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AERONAUTICAL SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Length ____ _ 
Time ______ _ 
Force _____ _ 

Symbol 

l 
t 
F 

Metric 

Unit 

meter __________ _________ _ 
second _________ ___ ______ _ 
weight of one kilogram ____ _ 

Symbol 

m 
sec 
kg 

English 

Unit Symbol 

foot (or mile} ___ ______ ft. (or mi.) 
second (or hour} _______ sec. (or hr.) 
weight of one pound lb. 

PoweL_ ____ P kg/m/sec ___________________________ borsepower ___ ________ BP. 
S d {km/hr --- ---------------- -------- - - mL/hr ______ __________ M. P. B. 

pee ------ ------ -- -- m/sec ______________________________ ft./scc ________ ______ __ f. p. B. 

2. GENERAL SYMBOLS, ETC. 

W, Weight, =mg 
g, Standard acceleration Of gravity=9.80665 

m/sec.z=32 .1740 ft./sec.' 

m, Mass = W , g 
P, Density (mass per unit volume). 
Standard density of dry air, 0.12497 (kg-m-' 

sec.') at 15 0 C and 760 mm = 0.002378 (lb.­
ft.-4 sec.2). 

Specific weight of cc standard" air, 1.2255 
kg/m3 = 0.07651 Ib./it.3 

mk' , Moment of inertia (indicate axis of the 
radius of gyration, k, by proper sub­
script). 

S, Area. 
Sw, Wing area, etc. 
G, Gap. 
b, Span. 
e, Chord length. 
b/e, Aspect ratio. 
j, Distance from e. g. to elevator hinge. 
J.L, Coefficient of viscosity. 

3. AERODYNAMICAL SYMBOLS 

V, True air speed. 

q, Dynamic (or impact) pressure=~ p P 

L, Lift, absolute coefficient OL= :s 
D, Drag, absolute coefficient OD= ~ 
0, Cross - wind force, a b sol ute coefficient 

o 
OC=qS 

R, Resultant force. (Note that these coeffi­
cients are twice as large as the old co­
efficients Le, Dc.) 

iw Angle of setting of wings (relative to thrust 
line) . 

it, Angle of stabilizer setting with reference to 
to thrust line. 

'Y, Dihedral angle. 
Vl Reynolds Number, where l is a lin€.ar. 

P -;;' dimension. 
e. g., for a model airfoil 3 in. chord, 100· 

mi./hr. normal pressure, 00 C: 255,000 
and at 15° C., 230,000 ; 

or for a model of 10 cm chord 40 m/sec, . 
corresponding numbers are 299,000 
and 270,000. I 

Op, Center of pressure coefficient (ratio of 
distance of O. P. from leading edge to l 
chord length) . 

fl, Angle of stabilizer setting with reference 
to lower wing, = (it -iw). 

a, Angle of attack. 
E, Angle of downwash. 
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TEC EN I CA L REPORT 1'0 . 253 . 

FLO'!V AND DRAG FORM.ULAS FOR SI MPLE QUADRICS . 

ERRATA 

Pa~e 12 , line 1, should read : 

In the flow field q, p are constant where qt 2 + qn2 = 

c onstant . 
Pa2;e 1 6 , lir.e 12 , symbols should. read : 

Page 23 , line 2 , Table III, should read : 

( For a 11 s hap e s <t = - (1 + rnb) V y , 

q t :-:: . (1 + mb) V . * 81n ( 

Page 23 , Table III, Qclete line under table and substitute: 

* E is the angle betne en b I and any normal to the conf ocal 

surface . 

Page 23 , Table III~ 

cos w shoul d be ami tted from formulas. 
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FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS 
By A. F. Z AIIM 

PREFACE 

In thi text are given the pre sure di tribution and re istance found by theory and experi­
ment for imple quadrics iL,ed in an infinite uniform stream of practically incompressible fluid. 
The experimental values pertain to air and ome liq uid , e pecially water; the theoretical refer 
sometimes to perfect, again to vi cid fluids. For the cases treated the concordance of theory 
and mea urement i 0 clo e as to make a resume of results desirable. Incidentally formulas 
for the velocity at all points of the flow field are giv n, orne being new forms for ready use 
derived in a previou paper and given ill Tables I, III. A summary is given on page 22. 

The computation and diagram were made by Mr. F. A. Louden. The pre ent text is a 
slightly revised and extended form of Report No . 312, prepared by the writer for the Bureau of 
Aeronautic in June, 1926, and by it relea ed for publication by the ational Advisory Com­
mittee for Aeronautics. A list of ymbols follows the text . 

PRESSURE AND PRESSURE DRAG 

We assume the fluid, of con tant density and unaffected by weight or viscosity, to have in 
all the di tant field a uniform velocity qo parallel to x; in the near field the resultant velocity q. 
If now the distant pressme i everywhere Po, and the pressure at any point in the di tUl'hed flow 
is po + p, the supel'stl'~am pres ure p is given by Bernouilli's formula, 

(1) 

where Pn= pqo2/2, called the "stop" or "stagnation" or "nose" pressure. 
At any surface element the superpressure exerts the drag f p dy dz, whose integral over 

any zone l of the surface is the zonal pressure drag, 

D=fp dy dz. (2) 

Values of p, D are here derived for various solid forms and compared with those found by 
experiment. 

PRESSURE MEASUREMENTS 

The measured pressures here plotted were obtained from some tests by Mr. R. H. Smith 
and myself in the United States Navy 8-foot wind tunnel at 40 miles an hour. Very accurate 
models of bras, or faced with bra s, had numerous fine perforations, one at the nose, others 
further aft, which could be joined in pairs to a manometer through fine tUbing. Thus the 
pressure difference between the nose and each after hole could be observed for any wind speed. 
Then a fine tube with closed tip and static side holes was held along stream at many points 
abreast of the model, to show the difference of pressure there and at the nose. Next the tube 
was thrust right through the model, to find the static pressUJ'e before and behind it. The 
method is too well known to require further description. 

THE SPHERE 

Assume a the fixed body a sphere, of radius a, in a uniform stream of inviscid liquid, as 
shown in Table I. Then by that table the flow speeds at points on the axis x, y and on the 
surface are 

(3) 

where () is the polar angle. Figure 1 shows plots of these equations. 

I A zono is a part of tbe sW'face bounded by two planes normal to qo. Usually ono plaue is assumed tangent to the surface at its upstream end. 

a 
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To graph P/Pn in Figure 1, we subtracL from the line y = 1, first q~//qo2 Lo show the pressure 
along x; then q?jqo2 to portray the surface pressure. A imilar procedure gives the superpressure 
in the equatorial plane. 

The little circle show the actual superpre ure found with a 2-inch brass sphere in a tunnel 
wind at 40 miles an hour. These agree well with the computed pres ures except where or 
near where the flow is naturally turbulent. 

By (3) and (1), on the sphere's surface P/Pn=I-2.25 in20; hence the zonal pressure drag 
Jp.21rYdy is 

(4) 

for a nose cap who e polar angle is o. 'With increase of 0, a in Figure 2, D/Pn increases to a 
maximum .69 . a2 for 0 = 41 0 

- 50' and p = 0; then decreases to zero for 0 = 70 0 
- 37'; then to its 

minimum - .3927 a2 for 0 = 7r/2; then continue aft of the equator ymmetrical with its fore 
part. Thus the drag is decidedly upstream on the front haH and equally downstream on the 

Lengfh in Inches 

Wind 

FIG. I.-Velocity and pressure along axes and over surface of sphcre; graphs indicate theoretical values; 
circles indicate pres ures measured at 40 miles per hour inS-foot wind tunnel, United States Navy 

rear half, having zero resultant. The little cro ses, giving D/Pn for the measured pre sures, 
show that the total pressure drag in air i down tream, and fairly large for a body so blunt as 
the sphere . 

Figure 3 depicts the whole-drag coefficient 2 aD = 2D /7r P a2qo2, of a sphere, for the manifold 
experimental conditions specified in the diagram, plotted against Reynolds Number R = 2 qoa/II, 
II being the kinematic viscosity. For 0.2 < R < 200000, the data lie close to the line. 

(5) 

an empirical formula devised by the writer as an approximation. 
For .5 < R < 2 (5) fairly merges with Osecn's formula 

aD = 24R-l +4.5, (6) 

and for R < .2 Stokes' equation aD = 24/R is exactly verified. Both these formulas are theoretical. 
Stokes treated only viscous resistance at small scale; Oseen added to Stokes' drag coefficient, 
24/R, the term 4.5 due to inertia. 

I From the drag D- CP.S, where S is the model's frontal area, one derives the drag coeffiCient CD=D/p.S. 
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Over an important R range Figure 3 shows CD = .5, givin.g as the sphere's whole drag 

D=.5 Pn S, (7) 

where S = 7r a2 is the frontal area. That is, the sphere's drag equals half its nose pressure times 
its frontal area. For R <.2 Stokes' value, D = 67r J.I. a qn. has been exactly verified experi­
mentally, as is well known. 
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F IG . 2.- Pressure and pressure-drag on spbere. Grapbs indicate 
t heoretical values; circles indicate pressure pIp. measured at 
40 miles per bour; crosses indicate pressure-drag Dip., com­
puted from measured pressure 

THE ROUND CYLINDER 

N cxt as arne an endless circular cylinder, of radius a, fixed transverse to the stream, as 
indicated in Table 1. By that table the flow speed at points on the axes x, y and on the surface is 

(8) 

where (J is the polar angle. Plots of (8) are shown in Figure 4. 
Graphs of p lPn, made as explained for the sphere, are also given there, togetber with experi­

mental values, marked by small circles, for an endless 2-inch cylinder in a tunnel wind at 40 
miles an hour. The agreement is good for points well within the smooth-flow region. 

y 

On the surface p ip" = 1-4 sin2 (J. The integral 2 J pdy gives, per unit length of 
cylinder, the zonal pres ure-drag formula, 0 

DIPn=2 a sin e-~ a sin3 e. (9) 
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Fro. 4.-Velocity and pressures along axes and over surface of endless cylinder; graphs indicate theoretical values; 

circles indicate pressures measured at 40 miles per hour in ·foot wind tunnel. United States Navy 
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This i 0,2a/3 (max.), 0, -2a/3, for 8= 00
, 300

, 600 ,900
; and i ymmetrical about the equatorial 

plane X= 0. In Figure 5, the little crosses give D/p" for the measured pressures, and show total 
D /p" = 2.33a. 

Figure 6 delineates the drag coefficient OD plotted against R = 2 aqolv, from Wieselsberger's 
(R eference 1) wind tunnel tests of nine endle cylinders held tl'ansver e to the steady flow. 
The faired line is the graph of 

(10) 

an empirical equation devised by the present wTiter. 
For very low values of R, Lamb derives the formula 

8 
(11) 

(2.002 - logeR )R' 

whose graph in Figure 6 nearly merges with (10) at R = .3. 

FOT I5000 < R <200000, Figure 6 gives OD = 1.2; hence the drag per unit frontal area is 

(12) 

which is 2.4 times that for the sphere, given by (7). 

THE ELUPTIC CYLINDER 

An endless elliptic cylind r held Lransverse to the tream, a. shown in Table I, gives for 
points on x, y and on its surface, 

qt = (1 + b/a) qo sin 8, (13) 

where m, n are as in Table I. Amidships q I = (1 + b /a )qo = 2qo for a = b, as given by ( ). Graphs 
of (13) are given in Figure 7. 

To find a', b' for plotting (13), assume a' and with it as radius strike about the focus an 
arc cutting y. The cutting point is distant b' from the origin. Otherwise, b' = -Ja'2 - c2

, wherfl 
c2 = a2 - b2 = const. 

With alb = 4 one plots P /Pn in Figure 7, as explained for the sphere. The circles give the 
experimental P/Pn for an endless 2-inch by 8-inch strut, at zero pitch and yaw, in a tunnel wind at 
40 miles an hour. The theoretical and mea ured pTessures agree nicely for all points before, 
abreast, and well behind the cylinder. 

Again, sin28 = a2y2/ (b4 + c2y2), if c2 = a2 - b2• Hence on the model 

(14) 

y 

This gives the zonal pressure drag, D = 2f pdy, per unit length of cylinder, or 
o 
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whose graph, for alb = 4, appeal' in Figme 8. It ri es from 0 at the nose to its maximum where 
p = 0, then falls to its minimum amid hip. 

\ "'----------- --

.'" •• o. 

-/z -/0 a z 6 {J 10 1-

Length in inches 

FlO. 7.-Velocity and pressure along axes and over surface of endless elliptic cylinder. Grapbs indicate tbeoretical values; 
oircles indicate pressure measured at 40 miles per bour in 8-foot wind tunnel, United States Navy 
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FIG .. -Pressure and pressure-drag on endless elliptiC cylinder, Graphs indicate tbeoretical values; circles 
indicate pressure pip n measured at 40 miles per hour; crosses indicate pressure-drag Dip n computed from 
measured pressure 

Whatever the value of alb, the whole pressme on the front half is negative or upstream, 
as for the phere and round cylinder, and is balanced by the rear drag. For b fixed it decreases 
indefinitely with bla, 

10420-27--2 
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The cros es marking actual values of D/Pn found in said te t show fl, down tream resultant 
D. In fact, it i one-third the whole mea ured drag of pres ure plus friction, or one-half the 
friction drag. 

For the cylinder held broadside on, b>a and a2-b2 = - 02, hence changing 02 Lo -02 under 
the integral sign of (15), we find 

D/ = _4b a + b ~ - b2 (a+b)2 10 b2+oy 
Pn 02 Y 03 ge b2 - oy' (16) 

where now 0 2 = b2 
- a2• With b fixed, the upstream pressure drag on the front half increa es with 

bfa, becoming infinite for a thin flat plate. It is balanced by a symmetrical dTag back of the 
plate. . • 

Such infinite forces imply infinite pressure change at the edges where, as is well known, the 
velocity can be q = -./2pr/P = co, in a perfect liquid whose reservoir pressure is pr = co. Otherwise 
viewed, the pressure is Pr at the plate's center (front and back) and decrea e indefinitely toward 
the edges, thus exerting an infinite upstream push on the back and a symmetrical downstream 
push on the front. In natural fluids no such condition can exist. 

THE PROLATE SPHEROID 

A prolate spheroid, fixed as in Table I, gives for points on x, y and the solid surface, respec 
tively, the flow speeds 

qx=(I-n)qo, qll=(I+m)qo, qt=(I+7ca)qosinB, (16) 

- /0 2 6 8 /0 

,Le ngt h in inches 

FIG. 9.-Velocity and pressure along axes and over surface 01 prolate spheroid. Graphs indicate theoretical values; circles 
indicate pressures measured at 40 miles per hour in 8-loot wind tunnel, United States avy; dots give pressures lound 
with an equal model In British test, R. and M . No. 600, British Advisory Committee lor Aeronflutics 
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FIG. 1O.-Pressure and pressure-c1rag on prolate spheroid. Graphs indicate theoretical valnes; dots indicate 
measured pressure pIp. from Figure 9; crosses indicate pressure-drag DIp n computed from measured pressure 
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where ka is to be taken from Table II. Graphs of (16) are given in Figure 9, for a model having 
alb = 4, viz., lea = 0.082. 

For thi surface p/p" plot a in Figure 10. For a 2 by" 8 inch brass model values of p/p" 
are hown by circle for a test at 40 miles an hour in the United States Navy tunnel; by dots for 
a like test in a British tunnel. (Reference 2.) 

By (16), for points on thesurfacep/p,,=1-qt2/qo2=1-(1+lea)2sin20. From this, since 
sin2 0= a2y2/ (b4+ c2y2) , the zonal pressure drag f p. 2 7r Y dy is found. Thus 

Starting from y = 0, D /p" increases 
diminishes to its minimum for y = b. 
D /p" for alb = 4. 

(17) 

to it m~'{imum when p = O, or sin 8=1/(1+7ca ); then 
Figure 10 gives the theoretical and empirical graphs of 

For b fixed the upstream drag on the front half decreases indefinitely with bfa, becoming 
zero for infinite elongation. 

OBLATE SPHEROID 

The flow velocity about an oblate spheroid with its polar axis along stream is given by 
formulas in Table I, and plotted in Figure 11, together with computed values of p/p". No 
determinations of p or D were made for an actual flow. The formula for D /p" is lilee (17), 
except that c2 

= b2 
- a2

, and lea is larger for the oblate spheroid, as seen in Table II. For b fixed 
the upstream drag on the front half increases indefinitely with b/a. 

Fw. I I.-Theoretical vrlociiy >lnd pressure along x axis of oblate spberoid. Diameier/ihickuess=4 

CIRCULAR DISK 

The theoretical flow speeds and superpressures for points on the axis of a circular disk fixed 
normal to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative 
data from a test. One notes that the formulas are those for an oblate spheroid with eccen­
tricity e = 1. 

For 1500< qo a/II < 500000, Wieselsberger (Reference 3) finds for the aIr drag of a thin 
normal disk, of area S, 

D=1.1 PnS, 

or 2.2 times that for a sphere. For aqo/II extremely small, theory gives 

D=5.1 7r J.I. a qo, 

(18) 

(19) 

as 1 well known. Te t data for a complete graph, including these extremes, are not yet a.vailable. 

- £, -4 -2 o 2 6 

Wind 
FlO. 12.-Tbeoretical pressure and velocity along axis of disk 
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REGIONS OF EQUAL SPEED 

In the flow field q, p are constant where qt2 +qt2 =constant, viz. where 

(20) 

In particular for the region q = qo, this becomes 

n 2- n a'4 
tan

2
8 = m 2 + m = b'4 tan2.6* (21) 

2 3 4 S 6 7 8 9 
£/o,7golion, E 

l~IG. 13.-Inertia coefficient vs. elongation. P lotted [rom Table II 

which applies to all the quadrics in T able I. Clearly tan 8=0 for n=2 ; tan28=n/m for 
m, n=O, viz. for all distant points of (21) . For these points the normal to any confocal ellipse 
lies along the radius vector and asymptote of (2 1), as seen in Figures 14 to 17. 

-----x 

FIG. l4.-Lines of steady flow, lines of constant speed and pressure, for 
inllnite frictionless liquid streaming past a spbere 

For the sphere n=2m=a3/r3
; hence (21) becomes 

where r= a' = .JX2+il The form of this is depicted in Figure 14 . 

(22) 

• tan p=y/x is tbe slope of a radial line througll tbe pOint (x, y) wbere (21) cuts a confocal curve a'b', of Table 1. Knowiug a', b', p, to locate 
(x, y) draw acroSS the radial line an arc of a'b' by sliding along the x, 1/ axes a straigbtedge subdivided as iu the ellipsograph. Tbe operation is rapid 
and easy. 
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For a round cylinder n=m=a2jr2; hence 
27'2-a2 

tan20 = 21;2 + a2 or, 2r2 = a2 sec 20, 

which is the section of a hyperbolic cylinder, as in Figure 15. 

1.f 

45" 

~ ~ 

" 

x 

) 
FIG. 15.-Lines of steady flow, lines of constnot speed and pressure, for infinite frictionless liquid streaming across endless 

round cylinder 
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FIG. 16.-Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid 
streaming across endless elliptic cylinder 
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(23) 
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A plot of (21) for an elliptic cylinder, fixed as shown in Table I, is given in Figure 16; for a 
proIa te spheroid in Figure 17. 

Besides the region (21), having q = qO) it i useful to know the limit of perceptible di turbance 
say where q2jqo2= 1 ± .01. This in (20) gives 

(1 +m)2 sin2 ()+ (1-n)2 cos2 ()= 1 ± .01, (24) 

which applies to all the quadrics here studied. Hence 

t 
2{) n 2-n 0.01 an = + , 

m 2+m - m(2+m) cos2 {) 
(25) 

A graph of (25) for a round cylinder is shown in FiO'W'e 15. Like plot for the other quadrics 
are readily made. 
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FlO . 17.-Lines of steady flow, lines of constant speed and pressnre, for infinite friction­
less liquid streaming past a prolate spheroid. Full-line curvo q=q, refers to stream 
parallel to x; dotted curve q=q. refers to stream inclined 10° to x. 

If in (20) a series of constants be written for the right member, the graphs compose a family 
of lines of equal velocity and pressW'e, covering the entire flow field. Rotating Figures 14, 17 
about x gives surfaces of q = qo· 

COMPARISON OF SPEEDS 

Before all the fixed models the flow speed is qo at a great distance and 0 at the nose; abreast 
of them 'it is qo at a distance, and (1 + ka)qo amidships. 

The flux of q-qo through the equatorial plane obviously must equal qoS where S is the 
body's frontal area. Hence two bodies having equal equators have the same flux qoS, and the 
same average superspeed or average q - qo. But the longer one has the lesser midship speed; 

( 
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hence it outboard speed wanes less rapidly with di tance along y. A like relation obtains 
along :r from the nose forward. These relation arc hown in the velocity graphs of Figures 
1 and 19. A figure similar to 1 ,including many model, is given in Reference 4. 

____ ~4-~ __ ~~-~--~~ 
/ .... , 
" \ I \ 

---~~t------ ----.... : - -+-_-+1_- --------J--- x 
\ 
\ 

" 
I 

I 
/ 

:FIG. IS.-Superposed graphs of flow speed abreast of enuless round and elliptit' 
cylinders of same thickness fixed transverse to an infinite stream of invisc id 
liquid . At great distance flow speed is q. 

11G. lV.-Superposeu graphs of axial flow specd hefore three endless cylinders I, 2, and 3 (3 oscululillK 
2), each fixed transverse to an infinite stream of inviscid liquid. At great distance flow s l><'cd is q. 

COMPARISON OF PRESSURES 

The foregoing speed relations determine those of the pressures. The nose pressures all 
are pn = pq//2; the midship ones are P =Pn - (1 + 7ca)2Pn. The drag on the front half of the 
model is up tream for all the quadrics here treated; it increases with the flatness, as one proves 
by (15), (17), and is infinite for the normal disk and rectangle. 

APPLICATION OF FORMULAS 

The ready equations here given, aside from their academic intere t in predicting natural 
phenomena from pure theory, are found useful in the de ign of air aud water craft. The formula 
for nose pre sure long ha been used. That for pres ure on a prolate spheroid, of form suitable 
for an airship bow, is so trustworthy as to obviate the need for pre sure-di tribution measure­
ments on such shapes. The same may be aid of the fore part of well-formed torpedoes deeply 
submerged. The computations for stiffening the fore part of airship hulls can be safely based 
on theoretical estimates of the local pressure. The velocity change, well away from the 
model, especially forward of the equatorial plane, can be found more accurately by theory 
than by experiment. The equation (21) of undisturbed speed shows where to place anemometers 
to indicate, with least correction, the relative speed of model and general stream. 
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2. JONES, R., and WILLIAMS, D. H.: The distribution of pressure over ihe surface of air hip model U. 721, 
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4. TAYLOR, D. W.: Speed and Power of Ships, gives a figure similar to 18 but including more models. 1910. 
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x, y ______ _ 
T, {J--------
Q_--------
S ________ _ 

fL _______ _ 

cp- -------­
>/1-- ------­
q- -------­
qo--------

q..j qr-----

qt--------

q,, --------
p------ ---
11----------
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SYMBOLS USED IN TEXT 

Cartesian coordinate ; also axes of same. 
Polar coordinate . 
Angle of attack of uniform stream. 
Length of arc, increaSing with {3. 
Inclination to x of normal to confocal 

curves in Table I. 
Velocity function . 
Stream function. 
Resultant velocity at any point of fluid. 
Velocity of distant fluid (parallel to x 

axis). 
Velocity at points on x and yaxes (parallel 

to x axis). 
Velocity along confocal surface or model 

surface. 
Velocity normal to confocal surface. 
Density of fluid. 
Viscosity. 

v _ _______ _ 

pn- - - - - - -­
Po--------
p---------D _______ _ 
D _______ _ 
S _______ _ 
CD---- __ _ 
R _______ _ 

Q---------a, b ______ _ 
a', b' _____ _ 
e ________ _ 
e' _______ _ 
c ________ _ 
k

a 
_____ _ _ _ 

111" n, m a __ _ 

TABLE I 

Kinematic visco ity. 
Nose pre sure=p qo2/2. 
Pre ure in di tant fluid. 
Superstream pre ure anywhere. 
Zonal pres ure cll'ag= f P dy dz. 
Whole drag. 
Frontal area of model. 
Drag coefficient=D'Pn . 
Reynolds number. 
Radius of sphere, cylinder. 

emiaxe of ellip e. 
emiaxes of confocal ellip e. 

Eccentricity of ellipse. 
Eccentricity of confocal ellip e. 
Focal distance = ae= a' e' = -Ja2 - b2 
Inertia factor (Table II) . 
Quantities defined in Tables I, II. 

Flow functions for simple quadrics fixed in a uniform stream of speed qo along x positive 

Value of fun ·tions at any confocal surfaces of semiaxe a', b' 

Flymbol defini­
tions Form of quadric 

omponeut yelocitie. 
qt, q" 

Sec diagram A 
(fig. 20) 

ee d iagram B 
(fig. 20) 

ee diagram C 
(fig. 20) 

Sphere 

Circular cylinder 

Elliptic cylll1der 

Prolate spheroid 

e=l a2-b2 
a 

Oblate pheroid 
1 ,­e=--yb2-a2 
b 

Circular disk 
a=O, e= 1 

Velocity function cp fStI'eam function >/I 

cp= - (1 +m) qaX, where >/1= -; (l-n) qoy2, where 

a3 a3 

m=2a'3 n= a'3 

cp= - (l+m) qaX, 

a2 

m= a'2 

cp=-(l+m) qaX, 

b a+b 
m=07 a'+b' 

cP= - (l +m) qaX, 

l+e' I 
log . 1_e,-2e 

m=--- -
l +e 2e 

log. 1-e -1-e2 

<p= - (1 +m) qaX, 

e'b' 7- in -Ie' 

ea_ sin -Ie 
b 

cp= - (1 +m) qaX. 

>/1= - (l-n) qoY, 

>/I=-(l-n)qoy, 

b a+b 
n=/l a'+b' 

n= 

e'a' V-sin-Ie' 

2 (b . I ,) 2 ( 'b ') m=- - -sm- e a 
7r a' n= -- -- - in - lei 

7r b' 2 , 

Differentiation along 
arc s of either figure 
give: 

o<p dx 
qt=()X ds=(l+m) qo 

sin 8, valid for all the 
figures; 

0,,", dy 
qn= oy ds=--(l-n) qo 

cos 8, for the cylin­
<.leI' . 

1 '0>/1 dy 
qn=- " -d = -(l-n) y vy s 

qo cos 8, for the axial 
surface; viz., sphere, 
spheroids, disk. 

For ai, b'=a, b, Table 
II gives m,; whence 

qt= (l+m,)qo in 8, 
as the flow velocity on a 

fixed quadric surface. 
qn= ± 0 for disk. ince 

n = l 
Remark-both q. qn 

can be derived from 
either <p or >/I'. 

If qt qn=max. qt qn 
on a'b' , at any other 
point thereof 

qt=qt sin 8, qn=q" 
cos (j 

Cp, "",, in elliptic coordinate, can be found in textbooks; e. g., §§ 71,105,108, Lamb' Hydrodynamics, 4th Ed . 
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TABLE II 

Inertia factors ka * for quadric surfaces in steady translation along axi a in Figure 20 

Prolate. pheroid E =a/b I 
Elonga-

Elliptic c~'lillder, E = a/b 1 +e I 
Oblate spheroid E = b/a 

k =~ 
loge l _e-2e eE2-E 'in- II' tion E ka k =---a a J l +e 2e a e- E si n-Ie og. - - ---

l -e l -e2 

-- --
1. 00 1. 000 O. 500 O. 500 
1. 50 .667 .305 .803 
2. 00 .500 .209 1.11 ' 
2.50 .400 . 157 1. 42 
3. 00 . 333 . 121 1. 742 
4. 00 .250 .0 2 2. 379 
5.00 . 200 .059 3. 000 
6.00 .167 .045 3. 642 
7. 00 · 143 .036 4. 279 
8. 00 .125 . 029 4. 915 
9.00 · 111 .024 15.549 

]0. 00 · 100 .021 6.1 3 00 .000 .000 00 

• In this tahle k.=m. of Tahle I,viz, the value of m wbeu a' , b'=a, b. Lamb (R. and M. 0.623, Brit. Adv. Com. Acron.) gives the numerical 
"nlurs in the third column ahovc . . For moVon of elliptic cylinder along b axis inertia factor is k.=a/b. 

Dt'oqrom A 1j 

qx a'a 
FIG. 20 

q o 

Dt'oqrom 

q x 

VELOCITY AND PRESSURE IN OBLIQUE FLOW 2 

PRINCIPLE OF VELOCITY COMPOSITION 

C 1j 

qy 

e --- .,.; 
a'a 

A sliream qo oblique to a model can be resolved in chosen directions into component streams 
each having it indi.vidual velocity at any flow point, as in Figure 21. Combining the individuals 
gives their resultant, whence p is found. 

VELOCITY FUNCTIO 

Let a uniform infinite stream qo of inviscid liquid flowing past a fixed ellipsoid centered 
at the origin have components U, V, W along x, y, z, taken parallel, re pectively, to the semi­
axes, a, b, c; then we find the velocity potential 'P for qo as the sum of the potentials 'Pa, 'Pb, 'Pc 

for U, V, W. 
In the present notation textbooks prove, for any point (x, y, z) on the confocal ellipsoid 

a' b' c', 
(26) 

and give as constant for that surface 

ma=abc(l-abclooa' ~~: c,)-liOOa' ~~: c' * (27) 

the multiplier of ( 00 being constant for the model, and A=a' 2_a2. Adding to (26) analogous J>. 
values of 'Pb, 'Pc gives 

(2 ) 

' This brief treatment o( oblique (jow was added by request alter tbo preceding text was fiui shed . 
• Simple (ormulas (or this integral and tbe corresponding b, c ones, published by Greene, R. S. Ed. 1833, arc given by Doctor Tuckerman in 

Report No. 210 o( the National Advisory Committee (or Aeronautics (or 1925. Some ready values are listed in T ables III, IV. 
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where h is the distance of (x, y, z ) from the plane cp = O, and m a, mb, me, m are generalized inertia 
coefficients of a' b' c' for the respective streams U, V, W, qo. For the model itself the inertia 
coefficients usually are written le a, le b , le e, le . The direction cosines of h arc 

L=l + m a U, M=l+m b V, N=l + m e W, 
1 + m qo 1 + m qo 1 + m qo (29) 

as appears on dividing (28) by (1 + m)qo, the resultant of (1 + ma) U, (1 + mb) V, (1 + me) lV. 

EQ IPOTE TIALS A D TREAMLI ES 

On a' b' c' the plane section cp = constant are equipotential ellipses parallel to the major 
section cp = 0, and dwindling forc and aft to more points, which we call stream poles, where the 
plane (28) i tangent to a' b' c'. If E is the angle between any normal to a' b' c' and the polar 

• 

y 

I 
'ltU+ 9tV

I' 

q,v / ,' 
, Jr , 

,//~,~~, : 
9"v u[.~-:;;.~:;::-:'-"-=-'-----j 

-!-----------

x 

- - -

FIG. 21.-Superposition of streamlike velocities for component plane flows parallel 
to axes of elliptic cylinder 

normal, whose direction co ines are L, :AI, N, we call the line E = const. a line of stream latitude. 
Thus E is the colatitude or obliquity of a surface element of a' b' c'. The line E = 90° is the stream 
equator. This latter marks the contact of a tangent cylinder parallel to the polar normal, viz, 
perpendicular to the plane (2 ), as in Figure 22 . If I, m, n are the direction co ine of any normal 
to a' b' c' 

co E= IL + mM+ nN. (30) 

Since the streamlines all cut the equipotentials squarely,3 the polar streamline mu t run 
continuously normal to the family of confocal ellipsoids a' b' c'. Hence it forms the intersec­
tion of a pair of confocal hyperboloids, and at infinity symptotes a line parallel to qo through the 
origin. This straight line may be called the stream axis. Its equation is x: y: z = U: V: W. 

, On the model, t herefore, the streamlines are longitude lines, viz . orthogooals to the lati t ude li nes. 
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COMPONE T VELOCITIES 

At any point of any confocal surface a' b' e' the streamline yelocity q, perpendicular to the 
equipotential ellipse there, has components qn, q" 1'e pectivcly, along the surface normal n 
and the tangent s in the plane of q and n. By (28) we have 

0\0 dh - . 
q'=oh ds =q, sm e, (31) 

where - o\O/oh = (1 + m)qo=q, = max. qt, i the eq uatorial yelocity. By (26) the inward normal 
velocity due to \Oa is 

(32) 

na being constant on a' b' e', a may be shown. Similarly, \Ob, \OC contribute -m(l-nb)V,-n 
(1- nc) "YY; hence the whole normal component i 

(33) 

where q" = [(1 -na)2 Ul+ (1-nb)2V2+ (1-n c)2lV2J.5=max. qn i the normal velocity at the stream 
poles. ome values of n a, 11 bare giv n in Tahles I, lII. One al 0 may find (33) as the normtll 
derivatiye of (2 ). 

lYe now state (2 ): At any poin t of (L' b' e' the velociLy potential equal qth, the equatorial 
pe d times the di Lance from the plane of zero potential. Similarly (31) (33) tate: At any 

point of (I' b' e' the tangential. peed @t sin e) equals the equatorial peed times the ine of the 
obliqu ity; the normal speed (qn co e) equ'als the polar speed time the cosine of the obliquity. 
This thcorom applie to all the confocal, even at the model where q" = 04

. 

Incide ntally the normal flux through a' b' c' i fCJn co e· dS = tLn fdS</>, where S", i the pro­
je bon of S on the plane of ¢ = can t. and equals the cross section of the tangent cylinder. 
The whole Dux through a' b' e' is therefore zero, as should be. 

POLAR STREAMLI E 

SOll1e of the forcgoing relations are portrayed in Figlll'e 22 for a ca e of plane flow. Jote-
worthy is the polar treamline or hyperbola. Starting at infinity parallel to qo, the polar fila­
ment run with waning speed normally through the front pole of the succe sive confocal sur­
face; abut on the model at its front pole, or stop point; prcad round to the rear pole; then 
accelerate down tream symmetric wi th its upstream part. Its equation qt = ° = o¢/os can be 
written from (28) 

. l+m V* 
qt = (1 +ma) U sm (J- (1 +mb) V cos (J=O, or tan (J= 1 +m: U (34) 

This asymptotes the tream axis y/x= V/Uj for at infinity ma, mb=O, and tan (J= V/U. Plane­
flow values of ma, mb are given in Tables I, III. 

All the confocal poles are given by (34) j those of the model are at the stops where 

1 + lea V a2 y 
tan(J=1+le

b
U=b 2x' (37) 

Thus on an elliptic cylinder they are where ylx=b3/a3
• Via; on a thin lamina they are at 

x = ± c cos a, as given in the footnote. Tables II, IV give values of lea, leb· 

, An analogous theorem obtains also [or any otber uniform steady stream, say o[ heat or electricity, that has zero normal component at the bound· 
ary ellipsoid aud zerO concentration in the now field . 

• To graph (34) we may use the known relations. 
(35) 

where tan a = VI Uis the slope o[ qo or the aSYUlptoto to (31). 'rhus (34) pecomes (1'/b'~ (l+7n.)/(l +m.), which with the tabulated values oC 
l1hl, mbJ reduces to 

x' 1/' 
c2 cos,..-;-c2 sin2 ex - I, (36) 

!I hyperbola whose semiaxes are c cos a, C sin a, c being the focal distance. In this treatment x=a' cos a, 1/=b' sin a, a being a fixed eccentric 
angle oC the successive confocal elipses. 

• 
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Each angle of attack has its own flow pattern; each it polar streamline given by (34). 
A clo e-graded family of confocal ellipses and hyperbolas therefore portrays all the pole and 
polar treamlines in the plane ab for all angles of attack. The family can be written 

x=a' co 01, y= b' sin 01. 

T llll , giving a', b' a set of fixed values, then 01 a set, we have the confocal Jamilies 
x2 y2 x2 y2 
a'2 + b'2 = 1. c2 cos2 01 c2 sin2 01 = 1. 

the first being ellipses, the second hyperbolas lil{e (36) below. 
Similarly, the locus qu=O, or q=gt, is written from (33). With W = O, 

I-na U tan 0= - - _ .. . 
I-nb V 

Its discus ion is of minor interest. 
DRAG AND MOME T 

(38) 

(39) 

(40) 

Formulas for the pressure p all over the simple quadrics here treated are welllcnown, for 
oblique a well a axial £low, and serve to find the drag and moment. For uniform fiow the 
resultant drag is zero; its zonal parts can be found as heretofore. The moment about z is the 
surface integral of p(y dy dz-x dx dz), and generally is not zero. 

REGIONS OF EQUAL SPEED ABOUT OBLIQUE MODELS 

Oompounding the velocities (31), (33) at any point in the ab plane, a 
for q constant 

in Figur 22, gives 

q2 = [(1 + ma) U sin 0- (1 + mb) V cos 0]2+ [(I-na) U cos 0+ (I-nb) V 
In particular for q2= U2+ P (41) gives 

in OJ2 =con t. (41) 

tan 0= ~ (A ± .J13(t+ A2) = ~:: tan (3. (42) 

where K = V/U, and 

A = (1 +ma) (1 + mb) - (1- na) (I-nb),B=ma(2 +ma) -nb (2-nb)K2, OD= na(~na) -mb(2 +mb)' 

,Dolor stream fine 

~-----------~--s:; Sln:om axis \ 

FIG. 22.-Polar streamline and component velocities for uniform stream of inviscid Jjqnid about oblique 
elliptic cylinder 

For an elliptic cylinder, a 
b a+b 

ma = a' a' + b" 

is well known. 
b a+b 

'na=b' a' + b" 
a a+b 

nb= a' a' + b" 

which determines A, B, 0, and thence (3 in term of a' b'. Thu, for an endles elliptic cylinder 
of semiaxe a=4, b=l, yawed 10° to the stream, i. e., V/U=tan 10° = .1763, the graph of (42) 
ha the form shown fun line in Figure 23. Thi graph takes the dotted form when V = 0, qo = U. 
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For a prolate pheriod of emiaxe a=4, b=l, yawed 100, the graph of (42) is shown in 
Figure 17. 

/ 

/ 
/ 

/ 
/ 

/ 

, , 

/ 

/ 
/ 
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/ 

, 

\. 
\ <f= <fo 

\ 
\ 

FIG. 23. Lines of sLeady flow, lines of consLaut spc~d and pressnrc, for infinile frictionless liqnid 
"Lreawing across cndless ellipLic C) Iiuder. Dotted C1lfve refers to sLrealU parallel to x .. fnll-line 
curve g=q. refers io sLream inclined 10° to x 

The Lwo values of tan (3 in (42) are 

tan .8)=~(A+-JBO+A2) , 
from which are readily derived 

2K-JBO+A2 
tan (.81 - .82) = B - 1J.21.J ' 

(43) 

(44) 

(43) give the x-ward inclinations (3r, .82, of the asymptotes of the curves q=qo. As can be 
proved, the interasymptote angle .8) - (32 remains con tant as K( = VI U) varies and the asymp­
totes rotate through >'2({31 + (32) about the e axis. 

Thus, with an elliptic cylinder, giving A, B, 0 their values at co makes 

K(a+ b) 
tan (.81 + .82) = b _ aK2 ; (45) 

hence the asymptotes continue rectangular, as in Figure 23, while with varying angle of attack 
d 

they rotate through >'2(.81 + .82). Or more generally one may show that do. (.81 - .82) = 0.'. {31- {32 = 

const. 
A similar treatment applies to the other figures of Table III. For all the cylinders the 

inter-asymptote angle is 90 0
; for the spheroids it is 2tan-1 -J2 = 1090 

- 28' in the ab plane. 
Figure 17 is an example. If the flow past the spheroid is parallel to the be plane the inter­
asymptote angle for the curves q = qo in that plane is obviously unail'ected by stream direction. 
It is 90 0 for infinitely elongated spheroids; 1090 

- 28' for all others. Excluded from the gen­
eralizations of this paragraph are the infinitely thin figures, such as disks and rectangles edge­
wise to the stream, that cause no disturbance of the flow. Passing to three dimensions, we 
note that the a ymptotic lines form asymptotic cones having their vertex at the origin. 
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SUMMARY 

For an infinite invi cid liquid streaming uniformly, in any elir ction, past an ellipsoid 01' 

simple quadric: 
1. The velocity potential at any confocal urface point equals the greate t tangential 

peed along that urface time the distance from the point to the mface's zero-potential plane. 
2. The tangential Dow speed at aid urface point equals the greate t tangential peed 

time the sine of the obliquity, or inclination of the local surface element Lo the eq uipo tential 
plane. 

3. The normal peed at the point equal the greate t normal peed time the co ine of the 
obliquity. 

4. The locu of q= qo i a cup- haped urface a ympLoting a double cone with vertex at 
the center. 

5. The vertex angle of this cone i inyariant with iream direction; for cylinders it is 
900 ,for pheroid iti 2tan-1 .J2 = 109°- 2 '. 

6. The velocity and pre sure distribution are clo ely the ame as for air of the ame 
density, except in or near the region of di, turbed Dow. 

7. The zonal drag is up trcam on the fore half; down Lream on the rear half; zero on the 
whole. 

For the same tream, but with kinematic vi co ity v, if the dynamic cale i R = qod/v, 
d being the model's diameter: 

. The drag coefficient of a sphere i 24/R for R < .2; 28R-· 5+ .4 for 0.2 < R < 200,000; 
and 0.5 for 104<R< 105

• 

9. The drag coefficient of an endless round cylinder fixed across tream i -rr /R(2.002-
10geR) for R < .5; approximately 9.4 R-· + l.2 for 0.5 < R < 200,000; l.2 for l04< R < 200,OOO. 

10. For l5,OOO < R < 200,OOO the drag coefficient of a round cylinder is 2.4 times that for 
a sphere. 
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TABLE III 

Flow functions for simple quadrics in stream V along y positive 

(For all shapes ,p=-(I+mb) Vy, q,,= -(l-nb) V sin IJ) 

--

Shape I 1nb nb 

Sphere a3 a3 

2a'3 a'3 

---

Circular cylinder 
a2 a2 

I 

1-
a'2 a'2 . 

-
I a a+b a a+b 

Elliptic cylinder V a'+b' a' a'+b' 

I l+ e' 2e' l +e' ,l - 2e'2 
Prolate spheroid loge 1- , - 1- '2 loge

1
--,-2e l'2 

1..;- e e cos w* -e -e cos w 
e= a" a2 - b2 -

log. 1 t e _ 2e 1 - 2e2 log. l+e _ 2e 1-2e2 

1-e 1-e2 l- e l- e2 

------
I 

Oblate spheroid e'·,/l-e'2- in-Ie' e' !+e'2. _sin-le' 

I 
e=~";b2-a2 - 1+ ~2 . cos w ..j1-e'2 

e -- -SIO-Ie l +e2 - . cos w 
1- e2 e - = - SIO- le 

1-e2 
I 

• '" is the longitude of any meridian; it is reckoned positive from y to z. 

TABLE IV 

Inertia factors kb for quadric surfaces in steady translation along axis b in Figure 20 

Proi. spher. E = alb 

Elonga-
EUip. cy!. E=alb log. l+ e _ 2e ObI. spher. E=b/a 

kb=~ 1-e 1-e2 
kb= 

e-E sin-Ie 
tioD E kb=-

10g. 1+e -2e 1-2e2 eE2(e2+ 1)-E sin Ie 
1-e l -e2 

1. 00 1. 00 O. 500 0.500 
1. 50 1. 50 .621 .384 
2. 00 2.00 .702 .310 
2.50 2. 50 .763 .260 
3. 00 3. 00 .803 .223 
4.00 4. 00 .860 .174 
5. 00 5. 00 .895 .140 
6.00 6. 00 .918 .121 
7.00 7.00 .933 .105 
8. 00 8. 00 .945 .092 
9.00 9.00 .954 .084 

10.00 10. 00 .960 .075 
<Xl <Xl 1. 000 0 

The numerical values in column 3 are given in Lamb's paper already cited; those in column 4 are given 
substantially by Doctor Bateman, Report No. 163 National Advisory Committee for Aeronautics, 1923. 
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Axis 

z 
t . 

9 

\ 

\ 
\ 
\ 
I 
\ 
I 

y/"'-------~x 
ir 

Positive directions of axes and angles (forces and moments) are shown by arrows 

Moment about aAis Angle Velocities 

Force 
(parallel Linear to axis) Sym- Designa- Sym- Positive Designa- Sym- (compo-Designation bol symbol tion bol direction tion bol nentalong Angular 

axis) 

LongitudinaL __ X X rolling _____ L Y-->Z roll ______ <I> 'U 'P LateraL _______ Y Y pitching ____ M Z-->X pitch _____ a v q 
NormaL ______ Z Z ya wing _____ N X-->Y yaw _____ 'l' w T 

Absolute coefficients of moment 

L M N 
OL= qbS OM= qcS ON= gfS 

Angle of set of control surface (relative to neu­
tral position) , o. (Indicate surface by proper 
subscript.) 

V, Diameter. 
p., Effective pitch 
Pu, Mean geometric pitch. 
p" Standard pitch. 
Pv, Zero thrust. 
pa, Zero torque. 
p/V, Pitch ratio . . 
V', Inflow velocity. 
V" Slip stream velocity. 

4. PROPELLER SYMBOLS 

T, Thrust. 
0, Torque. 
P , Power. 

(If II coefficients" are introduced all 
units used must be consistent.) 

7] , Efficiency = T ViP· 
n, Revolutions pel' sec., 1'. p. s. 
N, Revolutions per minute., R. P. M. 

4>, Effective helix angle=tan-l(~) 27rrn 

5. NUMERICAL RELATIONS 

1 HP = 76.04 kg/m/sec. =550 Ib./ft./sec. 
1 kg/m/sec. =0.01315 HP. 

1 lb. = 0.4535924277 kg. 
1 kg = 2.2046224 lb. 

1 mi./hr. = 0.44704 m/sec. 
1 m/sec. = 2.23693 mi./hr. 

1 mi. = 1609.35 m = 5280 ft. 
1 m = 3.2808333 ft. 




