
~ -;t-- l • 'l ,~ ""'>~~. 

" ~ c· ~ ." j , 21;i! ~ ':;. ... 
~:'I t ... -..~, 

Ie 
~~ ~-~ ~ '" ' . ~-~..:' ~~ < • 

~.,. ;;~"\ 
!lJ .' . ~~ ? 1!':}#' j "" 

N A C.A - TR- J 

REPORT ON BEHAVIOR OF ~~,,& IN GUSTS. 
BY THE MASSACHUSETl'S INsTJi,1fB 

Part L-EXPERIMENTAL ANALYSIS . LONGITUDINAL 
STABILITY FOR A TYI'It!'A1: BIPLANE. 

By 1. C. HUNSA.KER. 

Part D.-THEORY OF AN AEROPLANE ENCOUNTERING GUSTS. 

By Eo B. WILSON. 

---
Ii£PRODUCED BY 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

u.s. DEPARTMENT OF COMMERCE 
SPRINGFiElD. VA . 22 161 

23 



24 

.i • . ,t. 

,-", 
'\"~ 

. ' '', " ; " ". i,-
.' .,': . .. ,,' . 

........ . 

.... . • '. <" . " . I 

,'. 

LIST OF ILLUSTRATIONS. 

\ I', 
I 
I·' " . 

Fig. 1 a, b, c. Art. 1. Model plans. 
Fig. 2. Art. 4. Curves L , D, M. 
Fig. 3. Art. 5. Perfonnance curves. 
Fig. 4 5 'Il . 7, R, 9. Art. 8. Curves of X, Z, M. 

\ I 
,'/' 

Fig. 10.. Art. 10. Photo of oscillator. 
Fig. "11':' Art. 10. Curve of damping coefficient. 
Fig. 12. • ~ Art. 14. Curves of IWuth'a discriminant . 

" 

.', 

.... 



REPORT No.1. 
PART 1. 

EXPERIMENTAL ANALYSIS OF INHERENT LONGITUDINAL 
STABILITY FOR A TYPICAL BIPLANE. 

By JEROME C. HUNSAKER. 

ARTICLE 1. 

INTRODUCTION. 

A model of span 18 inches, representing a typical military tractor 
biplane, was tested in the wind tunnel of the Massachusetts Institute 
of Technology. The lift, drift, and pitching moment were measured 
for a series of angles of incidence corresponding to the maximum 
possible changes of flight attitude. Only the discussion of sym­
metrical or longitudinal changes is given here. A report on the 
lateral stability of the same model is reserved for a later date. From 
the observed rate of variation of the forces and pitching moment, it 
was possible to calcula.te the "derivatives" needed in the complete 
theory of longitudinal stability in still air. The damping of the 
pitchrng oscillation waS also determined experimentally. 

The method followed is that of L. Bairstow in his extension of 
Bryan's theory. Notation also follows Bairstow. The value of 
Routh's discriminant, which Bryan has shown to be a measure of 
dynamical longitudinal stability, has been calculated for six speeds, 
ranging from the maximum to the minimum possible speeds for the 
aero:(>lane type selected. The principal point of interest brought 
out rn this connection is that stability falls off rapidly as speed 
decreases or angle of attack increases, and that while this aeroplane 
appears to be very stable at high speeds, it is frankly unstable at 
speeds below 47 miles per hour. 

This ins~ability at low speeds takes the form of an oscillation in 
pitch combined with changing in forward speed and a rising and 
sinking of the whole aeroplane, which, therefore, follows an undulatory 
flight path. The period of the undulation is about 12 seconds, and 
the amplitude doubles itself in less than 20 seconds. Obviously, the 
pilot can not safely abandon his controls at slow speed. 

The importance of this demonstrated instability at low speeds 
should be appreciated in view of recent accidents with military 
aeroplanes when operated at slow speeds. 

The entire investigation of inherent longitudinal stability was pre­
liminary to the di cussion of the effect of wind gusts. Naturally, it 
was first necessary to find a stable aeroplane and to obtain some idea 

25 



26 AERONAUTICS. 

of the "range" of stability. I t now appears that a typical aeroplane 
is inherently stable in the sense defiried a t high speeds only . The 
effect of gusts on the uncontrolled aeroplane will, therefore, be 
investigated only for the high-speed condition. At low speeds the 
aeroplane can not be left to itself in still air. Consequently, a dis­
CUSSIon of its certain destruction if abando.ned in gusty air appears 
unprofitable. 

ARTICLE 2. 

MODEL AND PROTOTYPE. 

The type of aeroplane selected is a high-speed military biplane 
tractor known as Ourtiss J N2. Shop plans of this aeroplane were 
kindly furnished by the Curtiss Aeroplane Co., Buffalo, N. Y., to 
whom acknowledgment must be made for much valuable assistance, 
including the experimental determination of moments of inertia, etc., 
by Dr. A. F. Zahm of that company. 

The principal dimensions of the aeroplane were assumed as follows: 
Weight full load ...•.................. .•• ...........••. pounds .. 1, 800 
Brake horsepower ...• .. .. .. .. .. . .•.. .. ....... .. ... horsepower. . no 
Maximum speed for calculations ............... . . miles per h our. . 79 
Minimum speed for calculations .. .............. .. ..... .. .. do.... 43.7 
Total wing area. (including ailerons) .•••...•........ square feet .. 384.0 
Area fixed taiL ....•....••.....•.••.•••••.•..•.•.•...... do . . . . 23. 0 
Area horizontal rudder ....••.••••••••.••....•..•........ do. . . . 19.0 
Area vertical rudder .. ........•.•.•.•••••••••••••••••.• . .. do.... 7.8 
Spa.n of wings .... .. . .. .......•••••.••.•.....••.•••••..... feet. . 36. 0 
Chord of wings .. ... . . .. ......•••.•••.•••.•••••••••••.•• . . do.. . . 5.3 
Gap between wings . ..... . ... ...•.•....•...••••.......... do.... 5.3 
Length of body ...............•...•..........•.•••....... do.... 26.0 

The model was made geometrically similar to its prototype and 
one twenty-fourth scale. The general features are shown in the 
drawincrs of the model. (Figs. 1 a, b, c.) The model was an exact 
copy of the aeroplane except for the propeller and wing wiring, 
which features were omitted. Also wing struts were made round 
instead of "stream-line" in section. Since it is well known that 
the resistance of a series of similar aeroplanes varies somewhat less 
rapidly than the square of the speed and square of a linear dimen­
sion, due to skin friction, it is believed that the prediction of the 
resistance of the full size aeroplane from the observed model resistance 
will still be a fair estimate in spite of omissions on the model. 

For simplicity, the model was made with the trailing ailerons or 
wing flaps integral with the wings. This somewhat increases the 
effective supporting area. Also the fixed tail and elevator were 
made in one, corresponding to the elevator held fast in its neutral 
position. These points are made clear on the drawings of the model. 

ARTICLE 3. 

GENERAL WIND TUNNEL PROCEDURE. 

The morlel was tested in the 4-foot wind tunnel at a velocity of 30 
miles per hom. The wind tunnel and aerodynamical balance are 
duplicates of the installation of the National Physical Laboratory, Ted­
dington, England, and reference should be made to the Technical 
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Report of the Advisory Committee for Aeronautics, London, 1912-13, 
for detail description and methods of operation. 

In general, it may be stated that the wind tunnel provides a wind 
constant in velocity within 1 per cent, which velocity is further con­
stant across the working cross section of the tunnel within Ii per 
cent. Velocity is measured by a suction plate calibrated against a 
standard Pitot tube with a precision of one-half per cent. The 
model is mounted on the balance in various attitudes of pitch or yaw, 
and in such positions are measured the three forces and three couples 
produced by che wind along and about three mutually perpendicular 
axes in space. From a lmowledge of the variation of the e forces and 
couples with change of atti tude, the so-called " resistance derivatives " 
of Bryan's 1 theory of dynamical stability may be computed. 

The theory of stability also requires the determination of the damp­
ing of oscillations about the center of gravity of the aeroplane. A 
special oscillating apparatus was built for these tests which will be 
described below. By oscillatinO' the model in the wind and observing 
the decrement of amplitude wit);. time, it was possible to estimate the 
"rotary derivatives.' 

ARTICLE 4. 

LONGITUDINAL TESTS. 

The model was mounted on the balance with its wings in a ver tical 
plane by means of a vertical rod driven into the body at the point 
shown on :figure lb. By swinging the model about the vertical axis 
passing through the spindle, tlie angle of wind to the wing chord was 
varied from+200 to _8°. At each attitude the force across the wind 
or " Lift," force down wind or "Drift," and the pitching moment 
about the spindle were measured. The signs were taken so that 
an actual lift, actual head re istance, and a stalling moment are posi­
tive. The wind velocity was 30 miles per hour of standard dry air 
at 15° C. and 776 mm. Hg. The experunental points are shown on 
:figure 2, where forces are in pounds and moments in inch-pounds. 
The precision of measurement is within 1 per cent. 

For a given attitude, the resultant force on the model in pounds 
at 30 miles per hour is R = -J D + D2. This resultant make an 

angle with the wind direction given by a = tan -1 ~. The force R 

is observed to have a pitching moment M about' the spindle axis. 
It may then be assumed to be situated so that the perpendicular 

from this axis to R is given by X= -:. The vector R is thus deter­

mined in magnitude, direction, and line of application. The resultant 
force vectors R are shown on :figure 1b to a scale 1 inch equals 0.2 
pound. The vector R is purely an algebraic substitution for the 
complicated system of forces and coupIes acting on the aeroplane. 
The vectors are drawn relative to the aeroplane. 

The center of gravity was assumed to lie as shown near the inter­
section of the propeller axis with the resultant force vector for 4°. 
At this attitude, then, the pitching moment should be nearly zero. 

I G. R. Bryan, Stability in A\'iatioll. 
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The c. g. location determined for the actual aeroplane after exten­
sive trial flights is almost identical. 

It is seen that for angles smaller than 4°, R passes forward of the 
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c. g. and for angles greater than 4°, it passes to the rear. The 
aeroplane is longitudinally stable in a static sense. It will be shown 
below that it is not always dynamically stable. 
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ARTICLE 5. 

PERFORMANCE CURVES, 

The lift and head resistance or "driIt" of the full scale aeroplane 
were assumed to be approximately given by the relation: 
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when V is the flying speed of the aeroplane in miles per hour. The 
above relation holds, of course, only for the same attitude of model 
and aeroplane, The weight of the aeroplane, 1,800 pounds, must 
equal the lift in flight. Hence: 

V= 30 / 1800 
24-Y Lift on model. 
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A series of speeds V was computed for a series of attitudes of the 
aeroplane, and the aeroplane drift at each attitude was then com­
puted from: 

_ 2 (V)2 D full size = D model x 24 x 30 

In figure 3 are given curves of drift, effective horsepower required, 
angle of wing chord to wind and ratio weight to drift plotted on Vas 
abscissae. For our calculations a maximum speed of 79 miles and a 
minimum of 43 .7 miles were selected corresponding to angles of wing 
chord to wind of 1 ° and 15.5°, respectively. 

The curve of E.H.P. on figure 3, indicates that 87 propeller horse­
power is necessary for a speed of 79 miles. If the propeller h as an 
efficiency of 80 per cent, the motor must develop at least 110 brake 
horsepower. The original designs contemplated as maximum speed 
of about 80 miles per hour for a 120 brake horsepower motor, which 
appears very reasonable. As actually built this type was given a 
rated 90 horsepower motor. Assuming 70 E.H.P. delivered to the 
propeller a speed of 73 miles per hour is indicated by our curves. It 
is reported that the speed of this aeroplane was actually 73 miles per 
hour. 

ARTICLE 6. 

CHOICE OF AXES-NOTATION- UNITS. 

Axes for reference are assumed fixed in the aeroplane and moving 
with it in space. The origin is at the center of o-ravity. For steady 
horizontal flight at a given attitude the axis of Z is vertical, the axis 
of X Horizontal and directed to the rear in the plane of symmetry, 
and the axis of Y is horizontal and directed toward the left-wing tip. 
Forces along these axes are denoted by X, Y, Z and are expressed In 

pounds per unit mass. Moments are L, M, N and are given in pounds­
feet per unit mass.1 

Angles of roll, pitch and yaw from the normal flying attitude are 
denoted by 'P, e and 1/;. Angular velocities of roll, pitcli and yaw are 
p, 9., rin radius per second. The signs of moments, angles and angular 
velocity are positive considered in the directions XY, YZ or lx. 

Moments of inertia referred to axes X, Y, Z are denoted by 
mK2A, mK2B, mK20 where m is the mass of the aeroplane and ~, 
KB, Ko corresponding radii of gyration. 

ARTICLE 7. 

EQUILIBRIUM CONDITIONS. 

In normal horizontal flight in still air a state of equilibrium is 
assumed such that the power available maintains the aeroplane at 
such a speed that the weight is just sustained. Since the lift of an 
aeroplane wing is also a function of its attitude or angle of attack, 
it is further assumed that the attitude is proper for the speed. In 

I Unit mass is the slug equal to 32. l7 pounds weight. 

253020-8. DO l". 268. 64-1--3 



34 AERONAUTICS. 

normal horizontal flight the axis of X is parallel to the apparent wind 
direction and is hence horizontal. Let {) be the angle of pitch of the 
aeroplane away from its normal attitude. Then normally (J is zero. 
Likewise if the aeroplane is in equilibrium ill its flight, the angular 
velocity of pitch is zero and also the pitching moment, Mo. 

At high speed, for example 79 miles, the aXlS of X is horizontal and 
makes an angle of 10 with the wing chord. At low speed, new axes 
are chosen such that the axis of X is still horizontal but makes an 
angle of 15.50 with the wing chord. The axes are fixed by the 
equilibrium conditions for flight and differ for each normal flying 
attitude. Oscillations about the normal flight path when the motion 
is disturbed are referred to the above defined axes which are assumed 
fixed in the aeroplane and moving with it in space. 

The pitching moment curve observed for the model shows zero 
moment for an angle of wing chord of 4.50 and a diving moment at 
larger angles. For slow flight, it is assumed that the pilot by proper 
setting of his horizontal rudder impresses an equal stalling moment 
on the machine so that the net pitching moment is zero. The effect 
is to move the pitching moment curve parallel to itself by the alge­
braic addition of a stalling moment so that its ordinate has zero value 
for the desired flight attitude. 

ARTICLE 8. 

TRANSFORMATION OF AXES. 

It is convenient to measure in the wind tunnel the lift and drift 
about axes always vertical and horizontal in space. For the oscilla­
tions of the aeroplane it is convonient to consider the forces referred 
to axes fixed in the aeroplane as described above. The transforma­
tion is effected in the usual way by means of the formulre: 

m Z' =L cos 8+D sin 8 , 
m X' =D cos 8-L sin 8 , 

where e is the angle of pitch of the aeroplane awll.Y from its normal 
attitude, considered positive for stalling angles. H ere Land Dare 
lift and ill'ift on the model in pounds, and m X ' and m Z' correspond­
ing forces in pounds along the axes X and Z. The model forces 
Z', X' are converted to Z , X, full size, by multiplying by the 
square of the speed and linear dimension ratios. The following tables 
carry out the r equired transformation. 

The pitching moment M is independent of the longitudinal shift of 
axes and varies onlyas the square of the speed. Curves of X, Z and M 
for the different flight attitudes are plotted on figures 4, 5, 6, 7, 8, 
and 9. The transformation of the moment about the spindle to the 
corresponding moment about the c. g. of the full-size aeroplane is 
given below. 
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i=P, V=79 rpiles, m=55.9 slugs. 

i e L D Z X 

- 4 - 5 -0.08 +0.115 - 6.4 +7.7 
-2 - 3 + . 14 . 104 + 10.8 7.8 

0 - 1 . 35 .102 24.9 7. 76 
+1 0 . 45 . 104 32. 9 7.4 
+2 +1 . 56 .108 40.0 7.1 
+4 +3 . 765 .118 54.9 5.6 
+8 +7 1.13 .165 81.0 1. 9 
+12 +11 1.39 .270 100.0 - . 7 
+16 +15 1.48 . 428 109.0 -2.05 
+20 +19 1.48 .581 112. 5 - 4.7 

i=7°, V=51.8 miles. 

0 - 7 +0. 35 +0.102 + 10.3 +4. 42 
1 - 6 . 45 .104 13.4 4.64 
2 - 5 . 56 . 108 16.9 4. 79 
4 - 3 . 765 .118 23.3 4.85 
7 0 1.05 .150 32.2 4.60 

12 +5 1.39 . 270 48.0 4. 54 
16 9 1. 48 .428 47. 0 5. 90 
20 13 1. 48 . 581 48.2 7.12 

i=10o, V=47 mile. 

6 - 4 +0.96 +0. 136 +24.0 +5.14 
8 - 2 1.13 .165 28. 4 5.18 

10 0 1.28 .21 32.4 5. 21 
12 + 2 1 39 .27 35.4 5. 56 
14 + 4 1.45 . 348 37.2 6.24 

i=12°, V=45.2 miles. 

8 - 4 1.13 0.16S 26.1 5.68 
10 - 2 1.28 .21 29.6 5.83 
12 0 1. 39 .27 32.4 6. 29 
14 +2 1.45 .348 34. 0 6.92 
16 +4 1. 48 .428 35. 2 7.56 

i=14°, V= 44.2 miles. 

10 -4 1.28 0.21 28.3 6.67 
12 -2 1.39 .27 30.8 6.87 
14 0 1.45 .348 32.4 7.22 
16 +2 1.48 .428 33.3 7.43 
18 +4 1. 50 .508 34.2 7.62 
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i=15.5°, V=43.7 miles. 
--

i e L D Z 

9. 5 -6 1. 24 0.196 26.4 
13. 5 - 2 1.40 .330 30.6 
15. 5 0 1. 48 .408 32. 2 
17. 5 +2 1. 49 . 482 33.0 
19.5 +4 1. 49 . 561 33.4 

CONVE RSION OF PITCHING MOM ENTS. 

mMs=moment about spindle in inch pounds on model. 
mM)cg=moment about c. g. in inch pounds on model. 
b=3.04 inches, c. g. forward of spindle. 
a=O.lO inches, c. g. above spindle. 

X 

7.1 
8.25 
8.9 
9.4 

10.0 

Axis of X 3.5° to wing chord. 
M= pitching moment about c. g . full size, full speed, in pounds feet per unit mass. 
mMcg=mMs -mZ' b - mX' a. 
i=angle of wing chord to wind , degrees. 
9=angle of axis of X to wind, degrees. 

i I 8 I , D m Z' mX' mM, mMoc 10 70 

10
0 

1

120 
1

140 15°.5 
}J N J[ J [ M M 

---- --,----
- .. ~ - 8 + 0.130 +0.123 - 0.146 + 0. 104 - 0. 022 + 0.21 +29. 9 +12. 9

1 
. .. .. .. ...... - 9. 36 9. 17 

- 2 \ - 6 + . OSO . 105 + . OOg .112 + . 4DD + .18 +25.7 +11. 0 ....... 8.0 7.8.5 
- ~ - 4 + . 3DD .102 . 293 . 121 + 1.05 + .15 +21.4 + 9. 2 .. ..... _. _---- 6. 67 6.54 
+ I! - 2 . 510 . 105 . 506 .123 1. 65 + . 10 + 14.3 + 6.1 ... .... .. . .. . . 4.46 4. 3; 

2~ - 1 • 615 .110 . 613 .122 1. 93 + . 08 + 11. 4 + 4. 9 ....... .-._- -- 3.56 3.4~ 
3! 0 • 715 .115 .715 .U5 2.21 + . 03 + 4. 28 + 1. 8 . .. .... .. . . .. . + 1. 35 + 1. 32 
4} + 1 . 810 .122 . 812 

:62~ 
2. 48 DD 0 0 0 0 0 0 

5~ +2 . 910 .130 . 915 2.71 - . OS -11.4 - 4. 9 - 4. 0 - 3. 72 - 3. 56 - 3. 49 
7~ + 4 1. 09 . 157 1.10 . 081 3.17 - .IR -25.7 -11.1 - 9. 071- 8. 40 - 8.02 - 7. 86 

11 } +8 1.37 .252 1. 40 . 058 3. 81 - . 40 - 57.0 - 2.1. 5 -20.2 -18.7 -17. 9 -1 7.5 
1 5~ +12 1. 48 .408 1. 51 .184 4.00 - . 60 - 85. 5 -36. ~ - 30. 3 - 28. 0 - 26.8 -28.2 
H'J + 16 1.49 . 561 1. 54 . 331 3. 95 - . 76 -108. 0 - 40. 6 .... . .. . . .... . - 33. 9 - 33. 2 

I I 

ARTICLE 9. 

RESISTANCE DERIVATIVES, LONGITUDINAL. 

Notation follows Bairstow,t to whose papt'!' reference should be 
made for the detailed discussion of " derivatives." In the theory of 
small oscillations, the aerodynamic forces X o, Zo, and pitching 
moment, Mo, are eliminated by the conditions of equilibrium. In 
disturbed motion, disturbances in normal flying speed and attitude 
oause changes in the quantities, X, Z, and M. 

Let V be the normal flying speed and u, wand q small changes in 
horizontal and vertical velocIty components and angular velocity of 
pitch. If the disturbance be smail, u, wand q are small with respect 
to U. For example, the function 

X =j(V+u, w, q) 

may be expanded into the approximate form 

X =Xo+ uXu+wXw+qWq, 

a linear lunetion of the small quantities u, w, q. The coefficients 
Xu. X WJ Xq are the so-called resistance derivatives of the theory of 

I Technical Report of th~ Ad \' isory Committee [or ... eronautics, London, 1912-13. 
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small oscillation , and physically represent the slope of a curve of X 
on a base u, w, or q. 

Similarly 

From the conditions of equilibrium, Xo is balanced by the pro­
peller thrust, Zo by the pun of gravity or Zo = g, and Mo=o. 
Also, Bairstow h as shown that X'J. and Zq may be neglected. 

Xu is the rate of change of X wIth change in forward speed. But 
since X is a function of forward speed squared we may write: 

and 

X = AXo =2Xo 
u AU U 

Z _2Zo 
.. - U 
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These coefficients may be obtained directly by calculation since 
Drift 

X o=--' and Zo=g. For example, at 79 miles per hour, V= 
m 

-115.5 feet per second and 'Zo = 32.2. Then 

Z 2 X32.2 - .557 
u -115.5 

. Also at 15%, V = - 63 .8 feet per second and 

2XIO ' 
Xu= -63.8= - .276 

The derivatives Xu;, ZID' MID represent the effect of a vertical 
component of velocity. From the well-known method of velocity 
composition, the vertical velocity w acts with the horizontal velocity 
V to cause the apparent wind to have an inclination to the horizontal 

~f tan--:l;. This inclination is given to the model in the wind 

tunnel, and X, Z, and M measured for various pitch angles. 

But AB = tan-l ;=57.3;, when AB is a sman angle in degrees . 

. X =aX = 57 .3.'~X 
" ID W Vao 

aa:; is the slope of a curve of X on pitch angle as base. For example, 

aX -.65 
from figure 4, aO = - 2- and 

X 57.3 - .65 ' 0162 
w = -115.5'-2-= + . 

Similar formulas are used to compute Zw and Mw. It may be noted 
that the method assumes that for small oscillations, hence small 
changes 0, the tangent may be substituted for the actual curve. 
The limit of validity is obviously the range of pitch angle over which 
the tangent to the curve is not greatly changed. This range is usually 
about 4 to 8 degrees. 

The values of the resistance derivatives calculated in this manner 
will be found tabulated later. 

ARTICLE 10. 

DAMPING. 

The damping of pitching about the c. g. is represented by the rotary 

derivative M q• For an angular velocity 1:: =q, a. damping moment 

q M is exerted on the aeroplane. 
To measure this aerodynamic dampin; , the special oscillating appa­

ratus was designed which is shown by the photograJ?h of figure 10. 
The model is mounted on a massive bracket which PIVOts about the 
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two pointa shown. Fore-and-aft arms carry counterweighta which 

are ~justed to give a reasonable natural pe~iod. The spIral spriIlgs 

bear ill notches on the arms by means of knife-edged ·shackles. The 

springs insure that the motion shall be oscillatory. The assumed 

c. g. location of the aeroplane model is arranged to be on the axis of 

rotation. The actual center of gravity of the apparatus is not 
considered. . 

Friction is kept small by careful design of the steel pivota, which 

are hardened steel points bearing in tool steel cones. The spring 

knife edges are glass hard. It was found that a convenient period 

is about one-half second. In still air the apparatus will rocK more 

than 300 times before the amptitude is diminished by friction to 
one-ninth of the initial displacement. 

The moment of inertia of the entire oscillating mass was calcu­

lated and then checked by an independent experimental determina­
tion. 

Let: 
l=moment of inertia of all oscillating parts in slug foot-

units. 
m' = mass of all oscillating parts in slugs. 
Mo=moment of air forces on model at rest. 
M8 =moment of springs at rest. 
Ko = additional moment of springs when deflected. 

c = c. g. of entire apparatus above pivot, feet. 
0= angle of pitch' from normal attitude in radians. 

dO d' d f·' 
J.Io dt = ampmg moment ue to nctIOn. 

dO d· ' d'd 
J.I.w(Jj= ampmg moment ue to Will on apparatus. 

SLm;: =-damping moment due to wind on model. 

em'O=static moment due to gravity. 

The equation of motion then is: 

...iF0 do ' 
Idt2 + (J.l.o+J.l.w+SLm) dt+(K-em')0+Mo-M8 = 0 

But Mod:. Ms, by the initial condition of equilibrium. Let 
d20 dO ' 

J.I.=J.l.o+J.I.w+SLm; then I dt' +I'df+ (K-em') 0=0 

Tlie solution of this equation is well known to be: 

where 0 and oc are arbitrary constants. If time be counted when 

the am:plitude of swing is a maximum then cos{ -} = 1, and 8=00 , 

the initIal displacement. Also if the number of beats be counted by 

\ 

( 
I 

I 
I 

I 
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ob eITing the times for succeeding maxima, a plot of amplitude on 

time will have for its equation the simple form: 

-p.t 

(J=(Joe2f 

The coefficient JL is the logarithmic decrement of the oscillation 

and must be numerically positive to insure that the oscillation dies 

out with time. 
The afparatus was fitted with a small reflecting prism by which a 

pencil 0 light was deflected toward a ground glass plate set in the 

1'oof of the tunnel. Nine lines s2aced 0.2 inch were ruled on this 

plate. With the model at rest the beam of light was brought to a 

sharp focus on the line marked zero. By means of a tri~ger the 

ob erver started an oscillation of the model, and the spot of lIght was 

observed to oscillate across the scale. The time, t, was observed in 

which an oscillation was damped from an amplitude of 9 to an ampli­

tude of 1, for example. 

Then: loge~=;i=loge9, and knowing I and t, JL is calculated. 

Preliminary tests showed that the same value of JL was obtained 

whether the timing stopped at (J= 5, 4, 3, 2, or 1. 
Oscillation tests were made at five wind velocities varying from 

5 to 35 miles per hour. The coefficient JL appeared to vary approxi­

mately as the first power of the velocity. 
Similar tests were made with the model for no wind to determine 

JLo, which may be said to be due almost wholly to friction and very 

slightly to the damping of apparatus and model moving through 

the air. 
Likewise JJ. w was obtained by oscillating the apparatus without 

model in winds from 5 to 35 miles per hour. 
The coefficient JJ.m has the dimensions 1 pIt V, where p is density of 

air, 1 a linear dimension, and V the velocity of the wind. To convert 

JLm to MfJ,. for the full-size machine at full speed, multiply by the fourth 

power of 24, the scale, and by the ratio of full speed to model speed. 

The numerical results of tests of the pitching oscillation follow. 

ote that the damping of the pitching falls off for low s2eeds. This 

contributes to the difficulty of providing sufficient stability at low 

speeds. 
In the tables following, the number of beats, n, is recorded as a 

general check and is not used. Recorded values of nand t are the 

means of three or five separate observations. 

'Bairstow, loco cit., p. 176. 
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PITOHING OSCILLATION TESTS. 

Wind velocity, milea .. . . 
n beats counted ..... .. . 
t seconds ... .. . ... ..... . 

I model and apparatus=O. 04195 
I apparatus = . 0368 

o 
350 
168 

.00096 

Apparatus. 

14.7 
253 
120 

.00135 

21.4 
210 
100 

.00162 

35 
186 
90 

.00180 

45 

/.L. • ••• •• ••• ••. •.•.•• ••. 

I"w (less zero) .......... . o .00039 . 00066 . 00084{Use faired val­
uea below. 

Apparatlls and model with wing Chord 1° to wind. 

V miles. ................... 0 9.5 14.7 21.3 25· 30 37.3 
n beats.. . . . . . . . . . . . . . . . . . . . 300 90 56 40 35 32 27 
t seconds .. ........... _..... 160 45 28.5 20 17.5 16 ]3.5 
I" gr<?ss.. . . . . . . . . . . . . . . . . . . .. . 00115 . 00410 . 00646 .0092 . 0105 . 0115 . 0137 
1"0 frIction. . . . . . . . . . . . . . .. . . . 00096 . 00096 . 00096 . 0010 . 0010 .0010 . 0010 
I"w apparatus. .. . .. .......... 0 .00035 .00040 .0006 .0007 .0009 .0011 
I"m net . . .......... .......... 00019 . 00284 .0054 .0076 .0088 .0096 . 0117 

But J.l.m = - 1)1, Mq when reduced to full size and 79 miles per hour 
.and mass of 55.9 slugs . 

or for 
. '. Mq = - .0096 X (24)4 X (79/30) X 1/55.9 = -150.0 

V= -114 foot-seconds, Mq = 1.32 V 

Appara/:U3 and model with wing chord 15.5° to wind. 

r .... .... .... ............ 9.1 14. 7 21.4 25 30 
n .... . .. ................. 75 50 35 30 25 
t ... ...................... 38. 5 25.0 17.5 15 13 
I" gross ................... .0048 .0074 .0105 .0123 .0142 
I'm net ................... .0035 .0060 . 0089 .0106 .0123 

of 
Mq = - .0123 X (24)4 X (43. 7/30) X 1/55.9 = -106 

Mq = 1.66 V where V is - 64 foot-seconds, or 43.7 miles. 

37.5 
19 
9 

.0205 

.0184 

The computed values of iJ.m, the model damping coefficient, are 
plotted on fi.o-UTe 11. It appears that fJ.m is approximately a linear 
function of the velocity, as would be expected, and the conversion 
to full scale, full speed, is made as indicated above. 

The damping coefficient is not greatly different for different atti­
tudes, and the following values are obtained by interpolation: 

Angle of 
wing chord 

to wind. Y. 
+1° 79.0 

7° 51. 8 
10° 47.0 
12° 45.2 
14° 44.2 

15.5° 43. 7 

U. 
-115.5 
- 75.8 
- 68.8 
- 66.2 
- 64.8 
- 64.0 

Mg. 
1.30 U=-150 
1. 49 U=-1l3 
1.55 U=-108 
1. 59 U=-106 
1. 63 U= -106 
1.66 U=-106 
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ARTICLE 11. 

RADIUS OF GYRATION. 

For the radii of gyration of the fully loaded aeroplane we are in­
debted to Dr. A. F . Zahm. The actual aeroplane, complete with 
gasoline, water, pilot, passenger, and other weights in place, was 
suspended from a beam by a chain. The center of gravity was first 
located by an inclining method. The machine was then made to 
oscillate in pitch about the point of attachment of the upper end of 
the chain. Light guys were run to tail and wing tips to insure that 
the chain and aeroplane moved as a rigid body. 

Let the distance from center of gravity to point of suspension be 
denoted b:v h, p the natural period of oscillation in seconds, KB the 
radius of gyratIOn in feet about the Y axis or a.-us of pitch, then 

By observation h = 12.2 feet, p = 60/14 seconds. 

KB2=34, KB=5 .8 feet.1 

ARTICLE 12. 

ROUTH'S DISCRIMINANT. 

Bryan 2 has shown that the character of the longitudinal motion 
of an aeroplane may be investigated with reference to the roots of 
a biquadratic equatIOn of the form: 

AA' + BAS + OA2 + DA + E = 0 

The equations of motion may be considered of the form 8 = Ke'Al 
where K is some constant. For stability tbe quantity A must be 
negative if real, or have its real part negative if complex, in order 
that the amplitude of the motion will dlillinish with time. 

Th./3 conditIOn that the real roots and real parts of imaginary roots 
of a biquadratic eguation with constant coefficients shall be negative 
is that the coeffiCIents A, B, 0, D, E shall each be positive as well 
as the quantity BOD- A D2_ B2E. The latter is commonly known 
as Routh's 3 discriminant . 

The constant coefficients A, B, 0, D, E, are functions of the C011-

~tants of the aeroplane at the normal fi~g attitude, i. ~., the follow­
mg: X1/" X w, X q, Z1/" Zw, Zq, ~, Mw, .Mq, U, and KB • These are 
resistance and rotary derivatives, velocity, and radius of gyration. 
For a given attitude and for small oscillations about that attitude, 
it is considered that these quantities are constant. For simplicity 
it is here assumed that normal flight takes place in a horizontal plane 
and the inclination of the fli$ht path and consequent components of 
gravity in the axes of X and. Z are eliminated. Also Xq and Zq are 

1 it is of interest to note that the radius of gyration for rolling was estinlated to be 6.2 feet . 
• Stabi!ity in Aviation. 
• Advanced Rigid Dynamics, E. J. Routh. 
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neglected as unimportant and Jiu is zero by the conditions of equi­
librium. For the computation of Routh's discriminant we require to 
know, then, only those quantities which have been so far determined, 
and which are assembled below for the different cases investigated. 

Formulre for the coefficients A, B, 0, D, E are_ given by Barrstow 
and are used here, but making 8, X q, Zq, and Mu zero. They are 
copied in simplified form for reference. 

A=KB2 

B= - (Mq+ X",KB2 +ZwKB2) 

O=IZw, U /+ XuMq + KBZ/X"" Xwl 
Mw, Mg Z"" Zw 

I
X"" Xw) 0 I D= - Z",) Zw) V 
M",) Mw , Mq 

E= -gMwZ", 

ARTICLE 13. 

BAIRSTOW'S APPROXIMATE SOLUTION. 

From consideration of the usual relative numerical values of the 
coefficients of the biquadratic, Bairstow has shown that the equation 
may be factored to a first approximation and put into the following 
form : 

in which the :first factor represents a very short oscillation, which 
in most aeroplanes rapidly aies out and is of no importance. The 
second factor represents a relatively long oscillation involving an 
undulatory flight path with changes in pitch, forward speed, and 
altitude. The long oscillations should diminish in amplitude with 
time) in which case the motion is stable and the aeroplane will return 
to its original normal flight attitude if temporarily deviated there­
from by accidental cause. The motion is unstable if the long oscilla­
tion increases in amplitude with time. It will be shown that the 
aeroplane under investigation is stable at high speeds and unstable 
at very low speeds. It is believed that this is true of all aeroplanes. 

CASE 1. 

i= jncidence, wing chord to wind + P. 

Velocity V= 79 miles. U= - 1l5.5 foot-seconds. 
m=55.9 slugs, KS2= 34. 

X",-.128 X w+·162 Mw+1.74 
Z", - .557 Zw - 3.95 Mq - 150 

A~+ 34) B=+289 
C=+834 BCD - AD2_ B2E= +18X106 stable. 
D= +1l5 
E=+ 31 
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Short oscillation: X2+8.5X+24.5= 0 
X= - 4.25±2.54i 

p=period=2~;4=2.5 seconds. 

t=time to damp 50 per cent=~:~;=.16 second. 

Long oscillation: X2+.125X+.0374=0 
x=- .063±.lS3i 

p=34.3 seconds, t =10.8 seconds. 

The short oscillations are unimportant. The long 0 cillations are 
easy and strongly damped. The aeroplane should be very steady 
at this speed. 

CASE II. 

i=7°, V=51.8 miles, U=-75 .9 foot-seconds. 

Xu-·121 X w+.1l3 Mw+2.45 
Zu -.849 Zw - 2.26 Mq -113 

B=+194.0 A=+ 34.0) 
C=+467.0 BCD - AD2-B2E=+32X105 stable. 
D=+ 64.3 
E=+ 67.0 

Short oscillation: X2+5.7A+15.9=0 
X= - 2.85±2.33i 
p=2.7 seconds 
t =.24 second to damp iiO per cent. 

Long oscillation: X2+.078X+.143=0 
X=-.039±.377i 
p=16.7 seconds 
t =17.7 seconds to damp 50 per cent. 

The period is shorter than at high speed and the damping less. 
The aeroplane should therefore be loss comfortable. 

CASE III. 

i=10o , V=47 miles, U= -6S.S foot-seconds. 

X u-.151 Zu-.936 Mw+ 2.50 
Xw-.075 Zw- 1.46 Mq-lOS 

~:t~gi )BCD - CAD2+B2E)= 3.8XI05 stable. 
D=+ 42.5 
E=+ 75.3 

Short oscillation: X2+ 4.85X+1O.44=0 
X=-2.42±2.12 

p=2.96 seconds . 
t = .28 second to damp 50 per cent. 

Long oscillation: X2+ .02lA+.212=0 
X=- .01l±.460i 

p = 13.71 seconds. 
t = 62.7 seconds to damp 50 per cent. 

This oscillation is rapid and but slightly damped, and would 
probably be uncomfortable. The stability is slight and wind gusts 
or external disturbances, if recurrent , might cause trouble. 
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C ASE IV. 

i=12°, V=45.2 miles U=-66.2 foot-seconds. 

X" -.189 
X IV -·236 

Z,,- .972 
Zw-·736 

A =+ 34 ] B=+137.5 
C=+243 B CD -AD2-B2E=-7XI05 UNS'fABLE. 

D=+ 17.4 
E= + 67.2 

Short osciUation: >,2+ 4.04>,+7.14=0 
>.=-2.02±1.75i 

p=3.59 seconds. 
t = .342 second to damp 50 per cent. 

Long oscillation: >,2_ .985>.= .276=0 
>. =+.043 ±.524i 

p= 12.0 seconds. 
t =16.0 seconds to double amplitude. 

49 

The machine is frankly unstable and the pilot dare not release hi~ 
elevator control. 

C ASE v. 
i=14° , V=44.2 miles, U=-64 .8 foot-seconds. 

X u- .223 Zu- .993 Mw+1.99 
X w-.132 Zw- .553 Mq -106 

A=+ 34] B=+134 
C=+213 B CD - AD2-B2E=-3.7 X I05 
D=+ 28 
E=+ 63 .6 

CASE VI. 

UNSTABLE. 

i=15.5° V=43.7 miles, U=-63.8 foot·seconds. 

X,,-.276 Z,,-l.Ol Mw+2.02 
X w- .292 Zw- .673 Mq- l06 

A=+ 34 ] B=+138 
C=+226 BCD-AD2-B2E=-5 X I05 
D=+ 24.2 
E=+ 65.7 

U STABLE. 

Sbort oscillation: >.2+ 4.06>'+6 .65=0 
>,=-2.03± 1. 59·i 

p=3.95 seconds, period. 
t = .34 seconds to damp 50 per cent . 

Long oscillation: >,2+ .071>.+. 291=0 
>. =+.0358±.541i 

25302°--S.])oc. 268,64-1----4 
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Real part of A is here positive, indicating an oscillation increasing 
with time. 

2..-
P=.541=1l.6 seconds. 

t = .O~~~=19.3 seconds to double amplitude. 

The motion is both rapid in :period and rapidly increasing in am­
plitude. Indeed the amplitude IS doubled in two swings. This aero­
plane, if left to itself, would be highly unstable. 

ARTICLE 14. 

VARIATION OF LONGITUDINAL STABILITY WITH SPEED. 

Preliminary to consideration of the action of gusts on an inherently 
stable aeroplane, it was desired to analyze the motion in still air of a 
machine which could be called inherently stable longitudinally. It 
has been found above that a typical aeroplane becomes Ie s stable 
at low speeds until real instability results . This re ult is somewhat 
unexpeoted in view of the curves of pitching moment JJ1, which in­
dicated static stability at all possible attitudes up to and inoluding 
horizontal flight at + 15°.5. In other words, JJ1w is positive for all 
cases. The instability comes about on acoount of the rapid rate of 
increase of drift at large angles causing Xw to change sign, and on 
account of the les rapid rate of increase of lift, causing ZtO to be­
come small at high angles of pitch. Furthermore, JJ1q diminishes at 
low speed. 

From the speed power curves on figure 3, it appears that for angles 
greater than 10°, we are on the part of the power curve which re­
quires more power to go slower, "region of reversed oontrols." This 
region is now found to be dynamically unstable so that controlled 
flight only is possible here. But WIth reversed controls this is 
doubly dangerous. 

The frequency of accidents at low speeds, following the recent 
demand for a wide speed range, con:.fiTms this impression of the 
danger of low speeds when approaching a critical angle and speed. 
The critical angle for instability is clearly an angle less than the pos­
sible maximum for flight. 

A fair measure of the relative stability at various speeds may be 
had by notin~ the following tabulation of the values of Routh's 
discriminant, denoted by R: 

Velocity 
in 

miles. 
79.0 
51. 8 
47.0 

Wind chord 
to 

wind. 
1° 
7° 

10° 

R. 

+180 X105
} 

+ 32 XI0· Stable. 
+ 3. 8XI0· 

45.2 12° 7 XI06
} 

44.2 14° 3.7X10· Unstable. 
43. 7 15.5° 5 X 10· 

The table is reproduced graphically on figure 12. 
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A similar investigation for lateral stability fails to show any marked 
change with s~eed, as would be expected since speed depends on 
pitch angle ana the factors which make or unmake lateral stability 
are but slightly affected by angle of pitch. 
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REPORT No.1. 
PART 2. 

mEORY OF AN AEROPLANE ENCOUNTERING GUSTS. 

By EDWIN BIDWELL WILSON. 

ARTICLE -I . 

INTRODUCTION. 

The notation here used will be in the main that of Bairstow. 

(Technical Report of the Committee for Aeronautics for the Year 

1912-13, p. 143.) As, however, Bai:l'l8tow changes his notation in 

the first few pages of his report, we shall begin at the start with some 

departures from him. 
H x, y, z are moving axes directed, respectively, backward to the 

left; and upward relative to the driver; if u' , v' ,w' be linear veiocities, 

and p', q', r' be angular velocities, resolved along these axes; and if 

X',Y', Z' be forces, and L' M', N' be moments of forces (measured 

per unit mass of the aeropiane); then the dynamical equations of 

motion are -
du'/dt+w'q' - v'r' =X', 

dv' /dt+u'r' -w'p' = Y', 

dw' /dt+v'p' "-u'q' =Z', 

dh1/dt - r'h2 + q'hs = mL', 

dh2/dt-p'hs +r'h1 =m]}P, 

dhs/dt-q'hl +p'h2 =mN', 

where m is the mass and 

52 

hi = p' .A. - q' F - r' E, 

h2=q'B-r'D-p' F, 

hs=r'O-p' E-q'D, 

(la) 

(Ib) 

(Ie) 

(2a) 

(2b) 

(2c) 

(3a) 

(3b) 

(3c) 
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are the components of angula,l' momentum,-the CJ.uant~ties A,. B, 0 
being the moments and D, E, F the products of mertla relatIve to 
the moving axes fixed in the body. 

The symmetric aeroplane will alone be considered here; 

D-F=O. (4) 

If the machine is in uniform horizontal flight, all the forces, 
moments, linear velocities and angular velocities except u' vanish, 
and u' = U, a negative quantity in magnitude equal to the tmiform 
velocity. (The precise backward direction of the x-axis is that 
which is horizontal in uniform flight, and hence by this definition the 
direction of this axis, and of the z-axis, varies in the aeroplane with 
the speed.) 

If the motion is slightly disturbed, the velocities take the values 

u' = U+u, v' =v, w' =w, p' =p, q' =q, r' =r, (5) 

where u, v, w, p, q, r are small. The products of these small quan­
tities are neglected, as in all discussions of small oscillations, and the 
equations take the form 

du/dt=X', dv/dt+ Ur = Y', dw/dt- Uq=Z', (6) 

Adp/dt - Edr/dt =mL', Bdq/dt =mlrJ', Odr/dt - Edp/dt =mN' . (7) 

In uniform motion the forces and moments all vanish. For the 
disturbed motion they are small and may be expressed linearly in 
terms of u, v, w, p , q, r. The forces are due to three sources: 1° the 
propeller thrust, 2° gravity, 3° the air. We shall assume that the 
propeller thrust (and moment, if any, arising from it) is constant; i. e. , 
the motor is supposed to speed up or slow down under changed condi­
tions so as to deliver a constant thrust. If 0 and <p are the small 
pitch and roll, the components of gravity are gO, - g<p, - g (see 
Bairstow, 144, 7u - w), and its moments are zero because the C. G. is 
taken as origin. The air forces and moments may be written as 
X, Y, Z, L, lrJ, N and developed as 

X =Xo+Xuu + Xvv+ X ww+Xpp+ Xqq+Xrr, (8) 

where X u, .LY v , • • . •• are the ({resistance derivatives " taken for 
the relative velocity of machine and wind. (Xo and the propeller 
thrust cancel, so do Zo and g; Yo, L o, Mo, No vanish.) 

In the symmetric aeroplane half the resistance derivatives vanish 
and the six equations of motion separate into two sets of three each, 
one set for the longitudinal, the other for the transverse motion. 
These equations are (Bairstow, 148, 13 and 14 with 8 = 0) for longi­
tudinal motion, 

du/dt=g()+Xuu+Xww+Xqq, 

dw/dt= Uq+Zuu+Zww+Zqq, 

E /m. dq/dt= .M".u + Mww + .11fqq, 

(ga) see ( l a) 

(D b) see (Ie) 

(ge) see (2b) 
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and, for transverse motion, 

dvldt= -gtp - Vr+ Yvv+ YpP+ Yrr, (lOa) see (1 b) 

Aim. dpldt - Elm. drldt=Lvv+Lpp+Lrr, (lOb) see (2a) 

Olm. drldt - Elm. dpldt= Nvv+ Npp + Nrr. (lOe) see (2e) 

The integration of these equations gives the free oscillations of the 
aeroplane. 

ARTICLE 2. 

LONGITUDINAL MOTION IN SMALL GUSTS. 

A gust if not too severe may be treated by the method of forced 
oscillations. If the aeroplane is traveling on an irregular wind, we 
may regard the average wind velocity relative to the machine as that 
which should be used in the computation of the resistance deriva­
tives, and we may regard the departures of the actual relative velocity 
from the mean as small quantities inducing additional forces into 
the equations of motion. 

Suppose :first a head-on gustiness. This would introduce an extra 
term of the form Xuu into the :first equation, Zuu in the second, 
and so on. If, as a result of the gust, the machine tilted appreciably, 
the originally head-on gust would no longer be head-on, but would 
have components U lI WI and give rise to the term X Uu1 + X W w1 in the 
:first equation. It is clear, however, that under the hypothesis of 
small oscillations, Wi would remain small of the second order relative 
to u1 • The term X Ww1 could then be neglected relative to .LYUulI 

unless Xw much exceeded Xu' 
We should in general allow a gust to have componentsuil Vii Wil Pll 

(j1l r1 relative to the axes. This would take into account any possi­
ble rotational motion in the gust. The rotational motion of a gust 
may be quite small. In the discussion by Glazebrook (Aeronautical 
Journal, July, 1914, pp. 272-301) nothing is accomplished relative 
to rotational gusts. Yet it may well be that the rotational element 
is of great importance. For the rotary derivatives, in the case of 
the machine whose derivatives are tabulated by Bairstow (loc. cit., 
159), are large. Thus a term Mq(jl = -210(jl would be comparable 
with X Uu 1 = -0.14u1 if (jl were 1/700 of u1 ; i. e., if the gust were a uni­
form whirl of radius 700 teet. In tho same way Lp is large. In the 
machine that will be discussed in what follows Mq is also large, 
viz.,-150. 

The equations for the longitudinal motion in a general gust are 
(see 9a-e) 

dujdt-g8-Xuu-XWw -Xq(j = X Uu 1 + X Ww1 + X q(jl' (lla) 

dwldt- Vq-Zuu-Zww-Zqq = ZUUl+ZWWl+ Zq(jl" (llb) 

B lm dqldt- Muu- Mww-Mq<J= MUu 1 + MWWl + M qql' (lle) 

The solution of these equations consists of two parts: 10 the so­
called complementary function whicb. gives the natural oscillation , 
20 the particular integral which gives the forced oscillations due to 
the gust. To effect a solution for the particular integral, we must 
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make some assumption as to the value of the components ulJ WI' qt 
of the gusts as functions of the time. Before making such an assump­
tion for the particular integral, the solution by the "operational" 
method may be indicated. (See Wilson, Advanced Calculus, p. 223.) 

Let D denote differentiation. The equations may be written 

-Zl£U+ (D-Zw)w- (Zq+ V)D8=ZUUl +ZWWl +Zqq" 

- Muu - Mww + (7c2B D2 - MqD)8 = Ml£Ut + MWWl + Mqqu 

(12a) 

(12b) 

(12c) 

where k2
B =B/m. These eq,uations are solved algebraically by 

multiplying by the proper cofactor determinants and adding. Then 

DI- X" -Xw - (XqD+g) I IXu -Xw - (XqD+g) I 
-Zl£ D-Zw -(f~ V)D U= ZuD-Zw -Cfq-t; V)D u t 
- M u - M,,, 7c Bi.J - MqD Ml£ - Mw lc BD - MgD 

+ IXw -Xw - (XqD+g) I 
ZwD-Zw -(fq+2 V)D wt (13) 
Mw - Mw k BD - MqD 

+ IXq -Xw-(XqD+g) I 
J;.'l.. D - Zw - (Zq+ V)D qt 
Mq - Mw 7c 2

BD2 - MgD 

01", if the determinant on the left be denoted by t::., 

I
Xu - Xw - (XqD+g) I 

t::.U= Zl£ D-Zw -(f'l.....-1; V)D U t 
1If.... - Mw 7c BU - MqD 

I
x - (X D+g) 1 I Xq -Xw -g I 

+ D M:. k2BD2'!... Mq·D W t + 1r
q
D=i1

w 
-l[;b2 qt· 

There are similar equations for wand 8, namely, 

I
D-XuXw - (XqD+g) I 

t::.u·= -ZuZw - 2(Z~+ V)D W t 
-MuMw 7c sD -MqD 

+DI Z -(Z + V)D I ID-X"Xq 
-g I 

ifu 7c2B7J2 - MgD U1 + == fluZMq - 7c~~2 qll 

t::.8 = I 

(14a) 

(14b) 

(14c) 

The general (literal) integration of these equations would be so 
complicated as to be useless. We shall make use of the formulas 
only after simplification by the insertion of numerical data. 
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Possible methods of treating gusts.-The only treatment of gusts 
which I have seen is that described somewhat popularly b[ Glaze­
brook Ooc. cit.). He seems to state, as the main method 0 attack, 
that of small differences whereby it is assumed that the involved 
time over which the motion is to be studied is divided into small parts, 
and that the atmospheric conditions remain constant during each of 
these parts. By then regarding the differential equations of motion 
as equations in differences of the following form, 

b.U' = (X' -w'q' +v'r')b.t, etc., 

b.h1 = (mL' +r;h2 - q'hs)b.t, etc., 

it is possible to compute, through a series of intervals b.t, the ap­
proximate positions of the aeroplane. This method is, as Glazebrook 
states, exceedingly tedious, for b.t must be taken very small, indeed 
only a small part of a second in the case of a sharp gust, in order that 
the solution may be even approximately satisfactory for the differ­
ential equations. Moreover, the whole calculation apparently has 
to be done from the beginning for each new type of O'ust which one 
desires to study. The method, however, is applicabfe in all gener­
ality irrespective of the stability of the aeroplane. 

The reason that I have chosen to operate on the basis of small 
oscillations is that after a certain amount of preliminary calculation 
has been accomplished my formulas will enable me to treat very 
rapidly a series of very different types of gusts. My method is not 
applicable, of course, to machines which are not stable, for the oscilla­
tIOns could not remain small with such machines, but it is probably 
doubtful whether the motion of the unstable aeroplane in a gusty 
wind is of very great importance, as the instability of the machme is 
not unlikely to cause indeterminately violent motions on relatively 
small gusts. I have tried to devise methods which would enable me 
to use graphical apparatus for obtaining the solutions here desired, 
but have been unable to throw the equations into a form which lends 
itself to such methods. 

Moreover, the coefficients which enter into the equations and into 
the solutions at all stages of the work are of such varying ma!p1itudes 
that it is difficult to obtain any reasonably accurate results. It seems 
impossible-I have not yet succeeded in avoiding the difficulty-to 
eliminate the occasional necessity of subtracting numbers which are 
nearly equal in magnitude; thus the accuracy of the figures is, after 
subtraction, seriously impaired. As I was aware that the data fur­
nished me were probably not accurate to three figures, I first made 
the calculations with slide-rule accuracy, only to find that the final 
results became wholly illusory, owing to the difficulty just mentioned. 
I have therefore had to recompute everything with 4-place logarithm 
tables. Most of the figures which occur in the work are therefore 
4-place numbers. Those which appear to have only three significant 
figures generally have the fourth figure zero when occurring in 
formulas containing 4-place numbers. In the calculations toward the 
end of the research the 4-fiO'ure accuracy has become reduced to 
three or two figure accuracy, ~ut it did not seem best systematically 
to reduce the numbers by the omission of two figures, although this 
reduction has occasionally been made in final calculations. 
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ARTICLE 3. 

NUMERICAL EQUATIONS FOR IDGH SPEED. 

The data for high speed are (see Hunsaker, p. 47): 

Xu= - 0.128, 
Zu= -0.557, 

Mu=O, 
Blm = 7c 2

B = 34, 

Xw= +0.162, 
Zw = -3.95, 

Mw= + 1.74, 
U= -115.5 , 

Xq=O 
Zq=O 

J{q= -150 
g=32.17 

The cofactors 0 in the determinant D. are-

-(Zq+U)DI_I D + 3.95 115.5D r 
7C2BD2 - MqD - - 1. 74 34D2 + J 50D 

= 34Ds + 284.3D2 + 793.5D = 011 

I
-Mw 7c2BD2_MqDI_I-1.74 34D2+ 150D I 
-Xw -(XqD+g) -1-0.162 -32.17 

I-
Z

" -Mu 
D-Zwl 

-Mw 

l-Xw 
-Mw 

D-Xul 
-Mu 

ID-X,. 
-Z,. 

-XI D-Zww 

=5.508D2+24.30D+ 55 .98 =021 

I 

- 0.162 - 32.17 1 
D+ 3.95 115.5D 
13.4GD + 127.1=osl 

1

115 .5D 0 .5571 
34D2+ 150D 0 

-18.94D2-83.56D =012 

- 32.17 I 
34D2+ 150D 

34DS + 154.3D2 + 19.20D = 022 

1

- 32.17 D + 0. 1281 

115.5D 0.557 
-115.5D2-14.78D-17.92 = 032 

1

- 0.557 D + 3.951 

o - 1.74 
- 0.9692 = 013 

1

- 0.162 D+ 0. 1281 

-1.7~ • 0 
1.74D+ .2227 ~ 02S 

I
D +0.128 -0.1621 

0.557 D+ 3.95 
D2 + 4.078D + .5957 = OS2 

The value of the determinant D. is 

34D+2 .7D3+833 .0D2+ 115.1D+31.18= 
34(D4 + 8.4g0Da + 24.50D2 + 3 .385D + 0.9170). 
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(The value of the determinant checks by three calculations.) 
The roots of the equation 

f(D) = D4 +8.49D3+24 .5D2+3.385D+0.917=O (16) 

determine the decrements and periods of the natural oscillations, 
and must be found. (Unfortunately these roots must be found with 
considerable accuracy, and the rough :first approximations, such as 
are indicated by Bail'stow, seem insufficient for our use.) Let it be 
assumed that one root is so large that it may be found approximately 
from 

D' +8.49D3+24.5D~=D2+ .49D+24.5=0. 

Then D = - 4.245 ± 2.545i. 

If now r be an approximate solution of JCD) = 0, a new approxi­
mation may be had by assuming r + x, with x mall, as a root. 

Then 
_ fer ) _ _ r4 +8.49r'+24.5r+ 3.385r+0.917 

x- - !'(r) - 4r3+ 25.47r2+ 49r+ 3.385 

approximately. .A'3 r2 + 8.49r + 24.5 = 0, the fraction simplifies to 

3.385r+0.917 063 107' 
x=-23.08r+211.4=· +. ~, 

if r = - 4.245 - '2.545i. This root of fCD) = 0 is therefore 

D = - 4.182 ± 2.438i. 

The factor of fCD) corresponding to this pair of roots is 

D2 + 8.364D + 23.43. (17a) 

Let the other factor be D2+aD+b. Then 23.43b=0.917 and 
b = .03914. Also, 8.364(.0391) + 23.43a = 3.385 or 23.43a = 3.058 
and a='.1305. Hence the second factor is 

DZ + .1305D + .03914. (l7b) 

As a check on the work we may multiply the two factors together; 
we find 

CD2+ 8.364D +23.43) CD2 + .1305D + .03914) = 
D4 + 8.494D3 + 24.56D2 + 3.385D + .9170. 

We can find, merely by careful trial, better factors as 

CDz + 8.359D + 23.37) CD2 + .1308D + .03924) = (18) 
D4 + 8.490D + 24.50D2 + 3.385D + .9170. 

The definitive roots off CD) =.1.=0 may therefore be taken as 

a = -4.180-2.430i, b = -4.180+2.43Oi 
c= - .0654-.1870i, d= - .0654 + .187Oi (19) 
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AERONAUTICS. 

ARTICLE 4. ' 

INTEGRATION FOR mGH SPEED. 

The numerical equation for u is (see 14a) : 

34 (D'+8.49 DS+24.5 D2+3.385 D+0.917) u 

= (X"Sll +ZUS21) ~ + DSnwl + MqSSlql 
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= -34 (0.128 D3+ 1.160 D2+3.385 D+O.917) 'Ut (20a) 

+34 D (0.162 D2+0.715 D+1.647) WI 

-34 (59.37 D+560.6) ql' 

The numerical equa tion for W is (see 14b): 

34 (D'+8.49 DS+24.5 D2+3.385 D+O.917) W 

= (XW512 + Z,.5n + Mw5s2) WI +D512u 1 + MqSS2ql 

= -34 (3.95 D3+23.94 D2j3.385 D+0.917) WI 

-34 Dl (0.557 D+2.458) u 1' 

+34 (509.5 D2+65.21 D+79.05 ) q1' 

The numerical equation for (J is (see 14c) : 

34 (D'+8.49 D'+24.5 D2+3.385 D+0.917) (J 

= MqSasql + D51SU 1 + D53Swl 
=34 (4.412 D2+17.99 D+2.628) ql 

-34 (0.02851) DUI +34 D(.0511~ D+ .00655) WI' 

The solutions are of the type: 

U = 011~ + 012ebe + 01Sea + 01,ede + I u, 

W = 021 ~ + On&e + 023ea + Ouede + 1"17 
(J= 031~+ 032ebe+ 033ea+ Os,ede+ls, 

(20b ) 

(20e) 

(21) 

where a, b, c, d are the roots of the biquadratic (see 19), Dt, certain 
constants of integration, and Iu, 110 , Is a set of particular solutions 
of the equations. We- shall determine lUI 110 , Is in such a manner 
that they will not contain the functions eal, etc.; we may: therefore 
determine in advance the relations between the twelve O's. (This 
will debar us from using as gusts U l1 W l1 q l1 those which are of the 
form Oeal, etc.; but this restriction is not important-such a damped 
~t tuned to the damping and. period of the machine is highly 
nnprobable in nature.) 

If we substitute u, w, (J in the equations (14), the particular solu­
tions must cancel out among themselves (since they can not cancel 
terms of the form eat) and leave . 

(a-Xu) 011~-XWo.l~- (Xqa+jl) 0. eat + similar terms=O, 
=ZuOJJeat~(a-Zw) P21~- (~+ U) act~+ __________ .:0, 

~Ulleat MW021& + (7c'BD MqD) 031~+ __________ -0. 
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These equations hold identically in t, and the coefficient of eal
, etc., in 

each must vanish. The three homogeneous equations in the three 
unknowns 0,117 0,21' GS1 (or th~ similar equations in 0,12' 0,;'2' GS2 ; 0,137 
0

28
, Oss; Ow 0

210
, OM) are consIstent because a (or b c, d) 18 a root of 

the determinant A, and the solutions are: 

0, rY I -X -g II-g a-Xulla-X -X I 
11: 0,21: VS1= a_Z

w
W 

_ Va: - Va -Zul: _Zuu a-Z;:' 

with 0,12: 0,22: G
S2 

determined by the same functions of b. In words: 
To obtain the ratios of the coefficients of eat in u, v, w, substitute 
D=a in the determinants OS17 OS2' oss· Or 0,12: 0,21: GS1 as 

13.46a+ 127.1 : _115.5a2 -14.78a-17.92 : a2+4.078a+ .5957 
or G

n
: 0,21: Gs1 =13.46a+127.1 : 950.8a+2560 : -4.281a-22.81. 

This gives 011 : 0,21: GSI as 
70.8 _ 32.7 i: -1414 - 2310 i: - 4.92 + 10.40 i or as 

1: - 4.04 - 34.52i: - .1132 + .0946 i. 

The values of G1Z : Gzz : 0,32 are the conjugates 
. ~ 

1:-4.04+34.5i:-·.1132 - .0946 i. 

To :find GIS: GZ8 : Gss we must substitute c= - .065 - .187 i in the same 
determinants. Then 

GIS: G2S : 0,88= 13.46c+ 127.1: .33c-13.39: 3.947c+ .5565. This gives 
0,18: 0,28: Gss as 

126.2- 2.516 i: -13.37 - .0623 i: .2983 - .7380 i 
or 1: - .1058 - .002587 i: .002478 - .005799 i. 

The values of the conjugates are: 

0,14: G
Z4

: G
H 

= 1: - .1058 + .002587 i: .002478 + .005799 i. 

The general solutions of the equation of motion are: 

u = G
n 

eal + G1Zebt + G1sect + Guedt + lUI (22a) 
w = (- 4.04 - 34.5 i) Gneal + ( - 4.04 + 34.5 i) G12ebt 

+ ( _ .1058 - .002587 i) Glsect + ( - .1058 + .002587 i) Guedt + IIl17 
(22b) 

8= (- .1132 + .0946 i) Gneal + (- .1132 - .0946 i) G1zebt (22c) 
+ (.002478 - .005799 i) 0,1 sect + (.002478+ .005799 i)G14e

dt 
+ h 

From these equations we see that the heavily damped short period 
oscillation (roots a, b) is about 34~ times as strong in w as in u; 
whereas the mildly damped long :period oscillation (roots c, d) is 
about 9~ times as effective in u as ill w. Moreover, the short period 
motions in u and ware about quartered; but the long period motions 
are in opposite phase. The amplitude of the short period motion in 
8 is about m that of w; hence for each foot-second of short oscillation 
in w there is about to in 8. The amplitude of the long period motion 
in 8 is about .006 of that in u; hence for each foot-second of long 
oscillation in u there is about 1° in 8. The damping of the short 
.oscillation is so strong that the amplitude is reduced to about one-
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ninetieth in one second where in the case of the long oscillation 
the reduction is only to about nine-tenths of its original value in one 
second; the relative amplitudes in the cases of u, w, (J are more 
important in the case of the long than in that of the shor t period 
oscillation because the latter is so quickly damped out that the 
swing may not get well started. However, the extreme magnitude of 
the short period oscillation in W as compared with u indicates the 
possibility of relatively violent accelerations in W,' indeed, it is the 
short period oscillation which may account for initial difficulties 
whereas the long period oscillation accounts for the progressive 
troubles, due to gusts. 

There remain to be determined the values of the constants 0 of 
integration from the initial conditions of uniform flight, i. e., U=W= 
(J = q = O. Let the particular solutions have the initial values 100, 

Two, 100 , Then 

0= 011 + 012 + 013 + 04 + Iuo, 
0 =( - 4.04 - 34.5i) Un + ( - 4.04 + 34.5 i) 012 

+ ( - .1058 - .002587 i) 0 13 + ( - .1058 + .002587 i) 0 14 + l wo, 
0 = (- .1132+ .0946 i) 011 + (- .1132 - .0946 i) 012 

+ ( .002478 - .005799 i) 0 13 + (.002478+ .005799 i) 014 + 100, 
0= (- .1132+ .0946 i)aOll + (- .1132 - .0946 i)b012 

+ (.002478 - .005799 i)C013 + (.002478 + .005799 i)d014 + 1'00l 
or 0 = (.703 - .205 i) 011 + ( .703 + .205 i)012+ (- .001246 - .000084 i)0'3 

+ ( - .001246 + .000084 i) 014 + 1'00' 

The values of Ou; 012 and 013 , 014 aye conjugate imaginaries; hence 
OI1+~z=A, Ci3+014=B, i(01Z - 011)=0, i(014-013)=D are real. 
The equations may therefore be written 

O=A+B+luo 
0= -4.04 A+34.5 0- .1058 B+.002587 D+lwo 
0= - .132 A- .0946 0+ .002478 B+.005799 D+loo 
0= .703 A + .205 0- .001246 B + .000084 D + 1'00' 

The values for A, B, 0, D are (as found by determinants and checked 
by substitution) : 

A= -.0008856100 +.008198 l wo + ·01621 100 -1.372 l'eo, 
0= - .003 196 luo- .02803 l wo+ .01476 100 - .1543 1'00' (23) 
B= - (1- .0008856)luo - .008198 lwo- .01621100 + 1.3721'00' 
D = .35771uo - .2940 l wo -172.0 100 - 29 .89 If 00' 

The solutions (~2) of the equations of motion of the aeroplane in­
volve imaginary numbers from which they may be freed by using 
A, B, 0, D in place of 0 111 0IZ, 0131 014' The equations then become 

u = e-4•18t (A cos 2.43t + 0 sin 2.43t] 
+ e-·0654t (B cos .187t+D sin .187t) + lu, 

w=e4
. 18t [(34.5 0-4.04 A) cos 2.43t 

- (34.5 A + 4.04 0) sin 2.43t] 
+ e-·0654t [(.0025 7 D- .1058 B) cos .187t 

- (.002587 B + .1058 D) sin .187t] + I w, 
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8 = e-' 18t [ - (.1132 A + .0946 0) cos 2.43t 
+ (.0946 A- .1132 0) sin 2.43t] 
+ e-.0654t [(.00278 B + .005799 D) cos .187t 

+ (.002478 D- .005799 B) sin .187t] + 10. 

These formulas enable us to study any partioular gust we desire. 
It is merely necessary_to find the particular solutions, then the 

constants A, B, 0, D. We shall reduce the coefficients in the paren­
theses. Then 

u = e-4·18t (A cos 2.43t + 0 sin 2.43t) 
+e-.0654t (B cos .187t+ D sin . 187t) + IUJ (24a) 

to = e-ust (A' cos 2.43t + 0' sin 2.43t) 
+ e-.0654t (B' cos .187t + D' sin . 187t) + lw, (24b) 

8 = e-4·18t (A" cos 2.43t + 0" sin 2.43t) 
+e-.0654t (B" cos .187t+D" sin .187t) + 18: (24c) 

where 

A' = - .1066 Iuo -1.0001 lwo+ .4436 180 + .220 1'00, 
0' = .04346 It£O- .1696 lwo- .6190100 + 47.931'00' (25) 
B'=.1066 1uo +.OOOl07 1wo-.4436 100 -.220 1'00' 
D' = - .03523 luo+ .03112 1wo+ 18.20100 + 3.158 1'00' 

A" = + .0004024100 + .001724 1wo- .003231 100+ .169 1'00' 
0" = + .0002778 1uo- .003947 1wo- .000136 100 - .1123 1"0, (26) 
B" = - .0004024 1uo- .001724 1wo- .99676 100 - .1698 1'00) 

D"=.006683 1uo-.000681 1wo -.4261 100 -.08201 1'00. 

In any particular case the calculation of the coefficients in (24) 
from (23), (25), (26) is likely to be relatively simple because there 
are so many terms that for that case may be negligible . 

.ARTICLE 5. 

SOME SPECIAL GUSTS. 

If we wish to represent a gust which, starting from the condition 
of still air, increases to a certain intensity J we may use the function 

(24) 

The value of l' determines the sharpness of the gust. If r = I, the 
gust has reached about two-thirds of Its value in one second; if r=5, 
the gust has reached two-thirds of its value in one-fifth of a second; 
if r=t, the two-thirds intensity is reached in 5 seconds. We may per­
haps regard r = 1 as giving a moderately shar~ gust, r = 5 as giving a 
very sharp, and l' =t as giving a toll'lrably IDlld gust. The functlOn 
(24) has the advantage of being in such form that the determination 
of the particular integrals is easy. (See Wilson's Advanced Calculus.) 
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CASE 1. Head-ongust-mild. UI=J (l-e-·2t ). 
In equations (20) we let U 1 = J (1- r·2t ), WI = ql = O. Then 

I", = - J (1- .247 e-·Zt ), 
1w = .082J r·2t, 
10 = - .00495J e-·2t, 
1'0=.00099J r·Zt, 

11U) = - .753J, 
1wo = - .082J , 
1'00 = - 0049J, 
1'00= .00099J. 

( . B.-The total increase J of the wind occurs everywhere as a 
factor and may be omitted-the results then are for an increase of 
1 foot-second.) 

u = J e-·0654t(.622 cos .187t+ .630 sin .187t) - J(l- . 247e- 2t ) , 

w=Jr4.18t(-.004 cos 2.43t+.003 sin 2.43t)-Je--°654t(.078 cos .187t+ 
.059 sin . 187t) + .082Je-·2t, 

8=Je-·0654t(.00495 cos .187t- .0031 sin .187t) - .00495Je-·2t . 

It arpears from these equations that the effect of a mild head-on 
gust 0 magnitude J is as follows: (1) The machine takes up an easy 
slowly damped oscillation in u of amplitude about 89 per cent of J; 
after the oscillation dies out the machme is making a speed J less rela­
tive to the ground and hence the original speed relatIve to the wind. 
(2) There is a rapidly damped oscillation in w of rather small magni­
tude and a slowly damped one of about 10 per cent of J, the final 
condition being that of horizontal flight. (3) There is a slow oscilla­
tion in pitch of about .0058 J radians or about .32 JO. If the mag­
nitude J is great, the 'pitching becomes so marked that the approxi­
mate method of solutIOn can no longer be considered valid-a gust 
of 20 foo t.-seconds causing a pitch of some 6°. As the period is Tong 
(about one-half minute) the pilot should have ample time to con-ect 
the trouble before it produces serious consequences. ' 

The result of a tail-on gust is the opposite of that of the head-on 
gust and therefore need not be treated separately. For the head-on 
gust J is negative; for a rear gust, positive. 

To calculate the stresses on the machine or operator caused by the 
gust we have merely to find the accelerations du/dt and dw/dt of which 
the first is (approximately)-

du/dt=Je-·0654t(.08 cos .187t - .16 sin .187t) - .05Je-·2t . 

This acceleration reaches a maximum of something of the order of 
J/I0; and if J should be 20 foot-seconds, the acceleration would be 
only about 2, or 6 per cent of g-not a large amount. The accelera­
tion dw/dt is likeWIse small. (N. B.-The initial accelerations du/dt 
and dw/dt should vanish, because the gust starts from zero. That 
the initial values are not exactly zero in the above formulf!,s is due to 
the roughness of the final calculations for u and w.) 

The path of the machine varies from the horizontal by the amount 

Z= [<W+115 .58)dt 
• 0 
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which accounts for the effect of the vertical velocity and of the climb­
ing in the path. The result is (roughly) 

z= J l~-·0654t(.5 cos .187t-.4 sin .187t)dt- .5e-·2tdt, 

z= J[e-·065-1t(cos .187t+3 sin .187t)+ 2.5e-·2t -3.5]. 

The motion is oscillatory approaching as a limit z = - 3.5 J. The 
machine will rise 70 feet when the gust is 20 foot- econds head-on. 

CASE 2 . Up gust--mild. WI =J(I- e-·2t ). 

1,. = .305 J e-·2t , 

l w = J(I-1.01 2e-·2t ), 

18 = .000737 J e- 2t , 

18 = - .000147 J e-·2t, 

1"0= .305 J , 

lwo= - .012 J , 

11;0= .000737 J, 

]'80= - .000147 J. 

U=Je-·0654t(-.305 cos.l 7t-.Ol08 sin .187t)+.305 J e- ·2t , 

W = J e-UBt ( - .02 cos 2.43t+ .026 sin 2.43t) + J e-·0654t( .032 cos .187t+ 
.002 sin .187t)+J(1 -1.012e-·2t ), 

O= J e-·0654t ( .0008 cos 187t+ .0017 sin .187t) + .00074e-·2t ). 

The effect of the up gust is to set up a small long oscillation in u 
of magnitude about 0.3 J, a very small oscillation III W, and a long 
oscillation of intensity .0018 J radians or .11 J O in O. The compar­
ative effects on the velocity and angle in the case of head-on and up 
gusts show that the up gust is only about one-third as effective as the 
head-on gust. The accelerations in the case of the up gust are all 
small. 

To find the displacement in a vertical direction we integrate as 
before. 

z = l'cw + 115.50)dt. 

It is scarcely necessary to trouble with the trigonometric terms 
partly because the motlOn is less pronounced than in Case 1, partly 
because there is here the secular term Jt, which will carry the machine 
up with the gust and will be the chief effect after the lapse of a shor t 
time. 

A down gust is in every way the opposite of an up gust and need 
not be separately treated. 

CASE 3. Rotary gust--mild. ql = J (I- e-·2t ). 

1,. = -J(610.6-475.5e-·2t ), 

l w= J(86.21-74.87e- ·2t ), 

19 = J(2.865 + .691e-·2t) , 

luo= -135.1 J. 

lwo = 11.34 J . 

leo = 3.556 J. 
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10= - .138 J e - .2t, /180 = - .138 J . 

Iu = Je-4.l8t( .46 cos 2.43t+ .1875 sin 2.43t) 
+ J e-·o054t (134.7 cos .187t-659 sin .187t) 
- J(610.6 - 475 .5e -.2t), 

Iw = J e-4·18t(4 .61 cos 2.4'3t-16 .82 sin 2.43t) 
+Je-.oOS4t(-15.95 cos .187t+70.08 sin .187t) 
+ J (86.21- 74.87e- ·2t ), 

18= J e-4.18t( - .0698 cos 2.43t+ .0223 sin 2.43t) 
+ J e-·0654t ( - 3.487 cos .187t- 2.414 sin .187t) 
+J(2.865+.691 e -.2t). 
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The effect of the rotary gust is a long oscillation in u (the short 
one is n egligible) of magnitude about 670 J, a short oscillation in w 
of about 17 J and a long one of about 71 J, a long oscillation in e of 
about 4.1 J. The comparison with former cases may be made by 
supposing first that the oscillation in u may reach some 20 foot­
seconds. Then J = 1/33 = .03. The amplitude of the oscillation 
in e is then some 0.12 Tadians, which is an amount comparable with 
the 6° of Case 1. To get an idea of what J = .03 means, we may 
note that if a gust of 20 foot-seconds is due to a whirl of the air as 
a solid body WIth ql = .03, the radius of the whirl is 660 feet. We 
may therefore say that the effect of a whirl of radius 660 generating 
velocity of 20 foot-seconds is of itself about equal to that of a head-on 
velocity of that amount. If, however, a machine ran into such a 
whirl, 'it would experience both the effect of the whirl and of the 
linear velocity generated by it and would be disturbed considerably 
more than if it had encountered a pure head-on gust. We may 
therefore say that if the head-on gust arises from a whirl of mate­
rinlly less than 660-foot radius, the effect of the whirl is quite con­
siderably larger than that due to a straight head-on gust of equal 
magnitude. 

The conditions after enough time has elapsed to allow the expo­
nential term to become small is 

1u= -610.6 J. Iw =86.2 J . 18=2.865 J. 
It is therefore seen that the machine takes up the head-on velocity, 
acquires a small upward velocity, and is inclined at an angle 2.865J 
radians to the horizontal l these effects being due exclusively to 
the rotary motion of the au'. The path in space could be obtained 
by integration, but (like the effects previously mentioned) would 
not be the true path if the rotary motion were accompanied by 
horizontal or vertical linear gusts. It seems therefore scarcely 
worth while to find the path. 

The value that I attach to this theory of rotary gusts does not 
arise so much from the fact that such gusts seem nowhere to have 
been treated as from the revelation of the powerful effects of such 
gusts. When a machine is flying low it must expect to meet air 
which has been set in rotation by the friction of the wind against 
the ground, against buildings, or against trees. It seems certa~ 
that very material angular velocities might be set up and that these 
might (owing to their short radius) induce only moderate linear 
gusts. In such cases, if they can arise as assumed, the machine 

25302°-S. Doc. 268, 64-1-5 
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might behave very much worse than could be foreseen when nothing 
is known of rotary gusts. It is not unlikely, however, that rotary 
gusts would be very irregular themselves and that, before the 
machine could feel the full effects of one, the ~ust might have dis­
appeared. In the same way rotation could be generated at the 
interface between dark and lightJ. r egions of air-indeed any sharp 
relative motion of the air is likely to contain rotation. 

CASE 4. Head-on gust~oderate. U t = J(l- e- t). 

lu= - J(l+ .09876e-t ) , 1'UO = -1.09876 J, 

lw= .1307 Jet, 

19= - .00196 J e-t , 

1'9= + .00196 Je-t, 

l wo= .1307 J, 

190= - .00196 J, 

1'90= + .00196 J. 

u=Je-4·tBt( - .000676 cos 2.43t - .000486 sin 2.43t 
+Je-·0654t(1.09944 cos .1 7t- .1528 sin .187t) 
- J (1 + .09876e-t), 

W= J e-4
•18t ( - .01405 cos 2.43t + .02528 sin 2.43t) 

+ J e-·065(t( - .1159 cos .187t+ .01493 sin .187t) 
+ . 1307Je-t, 

0= Je-4·18t (.0001207 cos 2.43t- .00000895 sin 2.43t) 
+ Je·o651t(.001838 cos .187t- .006755 sin .187t) 
- .00196 Jet. 

The short oscillation in u is negligible not only in regard to its 
magnitude but even as far as accelerations are concerned. Then 

dujdt=Je·06Ht( - .1 cos .187t+ .21 sin .187t) + .1Jet. 

This is at most about .25 J, or 5 foot-seconds 2 if J = 20. The short 
oscillation in w is considerably smaller than the long, but when the 
coefficients - 4.18 and 2.43 are brought in by differentiating to find 
dwjdt, whereas - .0654 and .187 are brought in by the long oscilla­
tion, it appears that the short oscillation IS effective in determining 
the acceleration. Thus 

dwjdt = J e-4•18t(.12 cos 2.43t - .07 sin 2.43t) 
+Je·o654t (.01 cos .187)-.13 Jet. 

The amount of this acceleration is at most about Jj12, one-third that 
in u; the effect, however, is produced very quickly, in the first half 
'second. 

In integrating to find the path in a vertical plane we may neglect 
the short oscillation, because in this case we divide by -4.18 and 
2.43, whereas for the long oscillation we divide by - .0654 and .187. 
Then 

Z= it (w+ 115.5e)dt 

=J LI[e-.o654t(.106 cos .187t-.765 sin .187t)-.095e-t]dt 

= J e·0654t (2 .3 sin .187t+3.5 cos 1.87t)+.095 Je-L 3.6 J . 
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The final condition is a rise of - 3.6 J, an amount which agrees with 
that in the case of the mild gust (Case 1) in as far as the rough calcu­
lation of that case permits us to judge. 

CASE 5. Up g'tLst-moderate. WI = J (1- 0). 

1'11.= .0773 Je-t , 

Iw= -J (1-1.205 e-t ), 

10= - .003069 Je-t, 

1'0= .003069 Je-t , 

1'11.0 = .0773 J, 

1wo= .205 J, 

100 = - .003069 J, 

1'00= .003069 J. 

U= Je-4·1St( - .002641 cos 2,43t- .00651 sin 2,43t) 
+ Je-·0654t( = .07466 cos .187t + ,4034 sin .187t) + .0773 Je- f , 

w=Je-4·18t( - .2139 cos 2,43t+ .1174 sin 2,43t) 
+ Je-·0654t (.008943 cos .187t- .02337 sin .187t) - J ( I-1.205e-t), 

6= J e- 4.1St(.0009148 cos 2.43t+ .000487 sin 2.43t) 
+ J e-·0654t( + .002154 cos .187t - .001432 sin .IS7t) - .003069 J e-t. 

The short oscillation is negligible in u as far as concerns u itself. 
In calculating the acceleratIOn du/dt the short oscillation is not 
negligible relative to the long; but the acceleration is small any way. 
The effect of an up gust J on u is about one-third the effect of an 
equal head-on gust (see Case 2). 

The short oSClllation is the main thing in w-its amplitude is about 
J/4, whereas the amplitude of the long oscillation is about J/40, or 
one-tenth as much. The acceleration dw/dt may therefore be cal­
culated exclusively from the short oscillation; it is 

dw/dt = J e-4
•
ISt (1.2 cos 2,43t) - J (1- e-t). 

This means values approximately as follows: 

t=O, Ys, U, Y2, %, 
acc.=O,-.35 J,-.6 J,-.7 J,-.6 J. 

If J should be 20 foot-seconds , the maximum acceleration would 
be about g/2, even a gust of 10 foot-seconds would produce an accel­
eration of g/4. Such accelerations coming upon the pilot in one-half 
a second might con.,iderably surprise and disturb him. An addition 
of 25 to 50 per cent in the apparent weight of the machine could 
hardly strain it to an appreciable extent in view of the large factor 
of safety used in the design. (N. B.-For an up gust J is negative. 
For a down gust the operator would lose 25 to 50 per oent of his 
weight.) 

The path of the machine in space is not of great importance in 
this case. The chief feature is the general drift of the machine with 
the current. 

CASE 6. Rotary gust-moderate. qi =J (1- e-t ). 

As we know so little of the rotation in the atmosphere and as 
nothing particular of interest seems to be indicated for this case 
over and above what was found in Case 3, we shall not carry out the 
calculations. 
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CA E 7. JIead-on gust-shaTp. u1 =J (1-e-5t ) . 

Iv, = - J ( I+.01872 e- 5t ), luo = - 1.01872 J , 
l w= - .05102 Jrt, l wo= - .05102 J, 
10= - .0008896 J e-St, 100= - .000 896 J, 

1'0 = 00444 J e- St , 1Jo = .004448 J. 

u = J e-4
.
1 t( - .005632 co 2.43t -!- .0039 6 sin 2.43t) , 

f- J e-·06S4t( 1.02435 co .1 7t- .3294 sin .IS'lt), 
·J( 1 + .01 72 e-St ), 

w=Je-4·18t( .1603 cos 2.43t + .17 2 sin 2.43t ), 
f- J e- ·0654t( - .1093 co .1 7t + .0322 sin .1 It), 

- .05102 J e- 5t, 
e = Je~l.1St(.OOO:W cos 2.43t- .0009 4 sin 2.43t ), 

-!-Je-.Ob5It( .000628 cos .1 7t- .006755 sin .187t). 
- .000 96 Je-St. 

Here again the short oscillation in u ia insignificant. The long 
oscillation as ill Case 4 has an amplitude a little ill excess of J. The 
acccleration duNt is small of the order J/5. The reason that a sharp 
head gust docs not give a large value to du/dt i probably because 
the gust can blow thToug:h the maehine; the acceleration is therefore 
not large except at tho LOOpS of tho slow oscillation. 

'1'he short-period' oscillation in w h as now become stronger than 
tho long oscillation and the acceleration dwjclt is mostly due to it 
and may be written 

dw/dt=Je-4·1St(- .25 cos 2.43t-1.13 sin 2.43t) + .25 Je-5t. 

Tho value of the acceleration never gets large because it is damped 
out before the sine term gets effective-perhaps - 0.4 J would be 
about ita maximum value. A sharp hcad-on gust is therofore about 
half as effective as a moderate up gust of the same intensity. Since 
up gusts arelerhaps not likely to be as intense as head-on gusts, we 
might hazar a gue s that sharp head-on gusts would inconvenience 
the pilot about as much as moderate up gusts. 

The most important terms in the path in space are 

z= Je-·OS54t(1.2 sin .187t+3 .. 5 cos .187t)-3.5 J. 

The totall'ise is again - 3.5 .!. 

CASE 8. Up g.ust- sha1'p. 

Iv, = .06621 Je-St , 
l w = - J(I- .5605 e-5t ), 
10= - .00778 Je-5t , 

1'00= .0389 Je-St , 

U\ = J ( L - e-5t ). 

Luo=.06621 J , 
lwo = - .4395 J , 
l eo = - .00778 J, 
l'Jo= .0389 J. 

u = J e-4·1St( - .05714 co 2.43t+ .006 sin 2.43t) 
+ J e-·06S.lt( - .00907 cos .187t-!- .3285 sin .187t) 
+ .06621 J e- 5t , 

w = J e-4·ISt( .4378 cos 2.43t + 1. 94 7 sin 2.43t) 
+ J e-·o6S4t( .00 181 cos .187t- .03474 sin .187t) 
- J( 1- .5005 e- 5t ) , 
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6= Je-·HSt(.0059 cos 2.43t- .0122 sin 2.43t) 
+ Je-· o654t(.001883 cos .187t+ .000 667 sin .187t) 
- .0077 J e-5t. 
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The oscillation in u is of long period, and the acceleration in tL is 
small. The oscillation in W has a short-period term of !ITeat impor­
tance at the start, but except for tllis there is very littfo 0 cil1ation 
in w. The acceleration is 

dw/dt = Je-4.l81(2.9 cos 2.43t-9.2 sin 2.43t) -2.8 J e-5t. 

(N. B.-The value of dw/dt when t=o should be 0 instead of J/I0. 
The failure to check seems due to multiplication of errors, which is 
unavoidable. The accuracy of the work ill Case 8 and Case 5 appears 
reduced to two figures.) The acceleration is now very serious indeed; 
it is about - 9.2 J e- 4.18t sin 2.43t, as thc other two terms come 
near canceling. The maximum value OCCUl'S when t = .217, a little 
over one-fifth of a second, as is then about -1.85 J. If J should 
be as large as -18 foot-seconds, the acceleration would equal g = 3'2. 
Clearly such a sharp gust if it existed would be very dangerous from 
the sudden forces it would bring into play. As the machine, how­
ever, would travel only about 24 feet during one-fifth second, it is 
reasonable to doubt whether in so short a distance so large a change 
in vertical air velocity could occur. 

The path in space IS found to be approximately 

2=- 1.2 J e- 4.18t cos 2.43t+1.1 Je-· 06~4t cos .187t-.J Je-5t + .:.z J-Jt. 

The final effect is the general drift with the gust, less a lag of J /5 . 

ARTICLE 6. 

THE CONSTRAINED AEROPLANE. 

If an aeroplane is constrained to remain always horizontal by 
mechanism which docs not otherwise alter the machine or its dynam­
ical properties, the equations of motion in a ~st may be found from 
our previous equations by setting e = q = O. Then 

(D-X,,) u - Xww= LY"U1 +XWWl +XqqlJ 
- Z"U + (D - Z w) w = Z .. u 1 + ZWw1 + ZqqlJ 
- Muu - Mww = lJ;.Luul + MWWl + ]vlqfjl + ji~ 

where F is the effective force due to the constraint and is assullled to 
affect moments only, not components of horizontal or vertical force. 
The last equation merely determines F . 

With the numerical data we find for high peed 

(D. + 128)u - .162w = - .128u1 + .162w
1

, 

.557u+ (D+3 .95 )w= - .557ul -3.95wl, 
F= - .174(w+wl ) + 150ql' 
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The natural motion of the machine when slightly di turbed III 

steady air is found from 

6. ' =\D+ .12 
.557 

The roots are 

D = -2.039±1.887 = -3.026 or -0.152. 

We thus find the first result: The machine, when disturbed, does 
not execute a double damped oscillation, but has an aperiodic motion 
of the form o e-3·USt + O2 e-O•I51 • 

The two damping factors - 3.93 and -0.15 lie between the values 
- 4.18 and - .0654 previously found. 

The unconstrained m2.Chine was stable for the speeds 79, 51, and 47 
mile-hours; unstable for 45 .2 mile-hours and lower speeds. If we 
take the data for 47 mile-hours and use them for the constrained 
motion , we find 

\ 
.151 

/::,." = D + .936 

of which thc roots are - 1.51 and + .10. The natural motion of 
the machine is therefore of the form 

The second factor indicates instability; the motion due to it increases 
instead of subsides and reaches 2.78 times its original value in 10 
seconds. We thus find the second re ult: The machine, when con­
strained, becomes unstable at a higher speed than when free- it is 
to this extent a more dangerous machine. 

We shall now return to the case of high speed and compute the 
effect of certain gusts on the constrained machine for comparison 
with the effect of the same gusts on the free machine. The general 
solutions are 

U = - .0426 01 e-3.93t + O2 e-·l5t + Iu, 
W= 01 e-3•93t _ .147 O2 e-·15t + Iw. 
~ = - .148 iuo -1.006 I,vo, 
O2 = - 1.006 Iuo - .0429 Iwo. 

/::,.'u = - (.128 D + .59 ) u 1 + .162 Dw
" /::,.'w= -(3.95 D+ .598) w, - .557 Du,. 

CA E 1. Head-on gust-mild. U 1 = J (J - e-.2t
). 

Iu= -J (1 + 3 .20 e-.2t
), Iuo = -4.20 J, 

1 .. =.622 J e-·2t , Iwo = .622 J. 
u=4.19 Je-· 16t,- J (1+ 3.19 e-·2t

), 

W= - .62 Je - ·16t + .62 J e-· zt • 
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The machine takes up the gust as before, of course. There is no 
oscillation. There is practically no acceleration in either u or w. 
The path in space is 

z= J (4.1 e- lSt -3.1 e-.2t )-J. 

The total rise 1S only - J. In every way the motion in this case is 
easier in the constramed than in the free aeroplane. 

CASE 2. Up gust-mild. Wl =J(1-e- ·2t ). 

1,. = - .186 Je -.2t, 
luo= -.1 6 J, Iw= - J(I-1.079 e -.2t), 

U= .186 Je -.15t_ .186 Je - .2t, 1wo= .079 J. 
W= - .052 J e- 3•93t _ .027 Je-· l5t -J(1-1.079 e- ·2t ). 

The motion is again exceedingly moderate in all respects. 
CASE 3. Rotary gusts. These can have no effect except upon 

the constraining moment F. 
CASE 4. Head-on gust-moderate. U l =J(I-e-t). 

1u = -J(1+.1895 e- t). 1uo= -.1895 J, 
lw= .2246 J e-t, 1wo= .2246 J. 
u=.002 J e- 3.93t + 1.187 Je-· lSt - J(1 + .189 e-t), 
W= - .05 J e-ant _ .174 Je-· 15t + .224 Je- t. 
du/dt= -.008 Je- s.93t -.180 Je-. lSt+1.89 Je-c. 
dw/dt= .197 J e- 3.9Sl + .027 Je- ·15t _ .224 Je- t. 
z=1.16 J e-. 1s'-.22 Je- t -.94 J. 

The motion is again decidedly moderate. 
CASE 5. Up gust-moderate. wl =J(I-e-t). 

Ill. = - .0653 J e- t, 1uo = - .0653 J, 
Iw= -J(I-1.350 e- L), 1wo=.350 J. 
u=.0144 J e- 3.93t +.0507 e-·1St -.0653 J e-c, 
W= -.343 Je- 3.93t _.007 e-.1,t -J(I-1.350 e- t). 
dw/dt= + 1.35 J e-3.93 _1.35 J e- t . 

The motion is easy except for the acceleration in w, which has a 
maximum when t =.46 and is then equal to about - .62 J. If the 
gust should have an intensity of 10 foot-seconds the maximum 
acceleration would be about g/5. 

CASE 6. Head-on gust-sharp. u l =J(I-e- St). 

1u= -J(I+ .00795e- 5), luo= -1.008J, 

lw= -.5275 J e- St , lwo = -.5275J. 

U= - .029 J e- 3•93t + 1.037 Je-. 1St -J (1 + .008 e_ St ). 

W=. 680 J e-a.o3t -.152 J e-· 15t - .528 Je- 5t . 

dw/dt= -2.67 J e- u3t +.02 Je-· 15t +2.64 J e- St • 

Z= -.173 J e-S.93t+Je- ·15t+ .l03 Je- St -.93 J. 
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The motion, including acceleration, is moderate. 

CASE 7. Up gust-sharp. w1=J(1- e- 5t ). 

Iu = .153 Je- 5t , 

110 = - J(1+3.62 e- 5t ), 

Iuo = .153 J, 

Iwo= -4.628 J , 
'1£= - .197 J e-3.03t + .044 J e-·1St + .153 J e-St, 

w=4.634 J e-3.93t _ .006 J e-.1St - J (1 + 3.628 r·t). 

dw/dt= -1 .2 J e- s.93t + 18.2 Je- .t, 

Z= - 1.18 J e-a.93t +.04 J e-.1St + .73 J e- 5t+Al J-Jt. 

The acceleration dw/dt has a maximum when t =5/11 when it is 
1.44 J. This is somewhat serious if J is 10 foot-seconds. 

We may now calculate roughly the moment F necessary to pro­
duce the constraint. 

F= -.174(w+wJ + 150<1t. 

The last term is effective only when the machine encounters rotat-
ing air and will be neglected here. 

CASE 1. F = .l1 J (e-·15t_e -·2t). 

CASE 2. F=J(.009 e-a.93t +.005 e-· 15t - .014 e- ·2t) . 

CASE 4. F= J (.009 e- 3•D3t + .030 e-·J5t _ .039 e- t ) . 

CASE 5. F=J(.06 e- 3.g3t + .0012 e-·151 -.061 2 e- t). 

CASE 6. F = J (-.119 e- 3.93t + .0266 1'-· J"t+.0924 1'-51) . 

CA E 7. F= .811 J (-1'-3.93t+e-SI) . 

SUMMARY. 

I have indicated the general method, based on the theory of small 
oscillations, whereby the equations of motion of a stable aeroplane, 
whether free or constrained to fly without pitch, whether in teady 
or gusty air, may be completely integrated in such form that, after 
a certam amount of preliminary calculation, the effects upon the 
motion of a large number of different gust may be determined with 
relative ease. So far as I am aware, no actual method of integration 
nor any quantitative results of such an integration has previously been 
published with the exception of the descriptive popular lecture of 
Glazebrook cited above. I have carried through the actual deter­
mination of the effects of gusts in the following cases: 

Head-on gusts rising from 0 to J feet per second with various de-
grees of sharpness. 

Up gust of the same type. 
Rotary gusts of the same type. 
Rear gusts and down gust are included by merely changing the 

sign of J. For convenience, it has been assumed that the machine 
is in still air except for the gustiness; u a matter of fact gusts are 
usually superposed upon a general steady wind of other than zero 

l 
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average velocity; b~t the condition~ of flight in.still air a.nd in steady 
air are nearly IdentlCal, the only difference beillg that ill the equa­
tions of motion the resistance derivatives are calculated from the 
relative wind, whereas V is the actual velocity over the ground. 

It has been found that a stable machine, WIth controls untouched, 
running into a head gust of various sharpness and of total intensity 
J foo t-second will swoop up, with some oscillation of no serious char­
acter, to a new level about 3.5 J feet higher than its previous level. 
The constrained machine will rise without oscillation to a new level 
only J feet, or a trifle less, higher than before. The path in a ver­
tical plane is indicated in the diagrams ill'awn for me by Mr. T. H. 
Huff. The accellerations arising ill the motion are not serious for 
either the machine or the pilot. It has been found further that a 
rotary gust may have consIderable effect-though in the absence of 
data as to the intensity and regularity of rotation in the air no definite 
results can be formulated . Furthermore we find that up gusts 
operate chiefly in lifting the machine, whether free or constramed, 
with the gust. The path in space is O"iven in the diagram. There is 
here in the case of sharp gusts a consi~erable momentary acceleration 
in the vertical which may reach a magnitude of about 1.5 J foot­
seconds.2 'l'his would not seriously stress the machine, which is 
designed to stand accelerations of 6 g to 8 g in maneuvering, but 
owing to its sudden and unexpected appearance this acceleration 
might incommode the pilot-it is indeed the familiar phenomenon of a 
"bump." 

It follows, therefore, that the introduction of the constraint , 
whether by .~yroscopic or other means, serves only to eliminate the 
natural oscillation in pitch and to diminish, in the case of the head 
or rear gusts only, the final change of level. As a rear gust of 20 
foot-seconds is found to drop the uncontrolled machine by more than 
80 feet in 15 seconds, flight at low altitudes is more da~erous in the 
unconstrained than in the constrained machine. .tiowever , the 
elapsed time is sufficiently great to enable the pilot to check the dip 
by a suitable movement of his elevator. 

To offset any advantages derived from the constraint, we find that 
this l articular machine, when constrained, becomes unstable at a 
spee between 47 and 51 mile-hours, whereas the free machine remains 
stable down to a peed between 45 and 47 mile-hours. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 
Boston, Mass., October 7,1915. 
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