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IN TWO PARTS 

P RIODIC STRESSES IN GYROSCO Ie BODIES, 
WITH APPLICATIONS TO AIR SCREWS* 

By A. F . ZAHM 

Part I.- THE GYROSCOPIC PARTICLE 
Part n.- THE GYROSCOPIC THREE-DIMENS ONAL BODY 

*Adaptcd from n noto In the Aerbl Ago Weekly , September 2;;,1916, 
lmd an arLiclo in 'l'ho Journal of the Jfranklin Institute, February, 1917 
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REPO T No. 19 
PART 1. 

THE GYROSCOPIC P ARTI.CLE. 
By A. F . ZAHM. 

INTRODUCTION. 

The usual gyroscopic formul~ apply only to a body having kinetic 
symmetry about its axis of rotation, and hence offering a steady 
resista.nce to steady precession or nutation. To treat the case of 
unsteady gyroscopIC resistance, we may :find in turn the periodic 
stress in any precessing particle, or regular plane group of particles; 
then in any three-dimensional rigid body, whether or not possessing 
kinetic symmetry. 

Particle in a rigid precessing body.-To find the rhythmic stresses 
in n. particle of a rigid gyroscope, first assume this steadily rotating 
and precessing without transln.tion, and let w, fl, be the angular 
speeds of rotation and precession. Also assume the centroid at the 
origin of x, y, Z, as in fig. 1; and let the reference axes X, Y, Z, be 
respectively the rotation axis, the nutation axis, theprecession axis; 
n.nd cn.U by like names the reference planes normal to these axes. 
Then any pn.rticle distant y from the nutation plane has, parn.llel 
to the rotation axis, the linear speed - yQ= -rDcosa, and the linear 
n.ccelera.tion rwDsina = z:uD, r being the distance of the pn.rticle from 
the rotation axis, and zits linen.r, a its angular distance from the 
precession pln.ne.l 

About the axes of precession and nutn.tion, therefore, the moments 
of n. particle of mass m n.re - myzwD, mz2wD, and have the r esultant 
mr

2

wrlsina n.bout an n.xis perpendicular to r n.nd the n.xis of rotation. 
For a group of three or four particles symmetrically spn.ced about 

the axis of rotation, the resultn.nt gyroscopio moment is easily seen, 
from this expression, to be constant. In general, the gyroscopic 
torque is constn.nt for any particle group having kineti-o symmetry 
about the rotation axis, or whose fundamental 2 ellipsoid is a surface 
of revolution about that axis. For such symmetry J:-myz = zero, and 

- the constant value of the torque is 2:m~;2wD= fwD, where f = 2:mz2 • 

If, now, motion of translation be added to the above specified 
conditions it will not alter the values found for the gyroscopic mo­
ments, as may be inferred from the principle of the independence of 

J Those nrc (amiliar equations in elomentary mechanics. 
, The (undnmeuLnl ellipsoid is the polar reciprocal o( the momental ellipsoid referred to tho center of 

mnss and is a kind o! space picturo o( the moment o( inertia. In lact, tho radius of inertia (or nny line throu~h the center o( the (undamental ellipsoid is tho segment cut oU this lino hy the pcrpondlcular tnn. gent plnno. 
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the motions of transbtion and rotation. Also, as is well known, 
neither linear nor angular acceleration produces any gyroscopic 
effect. 

If nutation, as well as precession, be assumed, the ensning gyro­
!!copic effects can be inferred from analogy to the case already treated. 

nlustrations.-Figure 1 shows graphically for one revolution the 
above values of the linear velocity and acceleration of a particle in 
a gyroscope. The graphs, drawn upon a cylinder are both sine 
curves but with a phase difference of one quadrant; that is, the accel­
ern.tion of the particle is lVeatcst when its speed alon~ the cylinder 
is least, and Vice versa. .dence, referring to the X direction only, 
it appears that every particle of a precessing gyroscore performs 
simple harmonic motion across its instantaneous plane 0 rotation . 

P.".p.cli."~ R.r,~.,.I .. .1,." .f .. 
Gj, •• c.pic ~./ocifj . f • PQot'i;cl. In 

.... "'ol"'" 
r'I'/~ 

Pw_p-.,.· •. R..",.. .... I.II ... • , 

GJ~-r:. Ace.I#roli." .1 ... P.,Jir/c. '"' 

Figure 2 shows graphically for one revolution the foregoing value 
of the total gyroscopic moment of a particle, as also its rectangular 
components. 

Figure 3 shows graphically, for several groups of particles S'ym­
metncally placed about the axis of rotation, both the component 
moments of each particle about the axes of precession and nutation, 
and the added particle moments for each group. The curves illus­
trate, what was seen analytically, that the component gyroscopic 
moments of each individual particle of the group are represented by 
sine square curves for the nutation axis, sine-cosine CJIves for the 
precession axis; whereas the summation of the moments ahout these 
axes, of all the particles, is zero or constant for each group of par­
ticles except the binary one, for which the summation is variable 
about both axes. The two-particle group, or a uniform material 
line joining the particles shown, has the resultant moment "1;mrwQsina, 
whose extreme values are zero and IwQ, I being the moment of inertia 
of the material aggregate about its center, i. e., 1= "'Zmr. 
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Application to propelZers.- From the foregoing analysis it appears, 
using the same notation, that rigid and steadily precessing one­
dimensional 1 propellers, and approximately also propellers with 
straigbt narrow blades, are subject to tho following laws : 

1. ~very blade is uro-ed to simple harmonic motion, of the same 
period as that of the shaft, across the instantaneous plane of rota­
tion, and hence sustains a reversal of gyroscopic stress twice each 
revolution . 

2. Every blade sustains a fluctuating gyroscopic moment whose 
ma~nitude at the hub is '1:.m1.2wQsina, which at quadrant intervals in 
eacn revolution has the successive vttlues IwQ, zero, I wQ, zero. 

3. The aggreg te gyroscopic moment transmitted to the shaft by 
a two-blade propeller is variable and at all instants equal to twice 
that of one blade. 

4. The aggregate gyroscopic moment transmitted to the shaft by 
a steady running multiblade propeller is constant and at every instant 
equals the geometric sum of the varying moments of the individual 
blades. For example, calling the maXImum gyroscopic torque of 
one blade of a propeller unity, the constant torque of a three-blade 
screw is 1.5 ; of It four-blade screw 2.0; of an n-blacle screw n/2. 

Particle in an elastic precessing body.-All ordinary gyroscopes are 
practically rigid and in their ultimate parts are subJcct to the gyro­
scopic effects heretofore delineated. But propellers, more especially 
nonmetal ones, POSSP..8S considerable flexibility. Their blades con­
sequently yield t o the gyroscopic force so as t o shift the cardinal 
pomts of acceleration and velocity shown in figure 1. Also the 
vibrations of flexible blades are cumulative under the pulsating 
stresses, until the damping factors-air pressure and internal vis­
cosity-of the blade limit its rhythmic excursions . The damping 
due to internal viscosity is sometimes great enough to raise the 
temperature of the propeller considerably, especially at or near tho 
hub. No method of analysis is available to give an accurate estimate 
of the straining effects in elastic blades. But it is well enough known 
how fatigue induced by rapidly fluctuating and especially rapidly 
alternatincr 2 stresses shortens the life of the material. 

It can be shown by elementary mechanics that the period of 
vibration of each par ticle of a rotating propeller blade, due to cen­
trifu&al force alone, is equal to the period of rotation, whatever the 
radial distance. S This property favors cumulative vibrations when 
the disturbing forces have the same period as the propeller. The 
o-yroscopic force in a blade has been shown to have such a period. 
~he varying air pressure on the blade has also that period in many 
instances; for example, when the air flow toward the screw is oblique 
to the axis, or when the air speed of approach is greater at one pa.rt 
of a blade r evolution than another. For this reason propener blades 
are sometimes designed to have under fiber stress alone a free 
vibrational frequency about 50 per cent greater than the frequency 
of rotation. 

1 A onc-dimensional propeller may be dofined as n propeller composed of infinitely narrow blades sym­
metrically mdiating from a point on tho axis of rotation. The blades will hero be assumed straight. 

, Sinco tho gyroscopic stresses alternate, tho blade stresses also may alternato when tho air forco slackens 
as at low throttle . 

• Sinco tho radiJll 6CCCleration of any particle is rw', the consequen t frequency of vibration is-
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PART 2. 

TIlE GYROSCOPIC THREE-DIMENSIONAL BODY. 
By A. F. ZARM. 

Theory of the equivalent mass.-From the gyroscopic theory of a 
particle follows that of a body. In analyzing the motIOn of any given 
rigid body it is always possible, and sometimes more convement, to 
cmploy in place of the actual body a kinetic equivalent; that is, a 
m ss distribution which would, under the given system of forces, 
have the same translation and rotation as the actual body. For 
cxample, suppose the given body to be specified by mass .ill and 
princlpal moments of inertia A, B, 0, at the centroid and choose for 
equivalent body the point-mass distribution shown in figure 4, and 
defined by the followmg equations in whicn a, b, c, are distances from 
the origin of the equal point-masses M/6. 

b
2 + c2

=3A/ Mj 
~:! b: : ~~ ~ ----------------------(1) 

Then, since the right members are given, the massless arms a, b, c, 
unel hence the required space distributions are fully determined, pro­
viding the arms be real. 

To show that a, b, c, are always real, note from equation (1) that 

a
2 =2~lO-A+B), so that a can not be imaginary unless .A. be 

~rcater than O+B. Now if m be any particle at x, y , z, of any rigid 
body. 

Hence, a2=2~[ (O-A+B)= 1Xm;t2, which is always positive, i. e., 
a is always real. Similarly band c are always real. Writ~ 
:: mx2 = JIxl

2 gives a = ± .J3xl ; similarly b = ± .J3x1; c = ± .J3z
11 wh ere XI' YI' Xl are the radii of inertia referred to the principal planes. 

In the most general case of rotation about three axes, each particle 
of the six-point equiValent mass exerts a gyroscopic torque whose 
magnitude and direction may be found by the method employed 
for n. single gyrosoopic particle. The component torques so found 
cnn be compounded in the usual way to obtain the resultant torque. 
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A six-point equivalent mass has been Hsed here as a convenience; 
other distributions comprising fewer or more particles may obviously 
be employed. 

Examplcs .-As illustrll.tion, suppose the model to represent a 
gyroscope rotatinO' steadily about two axes only, say X and Z, its 
centroid being eit'her stationary or in motion . Then the mnsscs :1t 
a, a, taken together obviously exert no resultant moment, for they 
have no gyroscopic acceleration, and any acceleration they may have 
from their translatory motion is, in magnitude and direction, the same 
for both. From this it follows that such a rigid body has the same 
gyroscopic torque whethe its mass be all in the plu.ne of robtion 
Y Z or not-that is, whether a be zero or of any finite magnitude. 
Hence the gyroscopic torques nbout Y and Z, of any rigid solid rotat­
ing about X and Z may he derived from the treatment of a point mass 
distribution in the Y Z plane, say, four equal particles spaced as 
shown in figure 1, at h, h, c, c. 

It has been proved above that a single particlo of a gyroscope in 
steady rotation and precession has about the nutation axis a torque 
~roportional to the sme squnre of its angubr distance from that axis . 
Four equal particles symmetrica.lly placed about the rotation axis 
have, therefore, about the nut tion axis a resultant torque which is 
constant and equal to twice the maximum torque of one particle. 
Hence any mass having kineLic symmetry about the rotation axis, 
since it is the gyroscopic equivalent of a four-particle mass, has a 
constant torque equal to twice the maximum of one such particle. 
This generalization can, of course, be derived algebraically from the 
above-mentioned sine square hw. 

Summa1y-The foregoing treatment of the mass equivalent of a 
rigid body may be summ:-mzod as follows: 

Every rigid body has a mass equivalent whose motion under given 
forces is the same as that of the body itself. In particular, any rigid 
body has as mass equivalent six equal particles suitably placed on its 
principal centroidal axes and invariably connected by massless bonds. 

A sIX-particle mass equivalent reduces to foUT particles for a plane 
distribution; two for a rectilinear. The arms of the six-particle mass 
equivalent of any rigid body equal, respectively, its radii of inertia 
referred to the reference planes, multiplied by v'3. 

The gyroscopic torque about its centroid of any rio'id body is 
unaffected by its linear or angular acceleration or by the fuear speed 
of its centroid. 

At any instant the gyroscopic torque of a rigid body is the resultant 
of the torql.).es of its equivalent mass particles .1 

Application to an air screw.-Figure 4 shows the equivalent mass, 
derived from e)...-perimental data, for a standard Curtiss two-blade 
propeller, whose blades are notably deep and broad. From this 
:figure we can judge the comparative gyroscopic value of the distribu­
tion of the propeller mass in each of the three axial directions, since 
this value varies as the square of the arm lengths, a, h, c, and as the 
products in pairs of the an~ul:1r velocities, wz, W lI , w., about those 
arms. In fact the ratios of the three maximum gyroscopic torques of 
the pairs of point masses are as c2wz wz: h2W:z;W,, : a2wlIUJz' In practice 
the angular velocities m:1y have the values 150, 0.5, 0.5 radians per 

I As is well known, tho glroscopiC torquo of any particlo equals its angular momentum times its d&­
vlstion, or tho rate of angular ch:mge of Its pl:mo of rotation. 
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second, thus making said torque ratios c2wxwz/b2wxwlI = 65, and 
~2w:rwz/a2wr/wz=23100 . The resulta.nt of the three component torques 
IS a t most, therefore, only vI + (1/65)2 + (1/23100)2 times the major 
one-that is, about one-eightieth of 1 per cent o-reater. The gyro­
scopic value of such a propeller, so runnmg, may therefore with great 
accuracy be equated to tliat of a pair of simple particles. 

z 

o 

----------~--~~~------_____ z 

v 

Q 

OoncZusion.-From the foregoing treatment it follows that all 
modem air screws obey the laws found for phne groups of particles. 
In pn.rtieubr the two-bladers exert on the shaft a rhythmic gyroscopic 
torque; the multibladers a steady one; bot!}. easily calculable for any 
given conditions of motion and mass distribution. 
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