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WING SPAR STRESS CHARTS AND WING TRUSS PROPORTIONS
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INTRODUCTION

Although the coming of the thick airfoiI section has somewhat decreased the number of
airplan= desigged with continuous wing spare externally supported at sevend points, that type
of-construction has not by any means disappeared. The truss continuous through two or three
bays is still commonIy used, and the calculation of continuous beams is stilI making heavy
inroads upon the time of the dcwigner. ‘With the objects of reducing the labor involved in such
calculations and of deriving some general conclusions on the properties of continuous beams, the
curves described in this report have been prepared for publication by the National Advisory
Committee for Aeronautics. In presenting them to the public, the writer takes the opportunity
of acknowledging the assistance of Mr. Otto C. Koppen, who has done a very considerable pro-
portion of the work of preparation of the materiaI.

SUMMARY

In order to simplify calculation of beams continuous over three supports, a series of charts
have been calculated giving the bending moments at alI the critical points and the reactione at
all supports for such members. Using these charts M a b=is, calculations of equivalent bending
moments, representing the total stress= acting in two bay wing truss= of proportions varying
over a wide range, have been determined, both with and without allowance for column effect.
This leads finally to the detetiation of the best proportions for any particular truss or the best
strut locations in any particular machine. The ideal proportions are found to vary with the
thickness of the wing section used, the sspect ratio, and the ratio of gap to chord.

BENDING MOIMENT CHARTS

Of all the wing calls built with spas continuous over three or more supports, at least 75
per cent of the.tot.alnumber involve calculation for three supports ordy. If the loading per unit
length of spar be assumed uniform in such a case there are only three variables which ailed the
bending moments, reactions, and bending stresses for unit loading. Those quantities are
dependent only on the length of the inner bay, the length of the outer bay, and the length of
the effective overhang, and if all results be reduced to a common total length, as can easily be
done, one of these three variables disappears and curves of moment, reaction, and stress can
be plotted in term of the remaining two.

‘With the object of simplify@ the calculation of two-bay continuous tmea and of making
it apparent at a ghmce what gain or loss can be expected from a change of arrangement of the
wing bracing, a number of continuous be- have been calculated and curves have been plotted
from which it is possible to read off at once the results for any case. The calculations were w
based on the assumptions of a uniform loading of 1 pound per inch length of spar and of a total
length of spar of 100incbs. The spar was assumed to be held by a horizontal pin at its inner end,
so that the bending moment there was zero. The bending moments for all cases on these SSSump-
tione are plotted in Fwes 1 and 2, the choice between the two sets of curves in any case depend-
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kg on their relative ccmvenisrwe.for the.,particular problem in hmnd. In F@re 1, curvee of tho
absolute values of the bending moments (signs being ignored) at the outer support, at the middle

.-

support, and at the point of maximum moment in the-middle of each bay have been plotted
against the length of overhang, each cume relat&g to a particular assumed value of the length
of the inner bay. In Figure 1, as ever~here eke in this text, A denotes the outer support, B
the middle one, and 0 the innermost. M therefore represents th~ bending moment at tho
inner strut of a two-bay wing truss, .if.fCB that in the middle of the inner bay. In lhgure 2 the
same thing has been done, but with the length of the i_Werbay used as the“ab&iesa and w&JIa
separate set of curves for each length of overhang (the curves being separated by intervals of
5 per cent of the total length, or 5 inch= in a 100-inch spar, in both case-s).

-.

The simplicity of the application of these char{s can best be illustrated by immediate
solution of an illustrative problem. Supposing a spar to have an inner bay 27 inches long, ~n
outer bay 52 inchee long, and a 21-inch efkctive overhang, the bending moments are read off
from Figure 1 by going up along an ordinate at the abscissa corr~ponding to the length of over- “. ., -.

1

4sso5!im
ng. 2 Perc~t Iqgfh of tier bw

hang until a point two-fifths of the way from the 25 per cent to the 30 per cent curve is reached.
The bending moments are found to be:

222 lb, ft. at the outer support;
179 lb. ft. at the middle support;
140 lb, ft. in the outw.bay;
27 lb. ft. in the inner bay.

The moments in the bays are, of course, of opposite sign from those at the supports. Exacdy
the -e resuh can be obtained from Figure 2 by running up along the 27 per cent line to an
interpolation between the 20 per cent and 25 per cent curves.

As a rule, of course, the loading is not equal to unity, and the length of the beam is not 100
inches. In more general cases the bending moments read from the curves can be corrected by
multiplying by the actual intensity of loading and by the square of the ratio of the length to
100 inches.

In Figures 3 and 4 the-same work has been do~e for the reactions at the three supports.
Taking” again the problem just solved, the reactions can be read off direcJly as 48 po&l.s at
the outer support, 45 pounds” at the middle one, ani 7 pounds at the innermost. The cor- ‘–
rections to be applied are the same as before, &cept ‘that the index values of the reacti~ns are
multiplied by the direct ratio of the lengths instead of the square of the ratio,

--
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fig. 3 Perced &gfh of overhmg

.

In Figures 5 and 6 the moments and reactions are simikrly given for the case of complete
fkity of the spar at the inner end. They correspond, iR the method of plotting, to F~es
1 and 3. Although it is very rare for a fitting to be used which holds the spar so lirndy that
the slope is actually unchanged under load, partiaI b.ity is cotion, and its effect can readily
be determined by comparing the figures for complete &ity and complete freedom and taking
an intermediate value.

In addition to facilitating the calculation of bending moments and reactions, such charts
serve as the basis for calculations of tot.il stress and for a study of the effect of a change in the
spacing of interplane struts, as the compressive or tensile stress may readily be thrown in with
that due to bending.

TOTAL STRESS CHABTS

The imtd stress in a spar is given by the familiar formula:

f .7+;

which can also be wcitten for sections symmetrical about the neutral axis in the form

f=:(g+~)

w 1 60
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where d is the total depth of the spar. It has been ahown by the writer 1 that the radius of
gPation about tie neutral X@ for a spar of’ conventional section is in the neighborhood of
,36d. Substituting that value, the stress equation becomes: “. —

The direct stress in a spar, for any given loading ~d a~angement of strut locations, is inversely
proportional. to the gap. The total stress is theref~ made .up of two component, one of
which varies inversely as the spar depth and the oihe?Finversely as the gap, arid their sum, for
any given area of section, strut arrangement, and loading, is a function of the ratio of gap ta
depth of spar, a ratio which may range in magnitude-from 6,6, with a thick airfoil section and
a low gap-chord ratio, to 24 ah the other extreme Qf design praotice, Usually, howmwr, it
lies between E and 20. For any given value of that ratio, cu.rmx of total. stress times s,ection
modulus, or of equivalent bending moment, can be plotted as those for actual bending moment
have already been plotted without-regard to the proportions of the wing trues in any respect
other than strut spacing.

As an incident to the calculation of equivalent bending moments the compressions in the
spar in the two bays were of cow calculated, and the comprwsions in the outer bay of the
upper spar (numerically equal to the tensions in the, inner bay of the lower spar if the inter-
plane struts are vertical) are plotted in Figure 7. The figures there given must be multiplied
by, the total length of the spar, by the ratio of the length of the spar to the gap, and by the
unit loading. Furthermore, they are based on an assumption of equal area and similar strut
looation in the upper and lower winga, and biplane loading correction factors were ignored in
calculating them, so that the reactions of the upper and lower spars at a given strut point were

.6
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the length of the spar by the ratio of spar length
plotted in Figure 7 being unity.

taken as identical. ‘This method is sound
i–the Sti-is “ire vertical and if the unit
loading used as a coeflicientfor the plotted
values is the mean of the loadings on the
two wings.

It is unnecessary to plot the compres-
sion in the inner bay, as its value is inde-
pendent of strut location if the spars are
pin jointed at the inner end. The moment
of the compression in the upper spar about
the lower hinge pin must be numericauy
equal to the total moment about the same
axis of the air loads applied on the two
spars, and it is therefore a constant,
wherever the strum may be placed. The _, -. ~
compression in the inner bay with a unit
loading is always equal to the product of
LOgap, the coefficient analogous to that

In plotting the equivalent moments, instead of drawing separate curves for the two sup-
ports and the two bays, as in the case of the actual Doments, only the largest absolute value
has been retained for each strut arrangement, anl_ cv~es of constant value of m~ximum
moment have then been drawn with length of overhang as ordinate and length of inner bay
as abscissa. Such curves are more ugefulj for this pa:~icular p_ypose, than the type preciously
drawn, for the plots of equivalent moment are intended to serve as a guide to the secur@g of
mtimum structural efficiency in design by the choice of an optimum strut location, rather
than as a direct aid in routine calculation. The equivalent moment curves for the upper spar

1meDeaIgnOCWing SparSaotiorIs,by Edward P. Warner,Aviation, May 20.19=
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Fig 8 percent length of imer bay Fig. 9 Percent lengfh of tier boy

at two values of G/dme given in Figures 8 and 9, and those for the lower spar for a single value
in F~e 10. The diagonals sloping downwa~ and to the right give the length of the outer bay.

It wilI be observed that each of the three charts of equivalent bending moment is divided
into @ree parts by dotted lines. The Ems represent the transfer of worst stress from one
point in the spar to another, and the point in the spar at which the worst stress is found is
indicated by a symbol in each zone of each chart. An overhang length of 22 per oent oom-
bined with an inner bay of 35 per cent, for example, would fall in the zone marked A in Figure
9 and in that marked B in Figure 8, signifying that the mtium equivalent bending moment
in the upper spar falls at the outer strut
when G/d is 20 but at the inner strut point
when G/d is only 8. There is, of course, an

?abrupt break in the form and slope of each ~
envelope curve where it passes from one &

zone to another. :
~Spruce, the material most cmmnonly ~

used in wing spar construction, shows an ~
exceptionally large difference between ulti- a
mate stress in straight compression and
modulus of rupture. For rect.an.g.garspeci- Fig ,0
mens the ratio is about 1.8, the bending “ Per c4nt length of imer bay

stren@ of course be@U the larger, but with I and box spars of the proportions ordinarily
used the inclusion of a form factor for bending causes the ratio to fall off to about 1.4 on the
average. An increase of the proportion-of bending stress will then increase the total d.lowable
stress, and an increase of 140 pounds per square inch in bendirg stress can be bahnced by a
reduction of 100 pounds per square inch in compression, Ieaving the factor of safety unchanged.
This can be allowed for in drawing charts of equivalent bending moment by multiplying the
compressive stress by 1.4, and that~has been done in Figures 11 and 12$which otherwise cor-
respond to Figures”8 and 9. Figures 8 and 9 hold most nearly for metal spars; Figures 11
and 12 for spruce.

t I \
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ALLOWANCE FOR COLUMN EFFECT

In making all these calculations the actual values of all four sets of moments have been
taken as on a parity in finding the maximum equivalent moment to enter in the chart. When
the distance between bays is great in proportion to the depth of the spar, however, the liability
of buckling becomas an important factor, and a bending moment of given magnitude in the
middle of a bay is much more serious than one equally large ati strut point. The exact effect
of buckling in increasing the liability to failure in the middle of a span is not susceptible. of
simple treatment, but a satisfactory approximation for most cases can be made by tho use of
Perry’s formula,

P.—.
“= ‘xP, –i?

-J-

where M’ is the corrected bending moment, M the original bending moment due to latera1 .
loading alone and without allowance for column effect, P the compression in the spar, and
P. the collapsing load under pure compression as calculated by Euler’s formula, the length
of the coluhm being taken as the distance between pointe of inflection in the spar and the ends
being considered as pin jointed.

The ratio of distance between poin”teof inflection to total length of bay and the ratio of
compression stress to total stress both vary widely with int,erplane strut spacings. Taking
account of these variations, the forrqula for corrected bending moment can be written

~~xx”g$=l.kf’t’“ ‘““
-(A)

-.—r— -.. . . . . .I
,.. ~“’ ’.””..” --..—.

where 1is the length between the pointe of inflection, A the cross-sectional area of the spar, k the
radius of gyration of the spar section, fcthe compressive stress in the material due to direct
compressive load, and f’~ the total stress. In the case.of a spruce spar the total stress maybe
assumed to be 5,5oo pounds per square inch at failure, taking a form factor of approximately
.8, assuming a 15 per cent moisture content, and on the further assumption that the ratio of
bending stress to compressive stre= is approximately two to one: The ultimata stress in the
material will of course vary with this ratio, but if the attempt is made to deal separately with
the strengths in compression and bending the expression becomes somewhat cwuphx.. If a
value of 5;500then be assumed, and E be taken as 1,600,000, the expression for corrected bend-
ing moment can be reduced to

“=*”’ ““ ““ ““ ““-
,900 (k/)’’”.””’”” –. .- ___

where L is the total length of bay~ d the depth of the spar, and the other symbols have the
k

same significance as before. The writer has previously shown’ that ~Yfor typical spar sections,

s about .36. If this va?ue be used, the expression becomes

.—. .—

—.—

The total stress as used in these formulas is, of co~e, that due ta the final corrected value
of the bending moment, so that

f’t=~~+j”- .- —

IAviation, 100.cit.
-1 .. . -
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It is desirable, however, that the solution for X’/M should be direct and simp~e, and shouId
invol re only quantities dependent on the geometrical propertiw of the spar alone. Y should

appear only in the final redt. This end could be attained if it vere assumed thatflt =jg $

whereJ is the total stress which would exist in the spar if there were no buckling effect, or

The general equation for culumn effect correction would then become

The correction factors given by this form@ are somewhat too 10W,while those obtained from

the form (A), using f “f..~in place of -7;Y are too high, in some csses very much too” high. The

obvious solution is to-&e a formula &termediate between the two, such M

&f/tp
,,1 +;+ “

-M’—.
U -~ f’, P

1 _ft

Xc!?F
.

The mathematical justification of this procedure need not be given. It is suf%cient to say that
the compromise formula finally arrived at, although admittedly only an approximation, is
found by trial to give redts satisfactorily C1OSSto the truth in the typical csses to which
it has been applied, and for which its remdts have been directly compared with those obtained
by actual cahxdation from a particular set of figures. Such error as does exist is almost aIways
in the direction of safety, the formula givi~mtoo large a correction factor.

In the particular case of a spruce spar, the formula becomes .

The vah.xesof% and of ~ have been worked out for all of the cases of interplane strut spac-

ings covered by the extent of Figures 1 to 4 and ha-re been found to vary through exceedi@y

wide limits. f.When the ratio of gap to spar depth is 8, for axample, the value of ~t at the worst

——
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stressed point-in the middle of a bay in the upper spar ranges from .33 to .93, while, when the
gap is twenty times the depth of spar, the correspond@ spread is from ,16 to .65. The ratio

~ varies as shown by Figure”13, reaching a maximum value of about ,86,

.fC= compressive stress.
j,= totai stress.

l= distance between points of in-
flection.

$
L = distance between supports.

~ Fortunately, however, it happens
:

t H)
that the variation of c x~ j ‘is no linger

? than that of one factor alone, When
t G

~ is 8 the product for the worst stressed

---bay ranges from .18 to .56, with the
fig. Is Per cent Iengti of imer bay highest values reached when the over-

hang is long and the inner and outer
bays are of equal length. The products are plotted in Figure 14. Similar curves are given in
Figure 15 for a gap/depth ratio of 20, the extreme range in that case being from .09 to .41.
The division of the curves of each sheet into two seemingly independent groups, separatad by
dotted lines, corresponds to the transition of the point of worst stress from one bay to the other
(the worst stress being in the outm bay for points to the left of tie dotted lines). While it is,
of course, possible that the worst stress with allowande for buckling may come in the bay other
than that in which it would occur when no such allowance had to be made, that-is unlikely
except when the truss is so proportioned that the equivalent stresses in the two bays are very
nearly equal in any case, so that it will make little dWerence which one is used. The dotted
line was located without reference to any dillerence between compre~ive and bending strengths
of the spar material.

The ratio of L to d is limited by the
necessity of keeping the angle between the
lift wires and the wing spars above a“cer-
tain minimum to provide rigidity tt-- the
structure. Neither in a, Pratt nor in a
Warren truss is it likely that the length of
any single bay of a two-bay arrangement
-willever exceed twice the gap. When G/d
is 8, therefore, the maximum probable vaIue
of L/dwill be 16. The equation of equiva-
lent moment would then become approxi-
mately

-.

—

For the largwt value of the product plotted in F&ire’ 14, this would give M’= 1.45M. The
corresponding maximum when Q/d is 20 is about 14M, a value sc large as merely to signify
the impracticability of designing a spar with the length of a single bay equal to forty times the
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spar depth. In fact, it seems unlikely, with a spar so s&Uow in proportion to the gap, that

the value of ~ d ever fsll below 1.35 for the WOHtstr=ed bay ~ act~~ PraGtice.

f. Z’H*
()

These figures, of course, rdate only to the inger bay, where the values of ~ x ~

their maximum because of the high compressions. If the vahes for the outer bay be lifted

from the sections of l?igures 12 and 13.to the left of the dotted ties # wh~ tie WOmtcon-

ditions are in that bay is found never to ~xceed 1.17 with G/d equal to 8, or 1.90 when G/d is
~o. & ~~eadY noted, ho~ever, it is ~kely that the actual percentage correction for bu~~g

in a given truss, the proportions of which bring it near to the dotted line of transition, would
be materially krger for the inner than for the outir bay, ~d it ~ come%@n@ly *ely

-=

that the introduction of the buckling correction would appreciably shift the trmsition Iine.
The actwd extent of the ch~oe can bast be shown by a couple of examples. Suppose, for
instance, that a wing truss for which Q/d is 20 has its spar length divided into an inner bay
of 36 per cent, an outer bay of 49 per cent, and an overhang of 15 per cent, proportions which

. ___~

f.
()

~ x ~ ‘ (found by inter-
—.-

correspond to a point on the dotted line in Figure 15. The values of

polation from the curves) are then .3o in the inner bay and .12 in the outer. If the length of
—

the outer bay be taken as twice the gap, that of the her bay fl be 1.47 time the gap” me
values of L/d are 40.0 and 29.4,and those of

— —

9(2%)
760

are .26 and .35 for the outer and inner
bays, respectively, corresponding to cor-
rection factors of 1.70 and 2.o8 to be ap-
pIied to the bending moments. While the
difference between these quantities is con-
siderable, the problem is baaed on a truss
of extreme proportions, and the correction
factors would hardly be likely ever to reach
such vahwa in practice. If the length of
the outer bay had been taken as one and a
half, instead of two. timw the gap, the cor-

..=. .–

rections wouId havebeenordy 1.32md 1.47. A similarproblem for a point on the dotted lineinFig-
ure 14, G/d being 8 and the hmgths beirg 33 per cent in the inner bay, 57 k the outer, ~d 10 ~
the overhang, gives correction factors of 1.15 in the outer bay and 1.06 in the inner if the-outer
length be twice the gap. F’urthermorej the basic bonding moment in the inner bay wdl be
smaller than that in the outer if the proportions of the spar are chosen for uniform strass at
the supports as the direct compression is largest in the inner bay, and the larger relative cor-
rection applied to M in the inner bay may therefore be little or no larger in ita absolute effect ‘
on total stres9. lit generaI, therefore, it appears that the difference in the factom along the
tramition he is not great and that no shift of that line need be made. In almost all cases

the worst stress in the middle of a bay with made allowsnce for buckling effect will occur in
the same bay where it would be found if buckling were nonexistent or neglected.

The equivalent bending moments with allowance for buck.@ have been crdculated for
both gap-spar depth ratios used in the preced& work and for tm ratios of length of spar to
gap, and envelope curves have been plotted, just as they were plotted in Figures 8 and 9, without
the aIIowance for column effect. Figures 16 and 17 give the equivalent momenta for the two
spar depths on the assumption that the total effective length of spar is 4.5 times the gap

—
—

.—
.—

—
.—



146 BEPORT NATIONAL ADVISORY COMM-E FOR AERONAUTICS

(surely as Iarge a ratio as would ever be reached in a two-bay maohine in practice), while
Figure 18 presents simiIar data for a spar length of 3.timea the gap and a gap-spar depth ratio
of 20. When LJQ is 3 and G/d is 8 the column effect is 50 small as to be negligible. In cal-
culating these curves both bays have been taken into account in all cases. Any shifting of
the transition Ems of worst conditions from the positions shown in Figures 12 and 13 has
therefore been allowed for.

- /0 I

I
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Figures 19, 20, and 21 stand in
the same relation to those just dis-
cussed as do Figures 11 and 12 to 8
and 9. They are drawn to include
Wowance for the difference lmtween
thebendigg and compressive strengths
of spruce and for the change in allow
able stress with variation in the pro-
portion of direct compressive stress
to total stress.

DISCUSSION OF CURVES—BENDING MOMENTS

Iiispection of the curves in Figures 1 and 2 revgals certain interesting chartictwistics of
the variation of bending moment with the proportions of the truss which are not ut once cyident-
from the three-moment equation, nor even from a consideration from a purely physical point
of view of the conditions under which the beam works. The first point of interest is tho
behavior of the moment at the middle support, which has a minimum value for each lcngtk
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of overhaqg, the minimum being very near~y a Iinear function of the three-halves power of the
length of overhang.

Jf, ~{~.=g96– 1.66 &)’~

where ~ is the len@h of effective overhang as a percentage of the total effective length of spar.
Furthermore, it appears that the minimum value of M, for a given overhang is reached when
the outer, bay is longer than the inner by approximately one-skth the length of the overhang.
If either the inner or the outer bay be held to a fixed length M, decreases steadily, and roughly
sIong R straight Line,as the overhang is lengthened at the expense of the other bay, but that,
of course, is what would have been expected.

As for the momenb in the middIe of the bays, when the overhang is held constant the
variation in both bays is almost exactly linearj the maximum in each bay, of course, increasing
as the length of that bay itself is increased. The rate of change is approx.imately 10 pounds
inchee of moment for every inch of length of the bay in which that moment occurs, the total
effective length of the two bays and overhang still being taken as 100 inches.

When the outer bay is heJd constant, instead of the overhang, both hth and M, increase
as the inner bay increases. The variation stiJl approximates to the Iinear, but onIy roughly,
the moment in the inner bay tending toward a minimum as that bay becomes very short, whiIe
that in the outer bay appears to approach a maximnm,as the overhang approaches zero. WMh
the inner bay held constant, Linenrrelationships are again comparatively roughly observed,
the moment go~~ up in the outer bay and down in the inner as the outer bay is lengthened
at the expense of the overhang.

Since aU the variations of bending moments in the bays with changing distribution of the
points of support follow straight-line laws at least approximately, it is possible to express them
to a first approximation by a pair of very simple equations

Mh = 708–1011 – 144
or alternatively,

ilfm= lo&– 418-,w
and

Mu =91,+. &~–W6

where Ii, Zz,and ?*are the peroentagee of total spar length in the inner bay, outer bay, and over-
hang, respectively. The equation for M, gives Huh correct within 7 pounds inches for
every point within the raqge of the curves, while that for X=x is good within 9 pounds
inches except under the most axtreme conditions. Either is useful as an approximation when

—

.—

.—
—

.-

-—

—

the curves are not available. For the sake of completeness a similar
somewhat more compkrx in form but fitting the curves even more
obtained for the bending moment at the middle support.

M..=W2–1.66 (7Jfl+.39 (71-60+ ~ 1 ‘1$ J .

eq~-ation, necessarily
accurately, has been

This is considerably more simple than the direct solution from the three-moment equation
and gives a result correct within 5 pounds inches at every point. The last moment, that at the
outer support, of course, depends only on the effective length of the cantilemred overhang, and
is given rigorously by . .

.3L= $

REACTIONS

Mthough the variation of the reactions is comparatively simple in form, it does not hjmd
itself to elementmy analytic representation so well as does that of the moments, the curves not
running parallel to each other. When the overhang length is kept constant and the bays varied,

—

the reactions at the outer and inner supporta of course change in magnitude @ the same Sense
as the lengths of the ba~ to which they are adjacent. The middle reaction remains virtually
constant, reaching a minimum when the inner bay is longer than the outer by about one-eighth —
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the length of the overhang and increasing very gradually with change from that distribution in
either direction. The curves for reaction at the.middle.support with tied overhang are, in fact,
very similar in form to the curves of bending moment at the same point under the samo
conditions.

With the inner bay tied in length the reactions~t both tie outermost and the innermost
supports increase with increasing overhang, the former rapidly and substantially uniformly, tho
latter very slowly, especially when the inner bay is long. The reaction at the middle support
drops off as the overhang ~ows. For all proportions within t~e range of ordinary design prac-
tice, the outer and middle reactions are within 25 per cent of the same magnitudo and the inn~r
reaction is less than half as large as either of the others.

EFFECTOF FJXTY AT THE INNER END

As already remarked, a hinge fitting with a vertical pin puts partial restraint on the change
of slope of the spar at its inner end, a degree of fh.ity w&ch may conceivably lie anywhere botwcon
zero and 100 per cent, but which in practice probably is seldo&-l&s {ha~ 20 per cent or mom
than 60. (This, of course, does not apply to cantilever wings of thick section, where tho fixity
must necmsariIy be complete.)

Comparisons of Figures 2 and 5 show &Ie ab.rg~ion in the general form of the moment
curves but considerable changes in detail. As.would be expect@, the minimum bending moment
at the middle support is obtained with a considerably longer inner bay when the inner end is
tied than when it is free. Whatever the length of overhang, the length of the outer bay for
a minimum value of MB remains virtually constant at 38 per cent. By the time this point
of minimum M has been reached, however, the inner support has become the critical Iocation,
M. increasing approximately lineally and very rapidly as the inner bay is lengthened. For a
fixed length of inner bay, M. goes up with increasing overhang.

The bending moments in the middle of the inner bay are much decreased, while thoso in
the outer bay are slightly increased, by fiity. Since it is in the inner bay, where the largest
compressions are found, that faihre by buckling is most Iikely to occur, the use of a fitting giving
partial fhity would be particuhdy useful when a long inner bay has to be used with a shallow
spar. So far as maximum moment at a support is concerned, however, fixity is of comparatively
little use, sinoe, for a given overhang, the value of JL and M. at the pointwhere they are equal
is only about 18 per cent less than the minimum reached.by M with the inner end of the spar
perfectly free in slope. If the comparison of the two conditions be made on the bask. of the
strut location whioh gives the lowest value for the ben~ mom~t at a support (WS is equiv-
akmt ta making MB and Mu equal when the inner end.is fixed) keeping the overhang fixed, the
average decrease of MU by the tity is 40 per cent, ‘while J.& is increased by an aww of
ody 6 per cent, and is actually slightly decreased if the overhang be short. It h- interesting
to note, also, thati the proportions which make J.&and M= equal when there is complete fixity
at the aud also make McB and J& very mrnlytheSfie. This of course means that-the inner
bay would always be the critical one, as the larger compression there makes the column eflcct
much more serious than it can be in the outer bay.

The Meet of fixity on reactions is comparatively slight. The minimum reaction A the
middle support occurs, in the case of cmnplete fkity, with the length of the inner bay in exce=
of that of the outer by approximately 16 per cent, and the-minima are lower than with a freeIy
hinged end by an average of 7 pow@ or 15 per cent of the ~ean reaction. The reaction ii.t
the inner support is increased by an average of 3 pouiyis, while that at the outer support goes up
about a pound. The compression in the outer bay, for a truss of given proportions is therefore
almost entirely independentmf the degree of fixity, but flxity will obviously reduce the inner
bay compression very materiality. That affords anothar reason, additional to the shortening
of the distance between points of inflection in the inner bay, for using a hinge which will 6X
the spar at least partially when there is danger of trouble from buckling because of the use of a
long bay in a shallow spar. Complete fkity may easiilyhave the eilect, everything taken into
account, of more than doubling the factor of safety in the inner bay considered as a column.

—
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DIRECT LOADS IN SPARS

The comprwsion in the out= bay of the upper spar is primarily a function of the Iengg
of the inner bay, being almost entirely independent of the distribution of the remaining length
between the outer bay and the overhang, The efTect of a given shift in the location of the ~
inner strut has approximately five times as much effect as a correspond@ change in the position
of the outer.

The change of compmsion with a change in the position of eitha strut, the other being
held fixed, is very nearly linear. The straight lines tend to diverge when p~otted, however,
and the single equation which expresses the force for all proportions has therefore to be com-
plicated to the form

Q
‘hx~ =.7–.016Z1+.000107 (60-;,) 1,

which gives the compression in the out= bay (always on the assumption that the upper and
lower wings are similarly supported, with struts at the same points, and that the mean loading
of the two is used in calcuIation) to within .006 for every candition, Lt being the total effective
length of the spar.

The comprwsion in the inner bay is, as has already been noted, quite independent of the
proportions of the truss if the spars are freeIy hinged at their inuer ends, but is reduced by
flxity there, the amount of the reduction being directly proportional to the Mng moments and
so being largest wherethe inner bay is Ioq@ and there is most need for some cutting down of
the compression and stifbnhg of the spar.

The tension in the inner bay of the lower spar is of course numerically equal to the com-
pression in the outer bay of the upper member for the type of @uss to which these curves relate.

LOCATION OF POINTS OF INFLECTION

The distances between the two points of irdleotion within a bay have been given, both for
the inner and the outer bays, by the curves of Figure 13. It should be noted in using three
values that they were calculated without taking into account the effect of buckhg in increasing
the bending moment within the bay. The effeot of increasing that moment while leaving the
values at the supports constant is, of oourse, to shift the points of irdleotion outward toward
the supports. The effeotive kmgth of cohrmn is therefore a function of the depth of the spar
and of the amount of compression, as well as of the dwtribution of the interplane struta, but the
shift of the points of zero bending moment is not likely to be great enough b be of serious
importance except in spars which would approach very closely to failure by pure lateral insta-
bility in any case, and when spars answer to that description no approximations such as these
can be of much avail. It is necessary then b apply the generalized theorem of three moments
rigorously.

In general, lengthening one bay at the expense of the other tends to increase the relative
separation of the points of intleotion in that bay, as wouId be expected. There are, however,
exceptions h this general rule. The relative separation in the inner bay of a spar with a long over-
hang decreaseswhen the Iength of theinnerbayis increased beyond about 50 per cent of the total,
and the same holds true in the outer bay when the overhang is short and the outer bay forms
more than 60 per cent of the whole effective lemgthof the spar. The diagonal linm representing
constant lengths of outer bay have been omitted, to avoid confusion of the figure, but can
readily be inserted if desired. With a constant Iength of inner bay the points of inflection in
that section of the spar shift constantly farther apart as the overhang is increased, whiIe for the
outer bay the reverse is true and the largest separations alwap correspond to short overhangs.

EQUIVALENT BENDING MOMENTS AND SPAR PROPORTIONS

The curves in Figures 8 and 9 relate b the ease of a spar in a wing of small aspect ratio, in
which the oohmm effect is of practically no importance. SpeoificalIy, they can be considered
as applying with sticient accuracy tQ all spara having a tehd length of less than thirty times
their depth, a condition which is sometim= complied with in using thick airfoils. Tlth a
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G6ttingen 387, for example, a section b wb-ich the.m~an spar depth is likely to be about 9 Per
cent of the chord, this permits an aspect ratio (figured on the total lengt.h of wing, including -
the part dr6pped off for tip loss correction) of about 5,8, while with an R. .4. F. 15 tho corre-
sponding limit is about 3.7. Such proportions are of course unusual, and Figures 8 and 9 me
useful as defining a limit rather than as applying directly to actual airplanes.

It will be observed in both 6gures that the minimum equivalent bending moment is found
under the condition which give equal moments at the two struts and in the middle of the inner
bay. The proportions of the truss which give equality of these three moments change some-
what with G/d, the ideal length of inner bay, as shown by Figures 8 and 9, being 35 and 40
per cent, respectively, when G/d is 8 and when the ratio rises to 20, while the outer bay is 41
and 39 per cent and the effective overhang 24 and 21”per cent under the same sets of condi-
tions, It is rather astonis~ to find “that the outer bay should actually be shorter than the
inner for best results if a thin section is used with a large gap and a small aspect ratio. The
effect of the location of the inner strut in a truss of that form is, however, small; and a reduction
of the length of inner bay from 40 to 32 per cent, the overhang being held constant and
G/d being 20, increases the ~quivalent moment only 5 per cent from its minimum. A reduction

0’ ‘8” ,
/2 20 a

fi~22 G~d

of onlv 1 ~er cent= or an increase of one-half of 1 per cent, in overhang has as much

.

effect.
When”G/d ~ 8,the triangular figures of equal mom{nt are more nearly equilateral, and the
locations of inner and outer struts are “of rnoke nearly equal importance.

Comparing Figures 9, 17, and 18, all of which relate to the same -due of G/d and to mate-
rials capable of sustaining equal maximum stresses in bending and compression, it is apparent
hat the fin~m equivalentmoment is relatively little affected by column action, but that
the ideal proportions for the truss are considerably modified. That is shown in the tabulation
below, and the result-of a comparison of Figures 12,20, and 21, relating to spruce spars, would
be much the same.

L~ 3 4,5
c (No col~n effect.)

Minimum equivalent moment, 269 ‘- 275 285
Inner bay, 40 .35 32
Outer bay, 39 44 47
Overhang, 21 21 21

.

—

When G/d is only 8 the effect is still 1sss. The column effect with Lt/G equal to 4.5, cor-
responding to an aspect ratio of nearly 10 if the gap is equal to the chord, increases the minimum



WING SPAR STBESS CHAKl%i AKO WIXG TBUSS PROPORTIONS 151

equivalent moment only from 429 to 436, wide making it advisable to shorten the inner bay from
35 per cent to 33, leaving the overhang unchange&

Curves of best length for inner bay and overhang have been plotted in F- 22 for spruca
and in Figure 23 for materials of equal compressive strength and modulus of rupture. The
length of inner bay for mimimum equivrdent bending moment decreasessteadily as Lt/Ggoes up
in both cases, and in general it fds off with increasing thjckness of airfoil section. ~th the
aspect ratios and gap-chord ratios most commonly used at the present time, however, the thick-
ness of the section has but little effect on the ideal location of the inner strut.

The best overhang, on the other hand, is independent of aspect ratio, being a function onIy
of wing thickness.

If there is to be any departure from the ideal dimensions, or if there is any doubt about
what they are, it is better to err in the direction of making the inner bay too short rather than
too long, ~pecially when the spars are long and slender. When LJG is 4.5 and G/d is 20, for
example, the equivalent bending moment is increased 33 per cent by making the inner bay
3 per cent too long, only 12 per cent by making it too short by a Iike amount. When LJG is 3,
the inner bay can be shortened 3 per cent at the expense of an increase of less than 4 per cent
in the equivalent bending moment.

The proportions here suggested as best are not in exact agreement with those arrived at-
in previous investigations, but the difference is and. _The United States &my Air Service,
Enggeering Div-kion, for instance, recommends’ in ill cases an inner bay length of 32 per cent
and an overhang of 19~ per cent of the effective spar length. If a single set of proportions
were to be picked from this work, on the other hand, as the best average for all conditions,
34 per cent in the inner bay and 21 per cent overhang would appear to be the best choice in
metal, 33 per cent and 22 per cent in spmce.

SPAR WEIGHT

If the equivalent bending moment in the spar is know-n, the sectional area needed in a
given materiaI can easily be calculated. The equivalent bending moment is given by the
formula

where K is the quantity plotted in Figures 8 and 9 and elsewhere, Lt the totaI effective spar
length, as before, and w the load per unit length of spar.

On the assumption that k =OWi, j=&&, d being the depth of the spar and A the

sectional area. Then

Taking the density of spruce as 26 pounds per cubic foot and the allowable bending stress
as 6,400 pounds per square inch, the weight of a sprnce spar becomes

W’ being the tataI load carried by the spar and L’t the true Iength of the spar.
As a general rule, the front spar in a wing with two spars carries about two-thirds of the

total load on the wing vvhen the center of pressure is in its fartht forward position, while the
rear spar carries all the load at the angIe of attack arbitrary chosen for a Iow-angle analysis.

*Stmctural Anelyslsand Designd AlrpIanes,EngineefhgDltih Ah SeTviee,U. S.Army, P.4!% The figurestheream givenIn km of
the acted, not the eReetiv&sp len@& and they eemwngly dmr slightly h atmhlte Vahlekom threequoted Illme tart.
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—

The ratio of total spar weight to total weight of the airplane, exclusive of the wing structure, is
therefore approximately

w,
m “A%L{(~:)E~’+~(~3r”’1%

where WNis the weight without the wings, Tfs the weight of the spar as before, FL and FU
are the load factors used in the low rmgle and high-angle analyses, respectively, and the sub:
scripts R and F relate to the characteristics of the rem. arid frout spars, respectively.

Since F’ is ysually very nearly two:thirds of F=, tind since W. is roughly 85 per cent of the
total weight, it is possible to simplify further to the form

~~, (?A)F’:IWJ+(xw—=
H- 0,780,000 x

—m. .. . .

G ‘t based on the assumption that the best strut location isValues of the product K :<~ x -a

used in every case and that the front and rear spars ate of the same depth, hrmebeen calculated.—
G ‘t bcin~ kept equa] tO unity,and are tabulated below. The variation of” the product with ~, ~

is plotted in Figure 24.

. (!? 1 4,300 4,300
8 4.5 19,500 4,340
20 1 .6,240

.
6,240

20 3 18,800” 6,280
20 4.5. 28,900 6,420

.lt will be observed from _ _
- these figures that both the gap

6m0 / -
/ — and spar depth have import.an~

/ - effect on the weight of the spars./
cn50~ / ‘ If, for example, the depth of a

d spar is one-thirty~econd of its
‘u /

/ total length and the gap is rc-
G
k 4000 duced from 20 to only 8 times

/ the spar depth the spar weight

/ will be increased by 74 per cent.
If the gap be held constant at -

‘6 8 m 12 /4’ s16 18
Fig.24 G/d & one-third of the spar length aud

the spar depth cut- from onc~
eighth to one-twentieth of the distance between ~ wings the increase of weight wiIl be 45
per cent.

—

To illustrate the use of the weight formula, it may be applied ta the case of a pur-
suit airplane with a span of 30 feet, a gap” of 5 feet, a spar depth of 3.5 inches, and designed
for a load factor of 10. Lt, the effective length of a sin@e spar, is then approximately 13 feeL

.
allowing for tip correction and for the length of the center section, and L’t 14 feet. ~ is 2.6

Qand $ is 17.1, and the product of K, ~, and Lt . “-”
~ Mgiven by Figure 24 as 15,800. The ratio $$

-..
is then:

14 xlg ~10x16;8W
w, 100~=

~ - .L2%w
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