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By L. PEANDTL.

AERONAUTICS

PREFACE.

I have been requested by the-United States National Advisory Committee for Aeronautic
to prepare for the reports of the committee a detailed treatise on the present condition of thosa

-.—
.-

applications of hydrodynamic which lead to the cakulation of the forces acting on airphme
wings and airship bodies. I have acceded to the request of the Nat.ionrdAdvisory Committee
all the more wiIlingly because the theories in question have at this time reached a certain con-
.clusion where it is worth while to show in a comprehensive manner the leading ideas and the
results of these theories and to indicate what contlrmation the theoretical remdtahave received
by tests.

The report WN give in a rather brief Part I an introduction to hydrodynamics which is
—

&signed to give those who have ,not yet been actively concerned with this soienca such a grasp
of the theoretical underlying principles that they can follow the subsequent developments.
In Part II follow then separate discussions of the diflerent questions to be considered, in which

.

the theory of aerofoik claims the greatest portion of the space. The last part is devoted to
the application of the aerofoiI theory to screw propellers.

.-

At the express wish of the National “Advisory Committee for Aeronautic I have used the
.-

same symbols in my formuk ●% in my papers written in German. These are already for the
.-.

most part known by readers of the ‘Technia&e J3erichte. A table giving the most important
. --

quautitk is at the end of the report. A short reference list of the Literature on the subject ~
—.

and also a table of contents me added. . --
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FUNDAMENTAL CONCEPTS AM) TEE MOST IMPORTANT THEOREMS.

1. Ml actuaI fluids show internal friction (riscosity), yet the fortes due to viscosity, with
the dimensions and velocities ordinarily occurring in practice, are so very smalI in comparison
tith the forces due ta inertia, for water as well as for air, that we seem justitled$ as a tist ap-
proximation, in entirely neglecting V%cosity. S@e the consideration of viscosity in the
mathematical treatment of the problem introduces difh.ilties which ha-re so far been overcome
only in a few,specially simple cases, we are forced to neglect entirely internal friction unless we
wish to do without the mathematical treatment.

‘We must now ask how far this is allowable for actual fluids, and’ how far not. A closer
examination show~ us that for the interior of the fluid we can immediately apply our knowl-
edge of the motion of a nonviscous fluid, but that care must be takeh in considering the layers
of the fluid in the immeti”ate neighborhood of solid bodies. Friction between fluid, and solid
body ne-rer comes into cQtideration in the Mds of application to be treated here, because it
is Wablkhed by reliable experiments that fluids like -water and air never slide on the surface
of the body; what happens is, thi finrd fluid layer immediately in cent act with the body is
attached to it (ii at rest relative to it), and all the friction of fluids with solid bodies is therefore”
an internal friction of the fluid. Theory and experiment agree in indicat&m that the transition
from the velocity of the body to that of the stream in such a case takes place in a thin layer of
the fluid, which is so much the thinner, the k the viscosity. In this layer, which we call the
boundary layer, the forces due to viscosity are of the same order of magnitude as the forces due
to inertia, as maybe seen without difficulty.1 It is therefore important to prove that, however
small the viscosity is, there me always in a boundary layer on the surface of the body forwi
due to viscosity (reckoned per unit volume) -which are of the samo order of ma=guitudeas those
due @ inertia. Closer investigation concerning this shows that under certain co~ditiona there
may occur a reversal of flow in the boundary layer, and as a consequence a stopping of the fluid
in the Iayer -whichis set in rotation”by the viscous forces, so that, further on, the whole flow is
changed owing to the formation of vortices. The analysis of the pheriomena which lead to the --
formation of vorticw shows that it takes place where the fluid experiences fi retardation of flow
along the body. The retardation in some cases must reach a certain finite amount so that a
reverse flow arises. Such retardation of flow occurs regularly in the r&r of blunt bodies; there-
fore vortices are formed there very soon after the flow begins, and consequently the results
which are ftihed by the theory of nonviscous flow can not be applied. On the other hand,
in the rear of very tapering bodies the retardations are often so small that thereis no noticeable
formation of vortices. The principal successful results of hydrodynamics apply to this case.
Site it is these tapering bock -which offer specially amalI resistance and which, therefore,
have found special consideration in aeronautics under simik applications, the theory can be
made useful exactly for those bodies which are of most t&ihnical interest.

1From We consfdue.tton one can mI&futethe approximate tblckness of the bcunde.rg layw fcr each spedd case.
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For the considerations -whichfollow we obtain from what has gone before the result that
in the interior of the fluid its viscosity, if it is small, has no essential influence, but that for
layers of the fluid in immediata contact with solid bodies exceptions to the laws of a nonviscous
fluid must be allowable. We shall try to formulate these exceptions so as to be, as far as possi-
ble, in agreement with the facte of experiment.

2. A further remark must be made concerning the effect of the compressibility ~f the
fluid upon the character of the flow in the wise of the motion of solid bodies in the fluid. All
actual fluids!-are compressible. In order to compress w volume of air by 1 per cent, a pressure -
of about one one-hundredth of an atmosphere is needed. In the case of water, ta produco an
equal change in volume, a pressure of 200 atmospheres is required; the difference therefore is
very great. W~th water it is nearly always allowable to neglect the changes in volume arising
from the pressure differences due to the motions, and therefore to treat it as absolutely incom-
pressible. J3ut also in the case of motions in air we can ignore the corppressibility so long as
the pressure dHerences caused by the motion are suiliciently small Consideration of compressi-
bility in the mathematical treatment of flow phenomena introduces such great difficulties that
we will quietly neglect volume changes of seved per cent, and in the calcrdations air will be
looked upon as incompressible. A compression of 3 per cent, for instance, occurs in front of a
body which is being moved with a velocity of about 80 m./sec, It is seen, then, that it appears
allowable to neglect the compressibility in the ordinary applications to technical aeronautic.
Only with the bladw of<the air screw do essentially greater velocities occur, and in this case the
influence of the compressibility is to be expected and has already been obs~ed. The motion
of a body with great velocity has been investigated up h. the present, onIy aIong generaI lines.
It appears that if the velocity of motion exceeds that of sound for the fluid, the phenomena are
ohanged entirely, but that up close ta this velocity the flow is approximatdy of the samo char-
acter as in an incompressible fluid.

3. We shall concern ourselves in what follows only with a “nonviscous and incompressible
fluid, about which we have learned that it til furnish an approximation sufficient for our
applications, with the reservations made. Su& g fluid .is also called “the ideal huid,”

What are the properties of-such-an ideal fluid ? I do not corisiderit-here my task to de~elop”
and to prove all of them, since the theorems of olassioal hydrodynamics are contained in all
textbooks on the subject and may be studied there. I propose to state in what follows, for
the benefit of those. readers who have not yet studied hydrodynamics, the most important ,
principles and theorems which will be needed for further developments, in such a manner that
these developments may be grasped, 1 ask these readem, therefore, simply to believe the
theorems which I shalI state until they have thi3time to study the subject in some i%x}book
on hydrodynamics.

The principal method of description of problems in hydrodynamics consists in expresk.ingin
forndas as functions of space and time the velocity of flow, given by its three rectangular com-
ponents, u, v, w, and in addition the fluid pressure p. The condition of flow is evidently com-
pletely known if u, v, w, and p are given as functions of z, y, z, and t, since then u., v, w, and p
can be calculated for any arbitrarily selected point and for every instant of time. The direc-
tion of flow is defined by the ratios of u, v, and w;. the magnitude. of the velocity is ~u~+VI+ WS.
The “streamlines” will be obtained if Iin= are drawn which coincide with the direction of
flow at aH points where they touch, which can be accomplished mathematically by an inte-
gration. If the flow described by the, formulas is to he that caused by a definite body, then
at those points in space, which at any instant form the surface of the body,, the components of
the fluid velocity normal to this surface must coincide with the corresponding components
of the velocity of the body. In this way the condition is expressed that neither does the fluid
penetrati into the bady nor is there “any gap betweeri it and the fluid, If the body is at rest
in a stream, the normal components of the velocity at its surface must be zero; that is, the flow
must be tangential to the surface, which in this case therefore is formed of stream lincs,
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4. IKIa stationmy flow-that is, in a flow which does not change with the time, in w~ch .
then every new fluid particle, when it replaces another particle in front of it, assumes its velocity,
both in magnitude and in direction and aIso the same pressure-there is, for the fluid particles
lying on the same stream Iine, a very remarkable relation between the magnitude of the velocity,
designated here by V, and the pressure, the so-calIed BernouiUi equation— -—.

p+; P=const. (1)

(p is the density of the fluid, i. e., the mass of a unit vohune). This relation is at once appli-
cable to the case of a body moving uniformly and in a straight line in a fluid at rest, for we are
a~waysat liberty to use for our discussions any referenoe system having a uniform motion in a
straight line. If we malie the -relocity of the reference system ooincide with that of the body,
then the body is at rest with reference to it, and the flow around it is stationary. If now V
is the velocity of the body relative to the stationary air, the latter will have in the new refer-
ence system the velocity V upon the body (a man on an airplane in ~~ht makes observations
in terms of such a reference system, and feels the motion of fight as “wind”).

.

The flow of incident &r is divided at a blunt body, as showy in figure 1. At the point A
the flow comes completely to rest, and then is again set in motion in opposite directions, tan-
gential tg the surface of the body. We learn from equation
(1) that at such a point, which -weshall cdl a “rest-point,”

. ..-

t.hepressure must be greater by $ p than in the undisturbed ~-~’

fluid. We shall calI the magnitu~e of this pressure, of which /
we shall make frequent use, the ‘tdynamical pressure, ” and
shall designate it by q. An open end of a tube facing the
stream produces a rest point of a SirniIarkind, and there arh
in the interior of the tube, as very careful experiments have *<
shown, the exact dynamical pressure, so that this principle
can be used for the measurement of the velocity, and is in ~-

fact much used. The dynamical pr-ure is also wdl suited
FIG. l.-~W 8Mund a bhmt holy.

to express the laws of-air re&t&ce. It is known that this resistance is proportional to

the square of the velocity and to the density of the medium; but g=$ ~; so the law of air

resistance may SISObe -pressed by the formula

T=c-. F.q

*“ -_.-

(2) 1 ‘

where F’ is the area of the surface and c is a pure number. With this mode of expression it
appears very clearly that the force called the “drag” is ecpud to surface times pressure cMfer-
ence (the formula has the same form as the one for the piston force in a steam engine). This
mode of stating the relation has been introduced in Germany and Austria and has proved uae-
fuI. The air-resistance coei%cients then become twice as kirge as the “ abso~ute” coeilicients
previously used.

Since ~ cm not beeome Iess than.zmo, an inmease of pressure greater than q can not, by
equation (1), occur. For diminution of pressure, however, no definite limit can be set. In
the case of flow past conv~ surfaces marked increases of veIocity of flow occur and in connection
with them diminutions of pressure which frequently amount to 3q and more.
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5. A series of typicaI properties of motion of nonviscous fluids maybe deduced in a useful
manner from the foIlowing theorem, which is due to Imd Kelvin. Before the theorem itself

—

is stated, two concepts must be defined. 1. The circulation: Consider the line integral of the
velocity J V cos (T’_,ds). &, which is fod -actiy Likethe line integral of a force, which is
called “the work of the force. ” The amount of this line int.&gral,taken over a pati which

. .

returna on itself is called the circulation of the flow.
..—

2. The fluid Line: By this is meant a line
which is always formed of the same fluid particks, which therefore shares in the motion of the —
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fluid. The theorem of Lord Kelvin is: In ~ nonviscous fluid the circulation along every fluid
line remains unchanged as time goes on. But the following must be added:

—.

(1) The case may arise that a fluid line fi int~ected by a solid .I.xxlymoving in the fluid.
If this occurs, the theorem ceases to apply. As an example I mention the case in which one
pushes a flat plate into a fluid at rwt, and then by means of the plate. exerts a pressure on the
fluid. By this a circulation ariseswhich wiJlremain if afterwrds the plate is quickly withdrawn
in its own plane. See figure 2.

(2) In order that the theorem m~y apply, we must exclude mass forces of such a character
that work is furnished by them along a path which returns on itself, Such forces do not ordi-
narily arise and need not be taken into acco~t Eere, where we are concerned regularly only
with gravity.

(3) The fluid must he homogeneous, i. e., of the same ,density at ‘all points. We can easily
see that in the case of noqunifQ~ density circulation can arise of itself in the course of timo
if we think of the natural ascent of heated air in “th@@st of cold air. The circulation inercasos
continuously along a line which passes upward in the warrri”air and ~eturns dotinw&3 in tho .
cold air.

Frequently the case arise? that the fl~d &tthe @girming -is at rest or in absolutely uniform
motion, so that the circulation for every imaginable closed line in the fluid is zero, Our theorcm !
then says that for every closed line that em ariqe from one of the originally closed hnes tho
circulation remains zero, in which we must make exception, as mentioned above, of those lines
which are cut by bodies. If the line integnd along every closed line is zero, the line integral
for an open curve from a defite point O to an arbitrary point P is independent of the selection

*
FIG. 2.—Production ofclr-

culation by introduc-
tion and withdrawal of
ant plak

particular kind of

of the fine alo~g which the integral ‘is-taken (if this--werenot so, and if the
integrals along two lines from .0 to ~ were different, it is evident that thu
line k~egral along the-closed curve OPO would not be zero, which contra-
dicts our premise). The line integral along the line OP”depends, therefore,
since we will consider once for W_~h~point Oas Rfixed one, only on the coordi-
nates of the point P, or; expressed differently, it is a function of these coor-
dinates. From analogy with corresponding consideration in the case of
fields of force, this line integral is called the “velocity potential,” and the
motion in which such a,potential exists is called a ‘(potential motion.” &

;olkms immediatcJy from the meaning of line integrals, the component of the velocity ill a
definite direction is the derivative of the potential in this direction. If the line-okrncnt, is
perpendicular to the resultant velocity, the.in~rease of the potential equals zero, i. e., the sur-
faces of constant potential are everywhere normal to the velocity of flow. The velocity itself
is called the gradient of the potential. The velocity components u, v, w are connect.cclwith tho
potential @ by the following equations:.

ac)l afp a~
‘-z’ v ‘~’ ‘=% (3)

The fact that the flow takes place withcmt any change in volume is expressed by st~ting th~t
as much flows outmf every element of volume as fl@s in. This leads to the equation

In the case of potential flow -wetherefore have

(4)

(4a)

as the condition for flow Vvithoui..change in volume. @l functions @ (z, y, z, f), which satisfy
this last equation, represent possible forms of flow: This representation of a flow is specially
convenient for calculations, since by it the en$ire flow is given by means of the ono function $.
The most valuable property of the representatioris is, though, that the sum of two, or of as
many as one desires, functions Q, each of which satides equation (4a), also satisfiesthis equation,
and therefore represents a possib~etype of flow (“”superposition of flows”).
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6. bother concept can be derived from the circtiation, which is convenient for mmy con-
siderations, viz, that of rotation. The cumponent of the rotation with reference to any axis
is obtained if the cirmdation is taken around an elementw-y s’urface of unit area in a plane
perpendicuhr to the @s. lkpressed more exactly, such a rotation component is the ratio of
the circulation aro~d the edge of any such infinitesind surface .to the area of the surface. The
total rotation is a vector and is obtained from the rotation components for three mutually per-
pmdicular axes. In the case that the fluid rotates like a rigid body,’ the rotation thus defined
“comes out as twice the angdar velocity of the rigid body. II we take a rect.anguhr system of
axes and consider the rotatio~ with reference to the separate axes, we find that the rotation can
also be expressed as the geometrical sum of the anggar velocitiwwith reference to the three axes.

The stateinent that in the case of a potentiaI motion the circulation is zero for every ,
closed fluid Iine can now be expres~ by saying the rotation in it is ahvaya zero. The theorem
that the circulation, if it is zero, remains zero under the conditions mentioned, can also now
be expressed by saying that, if these conditions are satisfied in a fluid in which there is no
rotation, rotation cm never arise. An irrotatiomd fluid motion, therefore, ahvaye remains
irrotational. In tiis, however, the foIlowing exceptions are to be noted: If the fluid is divided
ow@ to bodies being” present in it, the theorem under consideration does not app~y to the
fluid layer in which the divided flow reunites, not only in the case of figure 2 but also in the
case of stationary phenomena as in figure 3}
since in this case a closed fluid line drawn in
front of the body can not be transformed igto
a fiuid Iine that intersects the region where the
fluid streams come togethe~. Figure 3 shows
four successive shapes of such a fluid Iine. This
region is, besides, filled with fluid particles which
have come very close to the body. we are
therefore led to the conclusion from the stand-
point of a fluid with very small but not entirely
vanishing viscosity that the appearance of vor- ?’Ic. 3.=uccedve IKIsiffons of a fluid Em fn Cow fioond a solid

body.
tices at the points of reunion of the flow m the
rear of the body does not contradict the laws of hydrodynamics. we three components of the
rotation & ~,~ are cc~pressedas folkms by means of the velocity components u, u, m

(5;

If the velooity components are derived from a potential, as shown in equation (2), the rotation
F)’@ m?components, according to equation (5) vanish identically, since ~w=mz

7. Very remarkable theorems hold for the rotation, -whichwere discovered by v. Hehnholtz
and stated in his famous work on vortex motions. Concerning the g~metrical properties of the
rotation the following must be said:

At. alI points of the fluid -whererotation exists the direction of the remltant rotation axes
can be indicated, and lines can also be drawn -whose directions coincide everywhere with these
axes, just as the stream lines are drawn so as to cokcide with the directions of the velocity.
These lines will be called, following Hehnholtz, “vortex lines.” The vort~k tiCS ~?ugh @
points of a smalI closed curve form a tube called a “vortex. tube.” It is an tie~ate con-
sequence of the geometrical idea of rotation as deduced above that through the entire extent
of a vortex tube its strength-i. e.} the circulation amud the ~un&my of the tube-is constant.
It is seen, in fact., that on geometrical grounds the sp~e &shibution of rotation quite inde-
pendently of the speciaI properties of the velocity field from which it is deduced is of the same
nature as the space distribution of the velocities in an incompressible fluid. Chsequenfly a
vortex tube, just like a stream line in an incompressible fluid, can not end anywhere in the
interior of the fluid; and the strength of the vortex, exactly like the quantity of fluid passkg
per second through the tube of stream lines, has at one and the same instant. the same value
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throughout the vortex tube. ‘ If Lord Kelwin’s theorem is now applied to the closcd fluid line
which forms the edge of a small element of the surface of a vortex tube, the circulation along it
is zero, since the surface irdosed is parallel to the rotation axis at that point. Since the circula-
tion can not-change with the time, it follows that the element of surface at”all later timw will
also be part of the surface of a vortex tube. If we picture the entire bounding surface of a vortex
tube as made up of such elementary surfaces, it is etidegt that, since as the motion continues
this relation remains unchanged, the particles of the fluid which at any one time have formed w
the boundary of a vortex tube wil continue to form ifs boundary. From the consideration
of the circulation aIong a closed line inclosing the vortex tube, we see that this circulation—i. e.,
the strength of our vortex tube—has the same value at all times. Thus we have obtained the
theorems of Helmholtz, which now can be expressed as follows, calling the contenb of a vortex
tube a “vortex fihwnent”: “The partic~es of a fluid which at any instant belong to a vortex
filament always remain in it; the strength of a vortex filament throughout its extent and for
all time has the same value. ” From this folIows, among other things, that if a portion of tho
Nament is stretched, say, to double its length, and thereby its cross section made one-haIf as
great, then the rotation is doubled, because the strength of the vortex, the product of the rota-
tion and the cross section, must remain the same. We arrive, therefore, at the result that the
vector expressing the rotation is changed in magnitude and direction exactly as the dishmco
between two neighboring particles on the axis of the fihment is changed.

8. From the way the strengtha of vortices have been defined it follows for a spitco filled
with any arbitrary vortex fiIaments, as a consequence of a known theorem of Stukcs, that
the circulation aroimd any closed line is equal to the algebraic sum of the vortex strengths
of all the filaments which cross a surface ,having the closed line as its boundary. If this closed
line is in tiny way continuously changed so that. filaments me thereby cut, then evidently tho
circdation is changed according to the extent of th.Qstrengtha of the vortices which are cut.
Conversely we may conclude from the circumstance that the circulation around a closed line
(which naturally can not be a fluid line) is changed by a defiite amount by a certain displace-
ment, that by the displacement vortex strength of. this amount will be cut, or expressed differ-
&ntly, that the surface passed over by the closed line in its displacement is traversed by vortex
filaments whose strengths add up algebraically to the amount of the change in the circulation.

The theorems concerning vortex motion are speciaIly important because in many cases
it is easier to make a statement as to the shape of the vortex filaments than as to the shape of
the stream lines, and because there is a mode of calculation by means of which tho velocity
at any point of the space may be determined from a knowledge of the distribution of the rota-
tion. This formuIa, so important for us, must now be discussed. If r is the strength of a
thin vortex filament and & an element of its medial line, and if, further, r is the distance from
the vortex element to a point P at which the velocity is tub~ calculated, fishy if a is the angle
between & and ~, then the amount of the velocity due to the vortex eIement is

~v=r ds sin a. .—
4UP ‘

(6)

the direction of this contribution to the velocity is perpendicular to the plane of da and r. The

total velocity at the point P is obtained if the contributions qf all the vorbx elementi present
in the space an added. The law for this calculation agrew then exactly with that of Bioi-
Savart, by the help of which the magnetic fieId”due to an electric current is calculated, VcW-
te~ fiaments correspond in it to the electric currents, and the vector of the velocity to the
vector of the magnetic field.

~ an example we may take an infinitely long straight vortex filament, The contributions
to the veIocity at a point ~ are all in the same direction, and the total velocity can be deter-
mined by a simple integration of equation (6). Therefore this velocity is

+m
r

J
ds.sins

‘-G @ ‘“”””
-m

-...
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As seen by figure 4, s= h ctg a, and by differentiation, de= h
–~&a. Further r=-” ~Sln a’

so that
r

r.
‘=4rh–J

sin ada= –4~[co& a]: – r2rh
o

(68)
-.

This resudt could be deduced in a simpkr manner from the concept of circulation if we were
to use the theorem, already proved, that the circulation for any closed line coincides with

.--—

the vorte~ strength of the illaments which are incIosed by it. The circulation for every closed
line which goes once. around a single flament must therefore coincide with its strength. If - _
the velocity at a point of a circde of radius h around our straight flament equals v then this

circulation equals ‘~path times vebcity” = 2di .v, whence immediately follows, v=~h. The ——.

more exact investigation of this velocity field shows that for every point outside the filament
(and the formula applies only to such points) the rotation is zero, so that in fact we are treat-
ing the case of a velocity distribution in which only along the axis does iatation prevail, at
all other points rotation is nofi present.

For a finite portion of a straight vortex filament the preceding calculation &es the value —
-----

r’
v=4#xls Cq–cos t2J

.
(6b)

This formula may be applied only for a series of portions of vortices %hich together give an
infinite or a clcsed line. The velocity field of a single portion of a flament would reqy.ire
rotation also outside the flament, in the sense that from the end of
the portion of the flament vortex lines spread out in all the space

k

.
.-—

and then alI return together at the beginning_of the portion. In the A r

case of a line that has no ends this external rotation is removed, Q a
since one end alwavs coincides with the bazinnhw of another portion -$’— ‘ds ‘L .—
of equal strength, ~nd rotation is present &Iy w&re it is pre&cated FIG. 4.—VeIw+t@Ield due ta iriflnh -—

in the calculation. rec$mleorYortelx.

!3. If one wishes to represent the flow around solid bodies in a fluid, one can in many cases
proceed by ima5&ng the place of the solid bodies tuken by the fluid, in the interior of which
disturbances of flow (singularities) are introduced, by which the flow is so altered that the
boundaries of the bodies become streanibe surfaces. For such hypothetical constructions
in the interior of the space actually occupied by the body, one can assume, for instance, any.
suitably ielected vorticw, which however, since they are only ima.timy, need not obey the
laws of Helmholtz. As we shaU see later, such ima=gj.nary vortices can be the seat of lifting
forces. Sources and sinks also, i. e., points where fluid continuously appears, or disappears,
offer a useful methad for constructions of this kind. While vortex flaments cm actually
occur in the fluid, such sources and sinks may be assumed only in that part of the space which

“ actually is occupied by the body, since they represent a phenomenon which can not be realized.
A contradiction of the law of the conservation of matter is avoided, however, if here me SSSUmd
to be inside the body both sources and sinks, of equal strengths, so that the fluid produced by
the sources is taken back again by the sinks.

The method of sources ind sinks will be described in greater detail when certain practical -
problems are discussed; but at this point, to make the matter clearer, the distribution of veloci-
ties in the case of a source maybe described. It is very simple, the flow takes place out from.
the source uniformly on ti sides in the direction of the radii. Let us describe around the point
source a concentric spherical surface, then, if the fluid output per second is Q, the velocity at
the SUrfaCeis “ A 1

.—

. —.

(7)
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the velocity therefore. decreases inversely pro~ortional to the square of the distance. The
flow k a potential one, the potentiaI comes out (asline-integnd along the radius) —

Q—-
@= ConSt”– 4TT .: (7a)

If a uniform velocity toward the right of the whole fluid mass is superimposed on this
velocity distribution-while the point source remains stationary-then a flow is obtained
which, at a considerable distance from the source, is in straight lines from left ta right. The
fluid coming out of the source is therefore pressed toward the right (see fig. 5); it Ms, at some
distance from the source, a cylinder whose diameter may be determined easily. If 17.is the
velocity of the uniform flow, the radius r of the cylinder is given by the condition Q-#. TJ.
All that is necessary now is to assume on the axis of the source further to the ri@t a sink of
the same strength as the source for the whole mass Qf fluid from the source to vanish “mthis,
and the flow closes .up behind the sink again exactly as it opened out in front of the source.
In this way we obtain the flow around an elongated body with blunt ends.

10. The special case when in a fluid flow the phenomena in all planes which arc parallel
to a given plane coincide absolutely plays an importafii r61eboth practically and theoretically.

If the. lines. w~:h co~~ect tho. co~.esponding
,, “.;~o~ts ~ we diffe;ent plan~ are perpendicular to

.Z- ‘ .tie~planes, ” and #l the strearn~cs_ ar~ phmc
cwrves”t~hich lie -entirely in one of thogc,@mcs,
we spet& of” a uniplanar flow. The flow ~round
i-sttii-tihose axis is perpendicular tv the direc-

,- tion .of-t~~wind is an example of such a motiou.
The mathematical treatment of piano poton-

,M flow.of @e ideal fluid has been workgd out
~pecially complet~y moie thtin any other prob-
lqm in.~ydrodynamics. ~s ~ duo to the fact

;.: ‘;.tlJqt.~~h the Eelp “of”*?. .~mplex. quqntiti~
““(;+;Y,. .wheie &~, is cfled me .imaghar~

Fm. ti.-supcqmsftkm of uniform flow and that mused by a source.
unit) there can be deduced from every analytic
function a caseof flow of this type which is incom-

pressible and irrotational. Every real function, @ (z, y) and ~ (z, @, which satisfim MUrelation

@+ W =j(z +iy) , (8)

where f is any analytic function, is the potential of such a flow. This can be seen from these
considerations: Let z + iy be put= z, where z is now a ‘(complex number.” Differentiate equa-
tion (8) first with reference to z and then with reference to y, thus giving

da .a~ dfaz_@ __
~+l&-=~z~-&

In these the real parts on the two sides of the equations must be equal and the imaginary
parts also. If@ is-selected as the potential, the velocity components u and v are given by

If now we write the expressions ~+ # (continuity) and ~– 8Y‘v ~ (rotation) fit in t.ern~ of

@ and then of ~, they become
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. 0 J

(10)

It is seen therefore that not only is the motion irrotational (as is self-evident since there ‘is

a potentiaI), but it is tio continuous. The relation &+# =0 besides cotiesponds emct]y

to our equation (4a). Since it is satisfmd also by 11, this can-also-be used as potential.
The function ~, however, has, with reference to the flow deduced by usirg @ as potential, a

special individual meaning. From equation (8) we can easiIy deduce that the lines ~==const.
are paraUel to the velocity; therefore, in other wor&, they m’e streamlines. ti fact if we put.

which ~xpres-sesthe fact- of parallelism. The Iines V= const. are therefore perpendicular to the
lines @= const. If we draw fadies of lines, @= const.. and ~= const. for -@uea of @ and v
which differ from each other by the same smalI amount, it follows from the easily clerked

af .
equation d@+ id~ = -#z +@ that the two bundles form a square network; fmm which fol-

lows that the diagonal curws of the network again form an orthogonal and ~ fact a square
network. This fact can be used practjcal.ly in drawing such families of curves, because an error
in the drawing can be recognized by the eye in the wrong shape of the network of diagonal
curres and so can be improved. With a little practice fairly good accuracy maybe obtained
by simply @ the eye. Naturally there are also mathematical methods for further improv~
ment of such networks of curves. The function ~, which is called the “stream function,”
has another special meaning. If we cunsider two stremdines ~= IT?,and* =w,, the quantity
of fluid which flows between the two strefimdiies in a unit of time in a region of uniplanar flow’
of thickness 1 equals XYz– iP1. In fact if we consider the flow through a pltme perpendicular to
the .l”-axis, this quantity is

‘=Iu’y=l’’~y=P=’’”l”l
The numerical value of the stream function coincides therefore with the quantity of fluid which
flows between the point r, y and the streamline ~= o.

As an example let the function
@+@= A(x+iy)”

be discussed briefly. It is simplest in general to ask &t about the streamline *= o. & is
well known, if a transformation is made from rectanggar coordinates to polar ones r, W,(X-1-@)n
= rn (COSnq +i sin mp). The imaggary part of this expression is ir” sin np. This is b be
put equaI to i~. * = o therefore gives sin np =0, i. e., np= o, T, 2K, ek The streamhes ~= o

are therefore straight lines through the origin of mordinates, which make an angle a= ~ with

each other, the flow is ther~fore the potentiaI flow between two phme walls mak@ the angle
a with each other. The other streamlines satisfy the equation r“ s~ np = const- The velooi-
tiw can be obtained by differentiation; e. g., with reference to z:

.

—
-.

,—-

..— .

—=

. .
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—
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.-..—
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.
-—
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g+ia:=u–jv=.h( z+iy)“-’= A7’F’{CO8 (n-l) $o+i sin (n–l)@} .
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For r= o this expression becomes zero or infinite, according as n is greater or less than 11, i. o.,
according as the angle a is 1sssor greater than 7(= 180°). Figures 6 and 7 give the streamlines

for a=;= 45° and ~ir= 270°, corresponding to n=4 and ~. In the case of figure 7 the vclccity,

as just exphined, becomes infinite at the corner. It would be expected that in the case of
the actual flow some effect due to friction would enter, In fact there are observed at such

corners, at the beginning of the motion, great velocities, and immediately thereafter the for-

<@

“Ill, C& (

FIG. &—Uniplanar flow be-
tween plane walls making
011 8Qgle a=4if with each
other.

mation of vortices, by which the motion is so changed that the velocity
at the corner becomw finite.

It must aIso be noted that with an equation

p+ti=@(z@/) (11)

the w-y plane can be mapped upon the p-g plane, since to every pair
of values x,y a pair of values p,q carmspcmds, to every point of the x-y
phme corresponds a point of the p-g plane, and therefore also ta every
element of a line or to every, curve in the former plane a linear element
and a curve in the lattir plane. The transformation keeps all angles
unchanged, i. e., corresponding lines intersect in both figures at the samo
angle.

By inverting the function q of equation (11) we can write

Z+iy=x (p+ig)

and therefore deduce from equation (8) that

@+ N’=fk(p+iq)lRF’ (p+i.g) (12)

@ and @ are connected therefore with p and g by an equation of the type of equation (8), and
hence, in the p-g plane, are potential and stream functions of a flow, and further of that flow
which arises from the transformation of the @, !Pnetwork in the x-y plane into the p-g plane.

This is a powerful method used to obtain by transformation from a known simplo flow
new types of flow for other given ,boundaries. Applications of this will be given in section 14

11. The discussion of the principles of the hydrodynamics of nonviscous fluids h bc
applied by us may be stopped here. I add but—one coti”dera-
tion, which has reference to a very “useful theorem for obtaining
the forces in fluid motion, namely the so-called “momentum theo-
rem for stationmy motions.”

@“

/’

We have to apply to fluid motion the theorem of general
mechanics, which statw that the rate of change with the time .
of the Iinear momentum is equal to the resultant of all the OX- \
ternal forces. To do this, consider a definite portion of the \

fluid separated from the rest of the fluid by a closed stiace. \
This surface may, in accordance with the spirit of the theorem,
be considered as a “fluid surface,” “1. e.r made up fdWayS of Fm. 7.—UdpI~ fh UOIIDd piano

the same fluid particles. We must now state in a formula the %,m~Yu ~ ‘@c?nO ‘iIth~ch
change of the momentum of the fluid within the surface. -If, as
we shall assume, the flow is stationary, then after i time dt every fluid particle in the interior
will be replaced by another, which has the same velo~ity as had “theformer, On the boundary,
however, owing to its displacement, mass will pass out at the side where the fluid is approaching,
and a corresponding mass will enter on the side away from which the flow takes place. If &S
is the area of an element of surface, and v. the component of the velocity in the direction of
the outward drawn normal at this eluent, then at this point dm=PdS . v. d. If we wish
to derive the component of the “impulse” —ddlned as the time rate of the change of moment-
um—for any direction s, the contribution to it of the element of surface is

(13)
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With this formula we have made the tramsiticmfrom the fluid surface to a correspond% solid
“control surface.”

The extermd forces are compounded of the fluid pressures on the control surface and the
forces vvbich are exercised on the fluid by any did bodies which may be inside of the control
surface. If we call the latter P, we obtin the equation

—

ZP.=JJ- p . cm (m, 8) . dS +/l fp=vsm (14) .. -

Forthes component of the momentum theorem. Thti surface integrak axe to be taken over the
entire.closed control surface. The impulse integmd can be Iimited to the ed side, if for every
velocity VSon that side the vehoity vS’ is known with which the same particle arrives at the
approach aide. Then in equation (13) dJ is to be replaced by

dJ–dJ’= (I?S-V.’) $=&V. (%-u.’) (13a)
,

The applications given in Part II _miIlfurnish ilhstrationa of the theorem. .. . .

,
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PART II.

APPLICATIONS.

A. DISTRIBUTIONOF PRESSUREON AIRSHIPBODIES.

12. The. tit application of hydrodynamical theory to be tested by experiment in the
Gtittingen Laboratory referred to the distribution of pressure over the surface of modds of
airships. We can construct mathematically the flow for my number of varjet.ies of sectional
forms of bodiei -of revolution of this kind if we place tdong an axis parallel with the direction
of the air current any suitable distribution of sourc,es and sinks, taking care that the total
strength of the sourcw and sinks are the same. According to the intensity of the uniform
motion which is superimposed upon the flow from the sources, wo obtain from tha same system
of sour&a and sinks bodies of different thicknesses. .Jn order to obtain the smoothest possiblo

shapes, the sources and sinks are generally distributed con tin-
uoualy along the axis, although single-point sources are a]lowablc.

In ‘the case of con@motisly distributed sources an~lsinks the
o method of procedure is briefly this: The rdm.issas of the single

/ /“”
sourcw are denoted by $, the intensity of the source per unit of
length by~($), in which positive values of j(:) denote sources, nega-
tive values sinks. The condition that makes the stream from tlm
sources self-contained is expressed by the equation

Fm. R-Ex@Jation of mwnticies mod
in caIcuIatlon of strcarnllrre shs~es.

.ihwksae: Positfon of Mum.
‘-s

yw=o.
t~~: Mdty Ofsome perudt

Iengt&i. e-f(t)-
By si&ply adding the potentials due to the single elementary

sources ~(f) dg, i. e., in b cw W fitegra@, th~~ tie total flOWdue to the SOUrCeS@ll b~
given by the potential defined by the following formula

J
i

j(w (15)
Ql(%y)= -+. — r

o

in which r=- ~~, ‘id y k“ WA Perpendicular distance from tie axis of the Point for
which the potential is calculated, z is the abscissa along the axis measured from the samo
orig~ as $. (See & 8.) There must be added to this potential that duc to the uniform flow
with the velocity V, viz, @z= Vz. The total potential is then@= 0, + @JZ;rtn[ltlmrefore th~ veloc-

g =Y+ ~
M Ml

ity parrtllel to the axis k u= and the sidesvise (radial) velocity is W= — = —aY ay

.

D

In order to calculate the streamlines one .coukl pefiorm m ~.tegration of t~~e~ic’ctio~~
given by u and w These lines are obtained-more c~iimetiently, in tm case also, by means of
the stream function. (See sec. 10.) In the case of-flow symmetrical with reference to tie tuxis,
such as is here diacusmd, one can take S.Sstream function the quantity of fluid flowing inside
the circl~ drawn through the point x, y in a plane perpendicular to the axis and having its centw

172
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.—, ,
on the axis. The amount of fluid deliverwl by the sources which Iie up the stream is purposely
deducted from this. It is not difficult to see that all points of the X--l- plane, through whose
parallel circles the same amount of fluid flows per second-after deduction of the suurces-
must lie on one and the same streamline, for evidently there is no flow, either in or out, through
the surface formed by the- streamhnes drawn through the points of any one parallel circle
(since the flow is along the surface); therefore the quantity of fluid flowing within this surface is
constant, so far as it is not increased by the sources. From the meaning of the stream function,
to determine which the velocity must be integrated over a surface, it follows that the stream
function of a %OWdue to two or more causes is at every point the sum of the stream fuqctions
of the several partial flows. For a continuous distribution of sources therefore the stream
function v is obtained by an integration exactly as vms the potential According to our
premise the surface of the body is designated simply by the value #= o. The formulas are
obtained as follows:

—

The flow from a &ple source through a circle passing through a point lying to the right of
the source is, writing r’= -JP3

. -—-,:
--

.-.=-= -.
—.

---
..— .———

:_.._.

.

From this, in accordance with what has been said, the quantity Q must be subtracted, so that ----

(16}

For points lying to the left of the source we obtain from the integral
.- —

which coincides with formula (16); this holds, then, everywhere.
For the assumed continuous &triJmtion of sources we obtain

(17)
-—

in which r = ~~ To this stream function of the sources must now be added that due
to the parallel flow **= T’& (18)

---.--- .

Putting the total stresm function*,+ V, = 1?e~ual to zero, tive9 the equation of the s&face
of the body-around which the flovr tali~ “pla~e. P~ttjng *, + ~~= (7gives ‘my other streamline.
It is evident that, with @e same distribution of sources, a whoIe group

-~

of body surface-scan be obt aihed, depending upon the choice of the ratio
of the intensity of the sources to the strength of the paraliel flow.

The determination is best made pr~ctically by graphical methods, for
instance, by laying off the curves z = const. in n system of coordinates
consisting of y and -~, which can be obtained at once from a calculation
by tables for the stream function ~,. If we ‘inte~ct these curves by

parabokis corrmponding to me equatim —V = l“a—yz—I!?,we obtain at
once a contour (for C’= 0), or some external or internal streadine (for
C>o or d< o). The parabola maybe drawn upon transparent paper, and
then by displacing the parabola aIong the ~ axis we can at once obtain
from fiamre9 the values of y corresponding to qny z.

h this manner a former colleague of mine, who unfortunately fell
beginning of the war, Dr. G. Fubrmann, calculated the shapes of bodiw corresponding to a
series of source distributions, and on the one hand he determined the distribution of pressure

—

over the surface of these bodies by means of the 13ernouilliequation (see sec. 4) —.

-_—

-—

.. .=
——.. .-...-—....—

.i -
— --_--—

-.-———
. . .

Fm. ‘2-TPI ctnwes are fur
dI1’ierent values of r-
Co?ut. -—

immediately at the

P=%+”;{ ~– (~’+@}’
—

(19)
----

b .

1The vebelties u and v may k obtained from the potenti~ but also from the sbmm func+lon $; fcz u- 1 ?kEmdc.
.-

G L9y -& .%
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and on the other he constructed models according to these drawings and measured the pressure
distribution over them when placed in a wind tunnel. The agreement-was altogether surpris-
ingly good, and this success gave us the stimulus to seek further relations between theoretical
hydronamica and practical aeronautics. The work of Fuhrmann was publiahcd in Jahr-b.
der Motorluftschifl-Studien ‘G”kaellsch,,Volume V, 1911–12 (Springer, Berlin), and contains
a large number of illustrations I?our of the models investigated are shown here. The upper
halves of figures 10..to 13 show the stread.ineafor a refer@c~ system at r@ with refenmce to
the undisturbed air, the lower halves the streamlines for a reference system ‘atta’chcd to the
body. The distribution of the source intensities is indicated on the axis. The. pressure dis-
tributions are shown in figures 14-to 17. The calculated pressure distributions are indicated
by the lines which are drawn full, the individual observed pressures by tiny circles.:

It is seen that the agreement is very complete; at the rear end, however, were appears a
characteristic deviation in all cases, since the theoretical pres+mredistribution reaches the full
dynamical pressure at the point where the flow reunites again, while actually this rise in pres-
sure, owing to the influence of the layer of air retarded by friction, remains close ta the surface.

As is well known there is no resistance for the theoretical flow in a nonviscous fluid. The
actual drag consists of two parts, one resulting from all the gormal forcw (pressure9) acting
on the surface of the body, the other from all the tangential forces (friction). The pressure
resistance, which in this case can be obtained by integration of the pressure distribution over
the surface of the body, arises in the main from the deviation mentioned. at the rear end, and
is, as is known, very small. Fuhrmann’s calculations gave for these resistances a caefflcient,
with reference tathe volume of the body, as shown in the following table:* -.-,, .-,. s---- ~, .,...-: “:: .-= -.:-=:.—v. .-- .

ModeI.......................................................

--i

I. II- m m
.--, . . - “ . .

I k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
I

~o170 - i 012s 0.0181 a0146,

This coeficien’t is obtained from the foIlowing formula:

Drag w, =kl W g

where U designates the vohnne and g the dynamical pressure.
The total resistance (drag) was obtained for the four .modela by means of the balance;

the difference betw~en the two quantities then furnishes”the frictional resistance. The total
drag coefficients were:s ..... ... .---.. . .. . . -- ... .:-..-.-”. ,....” .: .-3- . ...—. . . .. .. . .

I
Mdd.......... ....... ...... ........ . ................... ““I; ‘“II “III

~k............ .......... ...........7... ............ - .~~.~ l= @i .:
. .-

With greater values of T7Lthan were then available for us, the rwistanco coefficients
become nearly 30 per cent smaller. For purposes of comparison with other cases it may be
mentioned that the ‘(maximum section’) was about 2/5 of U*. The surface was about seven -
times U21$;from which can be deduced that the total resistance of the good modda was not
greater than the friction of a plane surface having the same, area. The theoretical theorem
that in the ideal ffqid the resistance is zero receivw in this a brilliant con.6rmation by experiment,

B. THEORYOF LllT.

13, The phenomena which give rise to the lift of an aerofoil maybe studied in the simplest
manner in the case of uniphu.m motion. (See sec. 10.’) Such a uniplanar flow would be ex-
pected obviously in the case that the wing vv~ udimi$ed at the sides, therefore wa: ~’in$=@tely .. ,-—. -. ... ... ..

~Inthe wind tunnel the was a end prwnre drop in tho dh’ectlen ofi= length. In order todfmhmte the eflect cJthls, the prewm?s toward
the forehad to be dhnh!shd somewhat and thma aft eomewhat increased

J After deluction of the horizontal buoyant y,
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long,” and throughout exhibited the same profile and tho same angle of rLthwk. In this case all
the sections will be alike in all respects and each one can be considered m a phmc of symmetry,
The infinitely long wing plays an important pa~t therefore in the considerations of the thmrct.ical
student. It is not possible to realize it in free air, md marked deviations from the infinitely
long wing are shown even with very long wings, e. g., those having an aspect ratio of 1:10, In
laboratories, however, the infinitely long wing, or unip~anar flow, may be secured with good
tipproximation, if a wing having a constant profile is placed between plane walls in a wind
tunnel, the walls running the full height of the air stream. In this case the wing must extend
close to the walls; there must-be no gap through which a sensible amount of riircan flow. We will

FIG. lS.—Ikdnction of the Kutta formulq
nnlphmm flow”e.ro,g.rdMlnite wing.

no-w-discuss&ch experiments, and first we shall stato tho funda-
mental theory of uniplanar flow.

Since, M Wplained in seotion 4, in a previously undisturbed
flyid flow, the sum .of the static and dynamic pressures is col)-

stant: p + ~ P = corist., in order to pro”duce lift, for &ich” the

pressure below the “surface must be increased and that above
diminished, such arrangements must be made as vdl diminish ●

the velocity below the wing and increase it above. ‘Tim other
method of producing such pressure differences; namely, by
causing a vortex region above the surface placed liko a Lite
oblique to the wind, by which a suction is produced, clom not

‘come under discussionin practical aeronautics owing to the great res@trmceit sets up. Lanchcstcr
has already called attention to the fact that this lifting current around the wing arisa if Lhereis
superimposed upon a simple potential flow a circdating flow which on the prcssuro sido runs
agaimt the fin cwent and on the suction side with it. Kuttu (1902) rmd Joukowski (1900)
proved, independently of each other, the theorem that the lift for the length 1of the wing is

.4 ==pr’ n (20)

in which r ia the circulation of the superimposed flow. It maybe concluded from this formula
that in a ste.ridyfluid flow lift is not possible unless there is motion giving rise to a circulation.
In uniplanar flow in an ideal fluid this lift, dom not entail
any drag.

The proof of the Kutta-Joukowski forfiula is generally
deduced by applying the momentum theorem to a circular
cylinder of large radius whose axis is the medial line of the
wing. The circulatory motion, which could be obtained
numerically close to the wing only by elaborate mathematical
processes, is reduced at a great distance from the wing to a
motion which agrem exactly with the flow around a rectilinear
vortex filament (see sec. 8), in which, therefore, the single 1:1O.l!I.—L’nIplanar unlkmn Uow around rtr.

particl~ describe concentric circles. The velocity around a cuhr cylinder.

r
—* For an elemerit of surface L Rc?8 (see fig. ”18) tho normalckcle ‘f ‘a&us R ls’ ‘en’ v - 2rR

component of the velocity is V cos 8, the mass flowing through per seeond dm= plR T’ cos 8d&
If we wish to apply the momentum theorem for the vertical components, i. e., thoso pwpm-
dicular to the direotion of V, then this component of the velocity through the element of surface
must be taken, This, obviously, is v cm 19,taken positive if direoted downward; the total
impulse, then, is

J= ~u COS edm=pzR~“u~O”COS’8&.

The integrgl equals ~, and therefore introducing the value of v

J=~pTTL
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Site the resuh.ing impulse ia directed downward (the upward velocity in front of the wing is
changed into a downward one behind the wing), this means that the reaction of the fiuid against
the wing is a lift of the wing upward. The amount of the impulse furnish~, as is seen by re-
ferring to formula (2o), ority half the lift. The other half comes from the pressure differences
on the control surfaces. Siice, for a sufficiently large R, w can always be considered small com-

pared with V, neglecting ~ N, the premne p is gi~en, according to the k ernouilli equation, by

.— _
--

.- -
-=<-—.

-. —.- ._

.
---

A component of this, obtained by multiplying by sin 0, acts vertically on the surface ekrnent
.

lRdfl. The resulting force D is, then,
---—-—-—..+

~= PTR~Tuf: Si312 Ode.
~S integd also equals r, so that-here also

D=~PV~t

its direction is -verticallyup”. The total liit.,then, is

A= J+ D=pTTi ..—-.=.

14. For the more accurate am-dysisof the flow around wings the complex functions (see
sec. 10) have been applied with great success, following the procedure “of Kutt a. Very different
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methods have been used. Here we shall calculate only one specially simple case, in which the
flow will be deduced first around a circular cylinder and then caIculat4 for a wing profile by w
transformation of the circular cylimjer gnd its flow, using complex functions.

The flow-around a circular cylinder has long bem known. If the coordinates in the plane
of the circle are p am~q, and if we write p + @ = t, the potential and stream functions for the
ordinary symmetrical flow around the circular cylinder are given by the very simple formula

It is ea.dy seen by passing to polar coordinates that, for r= a, $,=.0, and that therefore the
circle of radius a is a streamline. Further, for the p axis, #,= o, i. e., this is also a streamline.
The whole flow is that shown in figure 19. .To this flow must be added the circulation fiow
expressed by the formula .

@,+iXl?2= ;;log t 6 (22)

which, as shown in figure 20, is ‘simply a flow in concentric cidea with the velocity #e. The

combination of the two flows, i. e., the flow for the sum of he expressions in equations (21)
and (22), is shin-n in figure 21. It is seen that the rest point is moved down an mnount de.
By a suitable choice of the circulation this can be brought to any desired point.

-——
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We must now discuss the transformation of thk flow to a wing profile. For this purpuse
manifold meani are possible. The simplest is furnished by a transformation according to the
equation

Z=z+iyat+:s

By this the circle of diwneter Al? = 2b in the t plane (as we shall for brevity’s sake call the p, g
plane) is transformed into q straight line A’ B’ of the length 4b along the X tixis, and cuncen-

FIO. 22. FIQ, xl.

Conforrnal transformation of z pkme Into t plane by z-t+-?

.
tric circles around the former become ellipses, the radii ‘become hyperboks. All the ellipses
and hyperbolas have their foci at the ends of the straight line, this forming a confocal system.
Figures 22 and 23 illustrate the transformation. It may be mentioned, in addition, that the
interior of the circle in @re 22 corresponds to a “continuation of the meshwork in figure 23
through the slit A’ B’, whose form agrees with the meshwork as drawn. Any circle through

FIG. 2.f.-lJIuatratfon.g of Jonkomkf mdons.

the pointe AB- is thereby traneforrned into an ar~ of
a circle passed over twice, having an angle subtended
at the center equal to 4@.

Many different results may now be obtained by
means of this mapping, according to the position
which the circle, around which the flow takes place
according to equations (21) and (22), bears to the di-
ameter AB of the circle of figure 22. If the diameter
AB is made to coincide with any obliquo diameter of
the ‘circular section of the cylinder, we obttiin a flow
around an oblique plate whose amgleof attack coin-
cides with the inclination of the line AB. If the di-

} -.

ameter AB is selected somewhat smaller, so that both points lie inside the circle symmetric~ly
on the diameter, the flow around ellipses is obtained. If, however, the diameter All coincides
with a chord of the circle around which the original flow was; which, for example, may lio below
the center, the flow around a curved plate forming an arc of a circle is obtained. By selection
of various points in the interior of the original cjrcle forma of diverse shapes are obtained. !l’he
recognition of the fact that among these forms very beautiful winglike profiles maybe found we
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owe to Joukowski. These are obtained if the point B is selected on the boundary of the original
circle and the point A inside, and somewhat below the diameter through the point B. Figure
24 gives illustrations of such Joukowski profiles.

In order that the flow may be like the actmd one, jn, the cases mentioned the circultition”
must always be so chosen that the rearrest
point coincides with the point B, or, re-
spectively, with the point an the original
circle which lies nearest &is point. In
this case there wiU be, after mapping on
the z plane, a smooth flow away from the
trailing edge, as is observed in practice. It
is therefore seen that the circulation must
be taken greater according as the angle of
attack is greater, which agrees with the ob-
servation that tie Mt increaswswith increas-
@ ~le of attack.

The transformation of the flows shown
in figures 19 to 21 into wing profika gives

—

FIQ. 23.—TnmWrmMm of stmple potenthl flow, Sgnre 19.

illus~at.ions of streamlines =-shown ‘in figures 25 to 27—f@re 25, simple potential flow;
figure 26, circulation flow; figure 27, the actual flow around a wing obtained by superposition
of the two previous flows.

We are, accordingly, by the help of such constructions, in the position of being able to

FUI. 2&-Transhm41cm of circulatory flow, Eguro ZII.

calculate the velocily at erery po~t in the
neighborhood of the wing profile, and with it
the pysare. Ln particular, the distribution
of pressure over the wing itself may be cal-
culated.

My assistant, Dr. A. .Betz, fi the year
1914 worked out the pressure distribution for
a Joukowski wing profile, for a seri~ of angles
of attack, and then in a wind tunrd meas-
ured the pressure distribution on a“ hoIIow
model of such a wing made of sheet metal,
side walls of the height of the tunnel being
introduced so as to secure uniplanar flow

The resuIts of the measurements agreed in a very satkfactory mrutnw with the &lcuIations,
onIy-aa could be wdl explained as due to friction-the actual circulation was always sLightly
ksa than that calculated for the same amgle of attack. If the pressure distributions would
be compared, not for the same angles of
attack, but for the same amount of circu-. ~
lation, the agreement wouId be noticeably “
better. The pressure distributions are
shown in f@res 28 to 30, in WhiChagain
the full curves correspond to the measure ~~
ments and the dashes to the calculated
pressures. Lift and drag for the wing e%
were also obtained by the wind-tunnel bal-
ahce. In order to do this, the middle part
of the fig was isolated from the side parts, ~
which were fastened to the walls of the tun- ~~
nel by carefully dc&gned labyrinths, so that
within a small range it could move without

FIQ. 27.—Trai@mnriUon of euperpo.dtbn of the two ffow~ IIgrue 21.

friction. The resdt of the experiment ia shown in @e 31. The theoretical drag is zero, that
obtained by measurement is very small for that region where the wing is ~’good,” but sensibly
larger for too large and too small angles of attack. The lift is cmrespondingly in agreement

.
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with the theoretical value in the good region, only ev_~@ere smugwhat 1sss. The deviations
of drag as well as of lift are to be explained by the ‘kdluence of the viscosity of the fluid. The
agreement on the whole is as good as can be mpected from a theory which neglects completely
the viscosity,

For the connection between the angle of incidence a and the circulation which results from
the condition discussed above calculations’ give the following &sult for the Iift:

n

(1) ~he Kutta theory gives for the thin plane
a. 0?

&~2 = plate the formula

FIG. 2S.

1

——u— —— —“.

/

I

“/
/

j.
h3. .W.

Prwaum dktrlbution over a Joukovmki wing, dil%rent anglm of
att.sck. F@l lfn~ give results of kind-tunnal twta% daahed
llnaa, Calonlated villuaa.

A = 6t.Tp P sin a (23)
. ...-.

The lift coeflicierit”’”~~~“~ehned”by the equation - ‘.—.
k --1 “

Ce=~ where q=~ PV2

and therefore
C8=2U sin a ‘ (24)

(2) “lTor”the circularly curved plates having an
angle of arc 4Psubtended at the center (see figure 23)
we him$accordhig to Kuthi, if a is the rmgle of
attack of the chord,

c.= 27
sin (a+ S)

Cos p
(25)

which, for small curvatures, becomes 21rsin (a+ B);
this can be expressed by saying that the lift of ti~o
circular~ycurved plate is the same as that of a plane
which touchw the former at Qpoint three-fourths of
the distance around the arc from its leading edge.

For the Joukowski profiles and for others the
forqulag.we less simple. v. Mises showed in 1917
that the increase of C5with the angle of attack, i. e.,~ca.e --
~ #1sgreater for all other profiles than for tho flat

plate, and is the greater the thicker the profile. But
the differences are not marked for the profiles occur-
ring in practice.

The movement of the center of pressure has
also been investigated theoretically. With the
plane plate, in the region of small anghx, it always
lies at one-fourth of the width of the plate; with
circularly curved thin pltites its position for small
angles is given by the following law”:

t tan a
‘o=– Ztana+ tan@ ~26)

in which.t is.the chord of the plate, and ZOis the dis-
tance measured from the center of the plate. The

fact that the movement of the center of pressure in the case of “good” angles of a~tack of the
profiles agrees with theory is proved by the agreem@ of the actual pressure distribution with
that calculated. In the case of .thimplatss a less satisfactory agreement w respecte press~e
distribution is to be expected because with them in practice there is a formation of vortices at
the sharp leading edges, while theoyy must assume a smooth flow .gt this edge.

15. That a circulatory motion is essential for the production of lift of an aerofoil is defi-
nitely established. The question then is how to remncile this fact with the proposition that

.
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the circulation mound a fluid line in a nonviscous fluid remains constant,. If, before the motion
— .

begins, we draw a closed line around the wing, then, so long as everythin& is at rest, the circula-
.=

tion certtiy is zero. Even when the motion begins, it can not change for this line. The ex- ~
planation of why, in spite of this, the wing gains circulation is this: At the fit moment of the

.=

motion there is stiIl no circulation present, the motion takes place approximately according to
.-.. —.-—

&ure 25, there is a flow at high ~elocity aroimd the
trailing edge. (See sec. 10.) This motion can not, how-
ever, continue; there is instantly formed at the trailing
edge a vortex of increasing intensity, which, in accord-
ance with the Hehnholtz theorem that the vortex is
always made up of the same fluid particles, remtiinswith
the”fluid as it passes on. (See fig. 32.) The circulation
around the wing and vortex, taken together, remains
equaI to zero; there remains then around the wing a cir-
culation equal and opposite to’ that of the vortex which
has gone off with the curre& Therefore vortices will
be gi~en off until the circulation arotid the -w@ is of
such a strength as to make the fluid flow off smoothly
from the trailing edge. If by time ahration of the
mgle of attack the condition for smooth flow is dis-
turbed, vortices are again given d untiI the circulation
reaches its new value. These phenomena are com-
pleted in a comparatively short distance, so the fti lift
is developed very quickly.

In the pictures of flow around a wing, e. g., figure 27,
one sees that the air in front of the wing ffows upward
ag~t the reaction of the tit. me co~idwation of
momentum has shown that half of the impulse is due to
the oncoming ascending current. This fact needs some
further explanation. The best answer is that given by
Lanchesterj7who shows that for the production of lift
the air mass at any time below the winE must be given

r

L

I

-
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FIO. 31.-VSIUeS OfIiftand drns MMMmltsof # ~OOkOWki

WIU as obtafned in wfnd-tonnel tAs and hy theory.
—.._

----

an acceleration do&nvmrd. The questio~ he aski ~: What kind of a motion arises if for a short
time ‘the air below the -w@ is accelerated downward, t.h~ the ~ is moved forward a bit

..L=

without pressure, then the air is ,~ain accelerated, and so on? me space distribution of the
accelerations is hewn for the case of a plane plate, infinitely extended at the sides, accelerated

-—.
/0 -–y-—-p--,

/ \ /’/ ‘\\
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‘\\ \ //’~\\\ ,,/

‘\_ /
FIG.3Z—Production of circulation around a wfng due to vortices Iemfng trsfllng

edge.

from rest; the pattern of he accelaa-

tion direction is given in figure 33. It
is seen that above amdbelow the plate
the acceleration is downward, in front
of and behind the plate it is upward
opposite to the acceleration of the
plate, since the air is escaping from
the plate. Manchesterasks now about
the -mlocities which arise from the
original uniform velocity relative to
the plate owing to the fact that” the

---..
. .

----

.— .. .-.

-—
plate, while it gives rise to the accelerations as ShOWR~ f@e 33, gradutiy comes newer the .
air particle considered, pass& by it, and finally again moves forward away from it.. The pic-
ture of the velocities and streamlines which Manchester obttied in this way and reproduced
in his book was, independently of him, calculated exactly by Kutta. It is reproduced- in figiue

-—

34. It is seen that as the result of the upward accderations of the flow away from the wing

.
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there iEan upward velocity in front of the plate, a uniform downward acceleration at the plate
itself due to which the upward velocity is changed into a downward one, and finally behind the
plate a graduaI decrease of the downward velocity ok account of the acceleration upward.

C. THE FINITE WTNG.

16. It has been known for a long tb that the Wpect ratio of an aerofoil had a great effect.
on its properties. One could therefore have e--petted that, on account of the vanishing of
pressure at the aide edges, the intensity of the lift must decrease toward ~he edge, so that its

average value for the same angle of attack must be smaller for small values

w

\/ of the aspect ratio than fo; large ones. But the obeemwd infiuence of aspect
f ! ratios is sepsibly greater than could be exphtined in this way. WC nmit

11 therefore investigate whether an explanation of thisphenomenon can bo found,
F m. W,.—.kccelrratlon if we apply to the finite acrofoil in some proper manner the results which tire

dbgram around en
Inf3nftely lorig flat lmown to hold for uniplanar flow.
ptateeocderat.edat It is easily seen that vortiges in the free fluid must here be taken into
rIgilt rnngIeto its s-m.
k-e. account. For it is certain that circulation is praent’ mound the middle of

the wing, because no. lift is possibl~ without circulation, If a closed line
drawn around the middle of the wing, around which, therefore, there is circulation, iii displnced
sideways over “the end of a wing, i! will certainly no longer show circulation here when it h
beyond the wing. From. the theorem that the cii-cuIation along a closed line only changes
if it cute vortex filaments, and that the amount of the change .of the circulation oquala the
sum of the strengths of the vortex filaments cut (see sec. 8), we must conclude that from each
haIf of a wing vortex filamenk whose strengths add up to ~ must praeced, which are concen-
trated mainly near the ends of the wing. According to.the Helm-
holtz theorem we know further that every vortex produced in the

. . ... . . . .-
.=. -. ,. ----- --

fluid continues to move with the same fluid particles. We may
look upon the velocities produced by. the wing assmall compared
with the tight velocity V, so that as art approximation we may

. .....=! :.

assume that the vortices move away” from the wingbackwards
with the rectilinear velocity V. w it is wished, we can also im-’

--- ”’-” ___

prove the considerations based upon such an assumption if the TIo.34.-Streaml!nH around sn Intlnhely
long aurwd plate.

motion of the vortices of themselves ralative to the airis taken into
account. This will, however, be seen to be unnecessmy for practical applications of the theory.)

In order now to obtain the simplest possible sctie, we shall assume that the lift is uni-
formly distribukd over the wing; then the total circulation will arise only at the ends, and
continue rearwards as free vortices. The velocity field of an titely long wing, as we saw,

was the same at great distances as that of a rectilinear vortex

~rfi’menth’adofthe-” ‘esh”mw;’h:=’

spending statement hokle for the 6nit&wing
for the velocity field around a finite wing, a picture which is

L

somewhat crude, it is true, if we take for it the veIocity distri-
bution due to a vortex fiIament of corresponding shape.

It may be mentioned here that, on account-of there be&~
the same laws for the velocity field of a vortex fil~ent and the
magnetic field of an electric current (see sec. 8), the vcloci~y

~m.Sii.-.iflnlte .wIn&conddared as due to
vortlcea repladng the u@. near a finite wing can also be investigated numerically by cal-

culating the direction and intetity of the magnetic field pro-
duced near an electrical conductor shaped as shown in figure 35 due to an electric~ c~ent .
flowing in it, -

The principlw for the c~ctiation of this velocity field have been stated in section 8; the
total velocity is made Up out Of three parti~ v~otities which me tamed by the three rectilinear
vortex portions. AS is seen without di.fliculty, for the region bitween the vorti~cs the flow is
downward, outside it is upward,

.
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17. This approximation theorem is speci@y convtient if the conditions at great distances
from the wing are treated. With its help we can explain how the weight of an airplane is

..—

transferred to the ground. In order to make the How satisfy the condition that at the ground
-

components of velooity nornd to it are impossible, we apply a concept taken from other
-.

branches of physk and superimpose the condition of M image of the airphme, ‘taking the earth
-—

as the mirror. On account of symmetry, then, aU velocity components nornd to the earth’s
.-

surface will vanish. If we use as our system of coordinates one attached to the airplane, we
have then the case of stationary motion. If we take the X“ axis in the direction of the span
of the wing, the Y axis horizontal in the direction of f3&ht and the Z axis -rerticalIy down,
and if u, v, w are the components of the addition~ velocity due to tie. vortices, then cti

“=

pO the &&turbed press~e and p’ the pres-
sure difference from po, and neglecting the
weight of the air, BernouiUik equation gives us

po+p’+; [u’+(v–n’+d=po+:v’

If this is “qanded and if Uz,~, and Wz are
neglected as being smaIIof a h@er order, there
remains’ the simple equation

p’=p T’v (27)

For the determination of the pressure dis-
tribution on the ground we must now calculate
the value of v. Let us assume the vortices
run off ‘the wing in an exactly horizontal direc-
tion (actuaLly, their path inchws downward
slightly), in whioh case they do not contribute
tom There remains then only the” transverse
vor~ex” of the Iength 1 (e.ilkotive span) and
the circulation I’. We will assume that the
span of the wing is small in comparison with
the distance h of the airplane from the ground.
In that case we can treat the trammrse vortex
as if it ~ero a single vortex element. We. ob-
tain, then-see &ure 36—at a point A, with

‘T-5&a- ‘
b.-

W --
/-- .

~T
vi

R
R’ h

FIG. M.-lipplfc.ation of method of lroages to dIph’i8 flying near the
ground.
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the coordinates Z-red y, a veloci~y perpendicular to the plane AllF’, of-the amount
,-*

l)l=rz~; —

The image of the airplane furnishes an equsJ amount perpendicular to the plane ABF’.
If P k the angle betwikn the plane ABF &d the XY plane, then the actuaI velocity at the

-.

ground, as far as it is due to the transverse vortex, wiUbe the resultant of VImid Wz. It is there

fore v=2v, sin& or, if we write sin a=$~ sin 13=$ (see Q 36)

rlh
‘=2 TP

If we take into account me fact that, according to the Kutta-Joukowski
P 17V 1= A, equations (27) and (28) lead to the relation .-

Xi”
P’ ‘-s

—

(2s)

formula (20}, —

—
(29)

II this is integrated over the whole imiinite ground surface, it is seen that the resultant
—

force due to the pressures on the ground has =actly the amcmnt A. It is thus proved that the
=

*
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pressure distribution due tQ the circulation motion tra~fers to the ground exactly the weigh
of the airphne. The distribution of the pressure, which according to formula (29) k axially
symmetrical with reference to the foot of the vertica] line drawn from the airplane, is shown in

figure 37. ATho pressure maximum is p,= ~a. ~ Its amount, even for low heights of flight, is

very small, since the surface over which the pressure is distributed is very ~arge.
18. Applications of an entirely dtierent tid may be made of the velocity field which belongs

to the vortex of figure 35. For instance, an estimate maybe made as to the.magnitude of the
downward velocity component at any point of the tail surfaces, and in this manner tfic influence
of the wings upon the tail surfaces may be calculated. If .in accordance with the Kut.lu-
Joukowski formula the lift is written A = Pr Vi, in which, taking account of the fact that a

IIm. 37.—lXstr1but1ouof pressure on ground mused by ekpkme flying near It.

portion of the vortices flow .Qffwithin the ends of the wing, ?, can be taken somewhat less than
the actual span b, then at a distance d, behind the wing, the velocity component downward is

1 104+(1+:)+;%=+I+aw=2— ..
2 d

...—

J( )

–~ 2+8
in which a= ~ .9

(30)

If the flight velocity is V, this gives for the inclination of the downward sloping air-current

tan P= $“ We proved this relation in the year 1911 and found an approximate agreement

with observation.
The principle made use of above his been applied with profit tti the calculation of the

influence of one wing of a biplane upon the other wing and has given a method for the calcula-
tion of the properties of a biplane from the properties of a single wing as found by experiments,
The fundamental idea, which is always applied in such calculations, is that, owing to tho vortex
system of one wing, the velocity field near the wing is disturbed, and it is assumed that ti wing “
experiences the same lift as in an undisturbed air stream if it cuts the stretimlincs of. the flow
disturbed by the other wing in the same manner as a monoplane wing cuts the straight stream-
lines of the undisturbed flow. As is easily seen, the wing profile must in general bo slightly
turned and its curvature slightly altered, as is shown in figures 38 and 39, By the rotation of
the wing the direc~ion of the redtant air force acting on it is turned through an equal angle.
If the magnitude of the velocity as welI as its direction is dso changed, this must be expressed
by a corresponding change in the resulttmt air fo~ce.

.
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As an illustration we will treat”briefly the case of a biplane without stagger. The most
important component of the disturbance velocity w is again the vertical one; in the plane of
the mean lift lines of the biplane it is affected only by the pair of -rortices running off the wings,
since the transverse vortex of one wing causes ordy an increase (or decrease) of the ~elocity of
flow at the other TV@. We ‘are concerned here only with the calculation of that downward
disturbance veIocity clue to the vortices frgm the wing not under investigation, since the other
vortex system is present with the monoplane and its ~uence has already been taken into
account in the experiments on a monoplane.

The total velocity due to a portion of a vo@x proceeding to infinity b. one direction, in
the plane perpendicular to the vortex at its end, is, qs maybe deduced easiIy from the formula
in section S, exactly half of the corresponding velocity in the neighborhood of a rectilinear
vortex fiIament exten@~ to infid.y in both directions. This can ah be easily seen from the
‘fact that two vortex flaments, each extend- ,
ing to infinity in only one direction-but I

I
,

oppositely in the two cases—form, if com.- ? ‘
bined, a single filament extending to ir@ity ~.4

I
in both directions. The total velocity ,
caused at the point P by the -rort~x A,

-1

see figure 40, is ~~~ where r= -/~ its
k

vertical component is

r, x
. .

—.-.
‘~=kr T F1~.w . .

The vertical component due to the
vortex B is

r, 1,–x

11’’=G7 .-7-

where r’= ~/(~– Z)S +h:. -

Therefore the vertical component due
to both ~ortices is

‘“w+’=) ‘3”
If we assume that the lift is uniformly

distributed over the effective span l,, which
again we shall take as somewhat less than
the actual span, then, since every element of
the wing must be turned through me angle

p according to the formula tan p=% the

I /

direction of the air force must be turiud
also! which means a negligible change in - FIG.m

the lift, but an increase in the drag of this Intiuenca of one wLngof t bIplrme upon the other; rotation of wLngprofile,

wing which must be taken into account.
alteration of M curvature.

“It is essential then in this calculation that we pass from a condition for a monoplane to
one in which the wing when part of a biplane has the same lift as when considered as a mono-
plane.- The angle of attack for whhfh this condition will arise can be es.lirnated afterwards
from the average of the angles w

19. The contribution of vortex A to the increase of the drag of the upper wing in @re ~0
is evidently

.
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The contribution of vortex B is, by symmetry, the same. In accordance with equation (20),

we can put r- &and thus obtain for the increase of the drag of the upper wing

~.=A&w - - “-” ““ ‘n)

By the symbol IVl, is”meant that it is the drag produced by wing 1 upon wing 2. One can
convince himself easily that the drag “17zlwhich wing 2 producw upon wing 1 his the same
magnitude. Therefore the total increase of drag clue to the fact that two monoplanes which
produce the lifts A, and A, am combined to form a biplane, the two lifts remaining unchanged
(the augles of incidence of course being changed), is ●

(33)

.
in which, as always g= # p V2.)*

Upon the change in the magnitude of the velocity, which in accordance with the approxi-
mation used depends only upon- the disturbance velocity v in the direction of &lIt, onlY the

FIO. 40.-YeIoclty at a point P due to the tip
vortLcee.

transverse vortex of ~he other wing has an influence. - For
any point this i.nflqegce, according to our formula, is given by

(34) ‘

in which r snd # have the same meaning as beforo. TIM
upper wing experiences due to the lower an increase in veloc-
ity, the lower one experiences due to the upper a decrease in
velocity, to which correspond, respectively, an increaso or u
decrease in lift as shown by the usual formuks. If we wish to
keep the lifts unchanged, as required in the treatment given

above, it is necessary h change the a.&les of attack co=espondingly.
The eflective change in the curvature Dof the wing profile wilI, for simplicity’s sake, be

discussed here only for the medial plane of the biplane, ~. q., for z“=~. It is obtained in t~~e

simplest manner by dtierentiating the angle of inclination of the air current disturbed by the

other wing, which is; remembering that tan w= ;’ ‘-

(35)

outside of the vertical plane, owing to the disturbing wing, three vortices contribute to
the magnitude of w. A side vortex contribute, at a point at the height h and the distance y

( 4)in front of the transveme pltine, a velocity v’ perpendicular to r“ of the amount ~~~ 1-r ?

and therefore its share of w is

“,”W’-$)=W’-+O
The transverse vortex contributes ‘ —---

in which the meaning of r“ and r’” may be seen from figure 41. The total w is, accordingly,

S5(U-,-+J ‘ , ... . ...us=2usj+loz 4* f prf
<= . . . ...1 ,=. . . ... . -. —.

1The mutnid action of two Mngs pfnesdetdeby eIdo can el.w be mlsuhted from the conskferations stated above, and rcstdta lma decreaee of
the drag. TMS dwaese is of a ebntler @nd to that which arks tn the theory of a mOM@Oneby an incR3Se hr the SSJW2tratio.

~By cbenga in corveture of the wing & meent thet if the tlor wwe ta be kept etidght aud the curvature char@, the fwcos on the wing would
be dunged exaotlg as they are on the actuaI wfng owing to the change In the flow.-Tr.
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The diffenmtial of this with reference
r –hftl _
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to y, for the value of y=o, is, sinca then r!’ =r and —.

(%)=-a++a” ~
the curvature sought is, then; according to equation (35), .

(36)

CaIcuIations of the preceding nature were made in 1912 by my assistant, A. Betz, so as
to compare experiments with monoplanes and biplanes and to study the influence of difTerent
angles of ahtack and different degrees of stagger of the two wings of a biplane upon each other.
The influence upon the drag was not lnmwn to us at that time, and the calculation was carried
out so as to obtain the changw @ the Iift due to w, to v and to the curvature of the streamlines.
In this connection the change of the lift of a monopkme when flying near the earth’s surface
was aIso deduced, by ctdculat~m the influence of the “mirrored. wing” exactly as was that of
the other wing of a biplane. AII that wu necessary was to change some algebraic signs,
because the mirrored vchig had negative lift. The theory of these
calculations was given by Betz in the Z. 1?.M., 1914, page 253.

The redts of the the&y of Bet.z, from a more modern hB

e

standpoint, such as adopted here, were given in the Tech- 7 ~
nische Berichte, vohune 1, page 103 et seq. There one can
tid the discussion requk$te for the treatment of the most “ ~~”
general case of a biplane having ditferent spans of the two ~“
wings and with any stagger. In the case of great stagger
it appears, for example, that the forward ‘wing is in an ascend-

FI&41.-Curv8ture of Wng-profde 8t
its middle poht due to r&Mies

ing air current caused by the rear wing; the litter is in an causedb~ trimmerse rmd Up rortkee.

intensikl descending current due to the forward wing &d the. vortices flawing off from it.
Corresponding to this, if the angle of attack is unchanged, the Iift of the forward wing is

D-
increased, and that of the rear one weakened; at the same time the ratio ~t experiences a

deorease for the forward wing and a marked increase for the rear one.
For a wing in the n&uhborhood of the grom”d, owing to the influence of v there is a decrease

of lift, and conversely there is ati increase of lift due to the influence of w, provided the angle

of attack is kept cunstant, but as the result an evident decrease in the ratio =*. owing to

this last it is seen -why in the early days of aeronautics many machines could fly only near the
ground and could not rise far from it. Their lo-iv-powered engines were strong enough to omr-
come the diminished drag near the ground but not that in free air. ‘

D. THEORY OF THE MONOPLANE.

20. If -we ~xtend the principles, which up to this point have been applied to the influenc~
of one wing upon another, to the effect upon a single wing of its own vortices, it can be said in
advance ~hat one would expect to find in that case effects similar to those shown in the influence
of one wing of a biplane upon the other, i. e., the existence of lift presupposes a “d=cending
flow in the neighborhood of the wing, owing JO which the angle of attack is made greater and
the drag is increased, both the more so the C1OSWto the middle &e vorticies flowbg off at
the epds are, i. e.,”the smaller the aspect ratio is. One might propose to apply the theory pre-
viously given for biplanes by making in the formulas of this theory the gap ecpd to zero. Apart
from the fact that the formulas developed do not hold for the immediate neighborhood of the.
vortex-producing wing, but must be replaced by more accurate ones, this certainly is not the
proper path to follow, for, in the earIier treatment, we have taken the m@sturbed monoplane
as the object with which other CSSEZSare to be compared and have asked what drag, what change
in angle of attack, etc., are caused by adding a second wing to this monoplane. To proceed
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according to the same method, we must seek for the”tlieory of monoplanes another suitable
object of comparison. As such, the intlnitely long wing will scrre. Where the discussion
previously was about change of rmgle of attack, incretise of drag, etc., we intend now to refer
these to the infinitely long wirtg as a starting point. Since in the theoretical nonviscous flow . .
the infinitely long wing expmiences no drag, the total drag of such Rwing in such a fluid musL
be due to vortices amenable to unr calculations, as the following treatment will show. In a
viscous fluid drag will arise for both wings, infinitely long or not, which for those angles of
attack for which the profile is said to be “good” is,“according to the results of mpcrimcnt, of the
order of magnitude of the frictional resistance of a pkme surface.

The carrying out of this problem is accompanied with greater difficulties than the calculat-
ion for a biplane as given. In order to obtain the necessary assistance for the solution of the
problem, we shall first be obliged to improve the accuracy of our picture of the vorbxx syst.cm.

The density of the lift (lift per unit length) is not constant over the whole span, bu~ in
general falls off gradually from a maximum at the middle nearly to zero at the ends, In ac-
cordance with what has been proved, there corresponds to this a circulation dec.rmsing from
within outward. Therefore, according to the theorem that by the displacement of the closed
curve the circulation I! ‘can change only if a corresponding quantity of vortex filaments arc cut,
we must assume that vortex filaments proceed off from the trailing edge whcre~cr I’ changes,

For a portion of this edge of length dx the vortex strcngf,h is therefore to be writLcn ~ dr, anddr’

FIG. 42,-cIIcmge In shnpe ofmrt,ex ribbms at great dlrhncea MrInd the wing.

hence per unit ]cngth of tho

~ge is $;. These vortex fila-

ments flowing off, closely side
by side, form, taken m a w1101c,
a surfricc-liko figure, which w-c
shall call a tfvortex ribbon.’)

For an understanding of
this vortex ribbon we can also
aumoach the subicct from an

entirely different side. Let us consider the flow in the immediata&ighborhood of fi~esurface of
the wing. Since the axcess in pressurebelow the wing and the depression nl.wveit must vanish
as one.goes beyond the sido edges of the wing in any manner, there must be a ftillin prmmrc nmr
them edges, which is directed otitward on the lower sido of the wing rmd inwml on tlw uppi~r,
The cmcoming flow, under the action of this pressure drop, while it passes along the wing, will
receive on the 10WWside an additional component outward, on the upper side, cmc inward,
which does nob vanish later. If we assumo that at the trailing edge the flow is completely
c.loscd ~~ain, as is the case.in nonviscous flow, we will therefore have a difference in dircetion
betw~en the upper and lower flow; the upper one has a relative velocity inward with refwcnce
to the lower oru+ and this is perpendicular to the mean velocity, since oti account of the Bcr-
nouilli equation in the absence of a pressure difference between the two l~yers the numcrica]
values of their velocities must be the same. This relative velocity of the two flows is cmwtly
the result of thesurface distribut~onof vortices mentioned abom (as the vort,cx theory proves,
a surface distribution of vortices aIways means a discontinuity of velocity between the regions
lying on the two sides of the surface). The relative velocity is the greater, the greater the side-
wise pressure drop, i. e., the greater the sidewise change in lift. The picture thus obtained
agrees in all respects with the former one.

21. The strengths of our vortex ribbon rem~in unchanged during the wholg flight, yet
the separate parts of the ribbon influence each oticr, and there takes place, somewhat. as is
shown in figure 42, a grgdual ,rolling up of the ribbon, as a closer examination proves, An
exact theoretical invmtigation of this phenomenon is not possible at this time; it can oxdy be
said that the two halves Of the vortex ribbon become concentrated more and more, and thrit
finally at great distances from the wing there remajn a pair of vortices with rather weak cores.
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For the practicaI problem, -which chiefly concerns us, namely, to study the reaction of th~
vortices upon the wing, it is not necassary to know these changes going on at a great distance,
for the parta of the vortex system nearest the wing wilI exercise the greatest influence. We
shalI therefore not consider the gradual transformation of the ~ortex ribbon, and, in order to
make the matter quite simple, we shall make the calculation as if all the vortex filaments were
running off behind in straight lines opposite to the direction of @ht. It will be seen that,
with this assumption, the calc~ations may be ca&.ied out and that they furnish a theory of
the monoplane which is very useful and capable of giving assistance in various ways.

If we @h to establish the method referred to with greater mathematical rigor, ~e can
proceed m follows: Site the complete-problem is to be developed taking into account all cir-
cumstances, we shall limit ourselves to the case of a very smalI Iift and shall systematically
carry thro~~h RIIcalculations in such a manner that onIy the lom& power of the Iift is retained,
aIl higher powers being neglected. The motion of the -vortex ribbon itself is proportional to
the total circulation, therefore also proportional to the lift; it is therefore smaII if the Iift is
smaII. If the velocities caused by the vortex ribbon are calculated, fist for the ribbon in its
actual form, then for the ribbon simplified in the manner mentioned, the di.tlerencefor the two
distributiona wiIl be small compared with the valui!s of the velocity, therefore small of the
second order? i. e., smaIl as the square of the circulation. We shall therefore neglect the differ-
ence. Considerations of this kind are capable of deciding in e~ery ca~.what ac-tiom should be
taken into account and what ones may be neglected. By our simplifications we ha~e therefore
made the probIem linear, as a mathematician says, and by this fact we ha-re made its solution

possible. It must be considered a speciaIly fortunate circumstance that, e~en with the greatest
vahws of the lift that actually occur with the USUSIaspect ratios, the independent motion of the
vortex ribbon is still fairly smalll so that-}in the sense of this theory, all lifts wtich arc met i.u
practice may still be regarded as small. For surfaces haying Iarge chords, as, for instance, a , .
square, this no longer holds. In this case there are, in addition, other reasons which prove
that our theory is no longer sticiently accurate. This will be shown in the next paragraph.

It has already been mentioned that the ititely long wing will ser-re as an object of corn- .
parison for the theory of the monoplane. We shall forrmdate this now more exactly by saying:
Every sepkrate section of the wing of length cZxshall bear the same relation to the modified flow
due to the vortex system as does a corresponding elemmt of an fitely long iving to the recti- ‘
linear flow. The additional velocities caused by the vortex system -iary from place to place
and also vary in the direction of the chord of the wing, so that again we ha.ye to do with an
influence of curvature. This influence is k practice not very great and wilI for the sake of -
simplicity be neglected. This is specially allowable with wings whose chords are small in
comparison with theit spans; i. ‘&.,with those of large aspect ratio. If one wishes to express
with mathematical exactness this simplifeyingassumption, it can be said that &e theory of an
actual wing of finite chord is not developed, but rather that of a “ Iifting I.ine.’* It is clear
that a wing of aspect ratio 1:6 maybe approximated by a lifting line, specially “if one considers
that actually the hft is concentrated for the greatest part in a region nearer the leading edge.
It is easily seen, however, that a surface in the form of a square can be approximated only
poorly by a lifting he.

If we assume a straight- lifting line, which lies in a plane perpendicular to the direction
of flight, the flow due to the vortices, w@h according to the Biot-Sarvart la-iv,is caused by its
own elementa, will not produce any velocities at the lifting Iine “itself except the circulation
flow around it, which would also be present for an intlnitely long Iifting line having the same
circulation as at the point observed. AU disturbance velocities at a point of the Iifting line,
which are to be looked upon as deviations from the titely long lifting line, are due therefore
to the vortices which run off and hence can be calculated easdy by an integration.

A qualitati=reconsideration of the distribution to be -petted for the disturbance velocities
aIong our Iifting Iineshows at once that—just as was the cas~for a biplan~the chief thing is the
production of a descending curient of air by the vortices. If we wish to retain the Iift of the
same intensity as with the infinite wing, the angle of attack must be increased, since the descend-
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ing air stream added to the wind due to flight caus~ a velocity obliquely downward. In addi-
tion, the air force, as before, must be turned through the same angle, so that u drng results.
The rotation will be the greater, the greater @e l~t and the cIoser to the middle of !11owing... _

A

k, )’... .

4.

z“

m= I*D

‘i w

Fm. 43.–Wfng having flnilq but aJJMU,chord. Mtribution of vertkol @oelty
oomponent slong a Une parallel to dfrection of !llght.

T. Infinitely long tvIng.
IL The downward velocity pmducwl by vortlm !50wlngoff.

HT. klnita TV@,sum of I and IT.

the main production of vortices is. Th~
drag must therefore increase both with
increasing lift and with decreasing span.

A picture of what occurs with a
wing of fl.nitebut small chord is given in
figure 43. There the change is shown
of the vertical velocity component along
a straight line parallel to the direction
of flight through the middle of the
wing; in the upper part of the diagram,
for the in6nitely long wing, in the lower
part, for the finite wing. We see from
Curve 1 the rising flow in front of the
wing, its transformation into a descend-
ing one at the wing itself and the gradual
damping of the descending compommt
due to the upward pressure drop behind
tie wing. (See sec. 15.) The corre-
sponding curve for the finite wing is
Curve HI. It is derived from I by
adding to the Iatter the descending ve-
locity II. We recognize the rotation of
the pro’tie as well as that of the lifting
force, which wasoriginally perpendicular,

~through the angle P where hm p = ~ and

w is the velocity downward at the looation of the center of pressure (i. e., at the lifting line),
If we folIow the method of Lanch&ter, as described in section 15, the downward velocity w can
also be looked upon as a diminution of the ascending flow at the leading edge of the wind duo
to the absence of the sidewise prolongation of the wing, i. e., to the deviation from an infinitely
long wing which waa the basis of the treatment in s@ion 15. Ilk- “
cussions very similar to this are given in Manchester, Volume 1,
section 117.

It may be seen from the figure that at great distances behind m “’”

%

the wing the descending velocity is 2w, which agrees with the relation
already mentioned that the velocitiw due to a stmiight vortex fila-
ment axtending to irdi.nityin both directions are twice those.due to
a filament exten&ng to infinity in one direction only, for pointe in the

~:.: “k] ~

r=w-a [
plane perpendicular to this vortex passiug through iw end point.

-t

b :
22. The mathematical processes involved in carrying out the

theory outlined above become the most simplified if one considers as
known the law, according to which the lift is distributed over the wing. r~V~~V:~~&~&~D~h~
We shalI call this the “fist problem. ” The calculation is made as
follows: The distribution of lift is the circulation expressed as a function of the abscissaz. The

di’
strength of the vortex filament lea”tig an infinitely small section dx is then ~z . dx. This

produces at a point x’ , according to what has hen already explained, a vertical velocity
downward or upward of the amount.

dw=& ● ‘$ ● ;~~
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In this x’ – x takes the place of r in section 8. If the circulation f@ls to zero at the ends of the
wing, as is actually the case, then alI the vortices leaving the wing are of this kind. The whole
added velocity at the position z‘, assuming that the function I’(z) is everywhere cent ipuous, is

(37)

We must take the so-calkl “chief vaIue” of the integral, which is indeterminate at the
point z=z’, i. e., the Iimiting value ‘

&(r-’+J+a)
must be formed, as a closer examination shows. We can do this by calculating, instead of the
value of the vekity at the lifting line, which is determined by the preponderating infIuence
of the nearest elements, the vaIue of w for a point a little above or beIow the lifting line. It
is seen that this Iast is not indeterminate and that by passing to a zwo distance from the Iift.ing
Iine it reaches the above limit. Concerning this excursus, important in itseIf, the preceding
brief remarks may be sufBcient.

After the csdculation of the integral of (37), the downward velocitg- is lmown as a function
of the abscissa z’ (which we later shall call z). We then also know the inclination of the

resultant air flow, tan P=;; the lift &f= p r V &’, acting on the section dx’, therefore con-

tributes to the value of the-drag

dw=tm ~ - dA=pr(d) . w(d) did
since it is incIined backward by the small angle p. The total drag is therefore

.

J
TF=p b SS

br (d)d~:dkdt’
r(d) .I.U(Z’}.CIZ’=[X ~

o 0 Z’—z

For a long time it was ditlicult to find suitable functions to express the distribution of lift,
from which a plausible distribution of w would be obtained by equation (37). After various
attempts it was found that a distribution of lift orer the span according to a half ellipse gave
the desired solution. According to this, if the origin of coordinates is taken at the center of the
ml r=h\/=@y.h’=+=+$-{()j~—~

The “chief value” of the integral

J
1+ tat

(t’ –t) Ji=ir
is equal to T

ro~
and therefore the integral of equation (37) is equal to ~~ and thus is independent of z’

and constant over the whole span. Hence

W=3
The value of ~. is obtained from

S
+bjt SJ-bn —

A=pr nh=pmo
1–$2

“ &=pT’” r;-: b,
-lIll *1

giving
4Aro=—.mvb

.—

Hence

(39]

-- —

Site w is constant there is no need of calculating the drag by an integral, for it k simply

(40) ——
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The calculation can also be performed for distributions of circulation given by the folIowing
general formula:

r“= ~~ (FO+r, p”+r4-~+ 1. .j
~41) . ,, ----

,.

in which [=$2. -.

According h the calculations of A. Be.tz

~z

m-n
J&t rzn \

w=g~ pm [(%t+1)p..ra- 2npn.m .,1
I

(43

m-o

and

I

m-k

~= ~~i Ek r21 rsk ); ~i+m [(z~ + 1) Pk–m – z~pk-m–l 11 (43)
m-o

in which the numbers p and g have the meaning . . .
. .(2n–l

Pn= 1“”}:4.: “., . z~ ) ;.qn=#k&, po=l, p_,=.

The elliptical d~tribution of lift; apart from its simplicity, has obtained a special meaning
from the fact that tho drag ss calculated from equation (40) proved to be the srmdlestdrag that

is imaginable for a monoplane having given values of
the total lift, the span and the velocity. The proof of .-
this ~, be g~ven later,

It was desirable. to compmc this theoretical mini-
mum dragwith the dra~ actually obtuined. As fur back
as 1913thiswas done, but, & account of the poor quality
of the profiles then investigated, all thut ww done was
to establish that the actual drag was greater thrm the
theoretical. .Later (1915) it was shown, upon the in-

vestigation of good profiles, that the thcoret.ical drag
corresponds very closely to the relation giving the change
of the observed drag as a function -of the lift. If we
plot in the usual manner the theoretical drag, as given
in formula [40) as a funct~irmof the corresponding lift,
we obtain a par&bola, which runs para~lel with the
measured “polar curve” through the entire region for
which the profile is good. (See ~. 45.)

This process was repeated for wings of different us-
pect ratios, and it W= proved that for one and the same
profile the difference bctwean the measured and the thco-

FIG. 45,-PoIor dJrISTemshowiw ttireUed tiw ati ~eticaldrags for one and the same value of the lift cocffl-
ohs?ncdrlra$. cient had almost identically the same value in all cases.

This part of the drag depends, however, upon the shape of the profile, and we htivo therefore
called it “profile drag.” The part of the drag obtained from theory is called “ edge drag,”
since it depends upon the phenomena at the edges Of the w@gs. More justifiably tho expres-
sion ‘‘ induced drag” is used, since in fact the phenomena with the wings are to a high dcgrco
analogous to the induction phenomena observed with electric conductors.

Owing to this fact that the profile drag is independent of the aspect ratio, it became possible
from a knowledge of the actual drag for one aspect ‘ratio to calculate it for another. TO do
this, we pas from the for&ula (4o) for tJlg.Wig to }~e dimetiodess lift and drag cocfllcients, _.,

by letting ~q = c, Pqand !~~= CW:we obtain then for the co~~ent of the induced drag the

relation
. .

C,2F
c.! =— .... (44)a+
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Fm. 46.-1%Lw di&?snM hr Se- wini%Y,=* rotlos 1:7,
lai, etc., 1:1.

. Ieti09 1:7 to 1:1.

.

FIG.4K—Polar dIQgmm9redncea KromOkfratlomon
Sq.WtretloI:5.

FIG. 49.—Lift meilIcIente se function of @e of atteckj reduced for
asp?ctratio15.
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‘l’he profile drag may then be written cWO= c.- Cw,. If this drag coefficient depends only
upon the lift coefficient, then it would be evident, since it would be the difference between the
measured and the theoretical drag coefficients, that, for the polar curves of two different winga

(45)

In -asimilar manner a calculation for the angle of attack maybe made if we presuppose an
elliptical distribution. of lift. According to our asumption there is a close connection between
the lift of the separate elements of the wing and the “ effective” angle of attack, which is the
same as the angle of attack of an infinitely.long wing. This effective angle of attack, according
to our earlier considerations, is the angle of attack of the chord with reference to tho resultant

air current. It is therefore CY’= ~– ~, If we substitute tan@=; for@, and introduce in equa-

tion (39) again the lift coefficient, instead of using the lift, we obtain for the comparison of two
wings, expressing the fact that the effective angle of attack
.s to be the same ‘for two equal lift~oefficients, the relation
1

Ca F1
al—.

&F,
Ir p=a~ —;>z~’

which leads to the transformation formula

a,=a’+:(fi-fi)
(46).

FIG,we.-Uniplanarflor Inc~e of ei~pticti
t,r[bu~tonofIifrona11* iIne. These formulas have been found to hold for distrilm-

tions of lift which do not deviate too much from elliptical ones,_although strictly speaking they
apply only to the latter. The fact that the type of distribution does not have a marked effect
is based upon the consideration that both in the calculation of dr~u and in that of the mean
effective angles of attack-we are concerned with average results. Fo~ tho calculation of the drag
one can also introduce the thought that rio quantity varies much m the neighborhood of its
minimum. Closer invest-~ation of the square cornered wing has shown that, if the aspect ratio
is not too small, the lift distribution does not deviate greatly from the elliptic type, and that the
theoretical drag for usual aspeot ratios at the most is 5 per cent greater than for tho elliptic
distribution. As an example of these formtias we shill take four figur~ from the book published
by the GWingen Institute (Ergebnisaeder Aerodynmnischen JTersuchsanstalt,1, Lleferungj 1921),
The first and second figures show the polar curves, and the connection between lift coticient--
and angle of incidence for seven wings of aspect ratio ‘o 1:7 to 1:1. The last two figuresgive the
resultsof calculating theseexperimental quantities from the resultsfor the wing having the aspect
ratio 1.:5. It is aem. that, apart from the aspect ratios 1:1 and 1:2 practically no deviations
are present, The fact that the square can not be correctly deduced from the aspect ratio 1:5
need not excite surprise, since Ma theory ww developed from tie concept of the lifting line, and
a square or a wing of aspect ratio 1:2 Cm Warcely be properly approximated by a lifting line.
On the other hand it is a matbr of surprise that an ~pect ratio of 1:3 can be sufficiently
approximated by the imaginary cmstruction of a lifting line. The deviations in the case of the
square are moreover in tie dir=tion one wo~d expect from a lift distribution exptmdcd over
the chord. A quantitative theory is not av~able in any case at the prwent time.

23. If the lift distribution is not given, but, for example, the downward velocity, then the
method of treatment followed Mtierto may be Used,by devdoping the downward velocity in a
power seriesand determining the constants of the seriesgiven above for the lift fro~t~~e constan~ 4 , .=_ ,=

mThe~mericanpractih todefinefIwti~t~8StheremOfwantocho@w~chWOMInvolvetakingthe redprwde04theretbs given
In the text. ‘h. .
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of this power series, by the solution of linear equations. By this the lift distribution and every-
thing eIseaxeknown.

Another method for the solution of this “second problem” will be obtained by the fol-
lowing consideration: The velocities at a distance behind the w@, on accougt of the connection
mentioned so often between a vortex filament extending to infinity in one direction onIy and
one extending to infinity in both directions, are twice as great as those in the cross section of
the Mting line, H vie do not takb into account the change in shape of the vortex ribbon. We
therefore have here, neglecting this ‘change in shape, an illustration of a two-dimensional fluid
flow (uniplanar flow), for which the vertical Telocity components at the point where the wing
is reached, are specitled. For the simpb case that the vertical velocity w is constant, M was
found to be true for the elliptical lift distribution, the shape of the flow that ariseshas been known
for a long time. It is given in @re 49a. It is the same as that idready considered, in another
connection, in section 15. The picture of the streamlines show ilemly the docity disconti-
nuity between the upper and low= aides of the vortex ribbon, indicated by the nick in the stremn-
lines, and also the ~ortical motion around the two extreme points of the vortex ribbon, corre-
sponding to the ends of the wing.

Any problems of this kind can therefore be solved by means of the methods provided by
the potential theory for the cm-responding problem of twcdimemiomd fluid flow. We can
not go into these matters more _cIoael-gat this time; by a later opportunisty some special rela-
tions will be discussed, however. 9

A “ third probIem” consists in determin@ the Iift distribution for a detite wing having a
given shape and given angle of attack. This problem, as may be imagined, was the first we
proposed; its sohtion has taken the longest, since it leads to an integral which is awkward to _
hiude. Dr. Bet.zin 1919 succeeded after very great efforts in solving it for the case of a square-
cornered wing having every-wherethe same profile and the same angle of attack. The way the
solution was obtained may be indicated briefly here. We start, as before, from the relation

a.= a’ +($~d+
?

●

,

By equation (37) w is expressed in terms of the cirmdation. The effecti~e angle of attack
a’ can be expressed in terms of l?, since, according to the assumptions made before the Iift,
distribution, which is proportional to I’, depends directly upon a’. The re.Iation between a’
and ~ can be assumed to be given sufficiently exactly for our purposes by a linear expression

r= T’it(c, a’+cJ (47)

in which t is the length of the chord (measured in the direction of flight), By the introduction
of the factor Pt, c1and ~ are made pure numbers. The numerical value of cl, which is the more
important, can be expressed, if ~= is the Liftcoefficient for the idnitely Iong wing at the arqgls
of attack a’, by the reIation

1 de.=
%=~~

In fact

For a flat-plate theory proves that c,= ~, for cund.tings it has a slightly greater value.

If, according to what has gone. before, we express cd by I’ and w by ~ and write

dr
J

~z =f(z) and therefore T= ‘~(x)dz
0

—

we obtain after a simpIe calculation the integral equation.

r
J:* = ~~ (.,. +@= co~t..~ $(Z)C7X+~ (48)
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A solution of this equation can be obtained by expanding r rtsin equation (41) and develop-

ing then all the e~pressions in power series of ~=~2. For every power of ~ there is then

a linear equation between the quantities r~, rz, etc. There is a system of equations, then,
with an. indefinite number of equations for an infinite number of unknowns, the solution of
which in this form is not yet. possible. The aspect ratio of the wing appears in these equations

as a parameter, and it is clear that the solution for a small aspect ratio, i. e., ~6 is easier than for s

a large one. Dr. Betz proved that a development in powers can be made for the unknowns in
terms of. a parameter containing the aspect ratio. The calculations which me contained in the
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very elongated wings it approaches gradually a rectanguhm distribution. Figure 50 shows
this change in the distribution depending upon L.

The drag of the wing with the rectangul~ d~tgibution is”.g@er natWally than with the
elliptic distribution; since this gives the minimum of drag, yet the differences are not very great;

dissertation11of Dr. Betz (1919) arc
very complicated and cm not be re-
produced here; ~ut certain resultswill -, .
‘be mentioned, The Betz ptirnmchw
L has the meaning

= M ih da’
‘@”7 ~

In the application to surfaces which
are invwtigat.ed in wind tunnels the

dc - d.cvalue -- * is known, not - =,*.
da da

I?or

this case theory givw a relation which
can be ~xpresscd approximately

We can thus obtain the ..lue of &

from the connection mentioned.

b()for instanw, for L =4, ~s6 it is about 5 per cent greater than that of the Wipticnl distri- ‘ “

bution. An approximation formula, according to the values obtained by 13etz, is

w’. -$~ (0.99 +0.015 L).

This is applicable for vahmsof L between 1 and 10. . .
The distribution of lift, downward velocity, and drag upon a very elongated wing is shown ‘

qualitatively in figure 51. It is seen that the downw~d velocity and the drag gradually accumu-
late at-the ends of the wing. This giveg a&o the ccyxect transition to an iqhitely long wing
with which for interior positions the lift is constant, and the dmvnward velocity and the drag
are equal to zero, whjle, as we know, near the endsthese last quantities always assume finite
values. .

~PrlntifnextraetainHeft2of the” Berfchte U. Abkd.der Wk.% CM. f. Luft f.” hnich, 16%3(R. Oldenbcurg~.
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E. IMPROVEDTHEORYOF .AJRPL4NES HAVING MORE THAN ONE WING.

24.The knowIedge obtained in the tkry of a monoplane can be appIied also to multi-
planes and furnishes here a series of remarkable theorems. We ahdt limit ourselves to the
theory of the fit order, as deSgnated in the theory of monoplanes, therefore we shall neglect
the influences of w Further, we sld not take into account the effect of curvature-i. e., we
shall consider the separate wings replaced by “lifting Ii.ues.” For t$e sake of @nplieity -we
shall Iimit ourselves to multiplanes with wingmvrhich are straight and par&l to eaoh other.

‘ The generalization of the theorems for nonparallel wings, corresponding to the deduction given in

.

.-
- .—

. . —-
.. ..—

“Wing theoryII,” will t.henbe stated without proof.
Let us fit solve the introductory problem of

calculating the vertical yelocity w produced by a
lifting line at a point A vrhioh lies off the lifting
line. At the beginning let us assume that this point
lies in the same “ transverse plane” (plane perpen-
dicular to the direction of tlight). According to
our assumption as to the location of A, the action
of the transverse vortex is zero. With reference to
the longitudinal vortices it is to be remembered that

ldr.~~
reduced by a longitudinal‘he ‘veloclty Z & a p

vortex of strength ~ dx is perpendicular to the
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YrfJ.51.—Distribution ofi!ft,down-w~h sud drog%r akmg wing. —.-

linea (seefig.52),and therefore must be multiplied by sin p to obtain the vertical component.
We arrive at the downw&d velocity, therefore, by integrating over the lifting line, viz: .—

(49)

This relation can be brought into another form by a partial integration. Since at both wing
ends I’= o, we have

But
“=ifi:r%)’

%%9=:($=“i,w=’-’:m=c:~:~’
so thatwe ha-m ,

-— .-

(50)

‘With the aid of this reIation we can w-ritedown immediately the value of the drag which arises
owing to a second wiw beti under the infiuence of the disturbance caused by the fit wing

.
.-

lying ~ the &me transverse plane. Iiet us call w,, the disturbance velocity at
a point A on the second wirg. According to the results of section 22, the
drag then is

. s~.=pjwl~dz

or, if the wdue of Wlzas given by-equation (50) is substituted,

A

E
x_

z a

z x ah’ .—

(51)rim&veloeity at
a pointA OH the

Ufting Iiue, hut In
the transverse
IIIWIS, due to the
vortex system..

The double integral, as one sees, is perfeotly symmetrical in the quantities Mso-
cirded with both wings 1 and 2. We conclude from this thai the drag which ‘
wing 1 experienc& owing to the presemmQf wing 2 is Qf the same amOUntas.

.-

the drag calculated here, that, therefore,
w,, = Tn..
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In the more general case of two curved lifting lims lying in a transveme plane, a formula is
obtained which differs from equation (51) o~y k having cos (&+&) in place of CQS2 P in wfich
& and P, are the angles which the line a makes with the normals on the two lifting elements con-
nected by a, and in having cikldszin place of ~@. The relation TIz= Wzltherefore holds in
this case also. This mutual relation, which was discovered in a different manner by my assist-
ant, Dr. Munk, is of importance in various applications. Since it plainly is not necessary for
the lifting elements taken as a whole to belong to a single surface, the theorem may be stated:

If, out of a lifting systt?mall of whose elements lie in a transverse plane my two groups $
are selected, the portion of the drag experienced by group 1 due to the velocity fiekl of group 2
is exactly of the same amount as that experienced by group 2 due to the velocity ficl~ of group 1.

We can interpret the partial integration performed ab.ova by saying that the velocity w _
appears by it as built up out of the contributions b.y merely indnitesimal wings having the
length dx and the circulation I’, while previously we have always built it up out of the actions—

of the separate vortices ‘~dx. The intagrand of equation (5o) in fact agrees with the velocity

which is caused by two vortex lines of equal but opposite strengths I’ lying at a distance& apart.
The double integral in equ,ation (5I) can, from this point Of vim, be looked upon as the Sm

of the actions of the vortex strips of all the elements &l on all tho
lifting elements *.—.. ,

The objection might be raised that equations (5o) and (51) ceaso
to ba applicable if the value a= o appears, since this gives an e~pres-

~ sion of the form co—m. They are not, therefore, suited for the
calculation M the velocity. w at the .ying itdf. In this case wc must

“ return to equation (49), and take the ‘(chief value” of the integral;
or, the value of W12and of 17jl for a lift.ing line that lies very C1OSC

: must be calculated, and then we can obtain our finaI result-by passing
to the limit for coinciding lifting lines As is seen from this, tho ,

“~~~-~~~~d~.~~~~n~d~~‘rd~tions ~lZ= W2, hold “also for lifting lines coinciding in space,
wmeVO*Xsyskm. which, besides, may have any arbitrary lift distribution.

The mutual drag need not, as has already been mentioned, always bo positive. For in-
stance, it, is negative for two wings placed side by side, since then each wing is in an ascending
current oaused by the other, and the total drag is therefore less than the sum of the mutual
drags which each of the - would have at a greater distance apart. The behatior of certain
birds which in a common flight space themselves in a regular phalanx can be explained by
reference to this.

25.In order to be able to treat the case of staggered wing systems, the next problem is
to calculate the velocity field due to a lifting element of the length ckctogether with its pair of
vorticw at a point A which may now lie off the transverse plane, and at a distance y from it,
(See fig. 53.) The origin of coordinates will be taken at the projection of tho point A upon
the t.ransvemepkne, and the X axis parallel to the direction of the demerit. Using tho “Rbbre-
tiations

a2=z2+&, P=a2+@,

the velocity produced at the point A by one of the two vortices, by formula (6b), is given by

()
r 1+1 ; the component in the direction of the Z axis, h which we here again limit our-

4Ya r
z

selves, is, then, putting sin /3u a-
.-

()
E 1+; .

‘1= 47ra2

The pair of vortices produces then a vcdocity which may be written as the difference of tlie
effects of two vortices which are close together:

‘W1=*’HF%l+%M
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To t.bismust be added the contribution of the transverse vortex

~w ra. ~. ——z k=

The sum of these two velocities, if the two angIes defined in @e 53 are introduced, amounts to

(52)

With the hdp of this formula we can now calculate at. once the dr~- experienced by a lifting
ekment situated at the point A and paraUeI to the former, whose length is d.rzand circulation
r2“ Ifthe fit eIenmnt is given the index 1, this drag is

(53)

.Asis easily seen, the drag produced on the lifting element 1 by the lifting element 2 is obtained
if in place of u and B the yalues a +T and P+ r are introduced. Therefore it .is

(53a)

It is seen from this that the two parta of the drag are equal only if a= o, that is if the t-ivoele-
menti lie in the same transverse phme. Yet in the general cme the sum ~ W. + & T,, is inde-
pendent of a, therefore independent of the smount of stagger. The sum of the two mutual
draga leads thus to the same formula as that already derived for nonstaggered wings. If wo
again pass to the generaI case of nonparallel lifting lines, in which again d%l and i%%are to be
written in place of &l and &z, we obtain as may be pro-red by performing the calculation, the

. relation -
~1, + ~,1 = += SS

r, r, &l i%,cos (p, +19,)
(54)=2

As is evident, this sum remains unchanged if he two lifting groups arc displaced in the direc-
tion of &uht. Since the totaI drag of a lifting system is composed of such mutual dragg as cab
culated above and of the proper drags of the separate mings, which likewise are not changed
by a displacement of the wing in the direction of tlight, the following theorem may he stated:

The tottd drag of any lifting system remains unchrmged if the lifting eIements are displaced
in the direction of &mht without changing their lift fore=.

This “stagger theorem” was likewise pro,yed by Mud. For a proper understanding of
this theorem it must be mentioned czxpredy th@, in the displacement of the separate lifting
elements, their angles of attack must so he changed that the effective angles of attack and there-
fore the lifting forces remain unaltered.

This theorem, which at first sight is surprising, may also be proved from considerations of
energy. Let us remember that, by the overcoming of the dr~~, work is done, and that in a non-
viscous fluid, such as we evcrjwhere assume, this work cm not vai@h. Its equivalent is, in
fact, the kinetic energy that remains behind in the -rortex motions in the rear of the lifting
system. This energy depends only upon the character of these vortices, not upon the way in

‘which they are produced. If we neglect, as we have throughout, any change in shape of the
vortex system, then, in fact, the staggering of the separate parts of the lifting system can not
have any influence upon the totaI drag. .

26.For the practical calculation of the total drag of a mnItipbine, we hare then the foHow-
&u: The total drag cbnsisfs of the sum of all the separate drags and of as many mutual &ags
as there are combinations of the wings in twos. If the nature of the lift distribution over all .
the separate wings is specified, then the proper drags are proportional to the square of the sepa-
rate lifts; the mutual .dm.gs, to the product of the Iifts of the two wings in question. If the
coefficients of this mixed quadratic ~xpretion are all known, then one can solve without difli- -
cuhy the problem: For a speciiied total lift, to determine the distribution of lift over the sepa-
rate wings which wilI make the total drag a minimum. -

.
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know these coefficients ta a certain dwzreeI’calculated them for the case of two
.

straight lifting lines whose middle points lie in the sgrne plane of symmetry, with the assump-
tion that-the lift over each separate wing is distributed according to a half ellipse. The results
“aregiven in my paper ‘i The induced drag of multiplanes” in Volume III, part 7 of the Tech-
nische Berichte. For this purpose the velocity w for the entire neighborhood of a wing in tho
transveme plane was first calctiated by formula (49), and then the integrals for the mutual
drags were. obtained by planimetry. To show the malogy with equation (4o) this may now
be expressed by the formula

~12= ~ Al A?
x q61 6;-

“ (65)

by means of which the numerical factor u can be expressed as a function of the two varirhles
h

and }. Calculation gav’e the fouowing table:
;(bl + ?)%) ‘

TABLE 1,—~alue.a of u

‘ ~:~;~1 $

~;:-,

.-=... .

The curve of the function a is given in figure 5L For the most important case, viz, for
two wings of equal span, I have developed an approximation formula which is

1 – 0.6.6; .

v= ,--.-+-. -– (56)
1.055+3.7:

.-

“h
It maybe used from ~ = 0.05 to 0.6.’\

-_------i --- -----
The total induced drag of a biplane is then, if bl is the greater span and if the ratio ~’b

ia designated by P
I

w= W,,+ 2 W,, + W,, =$,(A,’ + 2q.u4,Aa + /L2A;) (57)

Simple calculation shows that for a given A, +A~ this drag is a minimqn for

()
A, :A, =(P–a) : ~–u (58)

The value of the minimum is fouud ta be .-
- I-1 ~...

The first factor of this forrmila is the drag of a monoplane having the spm b, and the lift A, + A,,
Since u< p, the second factm of the formula is always less than 1, i. e., the induced drag of a
biplane is less than that of a monoplane which in the same span carrias the same load. For
a” tandem,” i. e., an arrangement of two wing%one behind the other, the stagger theorem shows
an equivalence with two coinciding wings, i. e., a monoplane. Among the ditlerent biplanes
having prescribed. span b, ~d prescribed gap h, tiat one is the most favorable in which tho
second wing also has the span 61. The most favorable ratio of the two lifts is then 1 :1 and

.
the second factor of equation (59) becomes equal to_; (l+a).

These statements must not, however, be misunderstood; they refer ordy to the comparimn
of such wing systems as have the same value for the greatest span. Naturally, for every biplane
a monoplane may be found with somewhat greater span than that of the biplane, which at the
same total lift has the same induced drag as the biplane,



APPLICATIONS OF MODERN HSDRODYNA?JICS TO AERONAUTICS. 201

This last remark leads us to apply also to the biplane the deduction formulas obtained for
monoplanes. All that is necessary is to replace the-biplane of span b, by a monoplane of a
somewhat greater span Ml, which with reference to the drag-aqd, oh the whole, with reference
to the angle of attack—is equivaknt to the biplane. H again ‘he pass from the lift and drag
to their coefficients c. and CW,the fornnda connecting the dragg of any two Iifting systems
land2is

(60)

in which, as is easily seen, the factor kj for a biplane having the most favorable distribution
of lift, is the reciprocal of the square root of the second factor in formula (59).

The tests of this formula with biplanes have shown that.,when by giving a special ~ape to
the wing the lift distribution was made elliptical, there was good agreement with the calcula- .
tions from monoplane ~xperiments; with biplanes having the usual square-cornered wings,
on the other hand, there was a discrepancy, which is to be attributed to the fact that the lift
distribution on these biplanes deviates too far from an elliptic one. We can, however, retain
the same transformatio~ formula if the fac-
tor k is determined empirically for e~ery
wing system; it is found to be somewhat
smaIIer than according to the theory given
abo-re. The experiments on this point me
not yet completed, so more accurate values
can not as yet be given. The earIier G6t-
tingen experiments were vvorked up by Dr.
Munk, to whom this Iast idea is due, in the
paper “Contribution to the aercdpamics
of the lifting parts of airplanes” in the

.Technische BerichtejVolume II, page 187.

27. Ihthe previous section I have treated
the problem of finding the minimum of the
induced drag of a multilane, under -iery
delinite assumptions concerning the distri-
bution of lift over each se&a@e wing. The
strict minimum problem is however dtier-
ent~viz:

To determine for a given front tie~ of
a liftimzsvstem that distribution of lift over

---.—.

.-

—
..—.

.

—

_.=u

. .._.

all the“M& elements which -wiI1make the induced drag a minimum for .a specified total lift.
In this statement of the”problem the expression “a gi-ren front tiew “-i. =, more ~~actly

stated, a gi-ren projection of ‘tie lifting system upon a plane perpendicular to the direction of
fhght-is used to mean that the wing chord is of seccnidary consideration, and does not need
to be determined ugtil later when the sektion of s~-table angles of attack & made- “

The general solution of this problem was ~SO #ven by Dr. ~1~. It ~i~ be deduced here
in a simpler manner than that given in MuW’s ~ertat~onz where the. @ut~on was obt~ed
by the calculus of variations. By means of the stagger theorem-ment~oned m section 25 the
wing system wilI be referred back to the corresponding nonstaggered system. For this, as we ‘
showed, the relation W.= IT,lholds. We shall now introduce-with the simplifying assumption
that alI the liiting elements are parallel to each other-a variation of the Iift distribution by
adding at any one place a lift &i and at the same time taking iway an equal amount at some
other placel so that on the whole the lift, which is prescribed, remains unchaW”6d. We mqst
now consider the change in the induced drag caused by this vtiation. If there is superimposed
upon the lift distribution an additional air force 3A distributed over a short-portion dk, there
arises therefrom, in addition to the drag proper of tie added ~ift-~~ch, ho~e~erj ~ s~cient~y .
smti is of the second order-a mutual tig, bwause on the one h~d the add~ Ht fids i~elf ..

—.. _
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.
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in a flow having the downward velocity w, which is due to the lifting system, and on the other
the lifting system is in the velocity field of the added lift. The fit of these two drags, as is

easily seen, is 6A& the other part, according to our theorem, haz the same value; so the total

drag is twice this. What condition, now, must be satisfied by the sum of the mutual drags
caused by our twofold change of the lift distribution in order to obtain the absolute minimum
of the induced drag? The answer is, evidently, that we wiU have the minimum only if by no

.

change of this.kind can the drag be further diminished. The sum of the induced drags, theref-
ore, can in no case be negative; also it may not be positive, because in that case by a reversal
of the signa of the changes which we selected we could make the sum negative. Only the -duo

Izero is therefore allowable. Hence, if w is the vertical velocity at point 1 and w, that at point
2, we have the relation

and, therefore, since 3A1= – ~A2,
W1=W2.

Sinc,e this holds for all the lifting elements, we have obtained the answer. The lift distribu-
tion which in the given wing system, for’ a specified tdal lift, causes a minimum of drag is that
which leads to the same dowriward velocity at all the lifting elements. With monophmes the
elliptical lift distribution leads to a constant downward velocity w. We recognize from this
that the elliptical distribution in fact is that distribution of lift which causes tho lc~t drag for
a monoplane.

.-

The theorem can, besides, be extended easily to the case of nonparallel lifting elements .

lying in a transverse plane. If W. is the velocity in the transverse plane perpcndiculm to tho
, lifting element and e is the angle between the direction of W. and that of the given tohd lift.,

then, as may be shown without difEcuIty, WJ.= w. cosc for all the elements. (If c= o, and
hence cos e= 1, the statement made above again apperirs.)

28. A way to solve the problem of finding the lift distribution for a prescribed distribution
of the vertical velocity has been indicated already in section 23. The velocity field left behind
in the air by the lifting surface is, approximately, according to the remark made before, a
uniplanar flow around the vortex system produced by the Ming system in its motion, and thk
vortex system may be regarded, as a first approximation, as a solid body in the fluid. In the
minimum case this figure, according to the rewdts of section 27, moves like a n“gid body, not
alone in the case of parallel lifting elements, but ak.o in the general case, for the general mini-
mum condition, W.= W; cos -e, expresses directly that the normal velocity of the fluid at an
element of the rigid @ure mov@g in the direction of the lift coincides with the normal com-
ponent of the velocity WOof the rigid figure itself. The probkm is thus reduced to a perfectly
definite one treated in the hydrodynamics of uniplanar fluid motion.

This uniplanar flow can be brought into relation, in a specially clear manner, with the ,
. pressure distribution existing on the,wing system. The wing system, during its motion along

its path, imparts to one portion of the air after the other the velocities which we have learned
to know as the result of the vortices flowing off from the wings. This transmission of velocity
is the result of the spreading out of the pressure field of the wing system over the air partidcs
one after another. In order to simplify the phenomenon for’ ourselves -we can now imagine
that these velocities are produced at the shine moment by a sort of impulse phenomenon over
the whole path of the lifting system. ~ To produce this impulse it is necessary to have a “solid
figure of the shape of the geometrical reginn passed over by the lifting system (i. e., of tho
shape of the vortex surfaces which it leaves behind). If we are concerned with a system of
least drag, this figure moves as a rigid body; otherwise it would ako experience a change of
shape due to the impulse. The final velocity @, of the @ure coincides with the motion of tlm
vortex surfame at a great distance from the Iifting system, and is therefore to bc put equal
h 2w. For a monoplane having elliptical distribution our figure is therefore an infinitely
long flat plata of the breadth b.
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By the production of the vehcity dur~m the impuIselike acceleration an increase in the
pressure .pl arises below the plate (ii the ease of nmltiplanes, under each of the plats corre-
spond@ to the separate wings) and at the same time a decrease in pressure pz abo~e the plate
(or the plates). We can now compare in a very simple manner the total action of the pressure
differences at each point of a phte during the time of the impulse with the total action of the
pressure differences of the wing in its forward movement at the point of the medium in question.
If the resulting motion is the same in both cases, then the pressure ciiilerencesintegrated through
the proper times must have the-same values. If in the impuk.e phenomenon lasting a timer a

portion of the fluid of len@h 1 is considered, and if therefore the action of the lift $#c in the

time t=~z required h pass over the length 1 is to be compared, the folIowing relation must

hold for the conditions on a strip of width dx:

(61)

A formula mmected with our previous relations can be obtained by a transformation of the
lefhhand term. According to a known edeneion of the Bernoti equation fur accelerated*
motion we have .

For our impulse phenomenon the arbitrary time function f(t) is a constant, since at the
poi& of the fluid lying far away from the impin~~ plate the pressure does not change. If
tha impulse is sticiently quick, then during the short time of impuke r the acceleration and

the pressure differences will be very large, and therefore the term ~’ may be” neglected iD

comparison with the other two, since it itself does not exceed moderate values. We obtain
therefore the tiplitled relation

&+p=const. =po

which, if at the begirmbg everything is at rest, (oO= o) may be integrated@

..—

-—
.-

.—

—

P@= r(%-w (62)
Jo

we can therefore write,, in equation (61), the expression P (@z — @J in place of J~~l–p,)dt. The

potential &fference9 @l– @l which here appears is, according to the connection between poten-
tial and circulation (see sec. 5), nothing but the circulation I’ for a“closed curve which passed
around one edge of the vork~ ribbon and intersects our vortex ribbon at Z1 the point consid-
ered. This circulation is again nothing but the circulation around the wing at the point z.
If the factor H.-cis omitted from both sides of equation (61), it takes, as a result of this trans-
formation, the form -,.

(63)

‘We have thus proved in an entirely independent way, as we see; the Kutta-JoukovAsi
theorem for a wing element, which prev-iously we took over, without proof, from the infinitely
iong wing.

The ralations deduced in the previous pa-rqaph permit, in the case of a constant u’,
the formation of general theorems for w and ~ ~ place of (39) and M). By ~tegration .
of (63) the total lift is at once obtained

A=pvxj-(@2-@l)dz (64)

., _

.

—.

The vahw of @ in this formulb are proportional to the velocity @ of the vortex ribbon,
that is, are dependent upon A. Quantities which are indep’&ndentof A are derived if the poten-
tials @ are divided by +. In this way we obtain the potmtih for a viJocity of the vortex
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ribbon equal to 1. The potential, being the line integral of the velocity, has the dimension
velocity times”length; the potential $ for w*= 1 has therefore tile dimension of a lengthj and
hence -.

. . ZJ-(4,- !%)ix

is a surface, which wilI in what follows be called F’, which depmds only upon the geometrical
properties of the projection of the wing .systcm upon a phnm perpcmdicular to the direction
of flight, therefore upon the front view of the wing system; and which evidently for geometrically
similar front views is proportional to the square of the span. By introducing F’ intu equation
(64)we have, since @= @w*,

.4= p F@F’ (65)

From this wc may immediately deduce@, and thereby also the downward velocity at tho point
of the wing system

If this value is introduced into the relation IT’=~.4, we have s

((36) .

(67)

The evaluation in the manner of the flow of figure 49 gives a potential @, if tho span of
the wing is set equal to b,which h= the value 4(b/3z – X2at the pl~te. “The geometrical ~xprcs- ““ ‘“ –

Zd+
sion of this value gives a circle having the span b as diameter, thorefom F“ = —.4 Using this

value formula (67) passes over in fact into formula (40). ●

It may also he noted that a uniform velocity can be superimpose upon tho uniplanar
;’ flow here discussed, whose discontinuity in potential at the rigid figure representing the vortex

ribbon causes the surface F’ j without thereby changing the. relation for F’, for the potcn [iul
discontinuity betwmn the’ lower and upper sides, with which we are here concerned, is not
changed by the superimposed uniform motion. We may now choose tho velocjty of the uni-
form motion exactly opposite and equal to the velocity w* of the rigid figure, and t,hcrcby
secure the condition that in the new flow the rigid figure is at rest and is surrounded by a flow
which at infinity has the velocity w. The forces ‘which the rigid figure experiences by tho
production of this motion, and which are connected intimately with the so-called “apparent
mass,” aro what we have here set in parallel with the wing-lift:--

The surface F’ supplies in addition a very simple mechanical connection between the
velocity w on theam. hand and the lift and drag on the other. According to equation (65)

.4= pF’ VW*

WT7=AW =pF’ j’~

where in the second equation use has “~ain been made of the relation w*= 2w. Now PF’ i7
is the mass of air flowing per second through the section F’. If in order to simplify the wholo
problem it is once assumed that all the air particles within the section F’ experience the full
deviation W* but that all outside are entirely undeviatcd, then exactly tho correct lift and
the correct “}vorkdue to drag are obtained by application of the impulse theorem and the ener y
theorem. $For the lift is mow equal to the mass of the fluid deviated per second times t lo
vertical velocity imparted to it, therefore equal to the impulse imparted to the medium. Also,
in the same manner, the work done per second by the drag WI” is the product of tho mass of
the fluid passing per second times the half square of the deflection velocity, and thrrcforo equal
to the kinetic energy left behind in the medium. This relation is indeed best suited to establish
the phenomena of the theory of fiplanu in a course for students who are only slightly skilled
in mathematics. The fact that for a monoplane the circle having a diameter equal to the span
comes out as the surface F’ is one that will appear most plausible to the laity.
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29.Of the theory pictured in the preceding section, according to -whichthe determination
of the induced drag in the case of the most favorable Et distribution is reduced to a problem
of the potential theory, manifold applications have already been made. Especially, Dr. Gram-
mel and K. Pohlhausen have treated, at my instigation, the case of the biplane made up of two
straight monophmes of the same span, and aIso, on the other hand; that of a monophme having a -
longitudinal slot. The cilcyhitions in both cases are solved by means of elliptic integrals. I
have given the formulas in my Wing Theory II. It. maybe sullicient here to state the practical
tinal result, which is referred to the magnitude of the surfaces F’. These surfaces are best ‘
expressed“for biplanes in terms of the corresponding surfaces of the monoplane having the same

span. In fact, the ratio F’ : ~ b’, as is easily seen, equals the square of the factor k, introduced

in section 26, by which the span must be increased in order to have a monoplane of the same
induced drag. The values of 7dfor the biplane are obtained from the following table. The gap
of the biphne, i. e., the distance apart of the two wings, is designated by h.

TABLE 2.

v&sofkl-Fr:;H

~ w---- iulum

I
1 a lo 0.16 0.2

~ ki-.-.- l,M
0.8 0.4 . . . ----- Lsw.

1.IW 1.2X2 1.2S3 1.3s?
t

1.401 1.m ..- . . ..- 1.626 2.000 !
..

The values given-in the table may be expressed by the approximation formula

@.027 + 3.&UL/b
1+ L63fi/b

(68)

In the case of the monopkne having a slot a suitable comparison wing is obtained by shov-
ing the two haIves of the monoplane together untl the slot is closed. If 6 is the original span
and d is the width of the slot, this monoplane k“ evidently the span ~– d. We shall therefore

form the ratio F“: ~ (b – d)’ and again designate it by l?. CaIcqlations ga-ie the following

Vahles:
TABLE3.

Vehes of M - F’ :~-w.

lt is seen that-even very narrow slots produce an important increase in the induced drag.
For a very wide opening P faLlsto one-half, es maybe deduced easily from the fact that now,
instead of one monoplane, we have two monoplanes of half the span. The values given in the ‘
table may be expressed by the approximation formuIa 9

p=l _

z41+o.351aog,oWY
(69)

Figures 55-57 show, at the left, the unipkmar UP– flow and, at the ~Uht, the surfaces F’, for a
monoplane, a biplane, and a monopkme with a alot.

F. AEROFOILS IN A TUBE OR IN A FREE JET.

30. To draw conclusions from the experimental reads obtained in a tube bounded by
solid walls or in a free jet from a nozzle, it is very useful to know the influence of the neighbor-
ing walls and of the boundaries of the jet upon the phenomena at the acmfoil. We wish indeed
to know the behavior of the aerofoil in an air space infinitely extended in all directions; and the
problem therefore arises to introduce a method for passing by calculation from the case which
prevails in the ~periments to that of the unlimited air space. I?or this purpose we shall next
state cleady the boundary conditions which exist at solid walls p&llel to the direction of the
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FIG. 55.
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FIG. 67.

1A: Flow behind B ruonophvv+ a bIplame, and a mompkne wtth a slot, wfth referent@to an
observer movfng dmnwords with the veloclty IV*of the vortex system.

Rfgbt: M’responding surkmes F,.
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wind and at the free boundary of a jet. .kt solid -walls,the velocity components normal to the
wall,%, must equal zero; on a free jet kmmda~, on the other hand, the pressure is to he put
equal to that of the surrounding quiescent air layer, and therefore is constant. ‘We ca~ trans-
form these last relations as follows, keeping within our theory of the fit order. According to
the Bernoulli theorem} if T is the undisturbed wind velocity, and u, v, and w are the additional ,
velocities

.[ 1p+; ‘7P+(r+lj’+ti =po+; ~
or, since p = pO,

. ‘u~+&+uP+2ril=o.

If we neglect the squares of the disturbance velocitiw as behg small of the second order, we
have as the approximate inititd condition for the free jet v FO. We proceed a step farther upon
the path indicated to us by the approtiation theory of the first order if we prescribe the value
v= o, not for the actual jet boundary, but for that cylinder which is given by the surface of the
undeviated jpt. By doing this the boundary condition for the free jet becomes very similar,
in a formal way, to that for the solid walk

The two problems can now be solved in the following manner: We consider fit the -relocity
field for the unlimited air space, according to the exposition previously given. This field offers,
both in the case of the tube and in that of the free jet, contradictions with our boundary condi-
tions at the walls w the jet boundary. We must superimpose a velocity field which in the
interior of the region considered is free of singularities and which on the boundaries has ~eloci-
ties opposite to those velocity components, the vanishing o: which is prescribed by the boundary
conditio~ It is easily seen that by the su~erposition of the second veIocity field on the origgd”
one the boundary conditions are satisfied exactly. The influence of this second field upon
the aerofoil is now -actly that influence which we are seeking, and which we can calcuIate
from the results of the theory of aerofoila as soon as this seoond field is lmown.

The additional velocity field corresponds to a pure potential motion; we have, therefore, the
problem of determining its potential 0. In the case of solid w@ -weare thm led to the problem
of finding the potential for a given region (the interior of the tube) when the normal component
w. of the flow is given at the boundary of the region. This is the so-cslkd “second boundary
value problem” of the potential theory. The corresponding problem for a jet, as we shall see
at once, leads to the “fit boundary value problem,” in which at the boundary the values of
the potential itself are presoriied. Aooording to what has been said above our region is a cylinder
whose generating lines are parallel to the velocity F, hence, parallel to the Y axis, and for each

point on the boundary we relation ~y= – o (ii which the dashes indicate bound~ vtdues) is

prescribed. Integrating this relation for each generating line gives.

-J-CO

If we go suftlciently’far upstre- every influence of the aerofoil vanishes; therefore for y= – a,
@=o; and hence y= – co is taken as the lower limit of the integral. By this, then, we obtti

the boundary values of the potential ~ (y).
The complete calculation of the added potential @ for the entire interior of the tube or jet is .

fairly &fEcuIt. If we concern ourselves, however, only with our main problem, to determine
the corrections which must be applied to our experimental results, then we can again assume
that the veIooity componenb perpendicular to the axis of the tube in the plane of our aerofoil
are haIf as large es at a great distance behind it. This consideration, which proceeded from the
comparison of a vortex filament proceeding to infinity in one direction only with one proceeding
to infinity in both directions, holds here exactly as well as in the cases discussed previaudy.
We can therefore pass here as before from the space problem to a uniphnar one if we calculate
the phenomena far bebind the aerofoil. Our boundary conditions for the uniplanar problem are,
for the tube, &= o, for tho free jet, ~= const. The last condition may be interpreted speoielly
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conveniently if use is made of the method of treatment of section 28, Since in this, for the end

of the impulse phenomenon, @= J ~ (p.– p) dt, == const. means simply that P= const.,’ which;

indeed, was the original boundary condition for the free jet. .

31. The conditions stated in the preceding section can be secured most easily for a jet, o!
tube, of a circular cross section. In this case the added motion is obtained very simply by
assuming for every vortex flowing off an equally strong one outside the circle, at the point cmt-
side corresponding .to the one inside according ta the reciprocal r~dii. If the direction of rotti-
tion of the external vortex is taken the same as that nf the interior one, then at the poinb of
the circle tho boundary condition for a free jet is obt tiined; and, if opposite directions of rotations
are taken, then the boundary condition for a tube is satisfied. This may be expressed by saying
that there is combined with the aerofoil another obtained by reflexion according to reciprocal
radii, whoso circulation at corresponding points is the s&ne in absolute value as thot of the
actual aerofoil, and for the jet it has the same sign, but for the tube the opposite sign.

The exact calculation has been made for a straight monoplane in the middle of tho jet,
assmning the lift to be distributed according to a htdf elIipse. If b is the span of t.hc,monoplan(!
and D the diameter “of the jet, then’ the disturbance velocity Wtcaused by the jet boundary fLt

the distance z from the middle of the jet is

.(l+$!?+~d+~?+etc.w’=&f
)

(70)
in w~ch ~= 2xh/Dz.

The added drag calculated from this vclocity according to equation (38) is found to be

(71)

A similar calculation for a uniform lift distribution gave for the first term in the fmmda
f& the drag the same.value as in equation (71).’ It appeam that the other terms of the series
have but litfle importance with the usurdratios, so that we can limit ourselves to the first term,
An approximation treatment shows, further, that any small wing system, in the middle of the
circular jet gives rise”to the same expression. We can therefore write for the total induced
drag of the wing system in a jet of cross section Fo, if the surfa~e F’ is again introduced from
section 28,

‘=$x++%) (72)

For a tube of circular cross section the same disturbance effect is found, but with the oppo-
site sign; gnd therefore we have the approximation formula for the drag

‘=$x+’+ (72a)

The correction, owing to the consideration of the finite cross section of the jet, is for the

ratios ordinarily used not small. For ~ =~, it is already one-eighth of the induced drag,

Formula (71)gives 0.1262 instead of O.125;”the corresponding formula for uniform distribution
gives 0.127. It is seen, therefore, that the differencemme not great, and that the approximg-
tion fornuda (72) is satisfactory for most cases.

For a tube of rectangular cross section the calculations would have to be made in such a
manner that the aerofoil was mirrored at all the walls an infinite number of times, like a check-
erboard. Further development of the calculation le~ds to elliptic functions. It has not yet
been carried through. One can assume, howeve~ that for a tube having a square cross section
the influence of the walls will be af about the same magnitude as for the circle having an equal
area.

.
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G. APPLICATION OF THE THEORY OF AEROFOIIS TO THE SC!BEW PEOPELLEE.

32. The fundamental ideas of the aerofoiI theory can be applied step by step to the screw
propeI1er. For the elements of the blades the KuttaJoukowski formula holds, viz, that the air
force is perpendicuhir to the velocity c of the element wft.h reference to the air and that, per
unit length of the blade, it has the value PT’C. Corresponding to -what has gone before, vorti-

. c= will arise at the blade, havirg a vortex strength per. unit length equal to ~. If we wish

ngain to construct a theory of the first order, that isj if we agree te consjder as srmdl the air
fmces and the velocities produced by them, then again the proper motion of the vortices wUIbe
smalI and therefore in a fit approximation may agpin be negkcted. The vortices then have
the shape of screw lines and form vortex ribbons which-if for the sake of simplicity we assume
straight radial blades-have the shape of ordinary screw surfaces.

The cakdation of the velocity field of a screw vortm is markedly more complicated than
that of a rectilinear vortex and leads to functions which thus far have not been studied in detail.
In spite of this it is possible, as Dr. Betz has shown, to prove a series of generaI theorems ~ery
similar to those of 3funk for multiplanes. Since the velocity c is not the same at the separate
blade elements,we must speak of the” work lost” where Munk speaks of drag. The work applied
for the motion of the propeller is composed of two parts-useful work + work lost. The latter
in our ideal case, where friction is ~cluded, is transformed completely into kinetic energy of the
air. The kinetic energy stands again in close connection with the -rort- system produced by
the propeller. Bet-z proved, among others, the foIlowing theorems:

(1) If two elements of a propeller blade lie upm the same radius at distances x and f from
the axis, then the work lost at the point $ due to the disturbance docity catied by the sir
force at the point z is equal to the work lost at the point z owing to the disturbance velocity
caused by the air force at the point &

t2) This theorem must be somewhat modMed for two elements whioh do not lie on the same
radius. It reads: The work lost at the point ~ due to the disturbance velocity caused by the
air force at the point z is of the same amount as the work which wouId be bat at the point z if
the screw vortex proceeding frcuu the element at t were to pass out forward in the prolongation
of the actual vortex instead of going backward.lz

(3) This last theorem leads at once to the following relation for the sum of the two amounts
of work lost: The totaI work lost due to the mutuaI action of the sir foroes by two blade elements
at points z and t is the same as the work which would be lost at one point alone if the screw vor-
tex proceeding from the other point were to ex@md to infinity both forward and backward.

It is easily seen that this theorem is petiectly analogous to the shgger theorem of section
95, for if tie Vorta “of the inducing element extenda in both directions, then the position of the
element itself on its own vortex strip is immaterial as far as the velocity field produced is con-
cerned.lS It is therefore true of screws that nothing is changed in the total energy-loss if blade
elements are displaced .jn any way, without change of theti air forces, along the relative st.ream-
[ines psssirqgthrough them (i. e., in this case, sorew lines). This natudy is connected again
with the fact that the totaI amount of the energy loss depends only upon the fiaI distribution
of the vortex systems, not upon the relative position of the places where the separate. vortices
arise:

Theorem No. 3 will be of use to us also in what foIIows. It can be made clearer by the fol-
lowing consideration. The field of the vortex ribbon of a lifting element dies away very quickly
for-ward of the element, but in the rear it extends o-w the entire length of the path traversal.
If the sum is formed of the two mutual losses in work of two elements at the points z and g,we
can proceed! owkg to the stagger theorem, to displace one of the two “elementsalong its screw
line so far bachvard that ita velocity field is no longer appreciable at the position of the other

mInti@~of@atiMti_mv-kto&~
u The Lransversa vatex In thk case eaneels out compIeteJy In the det%mtoa &al of the VeIccity field, Sinca itSppeersMe&withOppositb
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undispkwed Qlement. At the same time, however. the infhe~ce of ~helatter element won the
fhst is increased since its vortex ribbon, viewed from the new position of the fira~hnen~, extends
as far fo~ward as backward. The sum of the two tiutual losses in work is reduced in tMsmanner
to the loss which the velocity field of the front element produces upon the displaced one.14

(4) The most important of Bets’s theorems, from a practical standpoint, furnishes the com-
pleta analogy to Munk’s theorem.concerning the wing system having the least drag,, find, cmrc-
sponding perfectly to the statements in sections 27 and 28~may be expressed thus: Th.c flow
behind a propeller having the least loss in energy is as if tlm screw surfaces passed over by tho
propeller blades were solitied into a solid @e and thiy were displaced backward in the

nonviscous fluid with a given small velocity. The potential diflcr-
dP

m’

ence between the front and rear sides of a screw surfuce at one and
the same point furnishes, then, again the circulation I’ of tho corrc--.4.

v c spending point of the propeller blade.
A short probf of theorem 4 will be given. For this purpose the

dQ
“Xu principal equations for the action of a screw must first bc dcduccd.

The screw is imagined to be displaced with the velocity u relative
w

to the air, and to rotate at the same time with the angular vcloc,ity w
FIQ.5S.—Veloc1tyflald near a blade A blade element at the distance z from t.hoaxis has then, with rcf-

OfaWe’w-propeller.
erence to the air,which in the, theury of the fit order may be

assumed ta be at rest, the velocity c, with the coryponents v and m’.. (See fig. 58.)
If no vortex were produced, then, with the assumption of a nonviscous fluid, an air force

dP would arise, which, accordfig to the Kutta-JoukoRrski th.eorema,would Lo pcrpcmliculnr
to the velocity c and -wouldhave the value, for a blade element of hmgth d.q

dP = p~cdx (73)

The force dP is decomposed into two components, of wtich the one. in the direction of v
interests us specially, since it is applied to the screw. This component is

&= dP . CO%$=PrX@(fX (74)

The total thrust, if there are n blades, is th~ L_

J__s=pu~ i’ Xdx (75)
o

The other component
dT=dPsin E.=pl?vax (76)

furnishes a contribution as a torque to the rotation moment. It b seen at once tlm~.dfl . v-=
dT . z u, i. e., the useful thrustwork is equ~ to the work done by the torque hitherto used
in our calculations. Thjs depends immediately upon our assumptiort that tho force dP is
perpendicular to the velocity c. But the screw Mades actual)y produce a vortex systuu and
we must ask as to the reaction. of the vortex system upon. the phenomenn of a screw. WC
shall assume, exactly as in the aerofoil theciry, that we turn the blade profile in such a manner
that the lifting forces desired by us actually conm into play. Since we m intcrcstod here
merely in the loss in work caused by the vortex system, we have to do only with the drtig
components caused by the vortex system, This depends, exactly as before, upon the wlucit,y
componant perpendicular to the velocity of motion of the element, wfich in this case equals c.
We shall again designate it by w, The added velocity component w furnishes a drag in l.hc
direction of motion equal to

#
dQ=dP ~=P~W b (77)

The loss of work per second is therefore . . . . .

dQ . c=prb . ti . C (=dP . w)

MTh[~~~ ofth@it can be appl[ed, natially, h & ~md wij~o aamfcde end fornkhm E wnvenlent deduction fok“tie eum 0[ the ‘
drags WD+ %.

●
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If now, according to f@re 5s,
loss of work
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we put c= v/sin E, our problem is to make a minimum the tot.aI

s‘“rudx
L =@; _T––Oslne (78)

The variation of this quantity must therefore be put equaI to zero. ‘We shall proceed, for
this purpose, similarly to the way Munks theorem was deduced in section 27. We shall
change by small amounts the circulation at two places, which may reach from ZI to ZI+ dxl
and from + to Xz+ ib+, in such a manner thmtthe total thrust remains unchanged. According
to equation (75) we must make

ar, . X,d.rl+W, . X,dc,=a (79)

Exactly as before the condition for the minimum is obtained if the loss of energy due to our
added circulation remains unchanged. In order to calculate the loss, let us make use of
theorem No. 3 and assume that the added wing forces are brought into action far behind the
propeller so that the loss is merely the product of the added air force by the vdocity N
which arises from the vortices of the propeller, and therefore for the tit element is equal to

~tirl sedxl. Omitting the conhnt factor, -we obtain as the minimum

from which is derived, m&@ yse of equation (79)
.*l* w**=—- = const.Z1sin q z~ sm.6,

We must compare this cundition with that obtained for the velocity
h a rigid screw surface, when this surface is moved backward with the
velocity w). We then have (see%. 59):

‘w&= WI cm &

But on& screw surface the pitch h is connected with the angle of pitch c
and the radius z by the relat.ionh= 2z-z ttm e.

Multiplying this Iast equation with that for w., and solving, vie get

2rwfx sin EW)n=
h“

and therefore .

(81)

On comparing (81) with (80) it is seen that by a suitable choice of w’ the
due of W=can always be made to agree with that of w*, vihich prows
Betz’ theorem. --

condition—

(80)

components normal

@

- ‘9 ‘-
‘h ~

w“
w’

l%. 5L-rde91fzed mrtex Sy9.
&m of a screw-prl@iPr.

33. In order to learn more accurately the nature of the dktribution of circulation which
we are seeking, we shaU&oceed as if the velocity fieId at great distantes from the screw is pm.
duced by hav~~ the velocity w’ in the direction of the afi imparted impulsively to the rigid
figure composed of the screw surfaces. In a purely qualitative way. one can see that with any
system of screw surfaces havirg a small pitch the air in the interior of the syst& is actu~Y
accderated bachnvard, with, of course! the appearance of tangential velcoity components whose
intensity is a function of the a@e e and is greatest for c= 45°. At the axis itse~ mere is ~ither
au axhd nor a tangential acceleration. Les” simple are the conditions near the outer boundary
of the screw surface where a flow around the edgg of the surfticesoccurs.

In order to obtain a quantitative statement, we shall for simplicity’s sake next think of a
screw having a large number of blades. Our rigid @gge consists, then, of a very large number
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of screw surfaces, lying close together, and therefore the ah is led with difficulty into the intwior.
When the impulse occum it escapes in t~e direction. of the nomals to th screw sufiace. The _
radial velocity components w will be appreciable only in the neighborhood of the ou tcr boun-
dary of the screw surfaces; further in, we may put it equal ta zero approximatdy. For the
tangential components wt ~d the axial component w., the rela~i~ns Md, ss k e~ily See%

wt=w* sin e=w’ cos Esin e

w~=0 Cose= W1-CSX?6.

The angle may be expre~ed by writing
htan 6= —=X=C’2m m x (82)

In this, for brevity’s sake, ~m= ~ is put equal to r’ (r’ is that radius for which the pitch of the

screw, tan ~,”= 1). Then

.—
and hence

We must now determine the circulation around the separate
radius x. ‘ For a screw with n blades the total circulation of the

(8N

-- (84)

blades as a function of the
vortices inside the circlo of

radius z coincides with the line integral for the closed circle of radius x; this circulation must
evidentIy equal nr, where r is the circulation of onc of the screw M&s at

[ the point x. From this tie have

$/ . .

.
~ - 2UX. Wt 2ii-r’w’ x~ _ h~, “

~ “ ~lz+za ()
—— _

n n n (%5)
Q

The ciwve for I’ according to equation (85) is shown in curve I of figure 02.
At the ends of the blades wuvould expect to have a dccrense of the cir-

culation of the same character as~cnmdfor aerofoils.. An approxinmti treat-

t ment can be devised in the .folloyring way: We imagine an infinito series of
; aerofoils which have a distance apart a and are not sta~rered and which

extend irdinitely far toward the left. We inquire what is tho most ftivo~-
able distribution of lift new tie. ends of thwe aerofofls. The distan~~a k
then to be made equal to the perpendicular distance apart-of tho edges of

YmML-Conbrmaltrans two consecutive blades of the screw, i. e., according to @re 59,
formation

,<~; (t+;).
h – r’ ““2i’rr’

a=z cos Cl=—— —
7?/ T12+? c (86)

The problem now, acmr~ ~ the procedure Of sec~on 28) maY be SOIVedbY ●SCC@ the PO-
tential flow around the edges of the.corresponding family of planes and by determining the dis-
continuity of potential at the planes. T@ problem may be solved without difficulty by means
of ccmformal representation. (See sec. 10.) It can be shown that the plane with the s~rnigl~~
cuts M.ahown in @e 60,.w~ch we sh~l Cm the ~ Plane) rnaY be trIWISfOI’IUedinto ~lc uni~
circle (t plane) by the formula

()
1 ‘“12=:log2 t+j (87)

The flow of figure 58 is tranefo~ed thereby into circulation flow around the unit circle; in fact

a+ixv=ic?log t

After a short calculation, by e-ation oft, we have

2=; log COS%;L* ,. .. . (88)

.-
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For the surface around which the flow talw place, and which is given by the streamline r = o,
we have, therefore,

which gives the real dues for negative values of x. The potentials thus obtained or the

velocity equal to 1 of the free flow ( )
b obtain which C must be put equal to ~ , which, accord-w-.

ing to what has gone before, give us the surface F’, form a picture such as is show-nin @e
61. By means of this one can form a definite judgment as to how the circuhdion, and with it
the thrust also, decreases at the blade tips. We can replace the shaded portions of Figure 61
by a straight Iine, having an equal area below it which, in accordance with
the integration performed, must lie behind the blade tips at the &stance

.
at= a log ~= 0.22Ci7a (90j

We conclude from this that, with screws also, the decrease of circulation
at the blade tips has about the same effect as if the screw had a radius dimin-
ished by 0.2207a, and then the air-would be considered uniform in every circle of
radius z (as would be the case for a screw hav& an infinite number of b~ades).

The properties found for the inner portion of the screw and for its edge
may be combined into a single formula, which can be applied as an approxima-

FIG. 61.-PotenKEJ Ok-
trifnedbythe aow of
figure ML

tion formula also for screw; having a small number ‘~f blades. This formula is obtained by
-~ (r—x)

multiplying the value in equation (85) by the expression ~ Cos-l e *
-..—

, which for large values

of ‘~ talias the value 1. (For – z of formula (89) r–z is hers substituted, as is obvious.)

Thus we obtain the formula
~ ~ 4w’r’ zz 7 (r—x)

L, .— . cog+ g T (91)n r’z + @

The curve of I’ according to equation (91) is given in figure 62, for a 4-blade screw and for
r’: r= 1:5, which correspond ta average conditions in practice.

The whole deduction holds, as has already been remarked, for screws which are not heavily
loaded. For screws with heavy loads an improvement can be intro-
duced by calculatkg -tie pitch of the scre-ivsurfaces formed by the

lpem vortices, cm-responding to the state of flow prevaihg in the circuhw
123 ~ Is—xfP ~.~ phme of the screw. Ihstead of writing tan ~= ~, we must write, more

a

FIG. 6!4.-lXetrfbuUon of circu-
r+y

Ietlm. I. Infinite number of ~YEiCtl~, tfMl ~ = ~t
blties. 11. Fonr bhdes a h

? in which ~ is the velocity of fiightj since in
m——

the dfsta~ce of two vortices 2
@eeF@ .S!4.1 the screw disk plane half of the fired disturbance velocities is already

present. A useful approximation is obtained if, retaining our formulae, v is put equaI to V+ ~’,
!

and therefore r’ is put equaI to ~+;.
.
After the circnIation is lmotvn~the distribution of -t and torque may be calculated

eady by means of equations (74) and (76), and thus, following the method used in the aerofoil
theory, the requisite widths of the blades and angles of attack maybe determined in order that
for a given working condition (i. e., T’ m d w’ given), in-which the screw is b have the. most
favorable performance, ~ the ~ormation may be dedu~d from tie theoI’Y. BY ta~g ~~
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account the more. exact velocity relations in the propeller-disk plme this information may
be improved.

.

The aerofoil theory has numerous further applications, An ,invcdigation of curd flighk
specially of themoment%mportant in discussionsof stability-qround the longitudinal mis in t.hc
case of a wing moved in a circle, is at present being made, nlso tha calcul~tion of the mmncmL
of a warped wing. A series of not unimportant single questions must wait for a further im-
provement of the theory, e. g., various conclusions spociaIly concerning properties of profiles,
influence of curvature, etc., can be reached, if we pass from the lifting lino to the case of n Iond
distributed also aIong the chord; for the trr%trnefit of a wing set obJique to the direction of
flight the assumption of a load distributed rdong the chord is neccssnry sinco in this cnso the
conditions contradict the “ lift~~ line.” Invest~ations of this kind, which cm be accomp-
lished only by very comprehensive numerical calculations, were begun during tho .w~r but
since then, owing to a ~ack of fellow workers, have had to remain unfinished. A similm st.atc-
ment also applies to the ca.lculationa of a flapping wing already begun, in which ono is Likcwim
forced to assume. the lift distributed ulong the chord, since otherwim tho result is indefinite.
Therefore much remains b he done.. ”

‘MOST IMPORTANT SYMBOLS.
P =density. -
~7 =velocity of the airp18ne.

u, w, u=velocity components in ke X, Y, Z directions. (In thecaseof an airplam X k in the tlirwtion of the
span of the wings, Yie in the direction of fright, Z is vertical,)

q=p$=dynamical prssrmre.

b =span of a wing (“Breite”).
t =chord of a wing (“Tiefe”).

h =gapof a biplane (“H6he”).
J’ =area of surface (=b . t) (“Flhcha”).

A =Iift(“Auftrieb”).
w =drag (“ Wider@md“).

–Iift coefficient(=2 K, “abeolute“).,a=&

If
k“ ~q E drag coe5cient (=2 & ‘{abedute”).

a =angle of attack.
r =Circtitiorl.
@ =veIocitypotentiel.
$ =8tream function.

LHl! OF THE MOST IMPORTANT LITERATURE.
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*

A. GdTTINGEN PUBLICATIONS.

L. PRANDTL: Tragfltigeltheofie I. “und 11. bfitteilung. NacIiL von der Kgl. Gcsellechaf t der Wiinecbaftcn,
Math. -phys. Klaese 1918, S. 451, u. 1919, S. 107. (AerofoiI Theory,. I and 11 Communications. Nachr, Kgl.
GmslIschaft der TWenachaft. Math. -phys. Clame, GW@en, 1918, p. 451, and 1919, p. 107.)

— Trr@Mchen-Auftrieb und -T$5deretand in der Theorie. Jahrb. der WiienschaftIichcn GeeellachafLf. Luftfahrt,
V. 1920, S. 37. (Aerofoil Lift and Drag in Theory. Jahrk d. ‘Wseene. GezoNe,f, Luftfahrt, V. 1920, p, ?!7.1,

— Der induziert.e ‘Wideretand von Mehrdcckern. TB Bd. III. S. 309. (The Induced Drag of Multiplancs, TB.
Vol. III, p. S09.)

G. FUHRMANN: Theoretiache und axperimentelle Untereuchungen an Ballonmodellen. Jahrlmch 1911/12dor 3folor-
luftschiff-Studiengesellechaft, S. 05. (Theoretical and Experimental Invakigationa of Modefa of AirebipBodies.
Jahrb. 191.1/12d, MotorLuftachiff-Studiwedle,p. &.)



APPLJCATIOITS OF MODERN HYDItODYNA3flCS TO @ONAUTICS. 216

A. BKTZ: Die gegenseitige Beeintluawmg zweier Tra@Mchen. Z. F. M., 1914, S. 253. (The kftitual In6uence of
Two Aemfoils. Z. F. M., 191% p. 253.)

— [Tntemuchw eber Jo&ti’~en Tra@&e. Z. F. M-.,1915, S. 173. (Investigation of a JoukowBki Aero-

foil. Z. F. if., 1915, p.173.)

— Einllusa der Spannweite und l?EichenheImtu.ng auf die LuRk&te von Trs@chen. TB, Bd. I, S. 9S. (TnSu-
ence of Spu and ‘Whg-Loading upon the Air forces of Aerofoils. TB, Vol. I, p. 9S.)

— Beitriige zur T&@7i@hheorie mit besonderer Berfteksichtigung des einfachen rechtecKgen Flf-tgeIs. Dias@a-
tion, GMtingen, 1919. Anszng in Belhft H der”Z. F. M., 1920, S. 1. (Contributions to the Thsory of Aerofoile
with Special Reference to the Simple %ctangdar Wii. Dissertation, GOttingen, 1919. Extract in Beiheft.
11 Z. F. ~, 1920, p. 1.)

— Schraubenpropeller rnit gerin@em Energievarhst, mit einern Zusatz von L. Prandtl, Nachr. v. d. Kgl. GeselL
sdaftder Wimmschafte% Math.-phys. KIasse 1919, S. 193. (The Screw RopelLerha@ the L“~t Lass of Energy,
wkb an Appendix by L. PrandtL Nachr. Kgl. Gesdlechaft der Wiinwhaft, Lfath.-phys. Class, CWingen,
191!3.p. 193.]

— Fiine Erweiterung der Schraubenstra&heorie. Z. F. M., NEV, S. 105. (An Extension of the Theory of Screw
Jets. Z. F. M., IWO, p. 105.)

M. MutiK: Beitrag zur Aemdynarnik der FIugzengtragorgane. TB, Bd. IT, S. U37. (Contribution to the Aemdynmnics
of Lifting Airplane Members. TB., Vol. H, p. 1S7]

— Iqerhnetrirche Aufgaben am der Theorie d- Fluges. Diwe.@tion, GMtingen, 1919. (Iaoperiznetric problems
from the Theory of Flight. Die-sertatio~ GOttingen, L919.)

[:. WIESEMBE~EB: B~tr~ Zur Erwrung d- Wiieltlugee eirdger Zu@3gel. Z. F. M., L914, S. 225. (Contribution

tn the Explanation of the Formation Flight of Migratory Bi@. Z. F. M., 1914, p. 225.)
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aus dem Rwsischen tlbersetzt von .Drzew&cki, Paris, 1616. (On”tbe Contours of Airplane Wings. Z. F. M., 1910,
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R. &ZAMMEL: “Die hydmdynamischen Grundlrgen des Flnges?’ Brannsch~ 1$17. (The Hydrodynaroic Princi-
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After thiE memoir ~ written, two papem, by R. Fuchs and E. Trefftz, on the theory of aerofoiIs appeared, both
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