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IN TWO PARTS
PERIODIC STRESSES IN GYROSCOPIC BODIES,
WITH APPLICATIONS TO AIR SCREWS* |
By A. F. ZAHM |
Part I.—THE GYROSCOPIC PARTICLE
Part II—THE GYROSCOPIC THREE-DIMENSIONAL BODY
*Adapted from a note in the Aerial Age Weekly, September 23, 1916,
and an article in The Journal of the Franklin Institute, February, 1917
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.- REPORT No. 19

PART 1.

THE GYROSCOPIC PARTICLE.
By A. F. Zagnu.

INTRODUCTION.

The usual gyroscopic formule apply only to a body having kinetic
symmetry about its axis of rotation, and hence offering a steady
resistance to steady precession or nutation. To treat the case of
unsteady gyroscopic resistance, we may find in turn the periodic
stress in any precessing particle, or regular plane group of particles;
then in any three-dimensional rigid body, W}l):ether or not possessing
kinetic symmetry.

Particle in a rigid precessing body.—To find the rhythmic stresses
in a particle of a rigid gyroscope, first assume this steadily rotating
and precessing without translation, and let w, Q, be the angular
speeds of rotation and precession. Also assume the centroid at the
origin of z, ¥, z, as in fig. 1; and let the reference axes X, Y, Z, be
respectively the rotation axis, the nutation axis, the precession axis;
and call by like names the roference planes normalpto these axes.
Then any particle distant 9 from the nutation plane has, parallel
to the rotation axis, the linear speed —yQ= —7rQcosa, and the linoar
acceleration roQsina =zwQ, 7 being the distance of the particle from
the rotation axis, and z its linear, « its angular distance from the
precession plane.!

About the axes of precession and nutation, therefore, the moments
of a particle of mass m are —myzeQ, mZwQ, and have the resultant
mr*wQsine about an axis perpendicular to » and the axis of rotation.

J For a group of three or four particles symmetrically spaced about
the axis of rotation, the resultant gyroscopic moment is easily seen,
from this expression, to be constant. In general, the gyroscopic
torque is constant for any particle group having kinetic Symmetry
about the rotation axis, or whose fundamental ? éllipsoid is a surface
of revolution about that axis. For such symmetry Zmyz=zero, and

- the constant value of the torque is Zmz2wQ= IwQ, whero 7 =Zmz*.

1 These are familiar equations in elementary mechanics.

2 The fundamental ellipsoid is the polar reciprocal of the momental ellipsoid referred to the center of
mass and is a kind of space picture of the moment of inertia. In fact, the radius of inertia for any line
thrczunlh the center of the fundamental ellipsoid is the segment cut off this line by the perpendicular tan-
gent plane.
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the motions of translation and rotation. Also, as is well known,
nfc%ither linear nor angular acceleration produces any gyroscopic
efieot.

If nutation, as well as precession, be assumed, the ensuing gyro-
scopic effects can be inferred from analogy to the case already treated.

Hllustrations.—Figure 1 shows graphically for one revolution the
above values of the linear velocity and acceleration of a particle in
a gyroscope. The graphs, drawn upon a cylinder, are both sine
curves but with a phase difierence of one quadrant; that is, the accel-
eration of the particle is greatest when its speed along the cylinder
is least, and vice versa. erence, referring to the X direction only,
it appears that every particle of a precessing gyroscope performs
simple harmonic motion across its instantaneous plane of rotation.

L2
tar
Perspective Representation of Purspectiva Reprasentation of
G/rueo/u'a Vclxif_y of & Particle m Gyrescepio Acceleration of a Parlicle m.

Figs

Figure 2 shows graphically for one revolution the foregoing value
of the total gyroscopic moment of a particle, as also its rectangular
components.

Figure 3 shows graphically, for several groups of particles sym-
metrically placed about the axis of rotation, both the component
moments of each particle about the axes of precession and nutation,
and the added particle moments for each group. The curves illus-
trate, what was seen analytically, that the component gyroscopic
moments of each individual particle of the group are represented by
sine square curves for the nutation axis, sine-cosine carves for the
precession axis, whereas the summation of the moments about these
axes, of all the particles, is zero or constant for each group of par-
ticles except the binary one, for which the summation is variable
about both axes. The two-particle group, or a uniform material
line joining the particles shown, has the resultant moment ZmrwQsina,
whose extreme values are zero and Jw@, I being the moment of inertia
of the material aggregate about its center, i. e., /=2Zmr.
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Application to propellers.—FErom the foregoing analysis it appears,
using the same notation, that rigid and steadily precessing one-
dimensional * propellers, and approximately also propellers with
straicht narrow blades, are subject to the following laws:

1. Every blade is urged to simple harmonic motion, of the same
period as that of the shaft, across the instantaneous plane of rota-
tion, and hence sustains a reversal of gyroscopic stress twice each
revolution.

2. Every blade sustains a fluctuating oscopic moment whose
macnitude at the hub is Tmr*wQsina, which at quadrant intervals in
each revolution has the successive values Iw@, zero, JwQ, zero.

3. The aggregate gyroscopic moment transmitted to the shaft by
a two-blade propeller is variable and at all instants equal to twice
that of one blade.

4. The aggregate gyroscopic moment transmitted to the shaft by
a steady running multiblade fpropeller is constant and at every instant
equals the geometric sum of the varying moments of the individual
blades. For example, calling the maximum gyroscopic torque of
one blade of a propeller unity, the constant torque of a three-blade
serew is 1.5; of a four-blade screw 2.0; of an n—’tﬁade serew n/2.

Particle in an elastic precessing body.—All ordinary gyroscopes are
practically rigid and in their ultimate parts are subject to the gyro-
scopic effects heretofore delineated. But ﬁropellers, more especially
nonmetal ones, possess considerable flexibility. Their blades con-
sequently yield to the gyroscopic force so as to shift the cardinal
points of acceleration and velocity shown in figure 1. Also the
vibrations of flexible blades are cumulative under the pulsating
stresses, until the damping factors—air pressure and internal vis-
cosity—of the blade limit its rhythmic excursions. The damping
due to internal viscosity is sometimes great enough to raise the
temperature of the propeller considerably, especially at or near the
hub. No method of analysis is available to give an accurate estimate
of the straining effects inelastic blades. But it is well enough known
how fatigue induced by rapidly fluctuating and especially rapidly
alternating ? stresses shortens the life of the material.

It can be shown by elementary mechanics that the period of
vibration of each particle of a rotating propeller blade, due to cen-
trifugal force alone, is equal to the period of rotation, whatever the
radial distance.® This property favors cumulative vibrations when
the disturbing forces have the same period as the propeller. The
gyroscopic force in a blade has been shown to have such a period.
The varying air pressure on the blade has also that period in many
instances; for example, when the air flow toward the screw is oblique
to the axis, or when the air speed of approach is greater at one part
of a blade revolution than another. For this reason propeller blades
are sometimes designed to have under fiber stress alone a free
vibrational frequency about 50 per cent greater than the frequency
of rotation.

1 A one-dimensional propeller may be defined as a propeller composed of infinitely narrow blades sym-
metrically radiating from & point on the axis of rotation. The blades will here be assumed straight.

2 Since the gyroscopic stresses alternate, the blade stresses also may alternate when the air force slackens
as at low throttle. e .

s Sinco the radial acceleration of any particle is 7«2, the consequent frequency of vibration is—

1 o W
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PART 2.

THE GYROSCOPIC THREE-DIMENSIONAL BODY.
By A. F. Zanu.

Theory f[f the equivalent mass.—From the gyroscopic theory of a
particle follows that of a body. In analyzing the motion of any given
rigid body it is always possible, and sometimes more convenient, to
cmploy in glzxce of the actual body a kinetic equivalent; that is, a
mass distribution which would, under the given system of forces,
have the same translation and rotation as the actual body. For
cxample, suppose the given body to be specified by mass M and
principal moments of inertia A, B3, 0, at the centroid and choose for
cquivalent body the point-mass distribution shown in figure 4, and
defined by the following equations in which a, b, ¢, are distances from
the origin of the equal point-masses Mye.

b+ = 3A/Ml
@+c2=38/ M
@ +5=30) M)
Then, since the right members are given, the massless arms @, bye,

and hence the required space distributions are fully determined, pro-
viding the arms be real.

S AR L TR

To show that a, b, ¢, are always real, note from equation (1) that
a? =%(0—A +B), so that @ can not be imaginary unless A be

greater than C'+B. Now if m be any particle at z, y, 2, of any rigid
body.

A=Zm (y*+22) .

Beim @ banis e Lo LE(2)

CO=Zm (& +y*)
Hence, a’=-2%[ (C-A4+B) =—37°m%*, which is always positive, i. e.,
a is always real. Similarly b and ¢ are always real. Writing
~ma? = Mz? gives @ = ++/3z,; similarly b = ++/82,; ¢ = +4/32,
where z,, ¥, z, are the radii of inertia referred to the principal planes.

In the most general case of rotation about three axes, each particle
of the six-point equivalent mass exerts a gyroscopic torque whose
magnitude and direction may be found by the method employed
for a single gyroscopic particle. The component torques so found
can be compounded in the usual way to obtain the resultant torque.
: 387
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A six-point equivalent mass has been used here as a convenience;
other distributions comprising fewer or more particles may obviously
be employed.

Ezamples—As illustration, suppose the model to represent a
gyroscope rotating steadily about two axes only, say X and Z, its
centroid being either stationary or in motion. Then the masses at
a, a, taken together obyviously exert no resultant moment, for they
have no gyroscopic acceleration, and any acceleration they may have
from their translatory motion is, in magnitude and direction, the same
for both. From this it follows that such a rigid body has the same
g-mscopic torque whether its mass be all in the plane of rotation

Z or not—that is, whether @ be zero or of any finite magnitude.
Hence the gyroscopic torques about Y and Z, of any rigid solid rotat-
ing about X and Z may be derived from the treatment of a point mass
distribution in the YyZ plane, say, four equal particles spaced as
shown in figure 1, at b, b, ¢, c.

It has been proved above that a single particle of & gyroscope in
steady rotation and precession has about the nutation axis a torque

roportional to the sine square of its angular distance from that axis.

our equal particles symmetrically placed about the rotation axis
have, therefore, about the nutation axis a resultant torque which is
constant and equal to twice the maximum torque of one particle.
Hence any mass having kinetic symmetry about the rotation axis,
since it is the gyroscopic equivalent of a four-particle mass, has a
constant torque equal to twice the maximum of one such particle.
This generalization can, of course, be derived algebraically from the
above-mentioned sine square law.

Summary.—The foregoing treatment of the mass equivalent of a
rigid body may be summarized as follows:

Every rigid body has a mass equivalent whose motion under given
forces is the same as that of the body itself. In particular, any rigid
body has as mass equivalent six equal particles suitably placed on its
principal centroidal axes and invariably connected by massless bonds.

A six-particle mass equivalent reduces to four particles for a plane
distribution; two for a rectilinear. The arms of the six-particle mass
equivalent of any rigid body equal, respectively, its radii of inertia
referred to the reference planes, multiplied by +/3,

The gyroscopic torque about its centroid of any rigid body is
unaffected by its linear or angular acceleration or by the Tinear speed
of its centroid.

At any instant the gyroscopic torque of a rigid body is the resultant
of the torques of its equivalent mass particles.

Application to an air screw.—Figure 4 shows the equivalent mass,
derived from experimental data, for a standard Curtiss two-blade
propeller, whose blades are notably deep and broad. From this
figure we can judge the comparative gyroscopic value of the distribu-
tion of the propeller mass in each of the three axial directions, since
this value varies as the square of the arm lengths, a, b, ¢, and as the
products in pairs of the angular velocities, w,, w,, w,, about those
arms. In fact the ratios of the three maximum gyroscopic torques of
the pairs of point masses are as cw,w,’ b%w,w,: G*ww,. In practice
the angular velocities may have the values 150, 0.5, 0.5 radians per

1 As is well known, the gyroscopic torque of any particle equals its angular momentum times its de-
viation, or the rate of angular change of its plane of rotation.
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second, thus making said torque ratios Cwgw,/b*w,w, =65, and
Cuw,w,[a*w,w, =23100. The resultant of the three component torques
is at most, therefore, only T+ (1/65)*+(1/23100)* times the major
one—that is, about one-eightieth of 1 per cent greater. The gyro-
scopic value of such a propeller, so running, may therefore with great
accuracy be equated to that of & pair of simplé particles.

Z

Conclusion.—From the foregoing treatment it follows that all
modern air screws obey the laws found for plane groups of particles.
In particular the two-bladers exert on the shaft a rhythmic gyroscopic
torque; the multibladers a steady one; both casily calculable for any
given conditions of motion and mass distribution.,
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