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AERONAUTICAL SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol
Unit Symbol Unit Symbol
Length_____ ) meters Seag 1 i ieace e m foot (or mile) _ ________ ft. (or mi.)
bime .\ el t SROORN i e S e VK sec second (or hour)_______ sec. (or hr.)
Foreew oo F weight of one kilogram__ __ kg weight of one pound 1b.
Power. .25 P kg/mifdeeias i e SER AN O fisar g Dl horsepower_ - _________ HP.
Srasa Ehr el o o TR o o B 1Y R O e e U M. P. H.
e ] B e mfpcLACE i nat SN SRS S (TN SEEE BEC A f. p.s.

2. GENERAL SYMBOLS, ETC.

W, Weight, =mg
g, Standard acceleration or gravity =9.80665
m/sec.?=32.1740 ft./sec.?

m, Mass, =ﬂ7
g

p, Density (mass per unit volume).

Standard density of dry air, 0.12497 (kg-m™*
sec.?) at 15° C and 760 mm =0.002378 (1b.-
it sec.?).

Specific weight of ‘“standard” air, 1.2255
kg/m®=0.07651 1b./ft.?

mk?, Moment of inertia (indicate axis of the
radius of gyration, %, by proper sub-

seript).
S, Area.
Sy, Wing area, ete.
@, Gap.
b, Span.

¢,  Chord length.

b/e, Aspect ratio.

f,  Distance from c. g. to elevator hinge.
g,  Coeflicient of viscosity.

3. AERODYNAMICAL SYMBOLS

V, True air speed.

¢, Dynamic (or impact) pressure=é o V3

L, Lift, absolute coefficient 0"=g£S

D, Drag, absolute coefficient Cp= q—l;,

O, Cross -wind force, absolute coefficient
i 0

% gS

R, Resultant force. (Note that these coefli-
cients are twice as large as the old co-
efficients L¢, De.)

1, Angle of setting of wings (relative to thrust
line).

%, Angle of stabilizer setting with reference to
to thrust line.

v,  Dihedral angle.
V1 Reynolds Number, where 7 is a linear
P77  dimension. i
e. g., for a model airfoil 3 in. chord, 100
mi./hr. normal pressure, 0° C: 255,000
and at 15° C., 230,000;
or for a model of 10 cm chord 40 m/sec,,
corresponding numbers are 299,000
and 270,000.
Cp, Center of pressure coefficient (ratio of,
distance of C. P. from leading edge to’
chord length). :
B, Angle of stabilizer setting with reference
to lower wing, = (7, — %,). 3
Angle of attack.
¢, Angle of downwash.
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ERRATA

Page 12, line 1, should read:

constant.

In the flow field q, p are constant where (4% + qp® =
| Page 16, 1lirne 12, symbols should read:

qX, q.y

Page 23, line 2, Table III, should read:

|

| (For all shapes ¢ = - (1 + mb) Vy,

r gt =. (1 + mp) V sine”

|

’ qn-_-—(l-nb)Vcosc)
\

Page 23, Table III, delete line under table and substitute:
*¢ ig the angle between b' and any normal to the confocal

gurface.
Peage 23, Table 111}

cos w should be omitted from formulas.
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REPORT No. 253

FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS

By A. F. Zaam

PREFACE

In this text are given the pressure distribution and resistance found by theory and experi-
ment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid.
The experimental values pertain to air and some liquids, especially water; the theoretical refer
sometimes to perfect, again to viscid fluids. For the cases treated the concordance of theory
and measurement is so close as to make a résumé of results desirable. Incidentally formulas
for the velocity at all points of the flow field are given, some being new forms for ready use
derived in a previous paper and given in Tables I, III. A summary is given on page 22.

The computations and diagrams were made by Mr. F. A. Louden. The present text is a
slightly revised and extended form of Report No. 312, prepared by the writer for the Bureau of
Aeronautics in June, 1926, and by it released for publication by the National Advisory Com-
mittee for Aeronautics. A list of symbols follows the text.

PRESSURE AND PRESSURE DRAG

We assume the fluid, of constant density and unaffected by weight or viscosity, to have in
all the distant field a uniform velocity ¢, parallel to z; in the near field the resultant velocity ¢.
If now the distant pressure is everywhere py, and the pressure at any point in the disturbed flow
is po+p, the superstream pressure p is given by Bernouilli’s formula,

pIP=1—-¢/g7", (1)
where p, =pg,?/2, called the “stop’” or “stagnation’ or “nose’ pressure.

At any surface element the superpressure exerts the drag S p dy dz, whose integral over
any zone' of the surface is the zonal pressure drag,

D= JSp dy d=. 2)
Values of p, D are here derived for various solid forms and compared with those found by

experiment.
PRESSURE MEASUREMENTS

The measured pressures here plotted were obtained from some tests by Mr. R. H. Smith
and myself in the United States Navy 8-foot wind tunnel at 40 miles an hour. Very accurate
models of brass, or faced with brass, had numerous fine perforations, one at the nose, others
further aft, which could be joined in pairs to a manometer through fine tubing. Thus the
pressure difference between the nose and each after hole could be observed for any wind speed.
Then a fine tube with closed tip and static side holes was held along stream at many points
abreast of the model, to show the difference of pressure there and at the nose. Next the tube
was thrust right through the model, to find the static pressure before and behind it. The
method is too well known to require further description.

THE SPHERE

Assume as the fixed body a sphere, of radius @, in a uniform stream of inviscid liquid, as
shown in Table I. Then by that table the flow speeds at points on the axis z, ¥ and on the

surface are )
¢ = (1—a*/x*)g,, q,= (1 +7%/29°)o, g.=1.5g, sin 6, (3)

where 6 is the polar angle. Figure 1 shows plots of these equations.

1 A zone is a part of the surface bounded by two planes normal to go. Usually one plane is assumed tangent to the surface at its upstream end.

3
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To graph p/p, in Figure 1, we subtract from the line y=1, first ¢,°/g,* to show the pressure
along z; then ¢,%/¢,* to portray the surface pressure. A similar procedure gives the superpressure
in the equatorial plane.

The little circles show the actual superpressures found with a 2-inch brass sphere in a tunnel
wind at 40 miles an hour. These agree well with the computed pressures except where or
near where the flow is naturally turbulent.

By (3) and (1), on the sphere’s surface p/p,=1—2.25 sin’f; hence the zonal pressure drag
S p2rydy is

D= ra*sin®o(1 — g sin6)p,, @)

for a nose cap whose polar angle is 6. With increase of 6, as in Figure 2, D/p, increases to a
maximum .698-a* for §=41°— 50 and p=0; then decreases to zero for 6=70°—37"; then to its
minimum —.3927 @? for 6==/2; then continues aft of the equator symmetrical with its fore
part. Thus the drag is decidedly upstream on the front half and equally downstream on the

&
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F16. 1.—Velocity and pressure along axes and over surface of sphere; graphs indicate theoretical values;
circles indicate pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy

rear half, having zero resultant. The little crosses, giving D/p, for the measured pressures,
show that the total pressure drag in air is downstream, and fairly large for a body so blunt as
the sphere.

Figure 3 depicts the whole-drag coefficient > O, =2D/x p a’qs*, of a sphere, for the manifold
experimental conditions specified in the diagram, plotted against Reynolds Number R=2 ga/»,
» being the kinematic viscosity. For 0.2<R<200000, the data lie close to the line.

Cp=28R~% + 48, 4)

an empirical formula devised by the writer as an approximation.
For .5<R<2 (5) fairly merges with Oseen’s formula

Cp=24R144.5, 6)

and for R < .2 Stokes’ equation Op=24/R is exactly verified. Both these formulas are theoretical.
Stokes treated only viscous resistance at small scale; Oseen added to Stokes’ drag coefficient,
24/R, the term 4.5 due to inertia.

2 From the drag D= CpaS, where S is the model’s frontal area, one derives the drag coefficient Cp=D/paS.
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Over an important R range Figure 3 shows (p=.5, giving as the sphere’s whole drag
D=.57p,8, (7)

where S = a? is the frontal area. That is, the sphere’s drag equals half its nose pressure times
its frontal area. For R<.2 Stokes’ value, D=6 u a ¢., has been exactly verified experi-
mentally, as is well known.
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F1G. 2.—Pressure and pressure-drag on sphere. Graphs indicate
theoretical values; circles indicate pressure p/p, measured at
40 miles per hour; crosses indicate pressure-drag D/ps, com-
puted from measured pressure

THE ROUND CYLINDER

Next as_ame an endless circular cylinder, of radius a, fixed transverse to the stream, as
indicated in Table I. By that table the flow speed at points on the axesx, y and on the surface is

qx= (1 —a/x?) go, gy= 1 +*/y*) Qo, g:=2 g, sin 6, (8)

where 8 is the polar angle. Plots of (8) are shown in Figure 4.

Graphs of p/p,, made as explained for the sphere, are also given there, together with experi-
mental values, marked by small circles, for an endless 2-inch cylinder in a tunnel wind at 40
miles an hour. The agreement is good for points well within the smooth-flow region.

On the surface p/p,=1—4 sin? §. The integral 2 S ; pdy gives, per unit length of
cylinder, the zonal pressure-drag formula, B

D/p,=2 a sin 6—% @ sin® 6. 9)
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SYMBOLS:-

d = 0iam.
S =Arec

V = Relative speed of sphere & fluid

"

P = Density of fluid
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Eiffel. Sphere in air. d=/6.2 cm
"Nouvelles Recherches"efc, 19/4.
0.W.Silvey. Mercury drops i/ castor
o/l. d=.0//5 10 .0756 cm. Phys., Rev, (9/6.
H.D.Arnold. Rose metal spheres ir
colzg oil. d=.0/3 to./4/ crn. Al Mag, (/.
Liebster & Schiller. Steel spheres in
glycerin, sugar solutions & water.
d=.l 1o .7cmm,. Fhys. Zejr, (924
Air bubbles in water.
d =.0094 to .06/ crm
Air- bubbles in aniline
d=.007 fo .1/0 crm
Paraffin spheres in ariline\ H.S.Allen
d=.069 10.3/6 cm Phil. Mag. 1900
Amber spheres in water
d=.//4 o .346 cm
Steel spheres in water
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d=.8cm }Sfee/ spheres 1

@ =40 i ISl C. Wieselsberger
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d=28.25cyy
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(Without correction for air compression) .
d=/0./12 cm (7620 < V< 27432 crm/sec.)
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d=/5& 20 cm air. O.L.Bacon
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FiG. 3.—~Drag coeflicient for a sphere in steady translation through a viscous fluid
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F1G. 4.—Velocity and pressures along axes and over surface of endless cylinder; graphs indicate theoretical values;
circles indicate pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy
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F1G. 5.—Pressure and pressure-drag on endless
cylinder. Graphs indicate theoretical values;
circles indicate pressure p/p» measured at 40
miles per hour; crosses indicate pressure-drag
D/pn computed from measured pressure

F1a. 6.—Drag coefficient! or an endless cylinder in steady translation through a viscous fluid
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This is 0, 2¢/3 (max.),0, —2a/3, for §=0°, 30°, 60°, 90°; and is symmetrical about the equatorial
plane 2=0. In Figure 5, the little crosses give D/p, for the measured pressures, and show total
D/p,=2.33a.

Figure 6 delineates the drag coefficient (5, plotted against R=2 ag,/v, from Wieselsherger’s
(Reference 1) wind tunnel tests of nine endless cylinders held transverse to the steady flow.
The faired line is the graph of

Cp=94R"%+1.2, (10)
an empirical equation devised by the present writer.

For very low values of R, Lamb derives the formula

8

Co=2.002—log, B’ . (11

whose graph in Figure 6 nearly merges with (10) at R=.3.

For 15000< B< 200000, Figure 6 gives 0, =1.2; hence the drag per unit frontal area is

De=12p,, (12)

which is 2.4 times that for the sphere, given by (7).

THE ELLIPTIC CYLINDER

An endless elliptic cylinder held transverse to the stream, as shown in Table I, gives for
points on z, 7 and on its surface,

7= (1—mn)q,, qy= (1 +m)q,, = (1+b/a)g, sin 6, (13)

where m, n are as in Table I. Amidships ¢,= (1+86/a)g,=2q, for a=b, as given by (8). Graphs
of (13) are given in Figure 7.

To find a’, b’ for plotting (13), assume a’ and with it as radius strike about the focus an
arc cutting y. The cutting point is distant b’ from the origin. Otherwise, b’ = v/a’?— ¢, where
c2=a®—b*=const,

With a/b=4 one plots p/p, in Figure 7, as explained for the sphere. The circles give the
experimental p/p, for an endless 2-inch by 8-inch strut, at zero pitch and yaw, in a tunnel wind at
40 miles an hour. The theoretical and measured pressures agree nicely for all points before,
abreast, and well behind the cylinder.

Again, sin?0=ay?/(b*+ c%?), if c®=a2—b%. Hence on the model

a+b)%y?
PIpa=1—g¢le =1— (b_“ﬁgygé (14)

This gives the zonal pressure drag, =2/ ypdy, per unit length of cylinder, or

2 2
Dipu=2y~2(a+be s LY, — _4p9%0,  ope @EOT ey, (15)
y J b*+cy ¢ c b
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whose graph, for a/b=4, appears in Figure 8. It rises from 0 at the nose to its maximum where

p=0, then falls to its minimum amidships.

T

1
3

=
@

1n incheés

Lerngth

| [ il (T = e i ) L
~/2 -/0 -8 -6
Wirncd

|
10 le
Length in inches

T T

F1a. 7.—Velocity and pressure along axes and over surface of endless elliptic cylinder. Graphs indicate theoretical values;
circles indicate pressure measured at 40 miles per hour in 8-foot wind tunnel, United States Navy
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F1G. 8.—Pressure and pressure-drag on endless elliptic cylinder. Graphs indicate theoretical ‘values; circles
indicate pressure p/p» measured at 40 miles per hour; crosses indicate pressure-drag D/p» computed from

measured pressure

Whatever the value of a/b, the whole pressure on the front half is negative or upstream,
as for the sphere and round cylinder, and is balanced by the rear drag. For b fixed it decreases

indefinitely with b/a.
10420—27—2
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The crosses marking actual values of D/p, found in said test show a downstream resultant
D. In fact, it is one-third the whole measured drag of pressure plus friction, or one-half the
friction drag. j

For the cylinder held broadside on, 6>« and ¢*—b*= —¢* hence changing ¢* to — ¢* under
the integral sign of (15), we find

a+b (a+b)? b+ ey
Dipn=—4b= 5~ y— b5 log. ;3 ;?;j: (16)
where now ¢*=0b*—a?.  With b fixed, the upstream pressure drag on the front half increases with
b/a, becoming infinite for a thin flat plate. It is balanced by a symmetrical drag back of the
plate.

Such infinite forces imply infinite pressure change at the edges where, as is well known, the
velocity can be ¢ = /2p,/p = o, in a perfect liquid whose reservoir pressure is p, = . Otherwise
viewed, the pressure is p, at the plate’s center (front and back) and decreases indefinitely toward
the edges, thus exerting an infinite upstream push on the back and a symmetrical downstream
push on the front. In natural fluids no such condition can exist.

THE PROLATE SPHEROID

A prolate spheroid, fixed as in Table I, gives for points on , 7 and the solid surface, respec
tively, the flow speeds

¢z= (1—n)qo, qy= (1+m)qy, qe= (1+k,) q sin 6, (16)

engthr in
inches

Windg Lengthr in inches

F16. 9.—Velocity and pressure along axes and over surface of prolate spheroid. Graphs indicate theoretical values; circles
indicate pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy; dots give pressures found
with an equal model in British test, R. and M. No. 600, British Advisory Committee for Aeronautics
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F1G. 10.—Pressure and pressure-drag on prolate spheroid. Graphs indicate theoretical values; dots indicate
measured pressure p/p» from Figure 9; crosses indicate pressure-drag D/p » computed from measured pressure
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where &, is to be taken from Table II. Graphs of (16) are given in Figure 9, for a model having
a/b=4, viz., k,=0.082.

For this surface p/p, plots as in Figure 10. For a 2 by'8 inch brass model values of p/p,
are shown by circles for a test at 40 miles an hour in the United States Navy tunnel; by dots for
a like test in a British tunnel. (Reference 2.)

By (16), for points on the surface p/p,=1—¢’/¢"=1—(1 +k,)? sin® 0. From this, since
sin? 6=a?y?/ (b*+ ¢%?), the zonal pressure drag J* p. 2 = y dy is found. Thus

2}h4 4 27,2
TV 1+ ey log, “HEL (17)

2
Dipa=my— T3 (1+k) 9+

Starting from y=0, D/p, increases to its maximum when p=0, or sinl 0= I*i(1=E%,) then
diminishes to its minimum for y=». Figure 10 gives the theoretical and empirical graphs of

D/p, for a/b=4.

For b fixed the upstream drag on the front half decreases indefinitely with b/a, becoming
zero for infinite elongation.
OBLATE SPHEROID

The flow velocity about an oblate spheroid with its polar axis along stream is given by
formulas in Table I, and plotted in Figure 11, together with computed values of p/p,. No
determinations of p or D were made for an actual flow. The formula for D/p, is like (17),
except that ¢?=0°—a? and k, is larger for the oblate spheroid, as seen in Table IT. For b fixed
the upstream drag on the front half increases indefinitely with b/a.

FiG. 11.—Theoretical velocity and pressure along x axis of oblate spheroid. Diameter/thickness=4

CIRCULAR DISK

The theoretical flow speeds and superpressures for points on the axis of a circular disk fixed
normal to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative
data from a test. One notes that the formulas are those for an oblate spheroid with eccen-

tricity e=1.
For 1500< ¢, a/v < 500000, Wieselsberger (Reference 3) finds for the air drag of a thin

normal disk, of area S,

D=0, 8, (18)
or 2.2 times that for a sphere. For ag,/v extremely small, theory gives
D=5.1 =7 pa q, (19)

asis well known. Test data for a complete graph, including these extremes, are not yet available.

——————— o o s e —

"’7?;"“‘;'"" e
IQ::;S/
[—r_é'l‘_;'l'—é'l‘ol'é‘l4I_‘I'é"l
Wind

FiG. 12—Theoretical pressure and velocity along axis of disk
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REGIONS OF EQUAL SPEED
In the flow field ¢, p are constant where ¢,”+ ¢,*= constant, viz. where
/g0 = (1+m)? sin®0+ (1 —n)? cos?d= const. (20)
In particular for the region ¢=g,, this becomes

2—n at
tang= " ST~ tan’s* 21)
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Fi1G. 13.—Inertia coeflicient vs. elongation. Plotted from Table IT

which applies to all the quadrics in Table I. Clearly tan §=0 for n=2; tan®¥=n/m for
m, n=0, viz. for all distant points of (21). For these points the normal to any confocal ellipse
lies along the radius vector and asymptote of (21), as seen in Figures 14 to 17.
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Fi6. 14.—Lines of steady flow, lines of constant speed and pressure, for
infinite frictionless liquid streaming past a sphere
For the sphere n=2m=a?/r*; hence (21) becomes

2p Edn GG RGN
tan®*0= 2 < pan (22)

where r=a’ = z+2 The form of this is depicted in Figure 14.

* tan B=y/z is the slope of a radial line through the point (z, y) where (21) cuts a confocal curve a’b’, of Table I. Knowing a’, v, B, to locate
(z, y) draw across the radial line an arc of a’b’ by sliding along the z, y axes a straightedge subdivided as in the ellipsograph. The operation is rapid
and easy.
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For a round cylinder n=m=a?/r%; hence

__a2

tan’0=>—5——, or, 2rf=a?® sec 20,

2+a

which is the section of a hyperbolic cylinder, as in Figure 15.

Y,
q/qa: /. o005
q/90=1 9/9,4
g/q,=.995 ‘ /9y~ 892
N = 450
N

F1G. 15.—Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid streaming across endless

FiG. 16.—Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid

round cylinder

streaming across endless elliptic cylinder

13

(23)
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A plot of (21) for an elliptic eylinder, fixed as shown in Table I, is given in Figure 16; for a
prolate spheroid in Figure 17.

Besides the region (21), having ¢ = ¢,, it is useful to know the limit of perceptible disturbance
say where ¢*/q,>=1+.01. 'This in (20) gives

(1+m)®sin? 8+ (1 —n)2 cos? §=1+.01, - (24)
which applies to all the quadrics here studied. Hence

n2—n 0.01

29 e L Y, Sy
B m 2+mm(@+m) cos’ ¢’

(25)

A graph of (25) for a round cylinder is shown in Figure 15. Like plots for the other quadrics
are readily made.

F1G. 17.—Lines of steady flow, lines of constant speed and pressure, for infinite friction-
less liquid streaming past a prolate spheroid. Full-line curve g=g, refers to stream
parallel to z; dotted curve g=g, refers to stream inclined 10° to z.

If in (20) a series of constants be written for the right member, the graphs compose a family
of lines of equal velocity and pressure, covering the entire flow field. Rotating Figures 14, 17
about z gives surfaces of ¢=¢,.
COMPARISON OF SPEEDS

Before all the fixed models the flow speed is ¢, at a great distance and 0 at the nose; abreast
of them it is ¢, at a distance, and (1+%,)¢, amidships.

The flux of ¢—¢q, through the equatorial plane obviously must equal ¢,S where § is the
body’s frontal area. Hence two bodies having equal equators have the same flux ¢,S, and the
same average superspeed or average ¢—¢,. But the longer one has the lesser midship speed;
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hence its outboard speed wanes less rapidly with distance along 7. A like relation obtains
along = from the nose forward. These relations are shown in the velocity graphs of Figures
18 and 19. A figure similar to 18, including many models, is given in Reference 4.

&

|
|
|
1
1
i
\

l
sl

Fi1ac. 18.—Superposed graphs of flow speed abreast of endless round and elliptic
cylinders of same thickness fixed transverse to an infinite stream of inviscid
liguid. At great distance flow speed is qo

I'1G. 19.—Superposed graphs of axial flow speed before three endless cylinders 1, 2, and 3 (3 osculating
2), each fixed transverse to an infinite stream of inviscid liquid. At great distance flow speed is ¢,

COMPARISON OF PRESSURES

The foregoing speed relations determine those of the pressures. The nose pressures all
are p,=pq,%/2; the midship ones are p=p,— (1+k,)*p,. The drag on the front half of the
model is upstream for all the quadrics here treated; it increases with the flatness, as one proves
by (15), (17), and is infinite for the normal disk and rectangle.

APPLICATION OF FORMULAS

The ready equations here given, aside from their academic interest in predicting natural
phenomena from pure theory, are found useful in the design of air and water craft. The formula
for nose pressure long has been used. That for pressure on a prolate spheroid, of form suitable
for an airship bow, is so trustworthy as to obviate the need for pressure-distribution measure-
ments on such shapes. The same may be said of the fore part of well-formed torpedoes deeply
submerged. The computations for stiffening the fore part of airship hulls can be safely based
on theoretical estimates of the local pressures. The velocity change, well away from the
model, especially forward of the equatorial plane, can be found more accurately by theory
than by experiment. The equation (21) of undisturbed speed shows where to place anemometers
to indicate, with least correction, the relative speed of model and general stream.

REFERENCES

1. WIESELSBERGER, C.: Physicalische Zeitschrift, vol. 22. 1921.

2. Jonms, R., and Witriams, D. H.: The distribution of pressure over the surface of airship model U. 721,
together with a comparison with the pressure over a spheroid. Brit. Adv. Com. for Aeron. Reports and
Memoranda No. 600. 1919.

3. WIESELSBERGER, C.: Physicalische Zeitschrift, vol. 23. 1922,

4, TayLor, D. W.: Speed and Power of Ships, gives a figure similar to 18 but including more models. 1910.
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SYMBOLS USED IN TEXT

Gy S Cartesian coordinates; also axes of same. |»_________ Kinematic viscosity.
iy P e Polar coordinates. Prabii bk Nose pressure=p ¢,%/2.
e Y Angle of attack of uniform stream. p,, ________ Pressure in distant fluid.
A S Sy Length of arc, increasing with 8. = " |p_________ Superstream pressure anywhere.
R R Inclination to # of normal to confocal DH - ——---- Zonal pressure drag= /" p dy dz.
curves in Table 1. 70 et Whole drag.
(s SR Velocity function. Setimy o2 Frontal area of model.
e S Stream function. Gp= 2t iy Drag coefficient=D/p,S.
(1)L e e Resultant velocity at any point of fluid. e Ce Reynolds number.
e s B Velocity of distant fluid (parallel to 2z |a_________ Radius of sphere, cylinder.
axis). Qb AL 2 Semiaxes of ellipse.
(74 Sy i 1 Velocity at points on # and y axes (parallel | a’, b’______ Semiaxes of confocal ellipse.
to z axis). RV Eccentricity of ellipse.
R i Velocity along confocal surface or model |e/________ Eccentricity of confocal ellipse.
; surface. eha b sl Focal distance=ae=a’e’ =+/a>—
AR I s S Velocity normal to confocal surface. Teoat LRI Inertia factor (Table II).
poo -t Density of fluid. m, n, m,.-- Quantities defined in Tables I, II.
1 i ) Viscosity.
TABLE 1
Flow functions for simple quadrics fixed in a uniform stream of speed ¢, along z positive
Value of functions at any confocal surfaces of semiaxes a’, b’
Syml;;(i)(lm(sleﬁni- Form of quadrie 7 T R B a7 7777._
Velocity function ¢ Stream function ¢ Compon;ntqvelocltles
ty Yn
¢=—(1-+m) q,x,where|, _ 1 Differentiation along
Soh ( (1 —7) @oy?, where " g1c 5 of either figure
phere s ad ad glges
=3q7 n=yh _Opdz_
See diagram A 1=3g ds— 1 T™ 2
(fig. 20) y ¥ sin 6, valid for all the
o=—(14m) q.z, y=—(1—n) q., flgau‘;egé
Circular cylinder a2 g =3y F rondl Cla O
Mn b ot (cios 0, for the cylin-
ers;
DRSS B R =y 3, fi= 1=
¥ el i T o, o cos 6, for the axial
Elliptic cylinder surfaces viz., sphere
b atb b a+b )
= PN n=g; a’+b - spher%}ds, dlbskT *
ora’, b'=a able
C— II(glves m,’, whence
% = (1+m,) g, sin 6,
See diagram B q: i
(fig. 20) p=—(+m)ga, | y==j(—n)qqr, |8 thefowvelocity ona
Prola,iie si)heroid e 1+e’—2e' 14 Baf q,.:::I:1 0 for disk, since
e=g\/‘12—b2 e T log, 1o~ 1=gn Remark—both ¢, qn
log 1de  2¢ | = 1te 2¢ can be derived from
l—e 1—¢? log 8e1—¢ 1—_g | either o or ¢'.
If ql;' q"t max. qt‘hq,.
on a’b’, at any other
1 point thereof
e=—(+m)qm, | ¥=—g@U—n)qa? | 9e=g. 8in 6, g.=
Oblate spheroid e'b’ o
g=l,‘/b2 By o s e 5 —sin e’
. 3 ga—sm e 4T (4 e
See diagram C b B sin lg
(fig. 20)
p=—(1+m) qo, =0 (1 n) 4.y?
Circular disk o
a=0, e=1 2l i D g oy ,) 2 /a'b
i em (a’ ey 4 i <b—,2—sin “16’:)

¢, ¥, in elliptic coordinates, can be found in textbooks;

e. g., §§ 71,105,108, Lamb’s Hydrodynamics, 4th Ed.
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TABLE II

Inertia factors k,* for quadric surfaces in steady translation along axis a in Figure 20

Prolate splieroid E=a/b
dlliptic eyvlinder, B=a/t ) > spheroi &=
A Elliptic eyl llu, /b e 14 i Oblate \Dll’(.:l oid E ﬁ:;/u
Lonih l(',,—i s 1—e i =__clz-jEi.sm e
a log Lier 2e “ ¢e—E sin"le
‘l—e 1—e?
1. 00 1. 000 0. 500 0. 500
1. 50 . 667 . 305 . 803
2. 00 . 500 . 209 1. 118
2. 50 400 . 167 1. 428
3. 00 . 333 . 121 1. 742
4. 00 250 . 082 2. 379
5. 00 . 200 . 059 3. 000
6. 00 . 167 . 045 3. 642
7. 00 . 143 . 036 4. 279
8. 00 . 125 . 029 4. 915
9. 00 i i . 024 5. 549
10. 00 . 100 . 021 6. 183
o) . 000 . 000 ©

17

*In this table ka=m. of Table I, viz, the value of m when @/, b’=a, b. Lamb (R.and M. No. 623, Brit. Adv. Com. Aeron.) gives the numerical
values in the third column above. For motion of elliptic eylinder along b axis inertia factor is ky=a/b.

Dragram A y Diagram B y Diagram C 7]

F16. 20

VELOCITY AND PRESSURE IN OBLIQUE FLOW ?
PRINCIPLE OF VELOCITY COMPOSITION

A stream ¢, oblique to a model can be resolved in chosen directions into component streams
each having its individual velocity at any flow point, as in Figure 21. Combining the individuals
gives their resultant, whence p is found. N

VELOCITY FUNCTION

Let a uniform infinite stream ¢, of inviscid liquid flowing past a fixed ellipsoid centered
at the origin have components U, V, W along x, y, z, taken parallel, respectively, to the semi-
axes, @, b, ¢; then we find the velocity potential ¢ for ¢, as the sum of the potentials ¢4, ¢, @c

ford LW =W,
In the present notation textbooks prove, for any point (x, 7, z) on the confocal ellipsoid
aibaict
: pa=~(1+m,) Uz, (26)
and give as constant for that surface

o da’ Sl o At
mu=abc(1~abcﬁ Wb;7> J; e T e 27)

the multiplier of f being constant for the model, and \=a’ *—a?. Adding to (26) analogous
JA

values of ¢y, ¢, gives ’
o=—1+mg) Ux— (1+my)Vy— (1+m,) We=— (1+m)qoh, (28)

2 his brief treatment of oblique flow was added by request after the preceding text was finished.
* Simple formulas for this integral and the corresponding b, ¢ ones, published by Greene, R. S. Ed. 1833, are given by Doctor Tuckerman in
Report No. 210 of the National Advisory Committee for Aeronautics for 1925. Some ready values are listed in Tables III, IV.




18 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where & is the distance of (z, ¥, z) from the plane ¢=0, and m,, m», m., m are generalized inertia
coefficients of @’ b’ ¢’ for the respective streams U, V, W, ¢,. For the model itself the inertia
coefficients usually are written k,, k&, k., k. The direction cosines of % are

_1+m, U wiltmy W 1EE v W,

L_l—i-m A PEEE  m TSe

(29)

as appears on dividing (28) by (1+m)g,, the resultant of (1+m,) U, (1+my)V, (1+m.) W.

EQUIPOTENTIALS AND STREAMLINES

On a’ b’ ¢’ the plane sections ¢ =constant are equipotential ellipses parallel to the major
section ¢=0, and dwindling fore and aft to mere points, which we call stream poles, where the

plane (28) is tangent to @’ b’ ¢/. If eis the angle between any normal to @’ b’ ¢’ and the polar

F1G. 21.—Superposition of streamlike velocities for component pfane flows parallel
to axes of elliptic cylinder

normal, whose direction cosines are L, M, N, we call the line e=const. a line of stream latitude.
Thus e is the colatitude or obliquity of a surface element of @’ 8’ ¢’. The line e=90° is the stream
equator. This latter marks the contact of a tangent cylinder parallel to the polar normal, viz,
perpendicular to the plane (28), as in Figure 22. If1, m, n are the direction cosines of any normal
o kalHbives

cos e=IL+mM+nN. (30)

Since the streamlines all cut the equipotentials squarely,® the polar streamline must run
continuously normal to the family of confocal ellipsoids a’ b’ ¢/. Hence it forms the intersec-
tion of a pair of confocal hyperboloids, and at infinity asymptotes a line parallel to g, through the
origin. This straight line may be called the stream axis. Its equationisz:y:z=U:V:W.

# On the model, therefore, the streamlines are longitude lines, viz. orthogonals to the latitude lines,
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COMPONENT VELOCITIES

At any point of any confocal surface a’ b’ ¢’ the streamline velocity ¢, perpendicular to the
equipotential ellipse there, has components ¢., ¢, respectively, along the surface normal n
and the tangent s in the plane of ¢ and n. By (28) we have

dirges i
g =3¢ S =i.sin (31)

where — 0¢/0h = (14 m)q;=q .= max. ¢, is the equatorial velocity. By (26) the inward normal
velocity due to ¢, is

‘aan ) DT = ot (32)

n, being constant on @’ b’ ¢/, as may be shown. Similarly, ¢,, ¢, contribute —m(1 —n,)V,—n
(1—mn,) W; hence the whole normal component is

Ua= = 7s) Um0y Visn(@= 1e)W= 1, tc0s €, (33)

where ¢,=[(1—nq)?U*+ (1 —n,)2V?+ (1 —n,)* W¥©=max. ¢, is the normal velocity at the stream
poles. Some values of 74, n, are given in Tables I, ITI.  One also may find (33) as the normal
derivative of (28).

We now state (28): At any point of @’ b’ ¢’ the velocity potential equals ¢,4, the equatorial
speed times the distance from the plane of zero potential. Similarly (31) (33) state: At any
pointof a’ b’ ¢’ the tangential speed (¢, sin €) equals the equatorial speed times the sine of the
obliquity; the normal speed (¢, cos €) equals the polar speed times the cosine of the obliquity.
This theorem applies to all the confocals, even at the model where ¢, =0*.

Incidentally the normal flux through a’ o’ ¢’ is S, cos e-dS =y, J'dS,, where S, is the pro-
jection of S on the plane of ¢ =const. and equals the cross section of the tangent cylinder.
The whole flux through a’ 8’ ¢’ is therefore zero, as should be.

POLAR STREAMLINE

Some of the foregoing relations are portrayed in Figure 22 for a case of plane flow. Note-
worthy is the polar streamline or hyperbola. Starting at infinity parallel to go, the polar fila-
ment runs with waning speed normally through the front poles of the successive confocal sur-
faces; abuts on the model at its front pole, or stop point; spreads round to the rear pole; then
accelerates downstream symmetric with its upstream part. Its equation ¢;=0=0¢/0s can be

written from (28)
: P Ve
q:=(1+m,) U sin §— (1+mp) V cos =0, or tan 0=imi T (34)
This asymptotes the stream axis y/xc= V/U; for at infinity m,, m,=0, and tan 6= V/U. Plane-
flow values of m,, m, are given in Tables I, III.
All the confocal poles are given by (34); those of the model are at the stops where

1+k, V a*y

tan GZiTE U=b'2 (I) (37)

Thus on an elliptic cylinder they are where y/x=0%a’. V/U; on a thin lamina they are at

z=4c cos a, as given in the footnote. Tables II, IV give values of &, k;.

4 An analogous theorem obtains also for any other uniform steady stream, say of heat or electricity, that has zero normal component at the bound-
ary ellipsoid and zero concentration in the flow field.
* To graph (34) we may use the known relations. . !
tan 0=g',',~ ;’=% tan a, (35)

where tan a« = V/ U is the slope of ¢o or the asymptote to (34). Thus (34) becomes a’/b’=(1+ms)/(1+ma), which with the tabulated values of

Ma, My, TEdUCES LO
= x2 _—__L— (36)

Qcosta dsinta L

a hyperbola whose semiaxes are ¢ €os a, ¢ sin «, ¢ being the focal distance. In this treatment z=a' cos e, y=b’ sin «, a being a fixed eccentric

angle of the successive confocal elipses.
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Each angle of attack has its own flow pattern; each its polar streamline given by (34).
A close-graded family of confocal ellipses and hyperbolas therefore portrays all the poles and
polar streamlines in the plane ab for all angles of attack. The family can be written

r=a’ cos «, y=">b" sin a. (38)

Thus, giving @/, b’ a set of fixed values, then « a set, we have the confocal families

z? | P i 22 IS o2 i
a’2+b’2_1' ¢ cos’ a ¢ sin? i (39)
the first being ellipses, the second hyperbolas like (36) below.
Similarly, the locus ¢,=0, or ¢= q,, is written from (33). With W=0,
1—n, U
tan = — 158, Vo (40)

Its discussion is of minor interest.
DRAG AND MOMENT

Formulas for the pressure p all over the simple quadrics here treated are well known, for
oblique as well as axial flow, and serve to find the drag and moment. For uniform flow the
resultant drag is zero; its zonal parts can be found as heretofore. The moment about z is the
surface integral of p(y dy dz—x dz dz), and generally is not zero.

REGIONS OF EQUAL SPEED ABOUT OBLIQUE MODELS
Compounding the velocities (31), (33) at any point in the ab plane, as in Figure 22, gives
for ¢ constant
¢?=[(1+m,) Usin §— (14+m,) V cos 0 +[(1 —n,) U cos 6+ (1—np) V sin 6]°=const. (41)
In particular for ¢*= U?+ V? (41) gives
L S ’2
tan 6=%(A:t\/BO+A2)=§,7 tan 8. (42)
where K= V/U, and
A=(1+mg) (1+mp)— (1—ng) 1 —np), B=m4(2+ma) — 1y (2— 1) K7, 0D=&’—(2Kf2ﬂ“—)—m,,(2+m,,).

e I A e
g, Stream axis

FiG. 22.—Polar streamline and component velocities for uniform stream of inviscid liquid about oblique
elliptic cylinder
For an elliptic cylinder, as is well known.
b a+b b at+bd a atbd g ath

T i R T A SR T s AR o

which determines A, B, C, and thence 8 in terms of @’ ’. Thus, for an endless elliptic cylinder
of semiaxes a=4, b=1, yawed 10° to the stream, i. e., V/U=tan 10°=.1763, the graph of (42)
has the form shown full line in Figure 23. This graph takes the dotted form when V=0, ¢,= U.

M
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For a prolate spheriod of semiaxes a=4, b=1, yawed 10°, the graph of (42) is shown in
Figure 17. -

F1a6. 23.—Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid
streaming across endless elliptie cylinder. Dotted curve refers to stream parallel to z ; full-line
curve ¢=g, refers to stream inclined 10° to z

The two values of tan 8 in (42) are

tan ﬁ1=%(A+JBO+A2), tan 52=%(A—JBO+A?), (43)
from which are readily derived
2K+/BO+ A? 2KA
tan (8,— Be) =—T?/:W’ tan (81+8:) =g gz - (44)

(43) give the z-ward inclinations B, B, of the asymptotes of the curves g=¢,. As can be
proved, the interasymptote angle 8, — B, remains constant as K(=V/U) varies and the asymp-
totes rotate through 14(8,+ ) about the ¢ axis.

Thus, with an elliptic cylinder, giving 4, B, C their values at « makes

tan =)=,  tan BB =l (45)

hence the asymptotes continue rectangular, as in Figure 23, while with varying angle of attack
they rotate through 4(8,+B.). Or more generally one may show that ;& (By—B:)=0..B1—B:=

const.

A similar treatment applies to the other figures of Table III. For all the cylinders the
interasymptote angle is 90°; for the spheroids it is 2tan4/2 =109°—28’ in the ab plane.
Figure 17 is an example. If the flow past the spheroids is parallel to the bc plane the inter-
asymptote angle for the curves ¢=g¢, in that plane is obviously unaffected by stream direction.
It is 90° for infinitely elongated spheroids; 109°—28’ for all others. Excluded from the gen-
eralizations of this paragraph are the infinitely thin figures, such as disks and rectangles edge-
wise to the stream, that cause no disturbance of the flow. Passing to three dimensions, we
note that the asymptotic lines form asymptotic cones having their vertex at the origin.
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SUMMARY

For an infinite inviscid liquid streaming uniformly, in any direction, past an ellipsoid or
simple quadric:

1. The velocity potential at any confocal surface point equals the greatest tangential
speed along that surface times the distance from the point to the surface’s zero-potential plane.

2. The tangential flow speed at said surface point equals the greatest tangential speed
times the sine of the obliquity, or inclination of the local surface element to the equipotential
plane.

3. The normal speed at the point equals the greatest normal speed times the cosine of the
obliquity.

4. The locus of ¢=g¢, is a cup-shaped surface asymptoting a double cone with vertex at
the center.

5. The vertex angle of this cone is invariant with stream direction; for cylinders it is
90°, for spheroids it is 2tan™+/2 =109°—28’.

6. The velocity and pressure distribution are closely the same as for air of the same
density, except in or near the region of disturbed flow. -

7. The zonal drag is upstream on the fore half; downstream on the rear half; zero on the
whole.

For the same stream, but with kinematic viscosity », if the dynamic scale is R=q,d/v,
d being the model’s diameter:

8. The drag coefficient of a sphere is 24/R for R<.2; 28R~%+ 48 for 0.2<R<200,000;
and 0.5 for 10*<R<10°.

9. The drag coefficient of an endless round cylinder fixed across stream is 8x/R(2.002 —
log.R) for R<.5; approximately 9.4 B~*+1.2 for 0.5<CR<200,000; 1.2 for 10*<R<200,000.

10. For 15,000</2<C200,000 the drag coefficient of a round cylinder is 2.4 times that for
a sphere.
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TABLE III

Flow functions for simple quadrics in stream V along y positive

(For all shapes ¢=— (1+m;) Vy,

qir=—(1+m) V cosé,

gn=—(1—nyp) V sin 6)

Shape my ny
a? @
Sphere 578 o’
2 2
‘ Circular cylinder ;;1;2 0%2
i ; a a+b a atbd
Elliptic cylinder B a’-?—_b’ a E’ib’
1-1e 2¢’ 1+¢ 1—2e’2
Prolate spheroid loge *Le, — = T log, - __*_e,—Ze' =
b R o SN e GBI 1>e 1—€? 08w
e | g log, L T¢_ge1—2¢ log Ite o, 1—-2¢
“T—e T 1@ it 1—¢&
i 1)-e'2
Oblate spheroid e'+/T—e’2—sinle’ '»*tflt—sm"e’
T SR Panione IS o ke e
e=3\/b2'—0} o —— —sinle PR Bl
% ez

* » is the longitude of any meridian; it is reckoned positive from ¥ to z.

TABLE IV

Inertia factors k; for quadric surfaces in steady translation along axis b in Figure 20

Prol. spher. E=a/b

Ellip. cyl. E=a/b lotne e s Obl. spher. E=b/a
E.longlia]- ky_a Al T T N e—E sin”le
tion i == e, 1—2¢ "= TeEr (1) —Esin e
08— ——2¢ =
l1—e 1—e¢?
1. 00 1. 00 0. 500 0. 500
1. 50 1. 50 . 621 . 384
2. 00 2. 00 . 702 . 310
2. 50 2. 50 . 763 . 260
3. 00 3. 00 . 803 5293
4. 00 4. 00 . 860 . 174
5. 00 5. 00 . 895 . 140
6. 00 6. 00 . 918 . 121
7. 00 7. 00 . 933 . 105
8. 00 8. 00 . 945 . 092
9. 00 9. 00 . 954 . 084
10. 00 10. 00 . 960 . 075
© © 1. 000 0

The numerical values in column 3 are given in Lamb’s paper already cited; those in column 4 are given

substantially by Doctor Bateman, Report No. 163 National Advisory Committee for Aeronautics, 1923.
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force
(parallel g
Daadcats Sym- 11;)0 a:lr)isi Designa- | Sym- Positive Designa- | Sym- (?(;?nfgg- "
EEEnauon bol| SyHD0 tion bol direction tion bol [nent along ngular
axis)
Longitudinal___| X X rolling_ . ___ L Y——Z |roll______ ® u P
Tatoral i ¢. 1% ¥ L4 pitching____| M Z—— X | piteh_____ o v q
Normal-o__»_. Z VA yawing_____ N X——Y |yaw_____ 2 w T
Absolute coefficients of moment Angle of set of control surface (relative to neu-
o T o, M oo N tral position), 5. (Indicate surface by proper
LT b8 "M geS 7V qfS subseript.)
4. PROPELLER SYMBOLS
D, Diameter. T, Thrust.
p., Effective pitch Q, Torque.
ps, Mean geometric pitch. P, Power.
ps, Standard pitch. (If “coefficients” are introduced all
p,, Zero thrust. units used must be consistent.)
Pa, Zero torque. n, Efficiency=T V/P.
p/D, Pitch ratio. - n, Revolutions per sec., I. p. s.
V', Inflow velocity. N, Revolutions per minute., R. P. M.
¥,y Slip stresm welogity. &, Effective helix angle=tan™ (2V
: TN,
5. NUMERICAL RELATIONS
1 HP =76.04 kg/m/sec. =550 Ib./ft./sec. 1 1b. =0.4535924277 kg.
1 kg/m/sec. =0.01315 HP. 1 kg =2.2046224 1b.
1 mi./hr. =0.44704 m/sec. 1 mi.=1609.35 m = 5280 ft.
1 m/sec.=2.23693 mi./hr. 1 m=23.2808333 ft.
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