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REPORT No. 1.

PART 1.

EXPERIMENTAL ANALYSIS OF INHERENT LONGITUDINAL
STABILITY FOR A TYPICAL BIPLANE.

By JeEroME C. HUNSAKER.

ArTIOLE 1.
INTRODUCTION.

A model of span 18 inches, representing a typical military tractor
biplane, was tested in the wind tunnel of the Massachusetts Institute
of Technology. The lift, drift, and pitching moment were measured
for a series of angles of incidence corresponding to the maximum
possible changes of flight attitude. Only the discussion of sym-
metrical or longitudinal changes is given here. A report on the
lateral stability of the same model is reserved for a later date. From
the observed rate of variation of the forces and pitching moment, it
was possible to calculate the ‘‘derivatives’” needed in the complete
theory of longitudinal stability in still air. The damping of the
pitching oscillation was also determined experimentally.

The method followed is that of L. Bairstow in his extension of
Bryan’s theory. Notation also follows Bairstow. The value of
Routh’s discriminant, which Bryan has shown to be a measure of
dynamical longitudinal stability, has been calculated for six speeds,
ranging from the maximum to the minimum possible speeds for the
aeroplane type selected. The principal point of interest brought
out 1n this connection is that stability falls off rapidly as speed
decreases or angle of attack increases, and that while this aeroplane
appears to be very stable at high speeds, it is frankly unstable at
speeds below 47 miles per hour.

This instability at low speeds takes the form of an oscillation in
pitch combined with changing in forward speed and a rising and
sinking of the whole aeroplane, which, therefore, follows an undulatory
flight path. The period of the undulation is about 12 seconds, and
the amplitude doubles itself in less than 20 seconds. Obviously, the
pilot can not safely abandon his controls at slow speed.

The importance of this demonstrated instability at low speeds
should be appreciated in view of recent accidents with military
aeroplanes W}];en operated at slow speeds.

The entire investigation of inherent longitudinal stability was pre-
liminary to the discussion of the effect of wind gusts. Naturally, it
was first necessary to find a stable aeroplane and to obtain some idea
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26 AERONAUTICS.

of the ‘‘range” of stability. It now appears that a typical aeroplane
is inherently stable in the sense defined at high speeds only. The
effect of gusts on the uncontrolled aeroplane will, therefore, be
investigated only for the high-speed condition. At low speeds the
aeroplane can not be left to itself in still air. Consequently, a dis-
cussion of its certain destruction if abandoned in gusty air appears
unprofitable.

ARTICLE 2.
MODEL AND PROTOTYPE.

The type of aeroplane selected is a high-speed militar biplane
tractor known as Curtiss JN2. Shop plans of this aeroplane were
kindly furnished by the Curtiss Aeroplane Co., Buffalo, N. Y., to
whom acknowledgment must be made for much valuable assistance,
including the experimental determination of moments of inertia, etc.,
by Dr. A. F. Zahm of that company.

The principal dimensions of the aeroplane were assumed as follows:

Weight fullload.......... . ADIRSXAGRTAL ... .. pounds.. 1,800
Brakerhorsepower.. ...l BLIASRET T B Re g a1 horsepower.. 110
Maximum speed for calculations.................miles per hour. . 79
Minimum speed for calculations....... d

Total wing area (including ailerons)
A¥ed fixedital: 2L E L SHEISEFIIE L

Spanjofpwangg IS UE SR RS el L T e
Cﬁord OF WINEBL ..o 22y W e e 5
Gapbetweon wiflgal't S bl T1 an M s e sy 4D
Eength ofibody.sf L3R BENIIO nud b b SRR LT G BT

The model was made geometrically similar to its prototype and
one twenty-fourth scale. The general features are shown in the
drawings of the model. (Figs. 1 @, b, c.) The model was an exact
copy of the aeroplane exce(i)t for the propeller and wing wiring,
which features were omitted. Also wing struts were made round
mstead of ‘“‘stream-line” in section. Since it is well known that
the resistance of a series of similar aeroplanes varies somewhat less
rapidly than the square of the speed and square of a linear dimen-
sion, due to skin friction, it is believed that the prediction of the
resistance of the full size aeroplane from the observed model resistance
will still be a fair estimate in spite of omissions on the model.

For simplicity, the model was made with the trailing ailerons or
wing flaps integral with the wings. This somewhat increases the
effective supporting area. Also the fixed tail and elevator were
made in one, corresponding to the elevator held fast in its neutral
position. These points are made clear on the drawings of the model.

ARTICLE 3.
GENERAL WIND TUNNEL PROCEDURE.

The model was tested in the 4-foot wind tunnel at a velocity of 30
miles per hour. The wind tunnel and aerodynamical balance are
duplicates of the installation of the National Physical Laboratory, Ted-
dington, England, and reference should be made to the Technical

™
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FIGURE |C.
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!

Report of the Advisory Committee for Aeronautics, London, 1912-13,
for detail description and methods of operation.

In general, it may be stated that the wind tunnel provides a wind
constant in velocity within 1 per cent, which velocity is further con-
stant across the working cross section of the tunnel within 1% per
cent. Velocity is measured by a suction plate calibrated against a 1
standard Pitot tube with a precision of one-half per cent. The
model is mounted on the balance in various attitudes of pitch or yaw,
and in such positions are measured the three forces and three couples
produced by the wind along and about three mutually perpendicular
axes in space. From a knowledge of the variation of these forces and
couples with change of attitude, the so-called ‘“resistance derivatives”
of Bryan’s?® theory of dynamical stability may be computed.

The theory of stability also requires the determination of the damp-
ing of oscillations about the center of %ravity of the aeroplane. A
special oscillating apparatus was built for these tests which will be
described below. = By oscillating the model in the wind and observing
the decrement of am’plitude with time, it was possible to estimate the
“rotary derivatives.’

ArTICLE 4.

LONGITUDINAL TESTS.

The model was mounted on the balance with its wings in a vertical
plane by means of a vertical rod driven into the body at the point
shown on figure 15. By swinging the model about the vertical axis
passing through the spindle, the angle of wind to the wing chord was
varied from +20° to —8°. At each attitude the force across the wind
or “Lift,” force down wind or ‘‘Drift,” and the pitching moment
about the spindle were measured. The signs were taken so that
an actual lift, actual head resistance, and 2 stalling moment are posi-
tive. The wind velocity was 30 miles per hour of standard dry air
at 15° C. and 776 mm. Hg. The experimental points are shown on
ﬁ%ure 2, where forces are in pounds and moments in inch-pounds.
The precision of measurement is within 1 per cent.

For a given attitude, the resultant force on the model in pounds

at 30 miles per hour is R=+/L2+ D2 This resultant makes an
angle with the wind direction given by a=tan—* % The force R

is observed to have a pitching moment M about the spindle axis.
It may then be assumed to be situated so that the perpendicular

from this axis to R is given by m=%l - The vector R is thus deter-

mined in magnitude, direction, and line of application. The resultant
force vectors B are shown on figure 15 to a scale 1 inch equals 0.2
pound. The vector R is purely an algebraic substitution for the :
complicated system of forces and couples acting on the aeroplane.
The vectors are drawn relative to the aeroplane.
The center of gravity was assumed to lie as shown near the inter- 3
section of the propeller axis with the resultant force vector for 4°.
At this attitude, then, the pitching moment should be nearly zero.

1 G. H. Bryan, Stability in Aviation.
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The c. % location determined for the actual aeroplane after exten-
a

sive trial flights is almost identical.
It is seen that for angles smaller than 4°, R passes forward of the

FIGURE 2.
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c. g. and for angles greater than 4° it passes to the rear. The

aeroplane is longitudinally stable in a static sense. It will be shown
below that it is not always dynamically stable.



32 AERONAUTICS.
ARTICLE 5.
PERFORMANCE CURVES.

The lift and head resistance or “drift” of the full scale aeroplane
were assumed to be approximately given by the relation:

Force on model 23 ( S0\

Force on aeroplane \24 V
FIGURE 3.
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when V is the flying speed of the aeroplane in miles per hour. The
above relation holds, of course, only for the same attitude of model
and aeroplane. The WeIi§ht of the aeroplane, 1,800 pounds, must
equal the lift in flight. Hence:

_30 /1800
24Y Laft on model.

V=
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A series of speeds V was computed for a series of attitudes of the
aeroplane, and the aeroplane drift at each attitude was then com-
puted from:

; e ) V 2
D full size =D model x 24 x<%>

In figure 3 are given curves of drift, effective horsepower required,
angle of wing chord to wind and ratio weight to drift plotted on V as
abscissae. For our calculations a maximum speed of 79 miles and a
minimum of 43.7 miles were selected corresponding to angles of wing
chord to wind of 1° and 15.5°, respectively.

The curve of E.H.P. on figure 3, indicates that 87 propeller horse-
power is necessary for a speed of 79 miles. If the propeller has an
efficiency of 80 per cent, the motor must develop at least 110 brake
horsepower. The original designs contemplated as maximum s%(jed
of about 80 miles per hour for a 120 brake horsepower motor, which
appears very reasonable. As actually built this type was given a
rated 90 horsepower motor. Assuming 70 E.H.P. delivered to the
propeller a sEeed of 73 miles per hour is indicated by our curves. It
if reported that the speed of this aeroplane was actually 73 miles per

our.
ARTICLE 6.

CHOICE OF AXES—NOTATION—UNITS.

Axes for reference are assumed fixed in the aeroplane and moving
with it in space. The origin is at the center of gravity. For steady
horizontal flight at a given attitude the axis of Z is vertical, the axis
of X Horizontal and directed to the rear in the plane of symmetry,
and the axis of Y is horizontal and directed toward the left-wing tip.
Forces along these axes are denoted by X, Y, Z and are expressed In
founds per unit mass. Moments are L, M, N and are given in pounds-

eet, per unit mass.!

Angles of roll, pitch and yaw from the normal flying attitude are
denoted by ¢, 6 and . Angular velocities of roll, pitch and yaw are
P, ib 71in radius per second. The signs of moments, angles and angular
velocity are positive considered in the directions XY, YZ or ZX.

Moments of inertia referred to axes X, Y, Z are denoted by
m K%, mK?s, mK? where m is the mass of the aeroplane and Ki,
Kz, Ko corresponding radii of gyration.

ARTICLE 7.

EQUILIBRIUM CONDITIONS.

In normal horizontal flight in still air a state of equilibrium is
assumed such that the power available maintains the aeroplane at
such a speed that the weight is just sustained. Since the Lift of an
aeroplane wing is also a function of its attitude or angle of attack,
it is further assumed that the attitude is proper for the speed. In

1 Unit mass is the slug equal to 32.17 pounds weight.
25302°—S. Doc. 268, 64-1

2
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34 AERONAUTICS.

normal horizontal flight the axis of X is parallel to the apparent wind
direction and is hence horizontal. Let 6 be the angle of pitch of the
aeroplane away from its normal attitude. Then normally 6 is zero.
Likewise if the aeroplane is in equilibrium in its flight, the angular
velocity of pitch is zero and also the pitching moment, Mo.

At high speed, for example 79 miles, the axis of X is horizontal and
makes an angle of 1° with the wing chord. At low speed, new axes
are chosen such that the axis of X is still horizontal but makes an
angle of 15.5° with the wing chord. The axes are fixed by the
equilibrium conditions for flight and differ for each normal flying
attitude. Oscillations about the normal flight path when the motion
is disturbed are referred to the above defined axes which are assumed
fixed in the aeroplane and moving with it in space.

The pitching moment curve observed for the model shows zero
moment for an angle of wing chord of 4.5° and a diving moment at
larger angles. For slow flight, it is assumed that the pilot by proper
setting of his horizontal rudder impresses an equal stalling moment
on the machine so that the net pitching moment is zero. The effect
is to move the pitching moment curve parallel to itself by the alge-
braic addition of a stalling moment so that its ordinate has zero value
for the desired flight attitude.

ARTICLE 8.
TRANSFORMATION OF AXES.

It is convenient to measure in the wind tunnel the lift and drift
about axes always vertical and horizontal in space. For the oscilla-
tions of the aeroplane it is convenient to consider the forces referred
to axes fixed in the aeroplane as described above. The transforma-
tion is effected in the usual way by means of the formule:

m Z'=Lcos ©+D sin 0,
m X'=D cos ©—L sin 6,

where O is the angle of pitch of the aeroplane away from its normal
attitude, considered positive for stalling angles. Here L and D are
lift and drift on the model in pounds, and m X’ and m Z’ correspond-
ing forces in pounds along the axes X and Z. The model forces
Z’, X’ are converted to Z, X, full size, by multiplying by the
square of the speed and linear dimension ratios. The following tables
carry out the required transformation.

The pitching moment M is independent of the longitudinal shift of
axes and varies only as the squareof the speed. Curves of X, Z and M/
for the different flight attitudes are plotted on figures 4, 5, 6, 7, 8,
and 9. The transformation of the moment about the spindle to the
corresponding moment about the ¢. g. of the full-size aeroplane is
given below.
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i=1°, V=79 miles, m=>55.9 slugs.

) &) { L B Z X
—d -5 —0.08 |40.115 |— 6.4 | +7.7
=0 — EESA 104 R 11078 7.8

0 = 1) .35 .102 24.9 7.76
SU] 0 .45 . 104 32.9 7.4
4e0 e .56 .108 40.0 risih
+ 4 L1538 .765 . 118 54.9 hagaty
A @ ST 1.13 .165 81.0 g el
12 +11 1.39 .270 100. 0 il
+16 +15 1. 48 . 428 109. 0 —2.05
420 +19 1.48 . 581 112,56 —4.7

1=7°, V=>51.8 miles.

0 = 40.35  |40.102 +10.3 +-4. 42

1 — 6 .45 .104 13.4 4. 64

2 ) . 56 . 108 16.9 4.79

4 =3 .765 Ll 9058 4.85

7 0 1. 05 . 150 2.2 4. 60
12 AL 1.39 .270 48.0 4,54
16 9 1.48 .428 47.0 5. 90
20 13 1.48 . 581 48.2 7519

1=10°, V=47 miles.

6 —4 40.96 |40.136 HoAl 0 | L6514

8 — 1.13 .165 28.4 5.18
10 0 .28 ol 32.4 5.21
12 L8O 139 O 35. 4 5. 56
14 + 4 1.45 . 348 37.2 6. 24

1=12°, 7=45.2 miles.

8 ) 1.13 0.165 26.1 5. 68
10 -2 1.28 .21 29.6 5.83
12 0 1.39 2 27 32. 4 6. 29
14 S 1.45 . 348 34.0 6. 92
16 +4 1.48 . 428 35.2 7.56

1=14°, V=44.2 miles.

10 —4 1528 0.21 28.3 6. 67
12 =% 1.39 20 30.8 6. 87
14 0 1.45 . 348 32. 4 .22
16 L0 1.48 . 428 33.3 7.43
18 +4 1. 50 . 508 34.2 7.62

{
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36 AERONAUTICS.

1=15.5°, V=43.7 miles.

0 (] L D Z X
9.5 —6 1. 24 0.196 26. 4 L
3.5 -2 1. 40 . 330 30. 6 8.25

15.5 0 1.48 . 408 32.2 8.9
17.5 +2 1. 49 .482 33.0 9.4
19.5 +4 1. 49 . 561 33.4 10.0

CONVERSION OF PITCHING MOMENTS.

m My=moment about spindle in inch pounds on model.

mM).g=moment about c. g. in inch pounds on model.

b=3.04 inches, c. g. forward of spindle.

a=0.10 inches, c. g. above spindle.

Axis of X 3.5° to wing chord.

M=pitching moment about c. g. full size, full speed, in pounds feet per unit mass.
mMeg=mMs—mZ'b—mX’a.

1=angle of wing chord to wind, degrees.

©=angle of axis of X to wind, degrees.

| |
1 s, 2 la S o[ e
i o | I | D |mz|mX|mi|miMe| b7 | B | S0 0 | M S
— 43| = 8| 40.130+0.123/—0.146[+-0. 104|—0.022| +0.21/+29.9 | +12.9 9.17
— 23] — 64 .080 .105+ .069) .112\4 .400 + .18/4-25.7 | +11.0|. 7.85
— 3| —4|+.300 .102 .203] .121)4+1.05 | + .15/421.4 | + 9.2 6.54
1R i —i2 .510 .105 .506( .123| 1.65 | 4+ .10(+14.3 | 4+ 6.1|. 4.37
261 —1 615 .110( .613| .122) 1.93 [ + .08|+11.4 ( + 4.9|. 3.49
3% l 0 715 1150 .715)  .115) 2.21 | 4 .03|+ 4.28| + 1.8 + 1.32
41 +1 .8100 .122| .812| .107| 2.48 00 0 0] 0
58| + 2 .910] .130] .915 .098 2.71 | — .08|—11.4 | — 4.9 — 3.49
%]+ 4 1.09 .157] 1.10 .081) 3.17 | — 5. —11.1| — 7.86
134 + 8 1.37 .2520 1.40 .058 3.81 1 — —24.5 —17.5
154 ‘ +12 1.48 .408| 1.51 .184) 4.00 | — b. 81 —26.2
195 | +16 1.49 .561) 1.54 .331) 3.95 | — —33.2

ARTICLE 9.
RESISTANCE DERIVATIVES, LONGITUDINAL.

Notation follows Bairstow,! to whose paper reference should be
made for the detailed discussion of “derivatives.” In the theory of
small oscillations, the aerodynamic forces X, Z, and pitching
moment, M, are eliminated by the conditions of equilibrium. In
disturbed motion, disturbances in normal flying speed and attitude
cause changes in the quantities, X, Z, and M.

Let U be the normal flying speed and %, w and ¢ small changes in
horizontal and vertical velocity components and angular velocity of
pitch. If the disturbance be small, u, w and ¢ are small with respect
to U. For example, the function

X=f(U+u,w, q)
may be expanded into the approximate form
X=X,+uX,+wX,+qW,

a linear function of the small quantities u, w, ¢. The coefficients
Xy, Xu, X, are the so-called resistance derivatives of the theory of

1 Technical Report of the Advisory Committee for Aeronautics, London, 1912-13.
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FIGURE 8.
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FIGURE 9.
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small oscillations, and physically represent the slope of a curve of X
on a base u, w, or q.

Similarly
Z=Zo+uly+wZ,+qZ,
M= My+uM,+wM,+qM,

From the conditions of equilibrium, X, is balanced by the pro-
peller thrust, Z, by the pull of gravity or Z,=g¢, and M,=o.
Also, Bairstow has shown that %(q and Z, may be neglected.

X, is the rate of change of X with change in forward speed. But
since X is a function of forward speed squared we may write:

R R o
Xo V. S ¢ |
and
e
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These coefficients may be obtained directly by calculation since

X 0=D:;ft, and Z,=g. For example, at 79 miles per hour, U=
—115.5 feet per second and Z,=32.2. Then
2X32.2 5
Zym=— 1155—— .057.

-Also at 1525, U= —63.8 feet per second and

2R
—63.8"

The derivatives X,, Z,, M, represent the effect of a vertical
component of velocity. From the well-known method of velocity
composition, the vertical velocity w acts with the horizontal velocity
U to cause the apparent wind to have an inclination to the horizontal

Xu= — 078

of tan~ 7+ This inclination is given to the model in the wind

tunnel, and X, Z, and M measured for various pitch angles.

But A§=tan™? = =57.3 b , when Ad is a small angle in degrees.
T T g gre

- AX 573AX
s o R )

AA—‘f is the slope of a curve of X on pitch angle as base. For example,

from figure 4, %=%5— and
573 —.65
= - ) e +0.162

Similar formulas are used to compute Z,, and M,,. It may be noted
that the method assumes that for small oscillations, hence small
chanﬁ:?l 6, the tangent may be substituted for the actual curve.
The limit of validity is obviously the range of pitch angle over which
the tangent to the curve is not greatly changed. This range is usually
about 4 to 8 degrees.

The values of the resistance derivatives calculated in this manner
will be found tabulated later.

ArTIiCLE 10.
DAMPING.
The damping of pitching about the c. g. is represented by the rotary

derivative M,. For an angular velocity gg=q, a damping moment

g M, is exerted on the aeroplane.

To measure this aerodynamic damping, the special oscillating appa-
ratus was designed which is shown by the photograph of figure 10.
The model is mounted on a massive bracket which pivots about the
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two points shown. Fore-and-aft arms carry counterweights which
are adjusted to give a reasonable natural En-xl'iod. The spiral spri
bear in notches on the arms by means of knife-edged shackles. L'i‘lﬁ:
spri.nfs insure that the motion shall be oscillatory. The assumed
¢. g. location of the aeroplane model is arranged to be on the axis of
rotation. The actual center of gravity of the apparatus is not
considered. '

Friction is kept small by careful design of the steel pivots, which
are hardened steel points bearing in tool steel cones. The spr'mg
knife edges are glass hard. It was found that a convenient perio
is about one-ha.l% second. In still air the apparatus will rock more
than 300 times before the amptitude is diminished by friction to
one-ninth of the initial displacement.

The moment of inertia of the entire oscillating mass was calcu-
lated and then checked by an independent experimental determina-
tion.

Let:

I=moment of inertia of all oscillating parts in slug foot-
units.
m’ =mass of all oscillating parts in slugs.
M,=moment of air forces on model at rest.
M,=moment of springs at rest.
K6 — additional moment of springs when deflected.
c¢=c. g. of entire apparatus above pivot, feet.
§=angle of pitch from normal attitude in radians.

0 : A
n,,z-z=dampmg moment due to friction.
do A :
p gz = damping moment due to wind on apparatus.

6 : .
u,,.-(-ld—t = damping moment due to wind on model.
¢m’f=static moment due to gravity.

The equation of motion then is:

Ig%"- (l‘o+l‘w+”‘m) %g'*'(K_cm’)o:"-Mo—Ma:O

But M,= M,, by the initial condition of equilibrium. Let

a0 0 :
W= Ho+ o+ Bm; then IW +y%—t~+(K_-—cm’)0=o

The solution of this equation is well known to be:

- ';—;‘ ’ 1o
6=C, cosit (K—cm)f-—4—1,+cc'

where O and « are arbitrary constants. If time be counted when
the amplitude of swing is a maximum then cos{—}=1, and 6=6,,
the initial displacement. Also if the number of beats be counted by
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observing the times for succeeding maxima, a plot of amplitude on
time will have for its equation the simple form:

—pt
0=0,e21

The coefficient u is the logarithmic decrement of the oscillation
and must be numerically positive to insure that the oscillation dies
out with time.

The a? aratus was fitted with a small reflecting prism by which a
pencil of light was deflected toward a ground glass plate set in the
roof of the tunnel. Nine lines spaced 0.2 inc% were ruled on this
plate. With the model at rest tﬁe beam of light was brought to a
sharp focus on_the line marked zero. By means of a trigger the
observer started an oscillation of the model, and the spot of light was
observed to oscillate across the scale. The time, ¢, was observed in
which an oscillation was damped from an amplitude of 9 to an ampli-
tude of 1, for example.

Then: Zogeei’:- t—Tog,9, and knowing I and ¢, p is calculated.
921

Preliminary tests showed that the same value of p was obtained
whether the timing stopped at 6=5, 4, 3, 2, or L.

Oscillation tests were made at five wind velocities varying from
5 to 35 miles per hour. The coefficient p appeared to vary approxi-
mately as the first power of the velocity.

Similar tests were made with the model for no wind to determine
1o, Which may be said to be due almost wholly to friction and ver
slightly to the damping of apparatus and model moving throug{;
the air.

Likewise u, was obtained by oscillating the apparatus without
model in winds from 5 to 35 miles per hour.

The coefficient u,, has the dimensions * pltV, where p is density of
air,] a linear dimension, and V the velocity of thewind. To convert
p, t0 M, for the full-size machine at full speed, mult(iiply by the fourth
power of 24, the scale, and by the ratio of full speed to model speed.

The numerical results of tests of the pitching oscillation follow.
Note that the damping of the pitching falls off for low s eeds. This
contﬁibutes to the difficulty of providing sufficient stability ab low
speeds.

pIn the tables following, the number of beats, n, is recorded as a
general check and is not used. Recorded values of n and ¢ are the
means of three or five separate observations.

( Bairstow, loc. cit., p. 176.
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PITCHING OSCILLATION TESTS.

I model and apparatus=0. 04195
I apparatus = . 0368

Apparatus.
| Wind velocity, miles.... 0 14.7 21. 4 35
| n beats counted........ 350 253 210 186
i LABEORER. N S 168 120 100 90
| S BT i B L e e . 00096 . 00135 . 00162 . 00180 \
pp (eS8 Z€I0). oo ... 0  .00039 .00066 . 00084{U51fesf%1;ffw val-
Apparatus and model with wing chord 1° to wind.
Tamrlest - At S0 0 9ib0 ) 1457 5218 25 1 18024 3743
nebeatiith ot o2 S Tl 300 90 56 40 35 32 27
[T Te o e R O e e E e 160 45 28.5 2001706 1601356
L OFORANEIG eI R ) .00115 .00410 .00646 .0092 .0105 .0115 .0137
g ipetionsos s TR oL . 00096 .00096 .00096 .0010 .0010 .0010 .0010
fqp  PPAratus. .- - ..oooooo. .. 0 .00035 .00040 .0006 .0007 .0009 .0011
S e e e S B .00019 .00284 .0054 .0076 .0088 .0096 .0117
But pp= —m M, when reduced to full size and 79 miles per hour

.and mass of 55.9 slugs.

.. M= —.0096 X (24)* X (79/30) X 1/55.9= —150.0

or for
U= —114 foot-seconds, M,=1.32 U
Apparatus and model with wing chord 15.5° to wind.
| 7A SR R o X 9.1 14.7 21. 4 25 30 3.5
e I e e 75 50 35 30 25 19
b P e L e 38.5 25.0 17.5 15 13 9
HoorORR e R .0048 .0074 .0106 .0123 .0142  .0205
e T S SR i .0035 .0060 .0089  .0106 .0123 .0184
M,= —.0123 X (24)*% (43.7/30) X 1/55.9= —106

off

M,=1.66 U where Uis —64 foot-seconds, or 43.7 miles.

The computed values of u,, the model damping coeflicient, are
lotted on figure 11. It appears that p, is approximately a linear
unction of the velocity, as would be expecteg, and the conversion

to full scale, full speed, is made as indicated above.

The damping coefficient is not greatly different for different atti-

tudes, and the following values are obtained by interpolation:

Angle of
wing chord
to wind. V. U. Myg.
+1° 79.0 —115.5 1.30 U=-150
75 51.8 — 75.8 1.49 U=-113
10° 47.0 — 68.8 1. 55 U=—108
12° 45.2 — 66.2 1.59 U=-—106
14° 44.2 — 64.8 1.63 U=-—106
15. 5° 43.7 — 64.0 1.66 U=—106
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ARrTICLE 11.

RADIUS OF GYRATION.

For the radii of gyration of the fully loaded aeroplane we are in-
debted to Dr. A. ¥. Zahm. The actual aeroplane, complete with
gasoline, water, pilot, passenger, and other weights in place, was
suspended from a beam by a chain. The center of gravity was first
located by an inclining method. The machine was then made to
oscillate in pitch about the point of attachment of the upper end of
the chain. Light guys were run to tail and wing tips to insure that
the chain and aeroplane moved as a rigid body.

Let the distance from center of gravity to point of suspension be
denoted by &, p the natural period of oscillation in seconds, K the
radius of gyration in feet about the Y axis or axis of pitch, then

K — (z—f;) p*—h?
By observation h=12.2 feet, p=60/14 seconds.
Ky?=34, Kz=5.8 feet.!
ARTICLE 12.

ROUTH’S DISCRIMINANT.

Bryan 2 has shown that the character of the longitudinal motion
of an aeroplane may be investigated with reference to the roots of
a biquadratic equation of the form:

AN+ BN+ ON+Dr+E=0

The equations of motion may be considered of the form 6= KeM
where K is some constant. For stability the quantity A must be
negative if real, or have its real part negative if complex, in order
that the amplitude of the motion will diminish with time.

The condition that the real roots and real parts of imaginary roots
of a biquadratic equation with constant coeflicients shall be negative
is that the coefficients 4, B, C, D, E shall each be positive as well
as the quantity BOD— AD*—B*E. The latter is commonly known
as Routh’s ® discriminant.

The constant coefficients A, B, C, D, E, are functions of the con-
stants of the aeroplane at the normal ﬁyiljf attitude, i. e., the follow-
ing: X, X, X, Zuy, 2, &gy My, My Mo U, and K2, These gre
resistance and rotary derivatives, velocity, and radius of gyration.
For a given attitude and for small oscillations about that attitude,
it is considered that these quantities are constant. For simplicity
it is here assumed that normal flight takes place in a horizontal plane
and the inclination of the flight path and consequent components of
gravity in the axes of X and Z are eliminated. Also X, and Z, are

11t is of interest to note that the radius of gyration for rolling was estimated to be 6.2 feet.
2 Stability in Aviation.
2 Advanced Rigid Dynamics, E. J. Routh.
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neglected as unimportant and 1, is zero by the conditions of equi-
- librium. For the computation of Routh’s discriminant we require to
know, then, only those quantities which have been so far determined,
and which are assembled below for the different cases investigated.

Formula for the coefficients A, B, O, D, E are given by Bairstow
and are used here, but making ©, X,, Z,, and li zero. They are
copied in simplified form for reference.

A=K
B=— (My+ X, K+ Z, Es?)

Zw’ U 7 “ ‘Xuy Xw
ol luwy J[q! 7, Jiu J[q g ]182 Zu; Zw
Xu, Xu, 0
D=—=i2,, Z,, U
M, My, M
E=—gM,Z,

ARrTICLE 13.
BAIRSTOW’S APPROXIMATE SOLUTION.

From consideration of the usual relative numerical values of the
coefficients of the biquddratic, Bairstow has shown that the equation
. may be factored to a first approximation and put into the following
form:

(7\’+B/A>\+ C’/A) (xw[mo-%ﬁ"j >\+%>=o.

in which the first factor represents a very short oscillation, which
in most aeroplanes rapidly dies out and is of no importance. The
second factor represents a relatively long oscillation involving an
undulatory flight path with changes in pitch, forward speed, and
altitude. The long oscillations should diminish in amplitude with
time, in which case the motion is stable and the aeroplane will return
to its original normal flight attitude if temporarily deviated there-
from by accidental cause. The motion is unstable if the long oscilla-~
tion increases in amplitude with time. It will be shown that the
aeroplane under investigation is stable at high speeds and unstable
at very low speeds. It 1s believed that this 1s true of all aeroplanes.

Case I.
i=incidence, wing chord to wind -+1°,

Velocity V=79 miles. U=-—115.5 foot-seconds.
m=>55.9 slugs, K*=34.

e T S A e e L
Zy—B51 Zp—3.95 My—150

A=+ 34
B=-289
(C=+-834} BCD— AD?*— B*E=-18X10° stable.
D=+4115
E=+ 31
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Short oscillation: A248.5\424.5=0
A=—4.25+2.54;

: 2
p=per10d=m=2.5 seconds.
t=time to damp 50 per cent=w=.16 second.

4.25

Long oscillation: A\?4-.125\-.0374=0
A=—.063+.183¢
p=34.3 seconds, ¢=10.8 seconds.

The short oscillations are unimportant. The long oscillations are
easy and strongly damped. The aeroplane should be very steady
at this speed.

Case II.

1=7°, ¥V=>51.8 miles, U=—75.9 foot-seconds.

Xy=101 | et 1180 B0 45
Zy—849  Z,—226 M,-113

A=+ 34.0
B=-4194.0
C=+4467.0; BCD— AD?*— B2 E=+32X10° stable.
D= 64.3
E=-4 67.0

Short oscillation: A\24-5.7A415.9=0
A=—2.85+2.33:
p=2.7 seconds
t =.24 second to damp 50 per cent.

Long oscillation: A%-4-.078\+-.143=0
A=—.039-+.3771
p=16.7 seconds
t =17.7 seconds to damp 50 per cent.

The period is shorter than at high speed and the damping less.
The aeroplane should therefore be less comfortable.

Case III.
1=10°, V=47 miles, U= —68.8 foot-seconds.
X BT el 7t OBR: i M 120 By
X,,—.075 Zp—1.46 M,—108

A=1 34

B=+-165

C=+4355 (BCD—(AD*+B2E)=3.8X10° stable.
D=+ 425

E=+ 753

- Short oscillation: A2+ 4.857410.44=0
A=—2.424-2.12

p=2.96 seconds.
t = .28 second to damp 50 per cent.

Long oscillation: A+ .021A+4-.212=0
=—.011+-.4607

p=13.71 seconds.
t =62.7 seconds to damp 50 per cent.

This oscillation is rapid and but slightly damped, and would
probably be uncomfortagle. The stability is slight and wind gusts

or external disturbances, if recurrent, might cause trouble.
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Case IV.
1=12°, V=45.2 miles U=—66.2 foot-seconds.

Xo—.180  Zu—072. . Mprk2.15
Xo—236 Zy—.136  M,—106

A=+ 34

B=+137.5

(=-+243 YBCD—AD?—B?*E=—7X10° UNSTABLE.
D=+ 17.4

E=+ 67.2

Short oscillation: A2+ 4.04\4-7.14=0
A=—2.02+1.751

p=3.59 seconds.
{ = .342 second to damp 50 per cent.

Long oscillation: A2— .985\=.276=0
N =+4.043 +.524¢

p=12.0 seconds.
t =16.0 seconds to double amplitude.

The machine is frankly unstable and the pilot dare not release his

elevator control.
Case V.

1=14°, V=44.2 miles, U= —64.8 foot-seconds.

Xii=2.993 . Z0—.993¢ & My, 199
Xo— 132 Zo—.553  Mg—108

A=+ 34

B=-+134

(=213 |BCD—AD>*—B?E=—3.7X10° UNSTABLE.
D=+ 28

E=+ 63.6

Case VI.

1=15.5° V=43.7 miles, U=—63.8 foot-seconds.

Xy~ 2061 Zag=1.0L: - iy 2,02
K202} Zapr 8131y, Mg 106

A=+ 34

B=-+138

C=-+226 (BCD—AD?—B*E=—5X10° UNSTABLE.
D=+ 24.2

E=+4 65.7

Short oscillation: A2+ 4.06A46.65=0
A=—2.03= 1.59i

p=3.95 seconds, period.
t = .34 seconds to damp 50 per cent,

Long oscillation: A*4 .071x+-.291=0
A =+.0358+.5411

25302°—S§. Doc. 268, 64-1——4



50 AERONATUTICS.

Real part of A is here positive, indicating an oscillation increasing
with time.

= XL
P=T541

069
~ 0358

=11.6 seconds.

t =19.3 seconds to double amplitude,

The motion is both rapid in period and rapidly increasing in am-
plitude. Indeed the amplitude i1s doubled in two swings. This aero-
plane, if left to itself, would be highly unstable.

ARTICLE 14.
VARIATION OF LONGITUDINAL STABILITY WITH SPEED.

Preliminary to consideration of the action of gusts on an inherently
stable aeroplane, it was desired to analyze the motion in still air of a
machine wﬁjch could be called inherently stable longitudinally. It
has been found above that a typical aeroplane becomes less stable
at low speeds until real instability results. This result is somewhat
unexpected in view of the curves of pitching moment 37, which in-
dicated static stability at all possible attitudes up to and includin
horizontal flight at +15°.5. In other words, M, is positive for a
cases. The instability comes about on account of the rapid rate of
increase of drift at large angles causing X,, to change sign, and on
account of the less rapid rate of increase of lift, causing Z, to be-
i:ome smgll at high angles of pitch. Furthermore, Jf, diminishes at
ow speed.

Frg)m the speed power curves on figure 3, it appears that for angles
greater than 10°, we are on the part of the power curve which re-
quires more power to go slower, ‘‘region of reversed controls.” This
region is now found to be dynamically unstable so that controlled
flight only is possible here. But with reversed controls this is
doubly dangerous.

The frequency of accidents at low speeds, following the recent
demand for a wide speed range, confirms this impression of the
danger of low speeds when approaching a critical angle and speed.
The critical angle for instability is clearly an angle less than the pos-
sible maximum for flight.

A fair measure of the relative stability at various speeds may be
had by noting the following tabulation of the values of Routh’s
discriminant, denoted by R:

Velocity =~ Wind chord

n to R,
miles. wind. Bl 1t 0T PR
79.0 17 +180 X10°
51.8 7 + 32 X105iStable.
47.0 10° + 3.8X10°
45. 2 12° = 17 X10¥
44. 2 14° — 3.7X105;Unstable.
43.7 15. 5° - 5 X10°

The table is reproduced graphically on figure 12.
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A similar investigation for lateral stability fails to show any marked :
change with speed, as would be expected since speed depends on
pitch a.ni}e and the factors which make or unmake lateral stability

s

are but slightly affected by angle of pitch.
1612,
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REPORT No. 1.

PART 2.

THEORY OF AN AEROPLANE ENCOUNTERING GUSTS.

By EpwiN BIDWELL WiILSON.

ARTICLE -1.
INTRODUCTION.

The notation here used will be in the main that of Bairstow.
(Technical Report of the Committee for Aeronautics for the Year
1912-13, p. 143.) As, however, Baimtow changes his notation in
the first few pages of his report, we shall begin at the start with some
departures from him.

x, 1/, 2 are MOVing axes directed, respectively, backward, to the
left, and upward relative to the driver; if u’,v’, w’ be linear velocities,
and 7%'.’ q’, v’ be angular velocities, resolved along these axes; and if
X’,’Y’, Z’ be forces, and L/, M’, N’ be moments of forces (measured
per unit mass of the aeropi&ne); then the dynamical equations of

motion are
du’jdt+w'q’ —v'r =X, (1a)

dv' jdt +u'r’ —w'p’ = ¥ (1d)
dw' jdt+v'p —u'q =Z', (1e)
dhyjdt —1"hy+q"hs =mL/’, (2a)
dh,/dt — p'hs +1"hy =m M, (2b)
dhg/dt —q'hy+ ' s =mN’, (2¢)
where m is the mass and
h,=p'A—¢ F—1'E, (3a)
h,=q¢'B—1'"D—p'F, (3d)
hy=1'C—p'E—¢'D, 4 3¢)

52



AERONAUTICS. 58

are the components of angular momentum,—the quantities 4, 5, C
being the moments and D), E, F the products of mertia relative to
the moving axes fixed in the body.

The symmetric aeroplane will alone be considered here;

D=F=0. (4)

If the machine is in uniform horizontal flight, all the forces,
moments, linear velocities and angular velocities except «’ vanish,
and «’ = U, a negative quantity in magnitude equal to the uniform
velocity. (The precise backward direction of the z-axis is that
which 1s horizontal in uniform flight, and hence by this definition the
direction of this axis, and of the z-axis, varies in the aeroplane with
the speed.)

If the motion is slightly disturbed, the velocities take the values

uw = Utu,v' =v, 0" =w,p'=p,¢ =g, =, (5)

where u, v, w, p, ¢, r are small. The products of these small quan-
tities are neglected, as in all discussions of small oscillations, and the
equations take the form

dujdt=X", dv/dt+ Ur=Y"’, dw/dt— Uq=2, (6)
Adp/dt— Edr/dt=mL’, Bdq/dt=mM', Cdr/dt— Edp/dt=mN'. (7)

In uniform motion the forces and moments all vanish. For the
disturbed motion they are small and may be expressed linearly in
terms of u, v, w, p, ¢, 7. The forces are due to three sources: 1° the
propeller thrust, 2° gravity, 3° the air. We shall assume that the
propeller thrust (and moment, if any, arising from it) is constant;i. e.,
the motor is supposed to speed up or slow down under changed condi-
tions so as to £liver a constant thrust. If 6 and ¢ are the small

itch and roll, the components of gravity are g, —ge, —g (see

airstow, 144, 7y —w), and its moments are zero because the C. G. is
taken as origin. The air forces and moments may be written as
X,Y,Z L, M, N and developed as

X =X+ Xyu+ X+ Xyw+ Xpp+ Xg+ Xor, ®)

whiere X el .8 vis are the “resistance derivatives’’ taken for
the relative velocity of machine and wind. (X, and the propeller
thrust cancel, so do Z; and ¢g; Y,, L,, M,, N, vanish.)

In the symmetric aeroplane half the resistance derivatives vanish
and the six equations of motion separate into two sets of three each,
one set for the longitudinal, the other for the transverse motion.
These equations are (Bairstow, 148, 13 and 14 with ©=0) for longi-
tudinal motion,

dufdt=g0+ X u+ X,w+ X g, (9a) see (1a)
dw/dt= Uq+ Zu+ Zyw+Z g, (90) see (1¢)
B/m. dg/dt= M+ M,w+ Mg, (9¢) see (2b)
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and, for transverse motion,
dvfdt=—go— Ur+ Y p+ Y, ,p+ Y, (10a) see (1b)
A/m.dp/dt— E[m.dr/dt=Lw oL L,p+ Ly, (10b) see (2a)
Clm. dr/dt— E[m. dp/di= N+ Nyp+ Nyr. (10c) see (2¢)

The integration of these equations gives the free oscillations of the
aeroplane.

ARTICLE 2.
LONGITUDINAL MOTION IN SMALL GUSTS.

A gust if not too severe may be treated by the method of forced
oscillations. If the aeroplane is traveling on an irregular wind, we
may regard the average wind velocity relative to the machine as that
which should be used in the computation of the resistance deriva-
tives, and we may regard the departures of the actual relative velocity
from the mean as small quantities inducing additional forces into
the equations of motion.

Suppose first a head-on gustiness. This would introduce an extra
term of the form X,u info the first equation, Z,» in the second,
and so on. If, as a result of the u%uSt’ the machine tilted appreciably,
the originally head-on gust would no longer be head-on, but Woufd
have components u,, w, and give rise to the term X,u, + X,w, in the
first equation. It 1s clear, however, that under the hypothesis of
small oscillations, w, would remain small of the second order relative
to u,. The term X,w, could then be neglected relative to X,u,,
unless X ,, much exceeded X,,.

We should in general allow a gust to have components u,, v, w;, p;,

., 7, relative to the axes. This would take into account any possi-

le rotational motion in the gust. The rotational motion of a gust
may be quite small. In the discussion by Glazebrook (Aeronautical
Journal, July, 1914, pp. 272-301) nothing is accomplished relative
to rotationalygusts. g'gt it ma{; well be that the rotational element
is of great importance. For the rotary derivatives, in the case of
the machine whose derivatives are tabulated by Bairstow (loc. cit.,
159), are large. Thus a term Mg, = —210¢, would be comparable
with X ,u, = —0.14u, if ¢, were 1/700 of ,; i. e., if the gust were a uni-
form whirl of radius 700 feet. In the same way L,is large. In the
machine that will be discussed in what follows M, is also large,
viz., — 150.

The equations for the longitudinal motion in a general gust are
(see 9a—g

du/dt— g0 — Xyu— Xyw— Xoq =X, + Xw,+ X0, (11e)
dwjdt— Uq—Zyu—Zyw—2Zoq =Zyu+ Zyw, + Zyq,. (11d)
B/m dq/dt— Mu— Myw— Myq= My, + Mw, + Myg,. (11¢)

The solution of these equations consists of two parts: 1° the so-
called complementary function which gives the natural oscillations,
2° the particular integral which gives the forced oscillations due to
the gust. To effect a solution for the particular integral, we must
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make some assumption as to the value of the components u,, w,, ¢,

of the gusts as functions of the time. Before making such an assump-

tion for the particular integral, the solution by the ‘‘operational”

method may Ee indicated. (See Wilson, Advanced Calculus, p. 223.)
Let D denote differentiation. The equations may be written

(D—-X,)u—X,w— (X D+g)0 = X v, + Xoyw;, + X g, (12a)
—Zgu+ (D —Zp)w— (Zg+ U)DO=Zyu, + Zyw, + Z g4, (12b)
— Mu— Mw+ (k*sD?— M D)0 = M u,+ Myw,+ Myq,, (12¢)

where k*;=B/m. These equations are solved algebraically by
multiplying by the proper cofactor determinants and adding. Then

/[0, ¢ alent ohEL Y 0 9K ot gl
k2 70y iz e Y DTz B )
—M, -M, ¥D'—MD| |M, —M, iD'—MD

+| X, —X»—(XD+g)
ZyD—-1Z, —(Z,+0)D \w, (13)
M, — M, ksD’—MD

+| Xy — Xy — (XD +9)
\Zy D—2yy ~(Zg+ THD gy
M, — M, kD~ MD
or, if the determinant on the left be denoted by A,
X —X,—(X,D+g)

S m i i S D (14a)
M, — M, k»D'—MD

U=

X, —X,-
b SSRONY 2 5 T g w9
+ D3/ 2 P2 ZyD-Z, —UD
M, ksD*— MqD il ﬁq - M, k%D?
There are similar equations for w and 6, namely,

" -D_XuXw T (XqD+g)
M= —Z,Z, — (Zs+ U)D|w, (14b)
— M, M, k»D*— MDD

+D| Z, —(Z,+ U)D Pdadlyd
M, #D—MpD |% t :%uzjlq— kg% |
i piaks D-%’,,, X
Af= — Ly — Ly Z 14¢
B, iercn e

+D| P22 2y |u, +D|P=%p Za |u,

The general (literal) integration of these equations would be so
complicated as to be useless. We shall make use of the formulas
only after simplification by the insertion of numerical data.



56 AERONAUTICS.

Possible methods of treating gusts.—The only treatment of ts
which I have seen is that described somewhat popularly bgf Glaze-
brook (loc. cit.). He seems to state, as the main method of attack,
that of small differences whereby it is assumed that the involved
time over which the motion is to be studied is divided into small parts,
and that the atmospheric conditions remain constant during each of
these parts. By then regarding the differential equations of motion
as equations in differences of the following form,

Ay =(X'—w'q +v'r") AL, ete.,
Ahy=(mL’ + T.{h'z w q,hs)Ata ete.,

it is possible to comtpute, through a series of intervals A¢, the ap-
proximate positions of the aeroplane. This method is, as Glazebrook
states, exceedingly tedious, for A must be taken very small, indeed
only a small part of a second in the case of a sharp gust, in order that
the solution may be even approximately satisfactory for the differ-
ential equations. Moreover, the whole calculation apparently has
to be done from the beginning for each new type of gust which one
desires to study. The method, however, is applicabTe i all gener-
ality irrespective of the stability of the aeroplane.

The reason that I have chosen to operate on the basis of small
oscillations is that after a certain amount of preliminary calculation
has been accomplished my formulas will enable me to treat very
rapidly a series of very different types of gusts. My method is not
applicable, of course, to machines which are not stable, for the oscilla-
tions could not remain small with such machines, but it is probably
doubtful whether the motion of the unstable aeroplane in a gusty
wind is of very great importance, as the instability of the machine is
not unlikely to cause indeterminately violent motions on relatively
small gusts. T have tried to devise methods which would enable me
to use graphical apparatus for obtaining the solutions here desired,
but have been unaﬁfe to throw the equations into a form which lends
itself to such methods.

Moreover, the coefficients which enter into the equations and into
the solutions at all stages of the work are of such varying magnitudes
that it is difficult to obtain any reasonably accurate results. Tt seems
impossible—I have not yet succeeded in avoiding the difficulty—to
eliminate the occasional necessity of subtracting numbers which are
nearly equal in magnitude; thus the accuracy of the figures is, after
subtraction, seriously impaired. As I was aware that the data fur-
nished me were probably not accurate to three figures, I first made
the calculations with slide-rule accuracy, only to find that the final
results became wholly illusory, owing to the difficulty just mentioned.
I have therefore had to recompute everything with 4-place logarithm
tables. Most of the figures which occur in the work are therefore
4-place numbers. Those which appear to have only three significant
figures generally have the fourth figure zero when occurring in
formulas containing 4-place numbers. In the calculations toward the
end of the research the 4-figure accuracy has become reduced to
three or two figure accuracy, Dut it did not seem best systematicall
to reduce the numbers by the omission of two figures, although this
reduction has occasionally been made in final calculations.
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AERONAUTICS.
ARrTICLE 3.
NUMERICAL EQUATIONS FOR HIGH SPEED.

The data for high speed are (see Hunsaker, p. 47):

K= —0.128," X, = 100162, 1 X =0
Ly —1— 02907, 1 o Loy=i=18+99, Zy=0 (15)
M,=0 M,=+1.74, M,=—150
B/m=Fk ey | el e T
The cofactors 6 in the determinant A are—
’D—Z,,, —(Z,+ U)D|_|D+3.95 115.5D
— M, k*D*— _M DT —1.74 34D2 150D,
=341P+284.3D*+793.5D =6y,
I—Mw k*sD*— M,D|_|—1.74 34D*+150D |
e (XD+g) |—0.162 —8p.47|
—5.508D?+24.30D + 55.98 =5,
} Al (1 g —I—g)‘ 4 —0.162 . golai
D— —(Z,+ U)D D+3.95 115.5D
= 13.46D+127.1=4,,
(Z g U)D —Z & 115.5D 0.557
5 340D*+ 150D 0
= —18.94D%—83.56D =4,,
D-X, —(XD+g)| _ |D+ 0.128 — 32.17
- M kD*— M, % 0 34D*+ 150D
= 34D3+154.3D%+19.20D =54,,
—(XD+q) D—-X,] — 32.17 D+ 0.128
—(Zg+ DD =23 115.5D 0.557
= —115.5D?>—14.78D—17.92=34,,
L2 T N D+ 3.95
LA M| T 0 e
= —0.9692=46,,
= A0 D= X5l —0.162 D+ 0.128
- M, - M, —1.74 0
= 1.74D + 2227 =3,
adix e K| e D+0.128 —0.162
= Pyl = 0.557 D+3.95

D?+4.,078D + 5957 =4,
The value of the determinant A is

34D +288.7D°+833.0D2+115.1D 4 31.18 =
34(D*+8.490D° +24.50D% 4 3 385D +0.9170).
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(The value of the determinant checks by three calculations.)
The roots of the equation

f(D)=D*+8.49D°+24.5D°+3.385D +0.917=0 (16)

determine the decrements and periods of the natural oscillations,
and must be found. (Unfortunately these roots must be found with
considerable accuracy, and the rough first approximations, such as
are indicated by Bairstow, seem insufficient for our use.) Let it be
?ssumed that one root is so large that it may be found approximately
rom

D++8.49D%+24.5D*=D*+8.49D +24.5=0.
Then D = —4.245 +2.5454.

If now r be an agproximate solution of f(D)=0, a new approxi-

mation may be had by assuming » + 2, with z small, as a root.
Then

_ _J(r) _ r+8.497°+24.5r+ 3.385r+0.917

S Y 475 ¥ 25.47r° + 49r + 3.385

T

approximately. As 7?4 8.49r+24.5=0, the fraction simplifies to

3.385r4+0.917

e e 0TS,

if r= —~4.245—2.545i. This root of f(D) =0 is therefore
D= —4.182 +2.438i.
The factor of f(D) corresponding to this pair of roots is

D?+8.364D +23.43. (17a)

Let the other factor be D*+aD+b. Then 23.435b=0.917 and
b=.03914. Also, 8.364(.0391) +23.43¢=3.385 or 23.430=3.058
and ¢=-.1305. Hence the second factor is

D?+.1305D +.03914. (17b)

As a check on the work we may multiply the two factors together;
we find

(D*+8.364D +23.43) (D*+.1305D +.03914) =
D*+4-8.494D° +24.56 D% + 3.385D +.9170.

We can find, merely by careful trial, better factors as

(D*+8.359D +23.37) (D*+.1308D +.03924) — '
D*+8.490D +24.50D +3.385D +.9170. (18)

The definitive roots of f(D)=A=0 may therefore be taken as,

a= —4.180 —2.4304, b= —4.180 +2.430i
c= —.0654 —.18704, d= —.0654 +.18704 (19)
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ARTICLE 4.
INTEGRATION FOR HIGH SPEED.

The numerical equation for « is (see 14a):
34 (D*+8.49 D*+24.5 D*+3.385 D+0.917) u
= (X by + Zy8y) uy + Diyw, + Medy,g,
= —34 (0.128 D*+1.160 D*+3.385 D+0.917) u, (20a)
+34 D (0.162 D*+0.715 D +1.647) w,
—34 (59.37 D+560.6) ¢,.
The numerical equation for w is (see 14b):
34 (D*+8.49 D*+24.5 D*+3.385 D+0.917) w
= (X wdiz+ Zuby+ Myds;) wy+ Dbyu, + Mbyg,
= —34 (3.95 D*+23.94 Dzé-3.385 D +0.917) w, (200)
—34 D? (0.557 D +2.458) u,’
+34 (509.5 D*+65.21 D+79.05) q,.
The numerical equation for 8 is (see 14¢):
34 (D*+8.49 D*+24.5 D*+3.385 D+0.917) 9
= M B45q, +Dé,3u, + Dé,w, (20¢)
=34 (4.412 D*+17.99 D +2.628) ¢, |
—34 (0.02851) Du, +34 D(.05117 D +.00655) w,.
The solutions are of the type:
u=C,e% + O et + O e+ O, 0% + I,
w= 0% + C,ye% + Ope* + Cp e + 1, (21)
0= Cyye% + Cped + Cpet + Oy et + I,

where a, b, ¢, d are the roots of the biquadratic (see 19), C; certain
constants of integration, and I,, I,,, I, a set of particular solutions
of the equations. Wershall determine I,, I, J; in such a manner
that they will not contain the functions €%, etc.; we may therefore
determine in advance the relations between the twelve (’s. (This
will debar us from using as gusts u,, w,, ¢,, those which are of the
form Ce®, etc.; but this restriction is not important—such a damgﬁd
gust tuned to the damping and.period of the machine is highly
mprobable in nature.)

f we substitute u, w, 6 in the equations (i4), the particular solu-
tions must cancel out among themselves (since they can not cancel
terms of the form %) and leave :

(a—X,) 0,¢*—X,0pe%— (X qa+g) Cye* +similar terms =0,

— 2,0 (a= Dy Ot = Z Dol + e -
vt M& ueal._ ch’zleat"*' (k)xDZ_MqD) 03,_3“"*‘ __________ =().
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These equations hold identically in £, and the coefficient of e%, etc., in
pach must vanish. The three homogeneous equations in the three
unknowns C,, Oy, Oy (or the similar equations in Cy, Coy Onj a5,
Cys, Cus; iy Oy Csy) 8TO consistent because @ (or b ¢, d) 1s a root of
the determinant A, and the solutions are:
a—X,.

G 0“=|a:%;w:gUa‘:l—_-gUa —Zy| m e

—Zy a—Zy,

with O,,: Oy,: Oy, determined by the same functions of . In words:
To obtain the ratios of the coefficients of €% in u, v, W, substitute
D—ga in the determinants 8y, 8g 855 OT Ot Ot C,, as

13.46a4+127.1 : —115.5¢>—14.78a—17.92 : a?+4.078a+ .5957
or O, Cp: COy=13.46a+127.1 : 950.84+2560 : —4.281a—22.81.
This gives C);: Oy Oy 88

70.8~32.7 1:—1414—2310 ©:—4.92 + 10.40 % or as
1: —4.04—34.521: —.11324.0946 %
The values of COp: Cy: O, are th% conjugates
1:—4.04 +34.51: —.1132 —.0946 .

To find Cs: Cyy: Oy We must substitute ¢= — .065—.187 % in the same
determinants. Then

C5: Oy Coy=13.46¢+127.1: .33¢c— 13.39: 3.947¢+.5565. This gives

g Opgt Cgg 88

126.2 —2.516 4:— 13.37 —.0623 i: .2983 —.7380 %
or 1:—.1058 —.002587 i: .002478 —.005799 %

The values of the conjugates are:
O,.: Cpi2 Cyy=1:~.1068+ .002587 7: .002478 +.005799 .
The general solutions of the equation of motion are:
u=Cye%+ 0% + Cyge? + Cye + 1, - (22a)
we (2 4.04—34.513) Cyet+ (—4.04+34.51) Oppe®
4 (—.1058—.002587 i) Cyge®+ (— 1058 +.002587 i) Oy + I, ‘
(22b)
0= (—.1132+.0046 7) C} 6% + (— .1132 —.0946 1) Cjpe* (22¢)
+ (.002478 — .005799 1) Cj5e% + (.002478 + .005799 7) Cy % + L.

From these equations we see that the heavily damped short period
oscillation (roots @, b) is about 34} times as strong in w as in u;
whereas the mildly damped long period oscillation (roots ¢, d) is
about 9% times as effective in v as In w. Moreover, the short period
motions in % and w are about quartered; but the long period motions
are in opposite phase. The amplitude of the short period motion in
g is about 5 that of w; hence for each foot-second of short oscillation
in w there is about 1° in 6. The amplitude of the long period motion
in 0 is about .006 of that in u; hence for each foot-second of long
oscillation in % there is about 3° in 6. The damping of the short
oscillation is so strong that the amplitude is reduced to about one-
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ninetieth in one second where in the case of the long oscillation
the reduction is only to about nine-tenths of its original value in one
second; the relative amplitudes in the cases of u, w, 6 are more
important in the case of the long than in that of the short period
oscillation because the latter is so quickly damped out that the
swing may not get well started. However, the extreme magnitude of
the short period oscillation in w as compared with u_indicates the
possibility of relatively violent accelerations in w; indeed, it is the
short period oscillation which may account for initial difficulties
whereas the long period oscillation accounts for the progressive
troubles, due to gusts.

There remain to be determined the values of the constants (' of
integration from the initial conditions of uniform flight, i. e., u=w=
#=q=0. Let the particular solutions have the initial values I,
e Lhen

e Cu e Olz+ 013+ 014+ Ly,
0=(—4.04—34.53) C);+ (— 4.04+34.5 3)C,, :

1 (—.1058 — .002587 %) .5+ ( — .1058 +.002587 i) G,y + Lo,
0=(—.11324.0946 i) C\, + (—.1132—.0946 ) C,,

4 (.002478 — .005799 7) O,y + (.002478 + .005799 ) Oy, + I,
0=(—.1132+.0946 )aC, + (—.1132—.0946 i)bC,,

+ (.002478 — .005799 1)cC\y+ (.002478 +.005799 )dCyy+ L',
or 0= (.703 — .205 3) O, + (.703 4 .205 1) C,5 + ( — .001246 — .000084 ) 0,

+(—.001246 + .000084 1) C\y+ I's,.

The values of Cy;, C,, and Cy,, O, are conjugate imaginaries; hence
Cu+ Cy=A4, Cy+ 0, =B, i(Cy—Cy)=0, 1(C;—Cy)=D are real.
The equations may therefore be written

0=A+B+1,

0= —4.04 A+34.5 O—.1058 B+.002587 D+ I,
0= —.132 A—.0946 C+.002478 B+ .005799 D + Iy,

0=.703 A+.205 C—.001246 B+ .000084 D + I’y,.

The values for A, B, €, D are (as found by determinants and checked
by substitution):

A~ — 0008856 1, $a008108 Lok G621 Ty~ 1.372 Fa

O— — 003196 I,,— 02803 I,,+.01476 I,,—.1543 I, (23)
B= = (1—,0008856) 7, ~:008198 1,q— 01621 Josek 1372 L,

D= 3510 L 02940 ool 2D Tgms 29,8968 5o

The solutions (22) of the equations of motion of the aeroplane in-
volve imaginary numbers from which they may be freed by using
A, B, C, Din place of Oy, C,,, Oy, C,,. The equations then become

u=e*1% (A cos 2.43t+ C sin 2.43¢]
+ %54 (B cos .187¢ -+ D sin .187¢) + I,,,

w=e¢ 1% [(34.5 C—4.04 A) cos 2.43¢
—(34.5 A+4.04 C) sin 2.43f]
+ 9534 [(,002587 D — .1058 B) cos .187¢
—(.002587 B+.1058 D) sin .187¢] + 1,,,
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0=e18 [— (1132 A+.0946 C) cos 2.43¢
+(.0946 A—.1132 O) sin 2.43¢]
+ €954 [(,00278 B+.005799 D) cos .187¢
+(.002478 D —.005799 B) sin .187¢] + .

These formulas enable us to study any particular gust we desire.
It is merely necessary to find the particular solutions, then the
constants A, B, C, D. e shall reduce the coefficients in the paren-

theses. Then

u=e¢*1% (A cos 2.43t+ C sin 2.43¢)
+e%% (B cos .187t+ D sin .187t) + 1,,  (24a)

w=¢*1% (A’ cos 2.43t+ O’ sin 2.43¢)
+ ¢~ (B’ cos .187t+ D’ sin .1878) + 1,,, (24b)

6=¢*% (A” cos 2.43t+ C” sin 2.43t)
+ ¢4 (B” cos .187t+ D" sin .187t) + I, (24¢)
where

A’ = — 1066 I,— 1.0001 I,+.4436 I, +.220 I's,

0’ =.04346 I,,—.1696 I,,—.6190 I, -+47.93 I's, (25)
B’ =.1066 I,,+.000107 I,,— .4436 Ip,—.220 I,

D’ = —.08523 I o+.03112 L0+ 18.20 Ipo+3.158 Ty,

A” = +.0004024 I,,+.001724 I,,,—.003231 Ip,+.1698 I's,,

€" = +.0002778 I,,—.003947 I,,—.000136 Lp—.1123 %, (26)
B’ = —.0004024 I,,—.001724 I,,—.99676 I;,—.1698 Iy,

D’ =.006683 I ,—.000681 I ,—.4261 I,—.08201 I's,.

In any particular case the calculation of the coefficients in (24)
from (23), (25), (26) is likely to be relatively simple because there
are so many terms that for that case may be neglgible.

ARrTIOCLE 5.
SOME SPECIAL GUSTS.

If we wish to represent a gust which, starting from the condition
of still air, increases to a certain intensity J we may use the function

Fs

J (1—em). (24)

The value of 7 determines the sharpness of the gust. If r=1, the
gust has reached about two-thirds of its value in one second; if r=5,
the gust has reached two-thirds of its value in one-fifth of a second;
if r=1, the two-thirds intensity is reached in 5 seconds. We may per-
haps regard r=1 as giving a moderately sharp gust, r=>5 as giving a
very sharp, and r=1 as ?Ving a tolerably mild gust. The function
(24) has the advantage of being in such form that the determination
of the particular integrals is easy. (See Wilson’s Advanced Calculus.)
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CasE 1. Head-on gust—mild. wu,=J (1—e2%).
In equations (20) we let u,=J (1—e—%), w,=¢,=0. Then

li—d (I 4 e M) 0 o B

I, =.082J e, I,0=—.082J,
Iy = —.00495J e—*, I'yo= — 0049,
I'y=.00099J ¢, I"4,=.00099.

(N. B.—The total increase J of the wind occurs everywhere as a
factor and may be omitted—the results then are for an increase of
1 foot-second.)

w=Je—94(,622 cos .187¢+.630 sin .187f) — J(1—.247¢~2),

w=dJe 1% (—.004 cos 2.43t+.003 sin 2.43t) — Je—%4(.078 cos .187t+
.059 sin .187¢) 4 .082J¢%,

6 =Je"%4(.00495 cos .187¢—.0031 sin .187t) —.00495J¢—.

It appears from these equations that the effect of a mild head-on
gust of magnitude o is as follows: (1) The machine takes up an easy
slowly damped oscillation in u of amplitude about 89 per cent of J;
after the oscillation dies out the machine is making aspeed .J less rela-
tive to the ground and hence the original speed relative to the wind.
(2) There is a rapidly damped oscillation in w of rather small magni-
tude and a slowly dam e({) one of about 10 per cent of J, the final
condition being that of horizontal flight. (3) There is a slow oscilla-
tion in pitch of about .0058 J radians or about .32 J°. If the mag-
nitude J is great, the pitching becomes so marked that the approxi-
mate method of solution can no longer be considered valid—a gust
of 20 foot~seconds causing a pitch of some 6°. As the period is Iong
(about one-half minute) the pilot should have ample time to correct
the trouble before it produces serious consequences. ;

The result of a tail-on gust is the opposite of that of the head-on
gust and therefore need not be treated separately. For the head-on
gust J is negative; for a rear gust, positive. ‘

To calculate the stresses on the machine or operator caused by the
gust we have merely to find the accelerations du/dt and dw/dt of which
the first is (approximately)—

du/dt = Je—"%5%(.08 cos .187t— .16 sin .187t) —.05Je—*.

This acceleration reaches a maximum of something of the order of
J/10; and if J should be 20 foot-seconds, the acceleration would be
only about 2, or 6 per cent of g—not a large amount. The accelera-
tion dw/dt is likewise small. (N. B.—The initial accelerations du/d¢
and dw/dt should vanish, because the gust starts from zero. That
the initial values are not exactly zero in the above formulas is due to
the roughness of the final calcu{ations for w and w.)

The path of the machine varies from the horizontal by the amount

t
2= [(w-{- 115.50)dt
Jo
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which accounts for the effect of the vertical velocity and of the climb-
ing in the path. The result is (roughly)

¢
z=dJ f 954 5 cos .187t— .4 sin .1878)dt— .5e—dt,

z2=J[e—%%4%(cos .187¢+ 3 sin, .187¢) +2.5¢—* —3.5].

The motion is oscillatory approaching as a limit z=—3.5 J. The
machine will rise 70 feet when the gust is 20 foot-seconds head-on.

Case 2. Up gust—mild. w,=J(1—e%).

I,~.305 Je—, .= J0x
L,=J(1—1.012¢-%), ' Ly='—.012 J,
Ir=.000737 Je %, Tio= 000737 J,
Ty= —.000147 Je—=, Tjo= —.000147 J.

u=Je %% — 305 cos .187¢{—.0108 sin .187t) +.305 Je—%,

w=dJe 18— .02 cos 2.43¢t+.026 sin 2.43t) + Je*%54%(.032 cos 1871+
.002 sin .187¢) + J (1 —1.012¢—%),

6=Je—°%%(.0008 cos 187¢+.0017 sin .187¢) + .00074e—*).

The effect of the up gust is to set up a small long oscillation in %
of magnitude about 0.3 J, a very small oscillation in w, and a long
oscillation of intensity .0018 J radians or .11 J° in §. The compar-
ative effects on the velocity and angle in the case of head-on and up

usts show that the up gust is only about one-third as effective as the
ead-on gust. The accelerations in the case of the up gust are all
small.

To find the displacement in a vertical direction we integrate as
before.

B ‘j; “(w+115.56)dt.

It is scarcely necessary to trouble with the trigonometric terms
artly because the motion is less pronounced than in Case 1, partly
Eecause there is here the secular term J#, which will carry the machine
up with the gust and will be the chief effect after the lapse of a short
time.
A down gust is in every way the opposite of an up gust and need
not be separately treated.

CasE 3. Rotary gust—mild. q,=J(1—e%).

I,= —J(610.6—=475.567%), . . Lo=—135.1J.
I,=J(86.21 — 74.87¢—%), 7. =1134J
Io=J(2.865 + .691¢—%), L,=3.556 J.
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L= —.138 Je =%, I'go= —.138 J.

I,=Je*1%(.46 cos 2.43t+.1875 sin 2.43f)
+ Je—54%(134.7 cos .187t— 659 sin .187¢)
— J(610.6 — 475.5¢ —*),

I,=Je*1%(4.61 cos 2.48t— 16.82 sin 2.43f)
& Je—5( _ 1595 cos .187¢+ 70.08 sin .187f)
+J(86.21 — 74.87¢—2),

Iy=Je*1%(— 0698 cos 2.43t+.0223 sin 2.43%)
+ Je—0%4( —3 487 cos .187t— 2.414 sin .187¢)
+J(2.865+.691 ¢ —%).

The effect of the rotary gust is a long oscillation in « (the short
one is negligible) of magnitude about 670 J, a short oscillation in w
of about 17 J and a long one of about 71 J, a long oscillation in 6 of
about 4.1 J. The comparison with former cases may be made by
supposing first that the oscillation in % may reach some 20 foot-
seconds. Then J=1/33=.03. The amplitude of the oscillation
in 6 is then some 0.12 radians, which is an amount comparable with
the 6° of Case 1. To get an idea of what J=.03 means, we may
note that if a gust of 20 foot-seconds is due to a whirl of the air as
a solid body with ¢,=.03, the radius of the whirl is 660 feet. We
may therefore say that the effect of a whirl of radius 660 generating
velocity of 20 foot-seconds is of itself about equal to that of a head-on
velocity of that amount. If, however, a machine ran into such a
whirl, 1t would experience both the effect of the whirl and of the
linear velocity generated by it and would be disturbed considerably
more than if 1t had encountered a pure head-on gust. We may
therefore say that if the head-on gust arises from a whirl of mate-
rially less than 660-foot radius, the effect of the whirl is quite con-
siderably larger than that due to a straight head-on gust of equal
magnitude.

e conditions after enough time has elapsed to allow the expo-
nential term to become small is

= 6106, B SEERI R T, — 2RGH5R

It is therefore seen that the machine takes up the head-on velocity,
acquires a small upward velocity, and is inclined at an angle 2.865./
radians to the horizontal, these effects being due exclusively to
the rotary motion of the air. The path in space could be obtained
by integration, but (like the effects previously mentioned) would
not be the true path if the rotary motion were accompanied by
horizontal or vertical linear gusts. It seems therefore scarcely
worth while to find the path.

The value that I attach to this theory of rotary gusts does not
arise so much from the fact that such gusts seem nowhere to have
been treated as from the revelation of the powerful effects of such
gusts. When a machine is flying low it must expect to meet air
which has been set in rotation by the friction of the wind against
the ground, against buildings, or against trees. It seems certain
that very material angular velocities might be set up and that these
might (owing to their short radius) induce only moderate linear
gusts. In such cases, if they can arise as assumed, the machine

25302°—S. Doc. 268, 64-1—35
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might behave very much worse than could be foreseen when nothing
is known of rotary gusts. It is not unlikely, however, that rotary
gusts would be very irregular themselves and that, before the
machine could feel the full effects of one, the gust might have dis-
appeared. In the same way rotation could %: generated at the
interface between dark and Yighb regions of air—indeed any sharp
relative motion of the air is likely to contain rotation.

Case 4. Head-on gust—moderate. w,=J(1—e™t).

1,= —J(1+.09876¢ %), I ="1.00876 J,
1,=.1307 Jet, I,0=.1307 J,
Iy=—.00196 Je, Lio= —.00196 J,
I's= +.00196 Je?, I'so= +.00196 J.

w=Je*1¥(— 000676 cos 2.43t— .000486 sin 2.43%
+ Je—%54(1.09944 cos .187t—.1528 sin .187¢)
—J (1+.09876¢t),

w=Je *1%(—.01405 cos 2.43t+ .02528 sin 2.43¢)
+ Je—0%34(— 1159 cos .187¢+.01493 sin .187%)
1.1307Je,

0=Je*1%(,0001207 cos 2.43t—.00000895 sin 2.43¢)
+ Je—9%54( 001838 cos .187¢— .006755 sin. .187¢)
—.00196 Jet.

The short oscillation in u is negligible not only in regard to its
magnitude but even as far as accelerations are concerned. Then

du/dt=Je—*%%(— 1 cos .187¢+ .21 sin .187¢) + .1Je .

This is at most about .25 J, or 5 foot-seconds 2 if J=20. The short
oscillation in w is considerably smaller than the long, but when the
coefficients —4.18 and 2.43 are brought in by differentiating to find
dw/dt, whereas —.0654 and .187 are brought in by the long oscilla-
tion, it appears that the short oscillation is effective in determining
the acceleration. Thus

dw/dt=Je*1%(.12 cos 2.43t— .07 sin 2.43t)
+ Je—0%54(,01 cos .187)— .13 Je .

The amount of this acceleration is at most about J/12, one-third that
in u; the effect, however, is produced very quickly, in the first half

‘second.

In integrating to find the path in a vertical plane we may neglect
the short oscillation, because in this case we divide by —4.18 and
2.43, whereas for the long oscillation we divide by —.0654 and .187.
Then

i1
z=f (w+ 115.50)d¢

¢
5, f [e—9%54( 106 cos .187¢— .765 sin .187¢) — .095¢—]d¢
o

=Je—0%4(2.3 sin .187t+3.5 cos 1.87¢) +.095 Je*t—3.6 J.
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The final condition is a rise of —3.6 J, an amount which agrees with
that in the case of the mild gust (Case 1) in as far as the rough calcu-
lation of that case permits us to judge.

Case 5. Up gust—moderate. w,=J(1—et).

1,= 0773 Jet, 1,,—.0773 J,
o S B e £ T

o= — 003069 Je, Ti=— 0030607,
7'o=.003069 Je, 15, = 003069 J.

u=Je*%(—.002641 cos 2.43t—.00651 sin 2.43?)
4+ Je—854( = 07466 cos .187¢+.4034 sin .187¢) +.0773 Je,

w=Je+18(— 2139 cos 2.43t+.1174 sin 2.43¢)
+ Je0%54(,008943 cos .187¢— .02337 sin .187¢) — J(1— 1.205¢7t),

0=Je*1%(.0009148 cos 2.43t4 .000487 sin 2.43t)
+ Je—%4%( 4+ .002154 cos .187¢— .001432 sin .187¢) —.003069 Je .

The short oscillation is negligible in » as far as concerns w itself.
In calculating the acceleration du/d¢ the short oscillation is not
negligible relative to the long; but the acceleration is small any way.
The effect of an up gust J on w is about one-third the effect of an
equal head-on gust (see Case 2).

The short oscillation is the main thing in w—its amplitude is about
J/4, whereas the amplitude of the long oscillation is about .//40, or
one-tenth as much. ~ The acceleration dw/dt may therefore be cal-
culated exclusively from the short oscillation; it 1s

dw/dt=Je*1%(1.2 cos 2.43t) —J (1—¢7).
This means values approximately as follows:

t=01 %7 %’ l/éy %7
acc.=0,—.35 J,—.6 J,—.7J,—.6 J.

If J should be 20 foot-seconds, the maximum acceleration would
be about ¢/2, even a gust of 10 foot-seconds would produce an accel-
eration of g/4. Such accelerations coming upon the pilot in one-half
a second might considerably surprise and disturb him. An addition
of 25 to 50 per cent in the a%[l)arent weight of the machine could
hardly strain it to an appreciable extent in view of the large factor
of safety used in the design. (N. B.—For an up gust J is negative.
For a down gust the operator would lose 25 to 50 per cent of his
weight.)

The path of the machine in space is not of great importance in
this case. The chief feature is the general drift of the machine with
the current.

Case 6. Rotary gust—moderate. ¢,=J (1—et).

As we know so little of the rotation in the atmosphere and as
nothing particular of interest seems to be indicated for this case
over and above what was found in Case 3, we shall not carry out the
calculations.
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Case 7. Head-on gust—sharp. w,=J (1 —e5%).

L= —J(1-1.018 e #) Jim + LOIST2L,
I,= —.05102 Je, Lo=— .05102 J,
I,= —.0008896 Je=%, I, = —.0008896 J,
I’y = 004448 Je%, I}, =.004448 J.

u=Je 1% ( — 005632 cos 2.43t-+.003986 sin 2.43t),
FJe—0854(1.02435 cos .187f— .3294 sin .187%),
-J(1+.01872 1),

w=dJe*+1%(,1603 cos 2.43t+ .1782 sin 2.43¢),
FJe054(— 1093 cos 1871+ .0322 sin .187%),
—.05102 Je*,

0=Je*13(.00026 cos 2.43t—.000984 sin 2.43t),
+ Je%54( 000628 cos .187¢— .006755 sin .187¢).
—.0008896 Je~%,

Here again the short oscillation in w is insignificant. The long
oscillation as in Case 4 has an amplitude a little in excess of J. The
acceleration du/dt is small of the order J/5. The reason that a sharp
head gust does not give a large value to du/dt is probably because
the gust can blow through the machine; the acceleration is therefore
not T:Lrgo except at the loops of the slow oseillation.

The short-period’ oscillation in w has now become stronger than
the long oscillation and the acceleration dw/dt is mostly due to it
and may be written

dw/dt=Je*18( — 25 cos 2.43t — 1.13 sin 2.43%) + .25 Je ™.

The value of the acceleration never gets large because it is damped
out before the sine term gets effective—perhaps —0.4 J would be
about its maximum value. A sharp head-on gust is therefore about
half as effective as a moderate up gust of the same intensity. Since
up gusts are perhaps not likely to be as intense as head-on gusts, we
might hazard a guess that sharp head-on gusts would inconvenience
the pilot about as much as moderate up gusts.
The most important terms in the path in space are

z=Je—%5%(1.2 sin .187¢+ 3.5 cos .187¢)—3.5 .
The total rise is again —3.5 ./.

Case 8. Up gust—sharp. w,=J(1—e%).

I,=.06621 Je—*, 1,,=.06621 J,

I,— —J(1—.5605 ¢%),  I,,=—.4395J,

T— — 00778 Ji 7, L=~ 00718,
T's,=.0389 Je=%, 740 =.0389 J.

w=Je 18 ( — 05714 cos 2.43t+ .006 sin 2.43¢)
+ Je—0%54( — 00907 cos .187¢+ .3285 sin .187%)
+.06621 Je~%,

w=Je*+18( 4378 cos 2.43t+ 1.947 sin 2.43t)
+ Je=%4( 00181 cos .187¢{— .03474 sin .187¢)
— J(1—~.5605 e~),
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0=Je*1%(.0059 cos 2.43t— .0122 sin 2.43t)
+Je—%%%(.001883 cos .187¢+ .0008667 sin .187¢)
—.00778 Jeot.

The oscillation in « is of long period, and the acceleration in w is
small. The oscillation in w has a short-period term of great impor-
tance at the start, but except for this there is very little oscillation
in w. The acceleration is

dw/dt=Je**(2.9 cos 2.43t—9.2 sin 2.43t) — 2.8 Je .

(N. B.—The value of dw/dt when ¢=0 should be 0 instead of .J/10.
The failure to check seems due to multiplication of errors, which is
unavoidable. The accuracy of the work in Case 8 and Case 5 appears
reduced to two figures.) The acceleration is now very serious indeed;
it is about —9.2 Je*'% gin 2.43t, as the other two terms come
near canceling. The maximum wvalue occurs when #=.217, a little
over one-fifth of a second, as is then about —1.85 J. If J should
be as large as —18 foot-seconds, the acceleration would equal g=32.
Clearly such a sharp gust if it existed would be very dangerous from
the sudden forces it would bring into play. As the machine, how-
ever, would travel only about 24 feet during one-fifth second, it is
reasonable to doubt whether in so short a distance so large a change
in vertical air velocity could occur.
The path in space 1s found to be approximately

z=—1.2 Je*1% cos 2.430-1-1.1 . Jes%% icos |1 87t=1 L ettt J e i
The final effect is the general drift with the gust, less a lag of .//5.
ARTICLE 6.

THE CONSTRAINED AEROPLANE.

If an aeroplane is constrained to remain always horizontal by
mechanism wﬁich does not otherwise alter the machine or its dynam-
ical properties, the equations of motion in a g{l‘lst may be found from
our previous equations by setting §=¢=0. Then

D - Xy) u— Xyw= Xu, + X,yw, + X gq,,
—Zgut (D—2Zy) w=Z b+ Zw, + 4305
— M u— M,w = My, + M,w,+ Mg, + F,

where F'is the effective force due to the constraint and is assumed to
affect moments only, not components of horizontal or vertical force.
The last equation merely determines

With the numerical data we find for high speed

D. +128)u—.162w = —.128u, + .162w,,
587U+ (D +3.95)w= —.557u, — 3.95w,,
F=—.174(w+w,) +1504,.

T
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The natural motion of the machine when slightly disturbed in
steady air is found from

. iD-£a88 %162 - i
A="T 2 plien =12 +4.078D+.598=0.

The roots are
D= —2.039+1.887= —3.926 or —0.152.

We thus find the first result: The machine, when disturbed, does
not execute a double damped oscillation, but has an aperiodic motion

of the form
O ¢3%ty O, e,

The two damping factors —3.93 and —0.15 lie between the values
—4.18 and —.0654 previously found.

The unconstraineg machine was stable for the speeds 79, 51, and 47
mile-hours; unstable for 45.2 mile-hours and lower speeds. If we
take the data for 47 mile-hours and use them for the constrained
motion, we find

AG5) b SOEBA - #y
AIIZD‘+.936 D+1.4:6 —D2+ 1.61 D+.150——0,
of which the roots are —1.51 and --.10. The natural motion of
the machine is therefore of the form

02 e —1.51t+ Uz e ‘1%,

The second factor indicates instability; the motion due to it increases
instead of subsides and reaches 2.78 times its original value in 10
seconds. We thus find the second result: The machine, when con-
strained, becomes unstable at a higher speed than when free—it is
to this extent a more dangerous machine.

We shall now return to the case of high speed and compute the
effect of certain gusts on the constrained machine for comparison
with the effect of the same gusts on the free machine. The general
solutions are

u=—.0426 C, ¢34+, e~ I,
w=C, e=3%_ 147 C, e—%+ I,.
O = =148 Lo~ 1 006 Ei
O, = 21,008, 0208 L
Aly= —(.128 D + .598) u, + .162 Dw,,
Aw= —(3.95 D+ .598) w,—.557 Du,.

Case 1. Head-on gust—mild. wu,=J (1 —e—%).

L S F (15502 N, i op

1,=.622 Je—2, j )
—4.19 Je—1%,—J (1+3.19 e—2);

w= — '62 Je—.15t+.62 Je—.Zt.
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The machine takes up the gust as before, of course. There is no
oscillation. There is practically no acceleration in either % or w.
The path in space is

z=dJ (41 e~ —-3.1 e~ %)—J.

The total rise 1s only —J. In every way the motion in this case is
eagier in the constrained than in the free aeroplane.
CasE 2. Up gust—mild. w,=J(1—e—*%).

I,= —.186 Je—%, R

L= —J(1—1.079 e—), AT
u=.186 Je 1% — 186 Je %, 00 5 FO K 1o

w= —.052 Je—39%_ 027 Je—15 — J(1— 1.079 ¢~ ¥).

The motion is again exceedingly moderate in all respects.
Case 3. Rotary gusts. These can have no effect except upon
the constraining moment .
Case 4. Head-on gust—moderate. u,=J(1—e?).
JF 180550 s Loz FROET

1,

I,=.2246 Je—t, Loo=.2246 J.
u=.002 Je—39¢ 4 1187 Je~-15% — J(1+.189 e—t),
w= —.05 Je=3% — 174 Je—-15 4 224 Je—t-
du/dt= — .008 Je—3%— 180 Je—-1%+1.89 Je—¢.
dw/dt=.197 Je—39¢ 4 027 Je— % — 224 Je—*
2=1.16 Je— 1% — 22 Je~t— .94 J.

The motion is again decidedly moderate.
Case 5. Up gust—moderate. w,=J(1—e™t).

o= —.0853 Je=t, Io=—.0653 J,

L= d(1=1.350.6-8) "« L =350
u=.0144 Je=3% 4 0507 e— 15— 0653 Je~,
w=—.343 Je—3%% — 007 ¢—1% — J(1—1.350 e—*).
dw/dt= +1.35 Je=3%—1.35 Je~!.

The motion is easy except for the acceleration in w, which has a
maximum when ¢=.46 and is then equal to about —.62 J. If the
gust should have an intensity of 10 foot-seconds the maximum
acceleration would be about g/5.

Case 6.  Head-on gust—sharp. wu,=J(1—e—%).

L= STl 000068 5), - rillis b ~1,008 .F)

L= 5275 Je=5%: Loo— —5275.J.
u=—.029Je—3%+1.037 Je % —.J (1+.008 e—"%).
w=. 680 Je39% — 152 Je— 1% — 528 Je— %,

dw/dt= —2.67 Je—3%% 4 .02 Je— 1% +2.64 Je 5.
z=—.173 Je=3% 4 Je—-15t 4 103 Je— % —.93 J.




72 AERONAUTICS.

The motion, including acceleration, is moderate.

Case 7. Up gust—sharp. w,=J(1 —e—%).
1,=.153 Je—%, B F3153°J;
L= J(1+3808e7%) «  Jouue 4628 J,
w=—.197 Je=*9% + 044 Je— ¥t + 153 Je—%,
w=4.634 Je—*% — 006 Je—25% —J(1+3.628 ¢— ).
dw/dt=—18.2 Je—3%t +18.2 Je—*,
z2=—1.18 Je=3%t 4+ 04 JeT 1%+ .73 Je~ %+ 41 J —J¢.

The acceleration dw/di has a maximum when ¢=5/11 when it is
1.44 J. This is somewhat serious if J is 10 foot-seconds.

We may now calculate roughly the moment F necessary to pro-
duce the constraint.

F=—174(w+w,) + 150¢,.

_ The last term is effective only when the machine encounters rotat-
ing air and will be neglected here.

Casm 1. F=.1l J(eicS—+ %)

CasE 2. F=J(.009 e—3% 1 005 ¢—-15 — 014 ¢—-2).
Casg 4. F=J(.009 ¢—3% 4 030 ¢—-1%—.039 ¢—?).
CAsE 5. F=J(.06 ¢~ %% 1 0012 ¢—-1% — .0612 e—?¢).
CasE 6. F=J(—.119 ¢—3%t 4 0266 ¢~ 4 .0924 ¢~5),
Case 7. F=.811:J(=e=3%t {¢—5),

SUMMARY.

I have indicated the general method, based on the theory of small
| oscillations, whereby the equations of motion of a stable aeroplane,
| whether free or constrained to fly without pitch, whether in steady

or gusty air, may be completely integrated in such form that, after
a certain amount of Erehm'mary calculation, the effects upon the
motion of a large number of different gusts may be determined with
| relative ease. So far as I am aware, no actual method of integration
’ nor any quantitative results of such an integration has previously been
‘ ublished with the exception of the descriptive popular lecture of
| lazebrook cited above. I have carried through the actual deter-
mination of the effects of gusts in the following cases:

Head-on gusts rising from 0 to J feet per second with various de-
grees of sharpness.

Up gust of the same type.

Rotary gusts of the same type.

Rear gusts and down gusts are included by merely changing the
sign of J. For convenience, it has been assumed that the machine
is in still air except for the gustiness; as a matter of fact gusts are
usually superposed upon a general steady wind of other than zero
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average velocity; but the conditions of flight in still air and in steady |

air are nearly identical, the only difference being that in the equa-

tions of motion the resistance derivatives are calculated from the
relative wind, whereas U is the actual velocity over the ground.

It has been found that a stable machine, with controls untouched,
running into a head gust of various sharpness and of total intensity
J foot-second will swoop up, with some oscillation of no serious char-
acter, to a new level about 3.5 J feet higher than its previous level.
The constrained machine will rise without oscillation to a new level
only J feet, or a trifle less, higher than before. The path in a ver-
tical plane is indicated in the diagrams drawn for me by Mr. T. H.
Huff. The accellerations arising in the motion are not serious for
either the machine or the pilot. It has been found further that a
rotary gust may have considerable effect—though in the absence of
data as to the intensity and regularity of rotation in the air no definite
results can be formulated. Furthermore we find that up gusts
operate chiefly in lifting the machine, whether free or constrained,
with the gust. The pa’§1 in space is given in the diagram. There is
here in the case of sharp gusts a considerable momentary acceleration
in the vertical which may reach a magnitude of about 1.5 J foot-
seconds.? This would not seriously stress the machine, which is
designed to stand accelerations of 6 ¢ to 8 ¢ in maneuvering, but
owing to its sudden and unexpected appearance this acceleration
m}j)ght incommode the pilot—it is indeed the familiar phenomenon of a
| [ T .7)

‘ It follows, therefore, that the introduction of the constraint,
whether by gyroscopic or other means, serves only to eliminate the
natural oscillation in pitch and to diminish, in the case of the head
or rear gusts only, the final change of level. As a rear gust of 20
foot-seconds is found to drop the uncontrolled machine by more than
80 feet in 15 seconds, flight at low altitudes is more dangerous in the
unconstrained than in the constrained machine. owever, the
elapsed time is sufficiently great to enable the pilot to check the dip
by a suitable movement of his elevator.

To offset any advantages derived from the constraint, we find that
this particular machine, when constrained, becomes unstable at a
speed between 47 and 51 mile-hours, whereas the free machine remains
stable down to a speed between 45 and 47 mile-hours.

MassacHUSETTS INSTITUTE OF TECHNOLOGY,
Boston, Mass., October 7, 1915.
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