the generalized shock-

expansion method and the second-order potential theory do

not always overlap, and there remain, therefore, flows at.
certain combinations of Mach number and body shape which

cannot be treated by either theory. Normally, these in-

termediate flows are encountered when the hypersonic

similarity parameter based on nose fineness ratio is in the

neighborhood of 1. Since this is a range oi practical inter-

est, additional theoretical methods are needed. Some of

this need has been fulfilled by the hypersonic small-dis-

turbance theory (refs. 7 and 8). In its present state of
development, however, this theory has application only to
limited classes of noninclined bodies of revolution. For

example, due to the series form used to represent the pressure

distribution, it cannot be applied to the nose-cylinder

combinations commonly employed for missile bodies. In

large part, then, the need for a theory applicable at values of

the hypersonic similarity parameter near 1 still remains.

The present report develops a theory intended to fulfill
this need. It is developed by an iteration procedure which

employs the generalized method of references 1 through 4 as

the first approximation. This theory is therefore called a

second-order shock-expansion method. Expressions are

derived which define the pressures on noninclined bodies of

revolution. Expressions are also obtained for the normal-

force and pitching-moment derivatives at zero angle of

attack. Predictions of the method are compared with those

of other theories and with experimento.] results.

t ttupersedes NACA TN 3527 by Clarence A. Syvertson and David H. Dennis, 1956.
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SYMBOLS

body cross-sectional area

body base area
function defined by equation (B15)
characteristic coordinates

normal-force coefficient,, n°rmal'f°rce
q®AB

(_ pitching-moment moment about bo, ly vertex
coefficient, q_A scl

Cp pressure coefficient, P-fP_
q:,

d body diameter

E entropy

f fineness ratio (Fineness ratio of the nose section

is .L.)

l body length
M Mach number

p static pressure

p_ total pressure

q dynamic pressure
s,n rectangular coordinates (streamline direction and

normal to streamline direction, respectively)

x,r,¢ cylindrical coordinates (z measured from vertex

of body and ¢ from windward meridian)
_'e,n_er-of-pr_ssure position (measured from body

vertex) " "

a angle of attack, radiat_._

B function defined by equation (12)
7 ratio of specific heats (1.400 for air)

flow deflection angle

n function defined by equation (9)

A loading (defined by eq. (14))

X function defined by equation (B16)

tt Mach angle (arc sine 1/M)
v Prandtl-Meyer expansion angle

a shock-wave angle

_k function defined by equation (13)
_2 ratio of cross-sectional area of streamtube to that

at M= 1 (see eq. (B17))

SUBSCRIPTS

¢o free-stream conditions

i,_,3,_, conditions evaluated at various points in flow field
a afterbody

c quantities evaluated for cone tangent to the body

s quantities evaluated by generalized shock-ex-

pansion method

v quantities evaluated at vertex of body

quantities evaluated along downstream face of
shock wave

tcv quantities evaluated for cones tangent to body
vertex

tc_ quantities evaluated for cones tangent to body
at station z

THEORY

In the present development of a second-order shock-

expa]asion method, attention will be restricted to bodies of
revolution. It is recognized, however, that the procedure

used herein may, in the future, find application to other three-

dimensional shapes.

Tim present method is a refinement c,f the generalized

shock-expansion method of references 1 tl,_rough 4. On the

surface of a body of revolution, immediately behind a corner,

the generalized method represents a first-order solution for
the flow and the present method gives dm second-order

solution (see Appendix A). Before proceeding, therefore, it.
is well to orient the present analysis with :_ review of the

approximations involved in the treatment of the flow about
bodies of revolution with the generalized method. These

approximations may be listed as follows (see, e. g., ref. 4):

(1) Disturbances incident on an oblique shock wave are

largely e,bsorbed therein, and hence, reflected disturbances

are negligible; (2) the flow appears locally two-dime,_aional;

(3) surface streamlines may be taken a,_ meridian lines. In

tire intermediate range of supersonic speeds of interest he-e,

the first approximation is particularly well justified (see, re. t.

9), and it will not be considered further. As a consequence
of the second approximation, a so: utio-a given by the general-

ized method satisfies the contin'dit] equation only approxi-

mately2 Although th,. "-,56ntinuity equation does not appear

explicitly in the folh)wiug analysis, it is this approximation

that is retired by the present method. The third approxi-

mation applies 9nly to inclined bodies of revolution, since

for nonincline_d bodies, meridian lines are, of course, the exact

stre_ml_mes. In the present investigation, attention will be
restricted to bodies near zero lift. Under this restriction to

infinitesimal angles of attack, an analysis has shown that the
deviation of true streamlines from meridian lines has negli-

gible effect on surface pressures. In the following develop-
ment, therefore, the use of meridian lines as streamlines will
be retained.

NONLIFTING BODIES

The generalized shock-expansion method was developed
for nonlifting bodies of revolution from the method of char-

acteristics (ref. 2). This development may be summarized

with the aid of the equation for the streamwise pressure

gradient (see, e. g., refs. 2 and 9).

bp 2_p b_ 1 5p

bs sin 2u bs--cos u bC_
(1)

In the generalized method the pressure is considered constant

along first-family Much lines (refs. 1 and 4). As a conse-

quence, the right-hand member of equation (1) is approxi-

mated by zero, and the equation can be integrated to yield
the well-known Prandtl-Meyer relation. The objective of

the present analysis is to refine this approximation to the

right-hand member of equation (1). To this end, consider
the flow about a body of revolution wtfich has a pointed nose

and over which the flow is everywhere supersonic. The

problem will be simplified by approximating the profile of

the body with a series of tangents to the original contour

(see fig. 1). It might be noted that Ferrari (ref. 10) sug-

gested a similar scheme with a body whose profile was made
up of chord lines joining points on the original contour.

While either approximation is permissible, the tangent body
was selected here so that the conical flow at the vertex will

In the treatment of two-dimensional flows, the first approximation is used but continuity

is exactly satisfied.
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FIGURE 1.--Approximation of body shape by a tangent body.

be correct regardless of the degree of approximation used
downstream of the vertex.

The generalized method gives the exact change in surface

pressure around the corners of the tangent body but predicts

no change along the straight-line elements. The present

problem reduces to the determination of the pressure varia-
tion along the conical frustums.

Since along these surfaces 5_/bs= O, equation (1) has the form

6p_ 1 bp (2)
5s cost_ bC_

The problem now is to find an approximation to the right-
hand member of this equation. One approximation is a

power series in s. Such an approximation would yield, of
course, the surface pressure as a function of x, and thus, the

power series could be written equally well in terms of pres-

sure, p. For reasons which will become apparent later in

the analysis, a combination of the two series will prove

advantageous. Thus, the pressure gradient will be written

bp
_s = (Po +P) (So + S_s + S:s" +...)

where P0 and S, are constants for a particular frustum

element. This equation is readily integrated to yield an
exponential variation in pressure a

(3)

where C is the constant of integration. Conditions must

now be sought to evaluate the constants in this equation.

For this purpose, the flow over a single COlfical-frustum
element, such as shown in figure' 2, will be considered. The

4,-.....Moch lines ...... .-.,.

., )
FmL'R_. 2.--Flow about a frustum element.

It might be noted that Ehret, Rossow, and Stevens (re/. 11) found that pressures on ogives
correlated according to the hypersonic similarity law could be represented approximately by
• u exponential function of distance.

sul)script 1 will be employed to designate conditions imme-

diately upstream of the (,orner preceding the frustum; the

subscript 2, eonditiol_s immediately downstream of the
corner; the subscript 3, conditions at the downstream end of

the frustum. The first boundary condition to be applied is
relatively obvious, and it is

P=-P2 at s=s2

Thus equation (3) becomes

p=--Po 4- (pz ±t'o)e" (4)

It is also apparent that, if the conical element shown in

figure 2 were extended indefinitely downstream rather than

ending at point 3 (see dashed line in fig. 2), then the pressure

on this extended surface would approach some limiting value.

If the element were considered to be infinitely long, then the

only effect the flow upstream of point 2 will have on the flow

at. infinity is to produce an infinitesimally thin layer on the

surface across which the entropy varies. It is readily

demonstrated, however, that there is no change in pressure

across this layer and that the flow outside the layer is conical.
Thus, a second boundary condition is

P-->Pc as s-_ ¢0

wllere p, is the pressure on a cone tangent to the original
body at the same point as the frustum clement. This

condition gives the result

go= -p_ (5)

provided, of course, the constants, S,, are negative. These
constants, Sn, are now all that remain to be determined and

they may be evaluated in terms of the various derivatives of

pressure evaluated at point 2. Thus,

S0=-
P_ --P2

( 5 2p'_

Sx-- "So 2
P_--P2

L p_ -- P2

(6)

at s=s2 and so forth for additional terms.

At this point, it is well to comment on the choice of the

series used to approximate the pressure gradient. For

example, had the series been written entirely in termsof s,

then a simple Taylor series for the pressure would have

resulted. While the present approximation can be reduced
to a Taylor series for small (s--s2), it has added features which

are desirable. In particular, it is apparent that, within the

framework of the approximation involved in the use of

conical frustums rather than a curved body, the boundary
conditions in pressure at both s=s2 and s--->_ have been met

exactly. It is primarily because of the particular choice of
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serieswhichledto theexponentialformthat it waspossible
to employtheboundaryconditionat s--> _. The meeting of

this condition is relatively important from a practical view-
point since it serves to limit the possible error involved in

the use of a series approximation. For example, had a

Taylor series been used and all boundary conditions applied

at s=s.,, then the error for a given approximation could

increase indefinitely with distance from the corner. With

the approximation chosen, however, the error must be

limited since at large s, the solution again becomes exact.

This added accuracy is not obtained without incurring

certain restrictions, however; since, as previously noted, the

coefficients S, must be negative. This condition must be

satisfied for the present results to be applicable.

In the following analysis, only the first term, So, in the

series will be retained, and thus only the first derivative of

the pressure at. point 2 will be required (see eq. (6)). As

found in Appendix B, an expression defining this gradient is

where

(bp'_ H_ 8 \ B2 fh
-_}2=-r (_: sin _2--sin _)+B_ _22(-_P)_ (7)

B__ 7P-TiI '_
--2(M'--l)

and t2 is the one-dimensional area ratio or

With the application of these results, the pressure along the

conical frustum is given by

p=p¢-- (p_--p2)e-' (8)

_{ ap_ z--x2
'-k L cos (9)

where

It is apparent that, in order to apply equation (8), the

pressure (and Mach number) on the surface of noninclined
cones must be known. These quantities may be determined
from the results of reference 2 or reference 12. For con-

venience, the surves shown in figure 3 have been plotted
from the results of reference 12.

By application of equation (8) on successive elements,

the pressure distribution on the tangent body can be de-
termined. :In particular, the pressure at each of the points

of tangency may be calculated and applied to the original
body. The procedure is as follows: First, the elements

of the tangent body are selected and the coordinates (x,r) of

each corner determined. The first element is tangent to

the body at the vertex, and the flow over this element is

thus conical. For the first corner, then, the pressure, p,,

and the Mach number, M_ (see fig. 2), are the same as at

the vertex of the original body. The pressure, p:, and the

Mach number, /t12, may then be determined with the

Prandtl-Meyer equations. The pressure gradient, (i_p/bs)2,

may be determined from equation (7) since, for the {irst

corner, (i)p/bs)l is zbro. The tangent-cone pressure, pc, may

be obtained from reference 12 or figure 3. With the various

factors in equation (8) rims evaluated, the pressure at the

tangent point and at point 3 (see fig. 2) can be calculated.

]n like manner, the pressure gradient at point 3 can be

determined by differentiation of equation (8), or

?)._}3 \P_--P2/

With the pressure and pressure gradient at point 3 known

(the Mach number may also be calculated from the pressure

in the usual manner), the factors in equation (8) may be

determined for the next element. This process is, of course,

repeated for each element of the tangent body.

The procedure just described is not difficult to apply;

however, further simplification can be obtained by the use

of a "two-step" tangent body. This body consists of a

cone tangent to the original body at the vertex and a conical

surface tangent to the body at the station where the pressure
is to be calculated. With this two-step body, the second

surface is a variable depending on the station in question on
the original body. For this approximation, equation (8)
becomes

p=p_- (p_-p_)e-_ (11)
where

x sin $_--r cos _,,
f_-----r cos 8--x sin 5 (12_

B, (13)
sin _/

The subscript, s, denotes quantities at the station on the

body as evaluated by the generalized shock-expansion

method. With equation (11) it is possible to obtain, very

rapidly, a first approximation to the pressure distribution.

The second-order shock-expansion method has been de-

veloped to predict the pressures on a noninclined body of

revolution. In the following section this method will be

extended to lifting bodies.

LIFTING BODIES

For inclined bodies of revolution, a second-order shock-

expansion method would involve not only a revised expression

for the pressures, but, in addition, a revised approximation

to the shape of the surface streamlines. It is recalled from

the results of Eggers and Savin (ref. 1) that, according to the

generalized method, surface streamlines may be approxi-

mated by geodesics. For bodies of revolution, the pertinent

geodesics are simply meridian lines (refs. 1 and 3). While
this result is exact for noninelined bodies of revolution, it is

only an approximation in the case of inclined bodies. A

refined approximation corresponding to a second-order
method undoubtedly could be obtained by graphical integra-

tion of the momentum equations employing the pressure

distribution given by the generalized method. However,

it seems at present that this procedure would involve
extensive calculations. If attention is restricted to bodies

near a=O, it can be denmnstrated that the deviation of the
true streamlines from the meridian lines will not influence
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F]Gt'RE 3.--Curves defining Mach number and pressure oti the surface of noninclined cones (ref. 12).

surface pressures. The approximation of meridian lines as

streamlines can, in effect, be retained aiid relatively simple

expressions can be obtained, therefore, for the initial slopes

of the normal-force and pitching-moment curves. To this
end, the expression for the normal-force derivative can be
written

dCz¢ 27r L _do_ As Ardx (14)

where the subscript, a=O, has been omitted for simplicity of

notation and where h is the nondimensional loading on a thin

disk normal to the body axis and having unit radius. This
loading A is given by the equation

05)

/
/

/

J
¢

/

2 i"d(p/po) cos _d_
A--M27 r,)o da

t
4/

The problem then is to evaluate d(p/p_)/da. The develop-
ment given previously which led to equation (3) also applies

to bodies at infinitesimal angles of attack. Equation (8)

also applies; however, the variables in this equation must be

/
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considered as dependent on angle of attack. By differentia-
tion of equation (8), there is obtained

d(plp_) (l--e-,) d(pUp:>) d(pUp_) , dn
da -- da _-e-_ da F (p_--p2)e- d_

(16)

This equation must satisfy the condition d(p/p_)_d(pUp_)
da da

at _----0 (i. e., x=x:). By the application of this condition to

equation (16), the last term (involving dn/da) is eliminated.

The term, d(p:/p_o)/da may be evaluated with the aid of the

Prandtl-Meyer equation

d(pUp_) X__[-d(p,lp_) p, 1 d(d_)]4 P2 1 d(P,2)=_L _ p:p,, _. p=_.,, d. (17)

Ferri (ref. 13) has shown that the entropy (and hence the
total pressure, p,) on the surface of an inclined cone is con-

stant (independent of _). When equations (15), (16), and

(17) are combined, then, the integrals of the terms involving

dpqlda and dp,_.Ida will be zero (since cos q, de=0).
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Equation (15) may therefore be written As before, a first approximation 1o A can be obtained with

,) T /.
,_,= -" __ _' [-(1--e-*) d(pdp=) +e-'_ d(pt/t?_)-7 cos _d_ (18)

The only terms in equation (18) that are functions of _oare

d(pdp=)/da and d(pl/p=)/da. These two ternls may be evalu-
ated in terms of the normal-force derivative of the tangent

d('N
cone, dan ,_' and in terms of At. After performance of the

necessary manipulations, there is obtained

., dCvl __X2 _, .
A=(a--e-")(tan o)_ [,_ -v_e 11

(19)

It is apparent from equation (19) that dCN/da for cones must
be known before the loading, A, can be evaluated. Fortu-

nately, results for cones are available from reference 14 and

have been plotted for convenience in figure 4. The loading,

A, may thus be calculated in the same manner as the zero-

lift pressures. In this case, AI for the first corner is simply
dCv

(tan _,,)-_7_I..

2.00

1.96

1.92

._ 1.88

"ol .84

f t.8o
2

_ 1.76

I

-5
E

_ 1.72

I. 68

1.64

1.600 4 8 12 16 20 24

Cone semivertex onqle, Sc, deg

(dCN at )FiC, URZ 4.--Normal-force derivative \ da a=0 for cones (ref. 14).

the two-step body. This approximation gives

_)d(_, +(X,_ _0)dG, (20)

In Appendix C, it is shown that equation (20) leads to very

simple results for certain common body shapes.

With the loading, 3_, known, the normal-force derivative

may be evaluated by integration of equation (14). In like
manner, the pitching-moment derivative can be determined

from the equation

dC,,__--27r (z
da AMJo Arx dx (21)

where the contribution to the pitching moment of the varia-

tion in local axial forces with angle of attack has been neg-
lected since it is small for slender bodies (see ref. 15).

A second-order shock-expansion method for bodies of

revolution has been developed to predict the pressure dis-

tribution and the normal-force and pitching-moment deri-

vatives at a=0. The results are relatively simple in form

and may be applied to a given body with only a moderate

amount of computations required. Simplified expressions

based on an additional approximation have also been pre-
sented which further reduce the amount of work required.

It should be noted, however, that open-nosed bodies and

pointed bodies which produce shock waves other than the

one at the vertex require special forms of the method. The

necessary equations for these cases are contained in Appendix
B. In addition, there are several restrictions on the present

method which should be mentioned. First, it is apparent

that if the exponential variation of the pressures is to be

valid, then the pressure gradient just downstream of the

corner must have the same sign as the pressure difference

p_-p_. This condition, which derives from the previously
noted restriction that the constants, S=, in equation (4) be

negative, is given by ,7>__0 in the general case and by _b>__0
for the simplified method. There is an additional restriction

on the simplified method, and that is that the two-step
bodies nmst be real bodies (i. e., the intersection of the two

tangent lines must not occur at negative values of x or r).
This condition is given by _>_0. When ,7=0 or _,k=0,

all equations reduce to those given 1)y the generalized

shock-expansion method.

It remains, of course, to determine the accuracy of the

second-order shock-expansion method and to define its range

of applicability. There are sufficient data available, both

from experiment and from characteristic solutions, with
which the predictions of the method for zero-lift pressure

distributions can be compared. However for the case of

lifting bodies, sufficient data are not available, and for this

reason, the experiments next discussed were conducted.

EXPERIMENT

An experimental program was conducted to determine the
initial slopes of the normal-force curves and the centers of

pressure for a series of nose-cylinder combinations. The

tests were designed, of course, to permit a check on the
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accuracy of the predictions of tile second-order shock-

expansion method just developed. It is recalled that. the

method is intended for application at values of the hyper-

sonic similarity parameter, .ll=/f, in the neighborhood of 1.

The tests ('over a range of 3I++/f, from 0.43 to 2.09.

APPARATUS AND TESTS

The tcsts were conducted in the Ames 10- I)y 14-inch

supersonic wind tunnel at Maeh numbers of 3.00, 4.24, 5.05,

and 6.28. For a detailed description of this wind tunnel

and its aerodynamic characteristics, see reference 16. Nor-

mal forces and pitching moments for the test models were
measure(l with a strain-gage balance. The _alance consisted

of a model support sting on which the moments were meas-

ured at four points. From these four measurements, the
normal forces and centers of pressure were determined and

checked. Measurements were made at nine angles of attack
from --2 ° to +4 ° at each test Math number. At each

angle of attack, the values of _/d and C_/a were calculated.

These values were plotted as a function of angle of attack,

and the intercepts at a=0 of the resulting curves gave the

values of dCN/da and E/d at a--0.

Wind-tunnel calibration data (see ref. 16) were employed

in combination with stagnation-pressure measurements to

obtain the stream dynamic pressures. Reynolds numbers
based on the maximum (liameter of the models were

Mach number Reynolds number
million

!

3.00 O, 79

4. 24 .72

5.05 ,35

6. 28 J .15

MODELS

Cones and circular-arc tangent ogives of fineness ratios

7, 5, and 3 were tested alone and with cylindrical afterbodies

having lengths of 2, 4, 6, and l0 diameters. The models

were made of polished steel and each had a base diameter of
1 inch.

ACCURACY OF TEST RESULTS

Stream Math numl)ers in the region of tim test bodies did
not vary more than _0.03 from the mean values at. Maeh

numbers up to 5.05. A maximum variation of ±0.05

existed at the highest test Maeh number of 6.28.

The accuracy of the test results is influenced by uncertain-
ties in the measurement of moments and in the determination

of the stream dynamic pressure and angle of attack. These
uncertainties resulted in estimated maximum errors in the

normal-force derivatives and centers of pressure as shown
in the following table:

I

34 +o 1+

3+ O0

4.24

5, 05

g. 28

±O, 15 4-0. 1 [)

±. 15 ::i:. 1t)

-1-. 20 ±, 15 [

l±. 25 =t=. 20

It should be noted that, for the most. part., the experimental

results presented herein are in error by less than these esti-
mates.

438638 -58---2

7

RESULTS AND DISCUSSION

NONLIFTIN G BODIES

The sccon(I-or(hw sho(,k-exi)ansion ntetho(t has been devel-

oped primarily to treat flows characterized by values of ,ll=/f,

near unity. Accordingly, the method has been employed to

obtain the zero-lift pressure distributions at. 2II®/f,:l for

several different body shapes. In this and all subsequent
applications of the present method to curved bodies, the

tangent bodies employed were formed by elements tangent
to the original t)o(lies at stations x/1,=O, 0.1, 0.2, . . . , 1.0.

The tangent-body approximation is required only if the body

profile is curved since for" cone-cylinders, and for the cylin-

drical section of any nose-cylinder combination, the present
method yields results in closed form.

The results of these (:alculations are shown in figure 5 along
with distributions

2.0

1.5

1,0

.5

0 (a)

obtained with the generalized shock-

l

d
"5

Q)

a_

-- Second - order

-_ shock- expansion method

..... Generalized
shock-expansion method

----- Method of characteristics

,,---Method of characteristics, also

(b)

0

5

I

(c)

o .2

FIGURE 5. Surface-pressure distributions

5l®Lf,,_ 1 and a=0.

I

."....Hypersomc small-disturbance
_'_:_. -" theory

......
Method of characteristics, also-"

I I I I
.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.C

Stalion, x/ln

(a) Cone-cylinder, ,lI,_=3.00,

.f,,=3

(b) Sears-Haack body, llI_ = 3.00,

f,=3

(e) Ogive-cylinder, M_, =3.00,

f,=3

for various bodies at
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expansion method (ref. 2). Distributions obtained with the
nwthod of characteristics (refs. l l, 17, and 18), which are

considered to be exact, are also shown. It is apparent in

figure 5 that tile present method provides an improvement

over the generalized method. The differences in the distri-
butions obtained with the present method and those obtained
with the method of characteristics are almost indiscernible.

In figure 5 (e), comparison is also made with the predic-
tions of the hypersonic small-disturbance theory (ref. 8).

The curve shown was calculated by three terms of a power

series representation of the pressure distribution. As noted
in reference 8, additional terms will be required before this

method will accurately predict the pressures on an ogive.
The small-disturbance theory does have a certain advantage

in simplicity for, if the coefficients of the series expansion

are known, the pressure distribution can t)e calculated very

easily. This advantage is partially offset by the restriction
that the series method requires the body profile to have con-

tim:ous derivatives up to the same order as the nuInber of
ternls used in the series. With this restriction, the theory

cannot be applied beyond tit(, nose-cvlhlder jtmeture of the

body (fig. 5 (c)).
To investigate the accuracy of the present nlethod at

values of 5I.,/J,, other than 1, the comparisons shown in

figure 6 have been made. Here, the predictions of the pres-
ent method and those of the generalized method are com-

pared with experimental results for fineness ratio 3 and 5

tangent ogives at Math numbers of 3.00, 4.24, and 5.05.
The values of M=/.[,_ range from 0.60 to 1.68. The experi-
mental results were taken from reference 3. For all cases

shown, the predictions of the present method at'(, within the

accuracy of the experimental data. It is also apparent that

the predictions of the present method tend to approa('h

those of the generalized metho(t as 31o,!f, becomes appreci-
ably greater than 1. At M®/.f_--1.68, for example, the pre-

dictions of the two methods differ only slightly.

In figure 6, comparison is also made with the second-order

potential theory (ref. 5) for conditions where this theory is

applicable (i. e, M_/f,=0.60 an(t 0.85). It is somewhat

surprising that the present method is as accurate as the
second-order potential theory even at the relatively low

value of M_./.f, of 0.60.
The results presented in figures 5 and 6 indicate that tile

present method fulfills its intende(l purpose by providing an

estimate of the pressures on noninclined bodies of revolution

for vahles of M®/f,, near 1. At values of )_[_o/f,_ as low as

0.60 the present method provides results comparable in

a('euracy with those obtained with the second-order potential

.12

i

.08

.O4

o Expenmenl (ref 5)

g
Q_

5 -.04
;.,,:

8

a..

.2

1

I

\
\ .-..,

\

\

-.I 0 .2 .4 .6

N.

Second-oeder

shock-expansion method

\

.... Generalized

shock- exponsion melhod

I
Mao:4.24

I

M_/f.=.85

1

_-- Second-order polentiol

theory

I

\

I
MeG:5.05

I

Mao/fn: 1.01

I
M_=3.00

I

M_/f. =_.00 \
\

I
Mao=4.24

i

M,.,/f.=L41

\

I
M,_:505

I

M_Ifn=l.68

.8 1.0 0 .2 A .6 .8 1.0 0 .2 .4 .6 .8 1.0

Stolioa ,xl_

FIGURE 6.--Surface-pressure distributions for noninelined tangent ogives.
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theory. At values of illco/f, approaching 2, tile predictions

of tile present metllo(I and those of the generalized shock-

expansion method differ only slightly. It remains now to

investigate the applications of the metllod to inclined bodies.

LIFTING BODIES

The experimental results obtained ill the present tests are

given in tables I and II. Predictions of various theories

are also tabulated. These inehMe the predictions of the

present method (with various approximations), the general-

ized shock-expansion method (ref. 3), first-order potential

theory (refs. 6 and 19), Van Dyke's hybri(t potential theory

(ref. 6), and Newtonian impact theory (see, e. g., ref. 20).

Solutions with the second-order potential theory employed
in the appli('ation of the hybrid theory were obtaineil with

the aid of reference 21. (Additional results obtained with

the first-order and hybrid potential theories and with

Newtonian impact theory may be found in reference 22.)

With the exception of the two potential theorii, s, all theories

have been applied throughout the entire range of test.

variables. The potential theories calmot be employed, of

course, if the free-stream Maeh angle is less than the t)ody
semivertex angle.

Normal-force derivative.---The experimentally determined
normal-force derivatives and the predictions of the various

theories for tire bodies tested are shown in figures 7 (a)

through 7 If). Curves for the first-order potential theory
are not shown in figure 7 since, in all except a few cases, tile

predictions of this theory did not (lifter signiFeantly from

those of the hybrid potential theory (see tables I and II). In

general, the present method predicts the normal-force

derivatives at zero angle of attack essentially witllin the

accuracy of the data (within about 4-0.2 per radian) through-

out the entire range of test variables. In addition, the

present method appears to provide the most (,onsistently

accurate results of all the theories presented ill figure 7.
The accuracy of the method at low values of M_/f, can be

explained partially by examination of the predictions of

the met hoit for the limiting case of very slender tlodies. In

this limit, it ('all be shown from equations (7) and (9) that

the term, _, approaches infinity. From equation (19), then,

the loading, A, inay be written

A=2 tan _=2 dr
dx (22)

=2 (see fig. 4). With the substitution of this

equation in equation (14), there is obtaine(I

. f0+()d .v 27r dr rdx=_- _'ZdAdxda A, 2 dx 3o _ (23)

This result: is, of course the well-known prediction of slen(ler-

body theory, which is known to be accurate for slender bodies

at low supersonic speeds. Thus, the accuracy of the present

metimd at low values of Jl=/f,, can be attributed, in part,

to the fa<'t that it reduces to slenih,r-body theory in the
limit.

9

From the results given in figure 7, several observations

can be made concerning the accuracy of other theories. For

example, it might be expected that the potential theories
would t)e more accurate than the other theories when the

parameter _::':11__- 1 tan (_ is appreciably less than 1. For

the f,,=7 cone at. 3J_=3 (fig. 7 (a)), however, this parameter

is only 0.20, and yet, for the longer afterbodies, the hybrid

potential theory is appreciably more in error than the present

method. As found in references 2 through 4, the generalized

shock-expansion method gives accurate results when ,_l_!f is
greater than about 1. Caution should be expressed here,

however, for the significant: parameter is truly ._l_/f and not,

_lf_/f,. The results shown ill figure 7 indicate that although
M_{f= may be appreciably greater than 1, for eases where

the afterbody is sufficiently long to reduce M®/f below 1,

the predicLions of the generalized method may depart

appreciably from tile experimental results. In general.
impact theory gives acceptable results only for nose sections
without afterbodies.

Center of pressure.--The experimentally determined
centers of pressure and predictions of the various theories

for the bodies tested are presented ill figure 8. Tile present
method predicts tile location of the centers of pressure essen-

tially within the accuracy of the data (within about -+-0.2

body diameters) throughout the entire range of test variables

In addition, the present method again provides tile most

consistently accurate results of all tile theories presented.

In general, all observations made previously regarding the

reliability with which the various theories predict the normal-
force derivatives can also tie made ill the case of the centers
of pressure.

Ranges of applicability.---Several parameters are useful

for defining the ranges of applicability of the various theories.

Tile ranges of these para':neters covered by the present tests

are shown in the follo,ving table:

I'arameter

f

3I _/]

31_ ,'].

i
Range

a.(_) to 6.2_

3 to 17

3to7

0 to 10

0.1_ to 2.09

0.43 to 2.09

0.20 1o 2,12

J

Tile second-order shock-expansion metltod was found to

lie applicable throughout the ranges of variables shown in

the table. Both d(_,/dc_ and 2/d were i)redieted within

4-0.2. The present tests did not reveal the limits of appli-
cability of the method. ]t was indicated, however, that

the method may apply to relatively low values of JISf,+

(or CM+ 2- 1 tan _,), since, in the limit of w'ry slender bodies,

the method reduces to the well-known slender-body theory.
The upper limit of the method is dictated by the condition

specified ill the development--namely, _>0 (see eq. (8)).
Calculations have revealed that this condition will be

violated if .¢'M_2--1 tan _f,,is appreciably greater than 2.5.

It should also be noted that the applieation of the present
nlethod to boattailed bodies presents a special problem
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d('N[ is defined in this case (see eqs.
since neither p< nor da i,<x

(8) and (20)). In practice, however, it has been found by
comparison with results given ill reference 23 that the use of

p<=p_ and =2 gives reasonable results for bodies
t¢x

having moderate amounts of boattail.
The present tests also reaffirmed the conclusion given in

references 1 through 4, that the generalized shock-expansion
inethod is applicable when AI_/.[ is greater than about 1.
At values of M_/.f appreciably greater than 1, no significant
differences between the predictions of the generalized and
second-order methods were found. The ranges of applica-

bility of these two methods overlap and thus include most,
flows about pointed bodies of revolution throughout the
intermediate- and high-supersonic speed ranges.

Application of the potential theories is, of course, limited
by tile condition that VM® '2-1 tan _,. must be less than 1.
Even at the lowest values of _,:M+2-1 tan _, covered by the

present tests, however, neither the first-order nor the hybrid
potential theory wa_ found to provide consistently accurate
predictions of dC_/da or 2/d. The calculations performed
also revealed no significant differences in the predictions of
the two theories at values of _']1_2--1 tan & less than

about. 0.7

APPROXIMATIONS OF THE PRESENT METHOD

As noted in the development of the present method, a
simplified solution for bodies with curved profiles can be
obtained by the use of a two-step tangent body. This
approximation has been applied to the ogive-eylinders of the
present tests. By the use of additional approximations to
the loading, A, the simplified solutions for d(_N/da and _/d
can be obtained in closed form as discussed in Appendix C.

Examples of tile accuracy of the approximate solutions are
shown in figure 9. While the approximate methods do not
yield results so consistently accurate as those obtained with
a more complete solution, the approximate methods may still
be useful to obtain rapid estimates of d(_/da and _/d. In
this connection, these quantities can be estimated for ogive-

cylinders in a few minutes with the aid of the results given in
Appendix C.

CONCLUSIONS

A second-order shock-expansion method applicable to
bodies of revolution near zero lift has been developed. For
noninclined bodies, the pressure distributions obtained with
the method were compared with existing experimental
results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of
pressure at zero angle of attack determined with the method
were compared with the predictions of other methods and

o Experiment
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°'040 .2

Second-order shock-expansion method:

--- Ten-step solution Two-step approximation

I
_3.oo

i
Mc_/fn=.60

I

.4 .6 .8 t.0

.12[ Moo=Is.05

I
I _ M_/f_:LOl

°l ! T-'-"
-'0401 .2 .4 .6 .8I 1.0

Station, x/ln

Approximate closed solution

of Appendix C.

I ]
_wo-step approximation, also.i I

Mao/fo=l.41
I

.2 .4 .6 .8 i.o

f
g

o
Z

3

4

_.___.----

M_

c l

Mm= 5.05

t
t

..__..___ ...-.-----_

_ "" _

Mao--4.24

I
M#_:L41

I

5

tk 4

g

3 (

o.

"6 2

g i
0

0

' I

Both approximate methods

..____.__-----'--

I
M_:S.O0 M_=5.05

I I
M_/fn =.60 M_o/fn= 1.01

t I
6 8 I0 0 2 4 6 8 I0 0

Afterbody fineness ratio, fa

FIet'_E 9.--Accuracy of approxinmte sohitions for ogive-cylinders (a=O).

Moo:4.24

I
Mao/f_=1.4i

I
8 t0



A SECOND-ORDER SHOCK-EXPANSION METHOD FOR BODIES OF REVOLUTION NEAR ZERO LIFT 13

_ith experimental results. Cone- and ogive-cylinders with
fineness ratios from 3 to 17 were tested at Mach numbers

from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose fineness ratio
(i. e., the ratio of free-streain Math number to nose fineness

ratio) from 0.43 to 2.09. These comparisons led to tit(, for

lowing conclusions :

1. For noninclined bodies, the present method predicts the

pressure distributions within the accuracy of experimental

results. At values of the hypersonic similarity parameter

based on nose fineness ratio as low as 0.6, the present method

is as accurate as the second-order potential theory. At

values of the parameter approaching 2, the predictions of

the present method differ only slightly from those of tim

generalized shock-expansion method.

2. For inclined bodies, the normal-force derivatives and

the locations of the center of pressure at zero angle of attack

predicted with the present method are in good agreement

with the experimental results throughout the entire range of

test variables. Within this range, the present method
yMds results more consistently accurate than those of
other available theories.

AMES AERONAUTICAI, LABORATOB.Y

_'ATIONAL ADVISOB.Y COMMITTEE FOR AERONAUTI('S

_[OFFETT FIELD, CALIF., Oct. 12, 1,955

APPENDIX A

POWER SERIES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has been demon-

strated by comparisons made over a wide range of flow

parameters. It is also informative, however, to examine
briefly the mathematical accuracy of the method. For this

purpose, the model shown in figure 10 is useful. From the

vertex to point l, the body is conical. Between points l and
2, the surface is deflected by a small angle, e. At any point

downstream of point 1, the physical deviation of the body

from a conical surface may be given in terms of the angle, e,

and the distance, As, measured from point 1. Similarly,

flow parameters at any point downstream of point 1 may be

expressed in terms of e aml 2is. Before developing such an

expression, it should be noted that for this model (and wit|fin

the restriction timt the flow is everywhere supersonic), t,he
present method provides an exact solution for the surface

flow in several.limits. For example, t,he present method is

exact for all values of As when _=0. ForAs=0and As-+¢o,

the method is exact for all values of _. For arbitrary values
of As and _, of course, the present method is not exact.

However, the general accuracy of the method can be demon-

strated by expressing flow parameters in the form of a

Taylor series in the two independent variables, _ and A,_..

The dependent variable used to define the flow may be any

one of several parameters. Pressure and velocity are among

those most commonly used. In the present analysis, how-

ever, the Prandtl-Meyer attgle, u, is considere(l the dependent
variable. It shouht be recognized that the value of the

Prandtl-Meyer angle at a point will define the Ma(,h number,

/

:FIGURE 10.--Model for order analysis.

pressure, velocity, and other such parameters. We have
then the series

1 F/b2v\ b2v b"v

1 F/b3v\ . 3 b3v , 2

O53L • . .

Each of the derivatives is evaluated at, 5s=_=0. When

_=0, it is apparent that tim flow parameters are constant
along the surface and independent of s. Therefore, all

derivatives with respect to s alone are zero. When As=0,

it is also apparent that (bv/bS)l=--I and that all higher
derivatives with respect, to _ alone are zero. We have then

the problem of evaluating the cross derivatives. The

second-order cross derivative, (b2v/Os O_), may be evaluated

with the aid of equation (B14), from which (bv/bs)._ may be

determined ; namely,

bsJ2 X_ \bsJ2 2rl_.",ll2 2-1

It is also apparent that

bs baJ_ ba\bs]2 (A3)

in the limit as _t2--->_1. Hence, by virtue of equation (A2),

b_ ,__ -cos_,
bs b_], 2r,_."._I,2--1 [(_'M'2--1 tan 8,)--1] (A4)

As noted in Appendix B, equation (BI4) is not an exact

solution for the pressure gradient since a term,

X2 Ji5 1 (b_l_l) ds2 cos tt_ X cos g -b

was neglected in the derivation (see eq. (Bll)). In the
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presentanalysis,both5p/SCtandtire interval of integration,

(,_:,--s4)/b (see fig. 11), are of order e; hence, the neglected term

is of order e2. Equation (A2) is accurate to tim first order
in e, therefore, and equation (A4) is exact. With the sub-

stitution of equation (A4) in equation (A1), and with the

application of the other results previously noted, there is
obtained

cos_, [_,=- v_--_--2r_,_:ll(_:- i (XAIv_--I tan 5_)--1 (As) (_)+

0[(As)_(_),(As)(_) 2] (AS)

The generalized shock-expansion method of references 1

through 4 gives the result that v----v_--_. The generalized

method gives the Prandtl-Meyer angle mathematically
accurate to the first order of the independent variat)les _ and

As an(I, therefore, immediately downstream of the corner,

gives a first-order solution for the surface flow. The present
method adds the coefficient of the term involving (As) (_) in

equation (AS) and, hence, gives the Prandtl-Meyer angle

mathematically accurate to the second order of the independ-

ent variables e and As. In general, therefore, immediately

downstream of the corner the present method gives a second-

order solution for the surface flow, and therefore, it has been

termed the second-order shock-expansion method.

The foregoing analysis considered only expanding flows

about the corner. If e is positive, then the shock wave

emanating from the corner must be considered. The result

obtained is essentially the same, however. For positive _ a
term of 0(e _) must be added to equation (A5) to account for

the difference between the Rankine-Hugoniot equations and

the Prandtl-Meyer equations. Alternately, the term, --,,

in equation (A5) can be replaced with the change in Prandtl-

Meyer angle between points 1 and 2 as given by the Rankine-
Hugoniot equations. The second-order term in either case

is identical, however, as equation (A4) may also be obtained

b,v differentiating equation (B21). (It may also be obtained

by differentiation of the exact pressure-gradient equation,

eq. (B18).)

APPENDIX B

EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY OF REVOLUTION

CONVEX CORNER

Along a streamline in axially symmetric flow the following
relation holds (see eq. (1))

5p 5_ 1 _1'__ --X ( _ _tsir, _ sin _) (B1)5._-xO-.,'=('osu 5( _, cos u 5(_1 - r

From this equation, we may also write

5(, =('os u \_s _._' (B2)

ai|d

_[_ sin /.Lsin (_ ('Os ,u (___X 5(_) (g.3)

Consider now the flow in the region of a convex corner on a

body of revohltion as shown in figure 1l. Between points
4 and 5, we may write,

/r- Mach lines
• p

Streomlin_

FIG1RE ll.--Flowaboutaconvexc_rneron abodyofrevclution.

from equation (B1)

ff dp -j'5 1 (B4), _---(_--_4)-- 4 Xcosu

If points 4 and 5 are near to the surface, equation (B4) may

be approximated by

fpi'?nt Ps_ p2 P-4--P--l---(,,--,4)= f4' l (:Pl)ds. X_ X cos #

[BS)

Since the flow between points 1 and 2 is strictly of the
Prandtl-Meyer type,

',_ dp
_-=v,--v2=_2--_l (B6)

Pl

We may also write from equations (B2) and (B3)

p_--p: 1 { i)p'] b cos u: [-['5p_ ( _ -]56
_ .... x_ \5(_;A =-x:- L\5.sJo.-x: \_AJ b (B7)

p,--p,_l/bp\ cos Ul [(_sp ) (36)']x, X, _..O(',)la=_-i -- --_., _._ a (US)

cos u_ 5p 5_

(B9)

5_. ....... ,-- a- ×.

(B10)

When equations (B6) through (B10) are substituted into

equation (B5), there is obtained
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bp b_

sinmsinS°b sinuisin51 £_ -L_(5_1)" a= ds (B11)r r

If it is assumed that a first approximation to the flow is

given by the generalized shock-expansion method, then the

right-hand member of equation (Bll) may be neglected.
Equation (Bll) may thus be written

(_p)2_X2 (b,)_ss,--2r cosX2#z2[(_) sin m sin St--sin #2 sin 8,]-i-

cosu_ x, -x, _ ,

In tile limit as the streamline between points 4 and 5 ap-
proaches the surface, the ratio, a/b, may be evaluated in
terms of the one-dimensional area ratio

a,
b \sin m_] ira (B13)

With the substitution of equation (B13) into (B12), there is
obtained after combination of terms

(_Ps)z -x'-' {b'_\_sJ_=B' (_ sin 5i--sin 62)+,-

B, _21Vlbp\ b_

whoFo

and, of course

B 7pM"
2 (._2 __ 1) (B 15)

X-- 2_p (B16)
sin 2u

F (_--13 -1 (-r+l)
1 [1 +%_' ]112|2_-1_)

(B17)

Equation (B14) represents only an approximate evahm-

tion of the pressure gradient. More exact evaluations may

be found in references 10 and 24. These more exact results,

of course, require numerical or graphical integration.

CONCAVECORNER

In most eases, the tangent bodies used in the application
of the present method will have convex corners. There is

a possibility that concave corners may be eneountere(I.

In the event that the original body does not have shar 1)
concave corners, equation (BI4) will still suffice since the

flow along the sm'faee is still isentropie. However, if the

original body does have sharp coneave corners, then the

pressure gradient for this ease will also be required. This

result can be obtained in the same way as equation (B14);

however, the shock wave emanating from the corner must
be considered after the manner described in reference 9.

The expression defining the pressure gradient in this ease is

where

and

bp 1 bp " b_ sin (o'--, a) 1 bp

=,_l(bP)_, [sin (_--_=)sin ,.--sin (_--fia)sin 6a]+(_ p ) _ Lrsinq -(P t-a L-J-tL- eos } -

f\½-. ) F lov,\ •. _. ,_ /--/ sin

_ba.],= F sin (_--ae)cos (_r--,,)4_( 4 "_ cos2 (,--,,) -]
1 sin (_--a_) co_--\_] 5I_ _ sin' (a--8.)/L

F I 4 \/1 7--1 M '\
=t_)t 4-_ .)sin (_--_)

[(3'÷1) tan (_,--,_) cos (a--,.)--sin (a--'.)l M_' sin' (_-,_)+sin (_-,_) "11_]---2 s_i_ +2 tan ('a--_) sin (a--_,) cos (_r--,_)] _lI, _ sin' (a--a_)

(B18)

(B19)

(B20)

In these equations, _ is the shock-wave angle with respect to
the body axis, and (bp#bn)= is the variation of the total

pressure normal to the surface just upstream of the shock

wave. The subscript, u, refers to conditions upstream of

the shock wave, and the subscript, d, refers to conditions

downstream. Equation (B18) represents the exact solution

in the usual sense. All effects of the interaction between
shock waves and Maeh waves are therefore inehided. In

order to be consistent with other parts of this analysis,

these effects should be neglected. In addition, since equa-

tion (B18) is intended for application to a tangent body, the
body curvatures, (bUbs)_ arid (b,/Os)a, will be zero. It
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may also be noted that tile first step of the tangent body is

a cone tangent to the vertex of the original body. For this

approximation then, there will be a small layer near the

surface of the tangent body for which (Opt/5n)=O. With

these approximations applied to equation (B18), a simplified
result can be obtained which will suffice for the present

purposes.

'_ [-_ . tan m "] 2Bapsin((_--_,,)sin 6. _a]+_j_L.+___Dj=_- L __ sm

bp'_ [-Bd sin(a--6.) __fPd F'_COS(a--_u)tan gq] (B21)_].L_ si,,(_-_)\_.- ]

For a body with a concave corner, a special form must

also be used for tim loading. Just downstream of the corner
and before the first convex corner

A = (l--e-') tail 6d-('_da,_=tp,+lP_--F'_e-'hu) (B22)

and, thereafter,

A=(l--e-_)tan6d_ N +_e-'A_-4-(P2
(tot Itcz ^l P_

X2 Pi)x, _ GA. (B23)

where

F
¢=_{i(_- IM'2si_ (_-6_)-_1 _ _\1)Mg sin 2 (_--_) A-2]Mg sin 2 (a--_.)f (B24)

The corresponding equations for open-nosed bodies of
revolution are similar. The pressure gradient at the leading

edge may be determined from equation (B21) with M_-=M._,

6,----0, and (bp/bs)_----O. The loading on the exterior surface

is given by

A=(l_e_,)tan6dm(_ +.k___e__Ai_(p2 kip,)aot t_ hi \p_ X1 _ JA_ (B25)

where A, is the loading at the leading edge, or

iv=

4 sin av cos a.

(5'-t-1) [1 -- sin (q.--6.)s_na. cosC°S_(@_'--_,)4_(4_ ) c°s2_//:2-.s_i_ _j(_- a')l
(B26)

and J is defined by

(M®_ sin2 _-- 1)z (B27)
J_(pUp=)M® 3 sin _ a_[(3,--1)M= 2 sin _ _0-4-2]

For bodies with concave corners, and for open-nosed

bodies, the total pressure is not constant on the surface

wiien the bodies are inclined. This variation in surface

total pressure leads to the term involving _., in equation

(B23) and the term involving A, in equation (B25).

APPENDIX C

EXTENSIONS OF THE APPROXIMATE METHOD

This analysis is based on the approximate or two-step

method previously mentioned. The basic equations of this

method are equations (11), (12), (13), and (20). Before

proceeding with this analysis, it is convenient to write down

the expressions for the function _ (see eq. (12)) for several

types of bodies. These .expressions are presented in the

following table:

EXPRESSIONS FOR

Body For nose section For cylindrical afterbody

2" sin _.-r cos _,
Any body

Cone-cylinder

Tangent-ogive-

cylinder

Tangent-paraboloid

cylLnder

r cos $-x sin tl

(Not required)

2]'. sin $,(_) --cos $,

41_75

lq-4fJ(2_--l)

1+4fJ

y' f_l..{- 1

In general, the equations for the normal-force and pitching-

moment derivatives may be integrated in two parts--one

part for the nose section and one for the afterbody. Thus,
with the loading defined by equation (20)

dCN dC_
d_--_ no,-l-G,e-a_s"(1-e-(_s°)

dC_ dC,_ G, e_a_s, [(l+G_f_)_(l+G2f,+Gj_)e_Odo]
-dJ=-dJ .....-_

(C2)

where

and

(C1)

2 P,. sin 2g_ dCN e¢=cos,. (C3)
G_=_cos _ 'p, sin 2_,. dot ,_

G_=- 2_basin 6_ I (C4)

The additional subscript, a, refers to functions evaluated

for the aft erbody (i. e., 6=0). Thus, from equation (t3),

"Hp.Up:)Ms/ _o
d/"=2(1-p, Jp=)(_l, 2--1) 17_.

(C5)

The terms G, and G2 are functions of M® and 6o alone.
Timse functions have been evaluated and the results are

slmwn in figure 12.
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C

.6

,2

.l

0 4 8 12 16 20 24 28 32

Serniver rex ongle,_,v,deg

(a) Function, G,

(b) Function, G2

FmURE 12.--Curves defining functions G, and G_ (Appendix C).

For the special case of cone-cylinders, equations (C1) and

(C2) represent a closed solution of tile general method as
well.

By the use of an additional approximation to A, results

in closed form can also be obtained for ogival nose sections.

Such an approximation is

A=G_ tan _(_P-)tcv +G'tan_-_ [(1-Gs) _-_ 'c_-G'l(tan _)2tan_v

(C6)

where

and

Ga P,o sin 2uv -_.

G4= 2 (1 -e -*.) (C8)

When equation (C6) is substituted in equations (14) and (21),
equations are obtained in closed form for dC;v/da and

dCm/da. Tilese equations involve constants which are com-

plicated functions of the nose angle _ (or nose fineness ratio
f,). These functions can be expanded in a series in terms of

_; the leading terms of these series are constants independent

of _. In view of the approximate nature of this analysis,

the use of the leading terms will suffice, Thus there is ob-
tained

da ov_ 15 \(/a/,c_
[C9)

4 G,. (3+220  (dcQ (c,0)
f. da or,,.=-- 1--5 15 \ d_-a :..

To the accuracy of this analysis, these equations also repre-

sent the solutions for a tangent paraboloid. These equa-
tions have been evaluated for a range of Mach numbers

and nose fineness ratios. The results are presented in figure
13. It is apparent that with the aid of equations (C1), (C2),

(CO), (C10), and figures 12 and 13, dC_/da and dCm/da for

ogive-cylinders can be evaluated approximately in a few
minutes.

da

2.5

2.2

2.1

2.0

1.9

1.8

L7

I.E,

-1.2

-I.I

0-"

da

Nose fineness rotio, fn

FIGURE 13.--Curves defining normal-force and pitching-moment

derivatives for tangent ogives as predicted by approximate closed

solution of Appendix C.
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TABLE I.--NORMAL-FORCE DERIVATIVES AT ZERO ANGLE OF ATTACK

19

First- Van Second- General. New- Second-order shock-
Nose order Dyke order lzed tonian Experi- expansion method
shape AI,_ fo potential hybrid shock- shock- impact ment

theory potential expanslonexpansion theory
I theory method method

Cone, 3.00 0 1.97 1.98 1.91 1.91 1.99 1.97

f_,=7 __ 2 2.49 2.49 2.47 2.75 ..... 2.52

.. 4 2.50 2.50 2.70 3.59 ...... 2.69

- - 6 2. 38 2. 39 2. 80 4.43 ...... 2. 78

-- 8 2.34) 2.29 2.84 5.28 ............

-, l0 2,25 2.25 2.86 6.12 ...... 2.84

4.24 0 1.94 1.96 1.89 1.89 1.99 1.83

-- 2 2.53 2.54 2.44 2.64 ...... 2.38

-. 4 2.74 2.74 2.73 3.39 ...... 2.68

-- 6 2.71 2.72 2.88 4,14 ...... 2.86

- 8 2.62 2.62 2.96 4.88 ............

- - 10 2. 53 2. 53 3. 00 5. 64 ...... 2. 85

5.05 0 1.92 1.95 1.88 1.88 1,99 1.91
I

-- 2 2.53 2.54 2.41 2,58 ...... 2.35

-- 4 2. 81 2. 82 2. 72 3.33 ...... 2, 65

-- 6 2.88 2.89 2.89 3.95 ...... 2.86

-- 8 2.84 2.84 2.99 4.07 ............

.- lO 2.75 2.76 3.05 5.35 ...... 3.06

6.28 0 1.88 1.94 1.88 1.88 1.99 1.92

.- 2 2.49 2.53 2.38 2.51 ...... 2.31

.. 4 2,86 2.88 2.69 3.14 ...... 2.58

-- 6 3.03 3,06 2.89 3.78 ...... 2,81
-- 8 3.07 3.10 3.00 4.41 ............

-- 10 3.04 3.07 3.08 5.04 ...... 2.99

Cone, 3. 00 i 0 1.95 1.96 1.88

f_=5 ._ i 2 2.65 2.66 2.59

-- : 4 2. 71 2. 72 2. 89

- - 6 2. 58 2. 59 3.02

- - 8 2. 46 2. 48 3, 08

-- 10 2. 41 2. 42 3.10

4.24 0 1.90 1.95 1.87

.- 2 2.68 2.70 2.54

-- 4 2.98 2.99 2.91

-- 6 3.00 3.02 3.11

-- 8 2.92 2.93 3.22

- - I0 2. 81 2. 82 3. 27

5.05 0 1.86 1.95 1,87

i .. 2 2. 66 2. 70 2. 51

.- 4 3.06 3.09 2.90

-- 6 3.18 3.21 3.13

.- 8 3.16 3.19 3.27

.- 10 3. 07 3, 10 3. 35

6.28 0 1.'80 1.96 1.88

.. [ 2 2.59 2.69 2.46

.. 4 3.09 3.16 2.84

-- 6 3.34 3.40 3.08

-- 8 3.44 3.50 3.24

.. 10 3. 43 3. 50 3. 33

Cone, 3. O0 0

f_ffi3 ._ 2
4

6

i 8
10

4. 24 0

2

4

6

8

10

5.05 0

2
4

6

8

10

6.28 0

2

4

6

8

.. 10
i

1.88

2. 97

3.16
3.03

2.90

2. 82

1.78

2.93

3. 45

3. 57

3. 51

3.40

1, 71

2.86

3.50

3, 72

3.82
3. 76

1.88 1.98 1.83

2.93 ...... 2.60

3.98 ..... 2.89

5.02 ...... 2.90
6.08 ...........

7. 12 ...... 3.01

1.87 1.98 1.82

2. 77 ...... 2. 46

3.68 ...... 2.84

4,58 ...... 3.01

5. 49 ............

6. 39 ...... 3. 21

1.87 1.98 1.91

2.69 ...... 2.48

3.52 ...... 2.84)

4.34 ...... 3.21

5.16 ............

5.99 ...... 3.26

1.88 1.98 1.83

2.60 ...... 2.49

3.32 ...... 2.72

4.04 2.98
---_--

4.77 ............

5. 49 ...... 3. 22

1.95 1.86

...... 2. 72

3.15

3. 25

3.37

1.95 1.83

2. 55

3,12

3.28

3.45"

1.95 1.88

2, 55

3.12

3. 44

1.95 1.88

2.58

2. 87

3.19

3. 37

10 |
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TABLE II,--CENTERS OF PRESSURE AT ZERO ANGLE OF ATTACK

.',1¢o f.

3.00 0

_ 2

__ 4

__ 6

__ 8

_. I0

4, 24 0

-- 2

-- 4

- 6

.. 8

__ IO

5.05 0

-- 2

.. 4

._ 6

__ 8

__ 10

6y 0

__ 1o
3.00 0

-- 2

__ 4

fl

8

__ lO

4.24 0

_. 2

- 4

-- fi

-. 8

.. 10

5,05 0

.. 4

_ 6

_ 8

.. 10

6.28 O

.- i 2

.- 6

._ 8

-- 10

3.00 O

-- 2

.. 4

-- 8

-. 10

4.24 0

.. 2

-- 6

__ 10

5.05 0

_. 2

-- 4

-- fi

.- 8

._ 10

6,28 0

-. 3

.. 4

.- 6

-. 8

.. 10

First-

order

potential

theory

4.07 4.67

5. 32 5. 34

5.34 5.32

5.00 5.00

4.63 4.63

4.42 4.41

4. 67 4.67

5.41 5.41

5.72 5. 72

5.69 5.68

5.38 5.38

5.00 5._)

4. 67 4. 67

5.46 5.44

5. 92 5.89

6.04 6.00

5.91 5.87

5.02 5.58

4.67 4.67

5. 46 5. 42

6.04 5.98

6.38 6.30

6.48 6. 40

Van i Second- [ General.

Dyke I order [ ized

hybrid ] shock- ] shock-

potential ]expansion expansiot

theory ! method method

4.67 4.67

5. 39 5. 69

5.78 6. 70

5.99 7.70

6.11 8.71

6. 17 9. 72

4. 67 4.67

5.40 5.61

5.88 6.59

6.20 7.57

6. 40 8. 55

6.53 9.55

4. 67 4.67

5.39 5.57

5.89 6.40

6. 25 7. 53

6. 51 8. 45

6,69 9.48

4.67 4,67

5.35 5.50

5.88 6.41

I 6.29 7. 35

6.59 8,30

6.40

3,33

4.02

4,09

3.78

3.41

3.16

3. 33

4.07

4.46

4.45

4.20

3.84

3.33

4. l0

4. 59

4.80

4.74

4.48

3.33

4.13

4, 72

5.14

5. 31

5.29

2. 67

2.85

2. 61

2.25

2.00

2.00

2. 74

3.20

3. 34

3.23

2.94

2.00

2. 77

3.35

3. 67

3.74

iiii!!::::::

3.33 I 3.33 t 3.33

3.98 4.02 4.29

4.05 4.43 5.27

3.75 4.66 6.26

3. 37 4. 79 7. 25

3.13 4.86 8.24

3.33 3.33 3.33

4.05 4.0l 4.21

4.41 4.50 5,14

4,41 4.8,5 6.10

4.16 5.0_ 7.07

3.81 5.24 8.06

3.33 3.33 3.33

4.04 4.00 4.15

4.52 4.52 5.06

4.72 4.92 6.00

4.65 5.2l 6.95

4. 42 5, 43 7. 92

3.33 I 3.33 3.33

4.04 I 3, 95 4. 07

4.60 4.48 4.93

5. CO 4.91 5.83

5.16 5.25 6.77

5. 14 5.52 7.73

2,00 I 2.00 2.00

2.63 2.62 2.85

2.80 3.02 3.79

2. 57 3.27 4.76

2. 20 3. 40 5. 74

1.96 3.48 6.72

2.00 2, DO 2,00

2.65 2.58 2.75

3.08 3.0,5 3.63

3._6 3.38 4.56

3.12 3. 6l 5. 52

2.84 3.77 6.49

2.00 2.00 2.00

2,65 2.55 2.68

3.19 3.02 3.52

3.50 3.42 4.43

3. 56 3. 71 5. 37

3,43 3.02 6.33

2.00 2.00

2. 49 2. 59

2.98 3.37

3.40 4.23

3. 75 5. 13

3.98 6,07

New-

tonian Experi-

impact ment
theory

4.67 4.75

..... 5.,56

5.63

5.8,5

. _ 6, 32

...... 5.55

...... i 6.00

._ - 6, 40

_. . 6, 39

4.67 4. 71

. ._ 5.45

..... 5.86

..... 6.28

. __ 6.55

4.67 4.74

, _ _ 5. 40

..... 5.80

...... 6.31

6. 74

3.33 3,35

..... 4.04

_ _ _ 4.46

_ - 4. 53

.... 4.88

3,33 3.26

4. 02

__ 4.47

_ 4.9_I

-. 5.39

3.33 3.38

_ __ 3.99

.... 4.54

.... 5._8

__ 5.25

3.33 3.25

_ __ 4,12

.... 4.48

..... 4.95

.... 5.32

2.(_) 2.08

..... 2. 70

..... 3.10

__ 3.10

.... 3.51

2.(_) 2. 19

.... 2.68

..... 3.18

...... 3. 35

...... 3. 82

2,00 2.10

..... 2.52

...... 3.7,,3

...... 3.37

...... 3.82

2.00 2.03

...... 2. 52

...... 3. 16

...... 3.50

...... 3. 77

Ogive,

f_=5

Second-order shock-

expansion method ,

2.60

2,68

2. 73

Experi-

ment

4. 32

4. 40

4. 55

3. 70

4.08

4.70

4.98

5. 16

3.75

4.32

4.86

5.10

5.23

3.65

4.20

4. 70

5. 10

70

3. 02

3. 35

3.50

3. 75

2. 70

3. 15

3.50

3, 75

4.09

2. 70

3.20

3. 73

3.85

4.06

2. 62

3.13

U. S. GOVERNMENT PRINTING OFFICE: 1959 0--506452



Z

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis

Designation

Longitudi hal ........
Lateral ...............
Normal ...............

Force

[ (parallel

Sym- to axis)
i bol symbol

Jz- 
x x
Y Y

Absolute coefficients of moment

C ,= qLs C. ----_cls

(rolling) (pitchl: lg)

c___N
--qbS

(yawing)

D Diameter

p Geometric pitch
p/D Pitch ratio

V' Inflow velocity

V, Slipstream velocity
T

T Thrust, absolute coefficient (7r----;_2_9 _

C- Q
Q Torque, absolute coefficient _--_D 6

1 hp----76.04 kg-m/s=550 ft-lb/sec

1 metric horsepower=0.9863 hp

1 mph----0.4470 mps

1 mps=2.2369 mph

Moment about axis

Designation

Rolling .......
Pitching ......
Yawing .......

Sym-
bol

m

L
M
N

Positive
direction

Y--------*Z
Z----* X
X---.--* Y

Angle

1

De_igna- Sym-

tion . bol

Roll .......... i

Pitch ....... '
Yaw ........ :

i

Velocities

Linear [

A"g"la*i

axis)

IO r

Angle of set of control surface (relative to neutral
position), 3. (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

P

P Power, absolute coefficient C_=pn3D 6

• 5/5 p-V r,
c,. Speed-power cocfficmnt = _]p_

Efficiency

n Revolutions per second, rps
V

¢ Effective helix angle---- tan-' (2_r_)

5. NUMERICAL RELATIONS

1 lb----0.4536 kg

1 kg=2.2046 lb
1 mi----1,609.35 m=5,280 ft
1 m--3.2808 ft



_J

4

i

i

_ _L_ r _ _
-_z_._._ _ _l_


