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AERONAUTICAL SYMBOLS.

1. FUNDAMENTAL AND DERIVED UNITS.

Symbol.

Length "--.... [

Time ..... ! t
Force .... 4 F

Metric.

Unit. I Symbol.

meter.. ' m.
second ..................... _ sec.
weight of one kilogram ...... kg.

English.

Unit.

i foot (or mile) ..........
', set.ond (or hour) ......

weight of one pound...

Symb_.

ft. (or mi.).
see. (or hr.).
lb.

[ ....... i - " J i
Power...

Speed ...... P kg.m/_ec. ................... _.......... i horsepower ................ re:see ...................... im. p. s. : mi/hr .................

Weight, W= rag.
Standard accclcration of gravity,

g = 9.806m/see3 = 32.172ft/sec2
W

g
Density (mass per umt volume), p
Standard density of dr), air, 0.1247 (kg.-m.-

see.) at 15.6°C. and 700 mm.--0.00237 (lb.-

ft.-see.)

2. GENERAL S]'MBOLS, ETC.

Specific weight of "standard" air, 1.223 kg/mY
= 0.07635 lb/ft2

Moment of inertia, rnlc2 (indicate axis of the

radius of gyration, k, by proper subscript).

Area, S; wing area, S_, etc.

Gap, G
Span, b; chord length, c.

Aspect ratio = b/c

Distance front c. g. to elevator hinge,fl
Coefficient of viscosity, _.

3. AERODYNAMICAL SYMBOLS.

True airspeed, V

1 pV 2
Dynamic (or impact) pressure, q=_

L

Lift, L; absohte coefficient C_-q, b,
D

Drag, D; absolute coefficient C, =_._

Cross-wind force, C; absolute coefficient
C

Resultant force, R

(Note that these coefficients are twice as

large as the old coefficients Lo, Do.)

Dihedral angle, 7
]_

Reynohts Number- p-_-, where l is a linear di-
mension.

e. g., for a model airfoil 3 in. chord, 100 mi]hr.,

normal pressure, 0°C: 255,000 and at 15.6°C,

230,000;

or for _ model of 10 cm. chord, 40 m/see.,

corresponding numbers are 299,000 and

270,000.

Center of pressure coefficient (ratio of distance

of C. P. from leading edge to chord length),

G.
Angle of setting of wings (relative to thrust Angle of stM)ilizer setting with reference to

line), /_ lower wing. (i,--i,) =fl

Angle of stabilizer setting with reference to Angle of attack, a
thrust line i, Angle of downwash, E
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REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN

By L. B. TUCKERMAN

This report is based on a study made by the writer as a member of the Special Committee

on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee

for Aeronautics.

The increasing interest in airships has made the problem of the potenti.al flow of a fluid

about an ellipsoid of considerable practical importance. In 1833 Green, 1 in discussing the

effect of the surrounding medium upon the period of a pendulum, derived three elliptic inte-

grals, in terms of which practically all the characteristics of this type of motion can be expressed.

The theory of this type of motion is very full)" given by Lamb, 2 and applications to the theory

of airships by many writers. 3 Tables of the inertia coefficients derived from these integrals are

available for the most important special cases. 4 _ These tables a.re adequate for most purposes,

but occasionally it is desirable to kaow the values of these integrals in other cases where tabu-

lated values are not available. For this reas.on it seemed worth while to assemble a collection

of formulse which would enable them to be computed directly from standard tables of elliptic

integrals, circular and hyperbolic functions, and logarithms without the need of intermediate

transformations. Some of the formuhe for special cases (elliptic cylinder, prelate spheroid,

oblate spheroid, etc.) have been published before, but the general forms and some special cases

have not been found in previous publications.

The additional inertia of the translational potential flow of a fluid about triaxial ellipsoid

is proportional to the three coefficients

KI= _ abc kl, K:=_ abe k2,Ks= _ abe k 3

Here _3_ abe is the volume of the ellipsoid and

O_o _?o
kl=__X0 , k2=2_0, k_=_:-__0

The additional moment of inertia of the rotational potential flow is proportional to the

three coefficients

b2+c2 k'_,K'2=_ " c2+a2 a2 +bzK',=_ abc 5- aoc _-- k'2, K'_=_-_ abc _5-- k's

Here k'l, k'_, and k'a are given as factors of the corresponding moments of inertia of the ellip-

soid itself and

_ (b -
k'l-\b2 +c2 j b2 c2

_- (_ - _o)

with symmetrical expressions for k'_ and k'_.

George Green: "Researches on the vibration of pendulums in fluid media." Trans. R. S. Ed. 1833.
Horace Lamb: "]tydrodynamies" (4th ed. Camb. 1916), pp. 132-147.

t See, for example, Max M. Munk: "The aerodynamic forces on airship hulls." N.A.C.A., Report No. 184, 1924.

' Horace Lamb: "The inertia coefficients of an ellipsoid moving in fluid." O.B.A.C.A., R. & M. No. 623, 1918.

H. Bateman: "The inertia coefficients of an airship in a frictioniess fluid." N.A.C.A., Report No. 164, 1923.
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In the above formulae ao, flo, and % are the special values for X=0 of Green's integrals

f dX h'8=abc dX i ('_ dXa = abc (a 2+ X) (b 2+ X) A' _ = a°cjx (c s_-_) h

a _b-_c _= 4(a'+X) (bs+X) (ca+X)

To transform these integrals into the standard Legendro form substitute

This gives

and

Then

_ /a_Lc 2 ks=a s-b _
sn (u; k) = snu- _/a-r_, a2_c-- _

b s _ c 2

<I, M2=aS_c---_-_ <1

a2_ c2 b2 dn2u, en2u
a2 + )" = sn_u -' + )' = (a2 - c2) S_u c2 + X= (a s - cs) sn2u

dx 2
-- du

2 abc _'u 2 abc 1
a= (a_-_c:)a/_)o sn2u du= (a2_e)sl _ ]¢2[u- E(u)]

2abc fon snSuj 9abc 1 [8= (aS_c2)3/s _ au= (a2 c2)S/s kSk, 2 E(u) -k'2u-k 2 snu cnu']

Here

and

2abc ('u snSu _ 2abc 1 rsnu dnu l_/= (ai:_-c2) s/z J0 dniuaU=(a2 - c2)3/sFSL cn_ E(.)

snu dnu /(a2-c 2) (be+X) snu cnu /(a_-c 2) (c2+X)
cnu _I/_-s_-_ (cz + X)' dnu - _/(_-_ (b 2+ X)

/a_ cs . I_- cs
u=sn-' ., _._, _. =F(¢; k) where

_P= sln-l-_/_-_

The values of u=F(e; k) and E(u)= E(_; k) can be obtained directly from standard tables

of elliptic integrals.

NowE.--The notation of elliptic integrals is not standardized. Some authors write the elliptic integral of

the second kind as a function of the amplitude ¢. Some write the argument first and the modulus or modular

angle second; some reverse the order, and some use one form at one time and another at another. Thus we may

find the following forms:

u-_F(_; k)-_F(k; e)--_F(e;O)_F(O; _)

E (u) __ E (u; k) = E (u; o) ----F, (_; k) _ Z (_; o) _ E (k; _) _ E (0; _)

The more usual tables tabulate the functions according to the amplitude _ and the modular angle 0 so that

u__V(_;0) E(u)-_g(_;0)
where

af_--- cs , / a_ -- b _
-=sin-_ _a-_-_-_x , 0=sin-_ ya-V_-__c_

However, the latest, and for some purposes the most convenient, tables by R. L. Hippisley t tabulate u= F_,=
u

F (_; 0) and E (u) =E (r)+eE according to r, where r_=90%=90 ° K'"

Smlthtmnlan Mathematical Formulm (1923), pp. 2_-309.
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When X = 0 the formulae simplify to

2abc
ao = (a 2_ b_) (a 2_ c2),/s [% - E (Uo)]

bs _ cs2abc (a s- cs)'_ E (Uo) -8o-- (a s _ b_) (bs _ cs)
(as - bs) c -]

Uo a/__--_)_JsJ

Here

"/o=2

ac

!-b (a s-c s)1/2E(uo)

_0 = sin-' _/a-V2- c2 sin -1 e, u, = F (co; 0)
a

0 = sin-' _/a-i-Z__c2 = sin-' e,'- E (%) = E (_o; O)

where el and e_ are the eeeentrieities of the central sections normal to the intermediate (b) and

minimum (c) axes of the ellipsoid.
These formulm are suffieient for the direct evaluation of _'_, k:, i:_; )I"1, k'_, and k's in the

general ease. However, in speeial eases the elliptic integrals degenerate into algebraic, circular,

hyperbolic, or other functions, or the eoeffwients take on indeterminate forms needing special

treatment. The results for many of these special eases are more readily obtained by direet

integration of the special differential forms, but for uniformity are discussed here as limiting

forms of the general ellil)tie integrals.

1. VEto" LONG m.LIPSOID. Limiting ease an elliptic cylinder. :ks a heeomes large so that
7/"

£ and b become negligible k-I and at the same time eo-'_"higher powers of hoth a a

2a
re-log c and E (%) -I

In the limit since x log z-0

2a, = 0, 80 = ' %---_--_

1+ c /+_

These are of course more directly obtained by treating the two dimensional flow aroun(t an

elliptic cylinder. 7

2. ELLIPTIC DISK. c--O. To quantities of the first order in c

2c
O_o= b (a _ - b:) [b2u" - b2E (u0)]

_C

Bo=b (a __ b2) [a:E (Uo) - b_uo]

C

%=2 [1-_ E (%)]

In the limit c=O, _°=2' so that %= K and E(uo)=E, the complete elliptic

_/hs- b2 _
mod _--e.

a

Then in the limit ao= _o = 0, _o = 2, so that k_--/c_ = 0, but/¢, = _.

Thus K_ = K s =0 and Ka needs special evaluation:

K_ = _-abc ]Q=-_-abc2 ___°o= _-abc 1- _ E (uo)

E (%)

integrals,

T Horace Lamb, 1. e., pp. 79--86,
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In thelimitc= 0

Ks=-_ -_, rood k---
a

B

lr 8 s
when a = b (circular plate) k = e= O, E= _, so that Ks = 5 a.

Again to quantities of the first order in c

/c'- y0-&
' -Z- (vo- 8°)

k8
\a' +b 2} _ a_ - b'

a_+ b_ q3o- ao)

I
In the limit c=O, k's=O, but k'l and k'2 become infinite a8 -. To thisc

mation.

c [(2a 2- b2) E (u o) - b2uo]
b(a 2- b2)2 - ('to- &) =2

order of approxi-

so that when c = 0

2 - (7o- so) = 2 --
¢

b(a2 - b2) [(a 2- gb2) E (u0) + b2uo]

K, __,Tr ab" (a2- b2)
' - 15 [(2a2- b2) E- b2K]

K, =_Y a3b2(a2- b2)
2 i5[(a2 2b2) E+b2K]

• 7f
When a-b (circular disk), these become indeterminate, since k-0 and E-K=_.

_ra2- b2 _i, 16 i
quantities of the first order in (a2-b2), (K-E) _ a3 ,sothat K'_=a2_a.

3. OBLATE SPaEROID. a=b>c, k=O, k'=1.

• /aw--c2
E (u) = u = _ = sm-'_/a--V_ = sin-'

and Lira _1 [u-E (u)]=l/2 (_- sin ._°cos _)

k-O

then 2a'c 1 23/i--e 2 1 [" e_l :-e_

a=O----(a__c2)_t_ _(_o-sin¢cos _o)- e3 2 _ 1+_ )

ea2c __ _) -_ \ 4U__e_7-_ (a __ c2)_r_(tan

When X=0, _=sin -t e, so that

_/_-e_ ( _ e_/l_e 2)ao=8o= e_ sin -le

e4_ -f' _ e)3'o= eS (_/i---_ -sin-'

To
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In the limiting case c = O, e = 1 (circular plate) these give as before

K,= K,=O, K,=8a '

-, 16 5 "7, =,_

4. PROLATE SPHEROID. a>b=c, k=l, k'=0, _o=gdu. Then

where

and

2_
a = (a __ ca)st_(u- tanh u)

= "r = (a '_ac,,:)v't* 1/_, (sinh u cosh u _)

4_ - ca e aca 1 - e*

= _-_' (a'- cl) stj = e_
tanhu=sin_o= _+_ 1+

4(a'- ca) (a + X) e= + _-sinh u cosh u:
ca+_, k

1 -e2+a,

when X = 0, these reduce to

41 +sin _O=log tan (_+_)u=log 1-sine

,a= _ [log l + ei__Z__e_Ze.j_"i

l +e"]

The special cases 3 and 4 are of course more readily obtained by direct integration.

©
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Positive directions of axes and angles (forces and moments) are shown by arrows. 

Axis.
Force 

(parallel 

.

Moment about axis. Angle. Velocities. 

Designation. 1:

- 

Da de Dna Si
Linear

Angular. rg 
axis). 

Longitudinal.. - - X X rolling..... L Y—Z roll U p F' F' pitching... M Z —IX pitch e v q Lateral...........
Normal.......... Z Z yawing...... N X—Y yaw...... 'I' w r

Absolute coefficients of moment 

L	 M	 N 
Ci= gbS C q c	 Cnqfs

Angle of set of control surface (relative to 
neutral position), 8. (Indicate surface by 
proper subscript.) 

4. PROPELLER SYMBOLS. 

Diameter, D 
Pitch (a) Aerodynamic pitch, p. 

(b) Effective pitch, e 
(c) Mean geometric pitch, g 
(d) Virtual pitch, v 
(e) Standard pitch, p. 

Pitch ratio, p/D 
Inflow velocity, V' 
Slipstream velocity, V1

Thrust, T 
Torque, Q 
Power, P 

(If "coefficients" are introduced all units 
used must be consistent.) 

Efficiency ' = T V/P 
Revolutions per sec., n; per mm., N 

Effective helix angle 'I' = tan' (-) 

5. NUMERICAL RELATIONS. 

1 IP= 76.04 kg. m/sec.= 550 lb. ft/sec.	 1 lb. =0.45359 kg. 
1kg. m/sec.=O.01315 Jr	 1 kg. = 2.20462 lb. 
1 mi/hr.=0.44704 rn/sec.	 1 mi.= 1609.35 m.=5280 ft. 
1 in/sec.=2.23693 mi/hr. 	 1 m. =3.28083 ft. 
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