NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

FILE COPY

REPORT No. 256

THE AIR FORCES ON A SYSTEMATIC SERIES OF BIPLANE AND TRIPLANE CELLULE MODELS

By MAX M. MUNK

WASHINGTON GOVERNMENT PRINTING O

1927

THIS DOCUMENT ON LOAN FROM THE FILES OF

NATIONAL ADVISORY COMMITTEE FOR AERONAUTION LANGLEY MEMORIAL AERONAUTICAL LABORATORY LANGLEY FIELD, HAMPTON, VIRGINIA

RETURN TO THE ABOVE ADDRESS.

REQUESTS FOR POBLICATIONS SHOULD BE ADDRESS. AS FOLLOWS:

NAMONAL / DESORY COMMITTEE FOR ALRONAUTOR 1 Second Ref. (1997) White for the second second

AERONAUTICAL SYMBOLS 1. FUNDAMENTAL AND DERIVED UNITS

	Sumbol	Metric		English	
	Symbol	Unit	Symbol	Unit	Symbol
Length Time Force	l t F	meter second weight of one kilogram	m sec kg	foot (or mile) second (or hour) weight of one pound	ft. (or mi.) sec. (or hr.) lb.
Power Speed	Р	kg/m/sec {km/hr m/sec		horsepower mi./hr ft./sec	НР. М. Р. Н. f. p. s.

2. GENERAL SYMBOLS, ETC.

- W, Weight, = mg
- g, Standard acceleration of gravity = 9.80665m/sec.² = 32.1740 ft./sec.³
- m, Mass, $=\frac{w}{a}$
- ρ , Density (mass per unit volume).
- Standard density of dry air, 0.12497 (kg-m⁻⁴ sec.²) at 15° C and 760 mm = 0.002378 (lb.- ft.⁻⁴ sec.²).
- Specific weight of _"standard" air, 1.2255 kg/m³ = 0.07651 lb./ft.³
- V, True air speed.
- q, Dynamic (or impact) pressure = $\frac{1}{2} \rho V^2$
- L, Lift, absolute coefficient $C_L = \frac{L}{qS}$
- D, Drag, absolute coefficient $C_{D} = \frac{D}{qS}$
- C, Cross-wind force, absolute coefficient $C_{c} = \frac{C}{qS}$
- R, Resultant force. (Note that these coefficients are twice as large as the old coefficients L_c , D_c .)
- i_w Angle of setting of wings (relative to thrust line).
- i_t , Angle of stabilizer setting with reference to to thrust line.

- mk^2 , Moment of inertia (indicate axis of the radius of gyration, k, by proper subscript).
- S, Area.
- S_w , Wing area, etc.
- G. Gap.
- b, Span.
- c, Chord length.
- b/c, Aspect ratio.
- f_i Distance from c. g. to elevator hinge.
- μ , Coefficient of viscosity.

3. AERODYNAMICAL SYMBOLS

 γ , Dihedral angle.

- $\rho \frac{Vl}{\mu}$, Reynolds Number, where l is a linear dimension.
 - e. g., for a model airfoil 3 in. chord, 100 mi./hr. normal pressure, 0° C: 255,000 and at 15° C., 230,000;
 - or for a model of 10 cm chord 40 m/sec, corresponding numbers are 299,000 and 270,000.
- C_p , Center of pressure coefficient (ratio of distance of C. P. from leading edge to chord length).
- β , Angle of stabilizer setting with reference to lower wing, = $(i_t - i_w)$.
- a, Angle of attack.
- e, Angle of downwash.

REPORT No. 256

1

THE AIR FORCES ON A SYSTEMATIC SERIES OF BIPLANE AND TRIPLANE CELLULE MODELS

By MAX M. MUNK Langley Memorial Aeronautical Laboratory

10421-- 27 1

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

3341 NAVY BUILDING, WASHINGTON, D. C.

[An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. It consists of twelve members who are appointed by the President, all of whom serve as such without compensation]

CHARLES D. WALCOTT, Sc. D., Chairman,

Secretary, Smithsonian Institution, Washington, D. C.

DAVID W. TAYLOR, D. Eng., Secretary,

Washington, D. C.

JOSEPH S. AMES, Ph. D., Chairman, Executive Committee,

Director, Physical Laboratory, Johns Hopkins University, Baltimore, Md. GEORGE K. BURGESS, Sc. D.,

Director, Bureau of Standards, Washington, D. C.

JOHN F. CURRY, Major, United States Army,

Chief, Engineering Division, Air Service, Dayton, Ohio.

WILLIAM F. DURAND, Ph. D.,

Professor of Mechanical Engineering, Stanford University, Calif. EMORY S. LAND, Captain, United States Navy.

Bureau of Aeronautics, Navy Department, Washington, D. C. CHARLES F. MARVIN, M. E.,

Chief, United States Weather Bureau, Washington, D. C.

WILLIAM A. MOFFETT, Rear Admiral, United States Navy,

Chief, Bureau of Aeronautics, Navy Department, Washington, D. C. MASON M. PATRICK, Major General, United States Army,

Chief of Air Service, War Department, Washington, D. C.

S. W. STRATTON, Sc. D.,

President, Massachusetts Institute of Technology, Cambridge, Mass. ORVILLE WRIGHT, B. S.,

Dayton, Ohio.

 $\mathbf{2}$

EXECUTIVE COMMITTEE

JOSEPH S. AMES, Chairman. DAVID W. TAYLOR, Secretary.

George K. Burgess.	MASON M. PATRICK.
JOHN F. CURRY.	S. W. STRATTON.
EMORY S. LAND.	CHARLES D. WALCOTT.
CHARLES F. MARVIN.	ORVILLE WRIGHT.
WILLIAM A. MOFFETT.	
CHARLEN W LEWIS	Director of Auronautical Research

GEORGE W. LEWIS, Director of Aeronautical Research. JOHN F. VICTORY, Assistant Secretary.

REPORT No. 256

THE AIR FORCES ON A SYSTEMATIC SERIES OF BIPLANE AND TRIPLANE CELLULE MODELS

By MAX M. MUNK

SUMMARY

The air forces on the largest systematic series of biplane and triplane cellule models ever published, measured in the atmospheric density tunnel of the Langley Memorial Aeronautical Laboratory, are the subject of this report. The tests consist in the determination of the lift, drag, and moment of each individual airfoil in each cellule, mostly with the same wing section.

The magnitude of the gap and of the stagger is systematically varied; not, however, the decalage, which is zero throughout the tests. Certain check tests with a second wing section make the tests more complete, and the conclusions more convincing.

The results give evidence that the present Army and Navy specifications for the relative lifts of biplanes are good. They furnish material for improving such specifications for the relative lifts of triplanes. A larger number of factors can now be prescribed to take care of different cases.

INTRODUCTION

The investigation reported here grew out of the needs of the practice. The Bureau of Aeronautics, United States Navy Department, wanted fuller information on the share of each individual wing of a biplane and triplane cellule in the creation of the lift of the entire cellule. Not only the desired lifts but also the drag and moment of all individual wings were determined, since this could be done conveniently at the same time.

It was realized from the beginning that decalage, i. e., a difference between the angle of attack of the individual airfoils of a cellule has a major influence on the relative lift contribution of each airfoil. (Reference 1). However, the cellules anticipated for use in practice are without decalage, and it is this specialization which made the following investigation practical. Otherwise, the number of the variations would become too large, and the material presented would become too voluminous.

The method used is not novel, but is well known to most of the readers. The airfoil model, geometrically similar to an airplane airfoil, but having a rectangular plan form, is fastened to a system of balances, and is then exposed to the constant air flow of the wind tunnel. Additional airfoils are placed in the neighborhood of the airfoil undergoing the tests, so as to form the desired cellule together with this latter airfoil. These additional airfoils, however, are not in mechanical connection with the balances. The airfoil under test, by varying the position of the additional airfoil or airfoils, is thus made to play the part of any airfoil of any cellule of the series. In each case the angle of attack of the whole set of airfoils is changed by steps. The air velocity is kept constant for all tests.

The details of this interesting and important research will be found in the body of this report. The results are laid down in numerical tables, and are illustrated by diagrams attached to this report. They are further discussed to lead the reader's attention to the main features brought out.

This has, however, been restricted to the discussion of the relative lifts, i. e., of the ratio of the lift of each airfoil to the lift of the entire cellule. It is true that this report contains plenty of material suitable for elucidating other wing problems. However, the discussion of such more

general questions should be extended to all material available; it should not be restricted to the following tests alone. Further, the question of the tunnel wall interference has not been entirely settled as this paper is closed. An investigation of this question of the wall influence is just under way at the Langley Memorial Aeronautical Laboratory, and the use of the material of this report on general questions referring to the wing drag is better delayed until this investigation is finished. All data given in this report are computed directly from the observations without any correction for wall effect. It is realized that there probably is a wall effect, but only a small one.

TESTS

The atmospheric density tunnel in which the tests were made, the auxiliary apparatus and the wire balance used for the tests, are described in detail in Reference 2.

The set-up was composed of rectangular airfoils measuring 4 by 24 in. (101.6 by 609.6 mm.) in plan. R. A. F. 15 wings were furnished by the Navy. They were made of bronze. Measured at two stations along the span, their ordinates showed a maximum departure of 0.003 in. (0.076 mm.) from the specified ones. U. S. A. T. S. 5 airfoils were constructed in the N. A. C. A. shops out of laminated maple and were exact up to 0.004 in. (0.102 mm). None of the airfoils had any measurable warp or twist. The specified ordinates for both profiles are given in Table 1.

Diagram showing arrangement and method of supporting wing model

The lift, drag, and pitching moment of each airfoil were measured. The air speed was 98.4 ft./sec. (30 m/sec.) throughout all tests, which corresponds to a dynamic pressure of 11.5 lb./sq. ft. (56.1 kg/m²). It gives approximately the Reynolds Number, 206,000, with the chord as characteristic length.

The angle of attack was measured in the usual way. The absence of decalage was made certain by successively hanging an inclinometer on the wings after the wind tunnel flow was started and by adjusting the angle of attack of the fixed wing according to the readings of this inclinometer.

Supplemental tests were made to determine the wire drag and to obtain information about the interference of the side plates. This interference was found to be reasonably small.

All readings were made with the usual precision. The lift balance was read to ± 0.005 kg (0.011 lb.) exactness and could be consistently checked within an interval of that magnitude. Drags were read to 0.0001 kg (0.0002 lb.) and repeated observations disagreed by less than ± 0.0003 kg (± 0.0007 lb.) at minimum drag. Moments measured as forces at the end of a 30.48 cm (12 in.) arm were read exact to 0.001 kg (0.002 lb.); they could be checked within ± 0.002 kg (± 0.004 lb.) interval.

The angles of attack which appear in the data have not been corrected for elastic deflections. Such deflections gave rise to errors of the angle of attack up to as much as one-third degree. However, this occurred only in the neighborhood of the maximum lift, where the curve of lift coefficient versus angle of attack is relatively flat. The average error is much smaller and mostly less than 0.1°.

One single airfoil and the following 29 cellules were tested, all composed of rectangular airfoils with the aspect ratio 6.

Monoplane with R. A. F. 15 section	Biplanes w	ith R. A. F. 15 section
	Stagger	Gap/chord
	30°	0, 6, 0, 9, 1, 2
	0°	0, 6, 0, 8, 1, 0, 1, 2
	$+15^{\circ}$	$0.\ 6,\ 0.\ 9,\ 1.\ 2$
	30°	0, 6, 0, 9, 1, 2
Biplanes with U. S. A. T. S. 5 section	Triplanes w	ith R. A. F. 15 sectior
Storger Gaulebard	Stagger	Gap/chord
30° 0.9	30°	0, 6, 0, 9, 1, 2
0° 0.9	0°	0, 6, 0, 8, 1, 0, 1, 2
	$\pm 15^{\circ}$	0, 6, 0, 9, 1, 2
	30°	0, 6, 0, 9, 1, 2

Lift, drag, and moment coefficients were calculated in the usual manner:

wherein:

 $C_L = \frac{L}{qS}$ $C_D = \frac{D}{qS}$ $C_M = \frac{M}{qcS}$

L = Lift.

 \mathcal{M} - Pitching moment.

M - Diving moment.

- q Dynamic pressure.
- S Wing area.
- c Wing chord.

Moment coefficients refer to the leading edges of the individual wings. They are counted negative when they are diving moments in accordance with the standards laid down in Reference 6. Within the investigated range of the angle of attack the pitching moment is generally

negative. As most readers are accustomed to have positive values plotted, and as the pitching moment is counted opposite in many older publications here and abroad, the coefficient of diving moment —that is, $(-C_M)$ —rather than the coefficient of pitching moment has been plotted in all diagrams.

RESULTS

The results of the biplane and triplane tests are c_z given in Tables 2 to 41 and are illustrated by Figures 2 to 68.

In Table 2 are the lift and drag coefficients of a R. A. F. 15 airfoil as determined by tests with and without the supports for additional wings. Figure 2 contains the corresponding polar curves.

Tables 3 to 15 contain the lift, drag, and moment coefficients for each wing of the R. A. F. 15 biplane combinations for all angles of attack.

The results of the U. S. A. T. S. 5 biplane tests Polar curve and the R. A. F. 15 triplane tests are presented in the same form and order in Tables 17 to 19 and 21 to 33.

Polar curve for single airfoil R. A. F. 15 measured alone and between supporting plates

Figures 3 to 15 contain the polar and moment curves of the individual wings of the R. A. F. 15 biplane cellules. Inserted into the same figures are the curves of individual lift coefficients, C_{LW} , versus cellule lift coefficient, C_{LC} . Figures 16 to 18 are the curves of relative lift versus stagger.

Figures 19 to 27 illustrate the results of the U. S. A. T. S. 5 biplane and Figures 23 to 38 those of the R. A. F. 15 triplane tests in a corresponding manuer.

The relative lifts of the individual members of all the tested biplane and triplane cellules have been computed for 0.9, 0.5, and 0.25 of the maximum cellule lift coefficient. Tables 16, 20, and 34 contain the relative lifts for R. A. F. 15 biplane, U. S. A. T. S. 5 biplane, and R. A. F. 15 triplane models.

0.9 of the maximum lift coefficient is considered the upper limit of the lift coefficient for dangerous air loads occurring when the airplane is pulled out of a dive. 0.5 is considered the lower limit. The third value, 0.25 maximum lift coefficient, has been added to take care of extreme cases such as racers.

Figures 40 to 68 illustrate the positions of the centers of pressure of the individual wings plotted against the angle of attack of the cellule.

DISCUSSION

The results of the tests with all models show that there is a general tendency of the upper wing to contribute more of the lift than the lower at positive stagger and less at negative stagger. With negative lifts this is naturally reversed, since upper and lower refers primarily to the direction of the lift. This result was to be expected from theoretical considerations (Reference 3).

The variation of gap/chord causes small changes in the relative lifts at high lift coefficients and large changes at low lift coefficients. An increase of gap tends to equalize the lift of the wings over the entire range of the angle of attack. This includes also the lift contribution of the wing model of a triplane cellule. Nor does the change of the wing section of the biplane cellule upset this rule, which is natural and expected.

The middle wing of triplane cellules contributes less lift than either of the other two wings. As shown by Figures 36 to 38, it contributed less than one-third of the total lift in all tests.

The relative lift of any one airfoil may vary as much as 0.11, as the lift coefficient increases from 0.25 to 0.9 of the maximum lift coefficient. This occurred in an extreme case, with the R. A. F. biplane with -30° stagger and the gap/chord 0.6.

Figure 22 contains a curve of relative lifts at 0.9 maximum cellule lift, which for different staggers and for the U. S. A. T. S. 5 section almost coincides with the corresponding curve for the R. A. F. 15 biplane. The difference between corresponding ordinates does not exceed $2\frac{1}{2}$ per cent. At lower lift coefficients the differences become larger, but do not exceed 7 per cent at 0.25 maximum cellule lift. It was, therefore, considered unnecessary to repeat the investigation of the effect of different gaps with the U. S. A. T. S. 5 section.

At large lift coefficients the two biplane wings have about equal lifts at -15° stagger.

The results of the center of pressure computations show that the ratio of gap to chord has practically no effect on the positions of the centers of pressure of the individual wings in either the biplane or triplane combinations, at normal angles of attack of flight. With increase of positive stagger in biplane cellules the centers of pressure move forward on the upper wing and backward on the lower wing, and lie nearly together at 0° stagger. In the triplane cellules there is a forward motion on the upper and middle wings and a backward motion on the lower wing with the positions nearly coincident at 0° stagger.

CONCLUSIONS

The United States Army and Navy standard relative lifts for biplanes (References 4 and 5) are plotted for comparison in Figure 39. It will be seen that the agreement is very good at high lift coefficients. In the light of the described tests the specifications appear therefore to be good.

The present Army specification for the distribution of lift in triplane cellules is illustrated in Figures 36 to 38, and plotted together with the results of the foregoing tests. The study of these figures suggests the drafting of more specialized standards for triplanes. The effects of different stagger and gap/chord ratio should be taken into account, and triplanes of different speed ranges require different specifications.

REFERENCES

- 1. Munk, Max M.: Beitrag zur Aerodynamik der Flugzeugtragorgane. Technische Berichte, Vol. II, No. 2, 1918.
- 2. Reid, E. G.: Standardization Tests of N. A. C. A. No. 1 Wind Tunnel. N. A. C. A. Technical Report No. 195, 1924.
- 3. Munk, Max M.: General Biplane Theory. N. A. C. A. Technical Report No. 151, 1922.
- 4. Engineering Division United States Army Air Service: Handbook of Instructions for Airplane Designers, fourth edition, April, 1925. Section II, Figure 1.
- 5. Diehl, W. S.: The Relative Loading of Biplane Wings. Bureau of Aeronautics, United States Navy Department Technical Note No. 86, 1921.
- 6. National Advisory Committee for Aeronautics: Nomenclature for Aeronautics. N. A. C. A. Technical Report No. 25, 1919.

FURTHER LITERATURE ON THE SUBJECT

- Pannell, J. R., and Griffiths, E. A.: Experiments on Models of Biplane Wings. British Advisory Committee for Aeronautics R. and M. No. 196, 1915.
- Bryant, L. W., and Jones, Miss C. N.: Biplane Effect on R. A. F. 15 Wing Section. British Advisory Committee for Aeronautics R. and M. No. 366, 1917.
- Cowley, W. L., and Levy, H.: Triplane Investigation with R. A. F. 15 Section. British Advisory Commitee for Aeronautics R. and M. No. 432, 1918.
- Cowley, W. L., and Levy, H.: The Contribution of the Separate Planes to the Forces on a Biplane. British Advisory Committee for Aeronautics R. and M. No. 589, 1919.
- Cowley, W. L., and Lock, C. N. H.: Biplane Investigation with R. A. F. 15 Section. British Advisory Committee for Aeronautics R. and M. No. 774, 1921.
- Cowley, W. L., and Jones, L. J.: Biplane Investigation with R. A. F. 15 Section, Part II. British Advisory Committee for Aeronautics R. and M. No. 857, 1922.
- Cowley, W. L., Gadd, A. G., Jones, J. L., and Skan, Miss S. W.: Biplane Investigation with R. A. F. 15 Section, Part III. British Advisory Committee for Aeronautics R. and M. No. 872, 1923.
- Toussaint, A.: Etudes Systematiques sur les Biplanes. Service Technique de l'Aeronautique, March, 1923.

TABLE 1

TABLE 2

R. A. F. 15 Airfoil ordinates U.S. A. T. S. 5 Airfoil ordinates

R. A. F. 15 Airfoil -interference tests

. 0129 .0121 . 0135 . 0151 . 0167 . 0201 . 0242 . 0345 . 0481 . 0627 . 0856 . 132 . 213

Station in inches from	Upper surface	Lower surface	Station in inches from	u n Upper surface	Lower		Airfoil alon	e	Betwee	a plates
leading edge	Minace	burnee	leading edg	ze		α	C_L	CD	CL	CD
Inch 0.000 .020 .040 .080 .200 .358 .100 .600 1.200 1.400 1.600 2.000 2.400 2.800 2.980 3.200 3.600 3.860 3.920 4.000	$ \begin{array}{c} Inch \\ \models 0, 060 \\ , 091 \\ , 111 \\ , 144 \\ , 202 \\ , 237 \\ , 244 \\ , 266 \\ , 278 \\ , 280 \\ , 277 \\ , 273 \\ , 265 \\ , 244 \\ , 219 \\ , 191 \\ , 177 \\ , 158 \\ , 115 \\ , 088 \\ , 069 \\ , 032 \end{array} $	Inch + 0.060 . 039 . 033 . 024 . 009 . 000 1. 001 . 012 . 021 . 032 . 011 . 013 . 014 . 027 . 013 . 002 . 000 + . 002 . 000 + . 002 . 000 . 032 . 033 . 024 . 035 . 044 . 059 . 0	Inches 0.00 .05 .10 .20 .30 .40 .60 .80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 3.80 4.00	Fuch + 0.080176220206352400472524588502556492412132196132196132040132040 -	$\begin{array}{c} Inch \\ +0.080 \\ .000 \\032 \\072 \\100 \\120 \\136 \\140 \\016 \\060 \\025 \\008 \\008 \\004 \\ .000 \\ .000 \\ +.040 \\ \end{array}$	$\begin{array}{c} Degrees \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ \end{array}$	$\begin{array}{c} -0.\ 063\\ +0.\ 022\\ 116\\ .99\\ .270\\ .352\\ .432\\ .506\\ .659\\ .790\\ .915\\ 1.\ 00\\ 1.\ 01\\ 1.\ 00\\ \end{array}$	+0.0140 .0121 .0120 .0132 .0157 .0178 .0203 .0261 .0370 .0490 .0617 .0807 .133 .213	-0.052 +0.034 .126 .210 .282 .366 .443 f.522 .673 .805 F.934 1.01 1.02 1.01	+0.0141 .0129 .0124 .0135 .0151 .0201 .0242 .0345 .0481 .0627 .0856 .132 .213
3.100	. 004									

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE 3

R. A. F. 15 biplane. G/c = 0.6. Stagger = -30°

	Uppe	er wing	Lower wing			
α	CL	C_D	C _M	C_L	CD	C_M
Degrees -4	-0. 121	+0.0334	-0.015			
-3				-0.058	± 0.0166	-0.025
-2				+.002	. 0167	045
— 1				. 090	. 0157	065
0	: 		·	. 173	. 0159	089
+1				. 234	. 0177	105
2	·			. 300	. 0196	122
3	+.224	. 0199	089	. 357	. 0215	134
4	. 278	. 0256	096	. 414	. 0244	141
6	. 396	. 0347	129	, 523	. 0307	167
8	. 504	. 0524	161	. 631	. 0408	192
10	. 606	. 0710	182	. 736	. 0485	202
12	. 711	.0898	195	. 817	. 0636	227
14	. 810	.0952	200	. 844	. 111	268
16	. 807	. 0934	-, 150	, 838	. 193	286

TABLE 5

R. A. F. 15 biplane. G/c = 1.2. Stagger = -30°

	Uрря	er wing			Lower wii	ıg
α	CL	CD	C_M	C _L	C_D	См
Degrees						
-3	-0.058	+0.0151	-0.013	-0.092	+0.0168	-0.008
2	. 000	. 0139	034	018	. 0164	029
~1	+. 084	. 0125	053	+.070	. 0144	056
0	. 144	. 0139	080	. 163	. 0149	078
+1	. 197	. 0161	095	. 229	. 0170	100
2	. 246	. 0191	101	. 297	. 0186	113
3	. 307	. 0225	112	. 374	.0213	+. 138
4	. 367	.0275	136	. 442	. 0242	148
6	. 486	. 0410	-, 160	. 573	.0323	174
8	. 600	. 0598	190	. 706	. 0446	211
10	. 714	. 0810	215	. 814	. 0549	222
12	. 843	. 100	249	. 897	. 0710	—. 253
14	. 970	. 118	280	. 888	. 112	283
16	. 975	. 148	284	. 850		

TABLE 7

R. A. F. 15 biplane. G/c = 0.8. Stagger = 0°

	Uppe	r wing			Lower wi	ng
a	CL	C _D	C_M	CL	CD	C_M
Degrees						
3	-0.055	+0.0161	-0.012	-0.040	+0.0137	-0.026
-2	018	. 0139	024	+.002	. 0125	047
-1	+.056	. 0120	060	. 059	. 0118	~. 061
0	. 115	. 0121	075	. 112	. 0129	086
+1	. 160	. 0130	080	. 162	. 0150	097
2	. 236	. 0144	098	. 208	. 0171	112
3	. 299	. 0174	117	. 264	. 0201	126
4	. 350	. 0208	128	. 320	. 0240	128
6	. 472	. 0308	155	. 422	. 0340	154
8	. 606	. 0460	199	. 527	. 0473	186
10	. 731	. 0625	214	. 621	. 0590	211
12	845	. 0776	236	. 706	. 0680	221
14	. 931	. 102	264	. 756	. 0975	242
16	.942	. 142	269	. 796	. 173	283

	TAI	BLE	4

R. A. F. 15 biplane. G/c = 0.9. Stagger = -30°

	Uppe	r wing			Lower wi	ng
α	C_L	CD	См	C_L	CD	CM
Degrees						
-3	-0.072	+0.0149	-0.002	-0.084	+0.0173	-0.015
-2	009	. 0130	021	010	. 0167	035
- 1	+.055	. 0118	042	+.076	. 0142	057
0	. 118	.0127	072	. 165	. 0143	085
+1	. 169	. 0149	089	. 230	. 0157	104
2	. 214	.0175	· 091	. 294	. 0174	118
3	. 265	.0208	097	. 368	0201	132
4	. 327	.0251	117	. 427	. 0228	148
6	. 449	. 0384	150	558	. 0299	171
8	. 536	.0572	183	.679	. 0421	194
10	. 667	.0767	199	. 796	. 0510	224
12	. 787	. 0962	230	. 865	. 0669	250
14	. 913	- 109	245	. 864	. 108	269
16	. 950	. 130	256	. 832		
18	. 891	. 153	270			

TABLE 6

R. A. F. 15 biplane, G/c = 0.6. Stagger = 0°

	Upp	er wing		Lower wi	ng	
α	C_L	CD	CM	CL	CD	C _M
Degrees						
-3	-0.066	+0.0169	0.000	+0.003	+0.0140	-0. 039
-2	001	. 0140	025	. 065	.0132	061
- 1	+.067	. 0116	047	. 096	. 0131	~. 085
0	. 126	. 0116	053	. 146	. 0150	091
+1	. 183	. 0115	073	. 194	. 0175	097
2	. 254	. 0129	084	. 234	. 0198	-, 118
3	. 314	. 0152	112	. 290	.0232	-, 129
4	. 373	. 0185	118	. 335	.0273	-, 137
6	. 488	. 0244	125	. 433	. 0374	-, 149
8	. 605	. 0395	161	. 532	. 0506	177
10	. 730	. 0532	-, 190	. 620	. 0623	192
12	. 838	. 0669	223	. 700	. 0741	214
14	. 912	. 0834	230	. 765	. 0983	238
16	. 911	. 173	218	. 799	. 178	282

TABLE 8

R. A. F. 15 biplane. G/c = 1.0. Stagger = 0°

	Upp	er wing		Lower wing		
a	CL	C_D	C _M	C_L	C_D	См
Degrees						
-3	-0.061	+0.0130	-0.015	-0.060	+0.0143	-0.027
-2	006	. 0104	033	001	.0120	049
-1	+.063	. 0090	—. 055	+ 064	. 0113	069
0	. 129	. 0095	071	. 129	.0125	087
+1	. 182	. 0105	089	. 177	. 0145	101
2	. 248	. 0120	103	. 231	. 0167	115
3	. 319	. 0153	122	. 293	. 0197	121
4	. 380	. 0213	140	. 355	. 0238	140
6	. 509	. 0326	166	. 465	. 0342	164
8	. 639	. 0487	191	. 567	. 0465	186
10	. 770	. 0655	210	. 672	. 0583	208
12	. 889	. 0815	225	. 757	. 0686	227
14	. 968	. 109	262	. 808	. 101	250
16	. 988	. 161	311	. 833	. 170	281

TABLE 9

TABLE 10

Upper wing

R. A. F. 15 biplane. G/c = 1.2. Stagger $\Rightarrow 0^{\circ}$

R. A. F. 15 biplane. G/c = 0.6. Stagger = +15°

Lower wing

	Մրթ	er wing		Lower wi	ng	
α	C_L	CD	C_M	C_L	CD	C _M
Degrees						
$^{-3}$	-0.066	± 0.0147	-0.015	-0.055	+0.0148	-0.016
-2	001	. 0121	033	+.015	.0132	041
-1	+. 074	. 0107	064		. 0118	066
0	. 144	. 0113	076	. 149	. 0126	082
+1	. 197	.0128	084	. 203	. 0148	094
2	. 267	. 0148	111	.257	. 0163	105
3	. 333	. 0180	121	. 325	. 0193	122
4	. 402	.0225	139	. 378	.0233	135
6	. 531	. 0342	-, 175	. 501	. 0335	165
8	. 666	. 0504	206	. 620	.0471	191
To	. 786	.0675	232	. 730	.0597	207
12	. 897	.0837	261	. 815	.0705	235
14				, 860	. 105	258
16				. 874	. 178	298

TABLE 11

	Uppe	er wing			Lower wi	ng
α	C_L	CD	C_M	C_L	C_D	C_M
Degrees					1	
3	-0.052	+0.0150	-0.003	0.034	+0.0144	-0.023
-2	+.024	. 0138	030	+.038	. 0130	044
-1	. 108	. 0135	053	. 103	. 0128	065
0	. 178	. 0136	074	. 160	. 0139	074
± 1	. 238	. 0137	094	. 209	. 0157	091
2	. 307	.0152	099	. 257	. 0181	097
3	. 379	. 0177	121	. 316	. 0207	116
4	. 450	. 0205	133	. 374	. 0254	129
6	. 584	. 0304	162	. 480	. 0380	160
8	.717	. 0440	189	. 588	. 0527	182
10	. 865	.0622	220	. 681	. 0680	211
12	970	. 0783	251	. 775	. 0813	229
14	1.04	. 108	270	. 861	. 100	248
16	1.01	. 147	293	. 923	. 144	263

						•
α	CL	C_D	См	C1.	Съ	C_M
Degrees		1				
-3	-0.057	+0.0180	0.000	+0.017	+0.0119	-0.038
-2	+.013	. 0158	025	. 085	. 0117	060
-1	. 096	. 0142	049	. 137	. 0125	078
0	. 159	. 0133	070	. 178	. 0136	090
-+-1	. 226	. 0117	079	. 213	. 0154	091
2	. 289	. 0125	107	. 257	. 0177	106
3	. 354	. 0152	108	. 312	. 0213	120
4	. 419	. 0181	120	. 366	. 0269	I31
6	.552	. 0274	151	. 462	. 0398	150
8	. 688	. 0396	184	. 554	. 0546	192
10	. 807	. 0520	206	. 654	.0702	206
12	. 916	. 0656	218	. 737	. 0833	235
14	.952	. 0914	242	. 803	. 100	248
16	, 901	. 129	245	. 877	. 145	272

TABLE 12

		er wing			Lower wit	ng
α	C_L	CD	C_M	C_L	C_D	См
Degrees						
-3	-0.055	+0.0174	-0.012	-0.043	+0.0150	-0.012
-2	+.021	. 0161	033	+.032	. 0144	033
-1	. 110	. 0159	063	. 102	. 0143	055
0	. 191	. 0170	093	. 164	. 0159	082
+1	. 249	. 0173	105	. 220	. 0176	094
2	. 326	. 0180	120	. 270	. 0192	103
3	. 400	. 0206	132	. 339	. 0221	124
4	. 468	. 0245	145	. 395	.0260	140
6	. 609	. 0356	175	. 502	. 0373	160
8	. 751	. 0503	212	. 623	.0525	181
10	, 896	. 0693	241	. 711	. 0695	221
12	1.01	. 0874	278	. 811	. 0833	241
14	1.05	. 122	303	. 908	, 107	250
16	1.03	. 178	334	. 960	. 149	291

TABLE 13

R. A. F. 15 biplane. G/c = 0.6. Stagger = $+30^{\circ}$

	Uppe	er wing			Lower wit	ng
α	C_L	C_D	C_M	C_L	Cp	CM
Degrees			1			
~- 3	-0.020	± 0.0162	-0.020	± 0.016	+0.0123	-0.036
2	+.057	. 0153	041	.075	. 0125	060
	. 145	. 0145	067	. 116	. 0134	061
0	. 216	.0152	, 079	.152	. 0163	084
-+-1	. 295	0156	403	.192	. 0193	082
2	. 364	. 0174	-, 116	. 231	. 0231	099
3	438	. 0192	-, 130	. 276	. 0260	100
4	500	0221	- 144	. 329	. 0309	117
6	639	0298	176	. 423	. 0446	-, 143
	787	0498	- 208	, 510	. 0615	167
10	619	0559	- 234	. 602	. 0778	-, 191
10	. 014	0770	- 228	686	. 0936	212
12		10119	- 220	. 783	115	- 238
14	1.00	.124 	-, 201	001. : 000	157	= 279
16	951		-, 292	. 900	. 107	. 210

10421 - 27 - 27 - 2

TABLE 14

R. A. F. 15 biplane. G/c=0.9. Stagger = +30°

	Uppe	r wing		1	Lower wit	ng
α	C_L	C_D	CM	CL	CD	См
n						
-3	-0.052	+0.0156	-0.013	-0.028	+0.0132	-0. 030
2	+.028	. 0161	027	+. 041	. 0128	047
-1	. 120	. 0158	058	. 093	. 0125	06
0	. 208	. 0166	099	. 147	. 0144	07
+1	. 272	. 0177	098	. 202	. 0168	08
2	. 351	. 0197	132	. 241	. 0197	09
3	. 422	.0220	139	. 300	. 0228	10
4	. 499	.0262	- 158	. 353	. 0280	12
6	. 640	0359	197	. 452	. 0412	15
8	. 794	. 0511	236	. 556	. 0572	18
10	. 898	. 0658	234	, 662	. 0748	20
12	1.03	. 0832	248	. 756	. 0900	23
14	1.08	. 130	312	. 862	. 110	25
16	1.05	.215	356	. 964	. 144	29

TABLE 15

R. A.	F. 15	biplane.	G/c = 1.2.	$Stagger = +30^{\circ}$
-------	-------	----------	------------	-------------------------

	ower wing	L		wing	Upper	
CM	CD	CL	С _М	CD	CL	α
						Degrees
-0.0	0.0152	-0.040	-0.016	+0.0147	-0.055	-3
0	. 0157	+.032	048	. 0149	+.032	$^{-2}$
0	. 0153	. 090	071	. 0145	. 122	-1
08	. 0167	. 152	095	. 0153	. 214	0
0	. 0189	. 213	105	. 0165	. 275	+1
10	. 0219	. 257	134	. 0186	. 358	2
1	. 0251	. 320	142	. 0214	. 434	3
13	. 0297	. 374	167	. 0249	. 505	4
—. H	. 0424	. 489	199	. 0356	. 659	6
19	. 0594	. 600	240	. 0518	. 820	8
2	. 0759	. 709	226	. 0671	. 948	10
2	. 0906	. 811	252	0864	1.05	12
2	. 110	. 913	326	. 137	1.08	14
2	. 148	. 974	- 358	. 226	L 06	16

TABLE 16

R. A. F. 15 biplanes.

90% CLC max	5	0% CLC max	25% CLC	7 max -
$G/c \begin{vmatrix} 90\% \\ C_{LCmax} \end{vmatrix} C_{LU} C_{LL} \begin{vmatrix} C_{L} \\ C_{L} \end{vmatrix}$	$\frac{LU}{LC} = \frac{C_{LL}}{C_{LC}} = \frac{50\%}{C_{LCmax}} = C_{LU}$	$C_{LL} \qquad \begin{array}{c} C_{LU} \\ C_{LC} \end{array} \qquad \begin{array}{c} C_{LL} \\ C_{LC} \end{array} \qquad \begin{array}{c} C_{LL} \\ C_{LC} \end{array}$	$\begin{array}{c c} 25\%\\ C_{LCmsx} \end{array} C_{LU} \qquad C_{LL} \end{array}$	$\frac{C_{LU}}{C_{LC}} \qquad \frac{C_{LL}}{C_{LC}}$

									-							
	:			1					i I							
1																1
	0.6	0 752	0.698	0.806	0 464	0.536	0 418	0.350	0 485	0.418	0 582	0.209	0 145	0.268	0 351	0.649
	v i v	0.104	0.000	0.000	0, 101	0.000	v	0.000	000	0	0.000	0	V V	0	01004	0. 910
	0.9	. 807	. 755	. 850	. 470	. 530	. 449	. 387	. 501	435	. 565	. 224	. 186	256	421	. 579
	01.4							,	1							1.010
	12	841	810	877	480	520	468	423	508	454	546	234	915	252	460	540
ł					1.100	. 040	. 10.7	. 1400			.019			. 202		
i																
· ·																

					ر سنت					ı					
0.6	0.771	0.840	0.700	0.545	0.455	0.429	0.452	0.398	0.531	0.469	0.214	0.213	0.217	0.495	0.505
0, 8	. 783	857	. 712	. 546	. 454	. 435	. 461	. 411	. 528	. 472	. 218	. 222	. 206	, 519	. 481
1.0	. 820	, 885	. 754	. 540	. 460	456	. 478	430	. 526	. 474	. 228	. 234	. 222	. 513	. 488
1.2	. 837	. 873	. 800	. 521	. 479	. 465	. 483 +	. 445	. 521	. 479	233	. 241	. 222	. 520	. 480

 $Stagger = 0^{\circ}$

- Stagger $ +15$	0	,			•)																						ŀ	ł	1																																	•																																																																					
------------------	---	---	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

0.6	0.801	0.890	0.705	0.557	0.443	0.445	0.478	0.408	0.539	0.461	0. 223	0.221	0. 223	0.498	0.502
0, 9	. 873	. 958	. 785	. 548	. 452	. 485	. 528	. 438	. 547	. 453	. 243	. 262	. 224	. 538	. 462
1.2	. 900	. 995	. 800	. 554	. 446	. 500	. 543	. 454	. 544	. 456	. 250	. 271	. 226	. 545	. 455
	1			÷					2						

			5	stagger	·= + 30)° .				
	···- ,		· · · · · · · · · · · · · · · · · · ·	·	·			1	1	**
0.682	0, 591	0. 409	0.466	0.573	0.362	0.613	0.398	0.233	0.277	0. 189
. 780	. 574	. 426	. 508	. 591	. 418	. 586	. 414	. 254	. 287	. 211
. 795	. 567	. 433	. 512	. 588	. 434	. 575	. 425	. 256	. 292	. 217

0.405

. 424 . 429

0.595

. 576 . 571

0.838

. 914

. 923

0.6

0.9

1.2

0.988

1.05

1. 05

٩

$Stagger = -30^{\circ}$

AIR FORCES ON A SYSTEMATIC SERIES OF MODELS

TABLE 17

U. S. A. T. S. 5 biplane. G/c = 0.9. Stagger = -30°

TABLE 18 U. S. A. T. S. 5 biplane. G/c=0.9. Stagger= 0°

	Uppe	r wing]	Lower win	g
α	C_L	C_D	C_M	C_L	Cp	См
Degrees				A 004	U 0 0199	_0.124
-9			0.1-0	1 110	0165	- 158
-7	± 0.064	± 0.0144	-0.118	+ . 119 :	0917	- 189
- à '	, 165	. 0101	220	240	0211	- 207
-3	. 268	. 0209	204	190	0258	
-1	. 380	. 0284	-, 281.	. 107	. 0340	- 944
0	. 441	. 0345	290	. 010	. 0400	_ 253
-+-1	. 493	. 0409	313		0100	200
2	. 554	. 0473	326	. 670	, 0490	20
3 '	. 609	.0562	347	, 729	, 0542	270
- 4	. 670	,0658	354	. 787	. 0590	294
6	. 783	. 0857	- 384	. 900	. 0695	322
8	, 895	. 109	415	. 999	. 0800	348
10	1.01	. 135	442	1.07	. 0865	-, 354
12	1.13	, 162	468	1.09	. 0999	346
14	1.22	. 185	478	1.02	. 120	-, 329
16	1.25	. 203	480	. 958	. 143	312
18	1.17	216	i 425	:		
20	1. 09	. 223	- 423			

•

	Uppe	er wing	Lower wing					
α	 CL	Сь	C_M	C_L	Cp	CM		
egrees								
	-0.026	+0.0257	-0.088	+0.040	± 0.0036	-0.144		
-7	4.091	.0242	118	. 158	. 0074	162		
-5	. 205	. 0248	-, 133	. 272	. 0139	-, 192		
3	. 325	. 0279	169	. 379	, 0229	208		
- 1	. 452	. 0333	199	. 486	, 6330	243		
0	. 508	. 0370	208	. 536	. 0385	- 252		
+1	. 574	. 0412	238	. 591	. 0448	264		
2	. 635	. 0464	250	. 645	.0523	282		
3	. 697	. 0520	255	. 695	. 0589	288		
4	. 758	0556	279	. 750	. 0665	302		
6	. 887	.0734	308	858	. 0825	320		
8	1.01	. 0921	-, 336	956	. 0960	348		
10	i 1. 13	. 113	366	1.03	. 113	365		
12	1.21	. 132	381	1.06	. 124	- 367		
14	1.23	. 158	381	1.06	. 139	351		
16	1.22	. 174	363	1. 02	, 158	341		

TABLE 19

U. S. A. T. S. 5. biplane. G/c = 0.9. $Stagger = +30^{\circ}$

	Uppe	r wing		Lower wing					
α	C_L	Cp	См	CL	CD	См			
)egrees					10.0074	A 000			
-9	+0.097	+0.0165	-0.125	-+0.003	+0.0074	0.099			
-7	. 229	. 0180	157	. 102	. 0096	122			
-5	. 363	. 0215	193	. 203	. 0154	148			
-3	. 504	. 0264	232	. 300	. 0234	168			
-1	. 646	. 0332	275	. 395	. 0347	192			
0	. 724	. 0377	281	. 447	. 0418	213			
+1	. 804	. 0428	305	. 496	. 0490	—. 231			
2	. 890	. 0486	323	. 544	. 0571	—. 239			
3	965	. 0553	359	. 585	. 0658	-, 249			
4	1.03	. 0624	381	. 635	. 0755	261			
6	1, 18		415	. 725	. 0945	—. 284			
8	1.29	. 0936	428	. 823	. 115	314			
10	1.34	. 114	426	. 921	. 136	—. 335			
12	1.35	. 139	416	1.03	. 160	370			
14	1.31	168	-, 399	1.12	. 182	393			
16	1.01	190	383	1, 15	. 207	398			
10	1.15	. 100	- 365	1, 15	. 231	395			
20	1. 1.0			1. 16	. 262	401			

TABLE 20 U. S. A. T. S. 5 biplanes.

			- 90% C	LC max.		-		50%	6 CLC m	.x.			25	% CLc w	\$ X.	
G/	'c	90% CLC max.	C_{LU}	C_{LL}	CLU CLC	$\frac{C_{LL}}{C_{LC}}$	50% CLC max.	C _L U	CLL	$\frac{C_{LU}}{C_{LC}}$	$\frac{C_{LL}}{C_{LC}}$	25% CLC max.	CLU	CLL	$\frac{C_L v}{C_{LC}}$	$\frac{C_{LL}}{C_{LC}}$
ł	.'					,	£	Stagger	<i>≕</i> – 3)°						
0	. 9	1. 01	0. 975	- · 1. 05	0.481	0.519	0.562	0. 507	0. 620	0.450	0. 550	0. 2 81	0. 233	0.328	0. 415	0. 585
1	1			I				Stagg	er=0°							
0	. 9	1, 03	1.07	1.00	0. 518	0. 482	0. 575	0.562	0. 583	0. 493	0. 507	0. 287	0. 257	0.317	0. 447	0, 553
	-	•		'				Stagger	-+3)°						
0	. 9	1. 10	1. 32	0. 868	0. 604	0. 396	0, 609	0. 757	0. 463	0.620	0. 380	0, 305	0, 387	0. 221	0.638	0. 363

•

Upper wing Middle wing Lower wing α C_L C_D C_M C_L C_D	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	e
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
8 . 418 . 0502 - 146 . 434 . 0409 - 138 . 616 . 0385 - 1	55
	71
10 . 541 . 0723 172 . 514 . 0517 148	08
12 . 638 . 0930 193 . 602 . 0609 165 . 786 . 0637	99
14 .744 .115223 .680 .0622 - 176 800 113 - 2	47
16 .846 .126 - 233 .689 .0702 - 159 .756 .183 - 2	22
18 .868 .146249	

TABLE 21

R. A. F. 15 triplane. G/c = 0.6. Stagger $= -30^{\circ}$

TABLE 22 R. A. F. 15 triplane. G/c = 0.9. Stagger = -30°

1	Upper wing				Middle wii	ng	Lower wing			
α	CL	CD	C _M	CL	C_D	CM	CL	CD	CM	
Degrees					1					
-3	-0.035	+0.0135	-0.012	-0.075	+0.0163	-0.010	-0.083	+0.0164	-0.012	
2	+.002	. 0127	032	- 025	. 0143	023	014	0162	029	
~1	. 062	. 0122	048	+. 013	. 0126	037	+.070	. 0158	058	
0	. 109	. 0129	063	. 102	. 0134	066	. 158	. 0159	084	
+1	. 154	. 0146	077	. 157	. 0154	084	 . 226 	. 0170	102	
2	. 200	. 0168	084	. 202	. 0177	091	. 286	. 0170	110	
3	. 248	. 0201	102	. 245	. 0205	094	. 354	. 0195	122	
4	. 289	. 0240	105	. 293	. 0237	106	. 421	. 0221	132	
6	. 400	. 0373	139	. 405	. 0333	131	. 543	. 0296	160	
8	. 499	. 0543	166	. 503	. 0467	159	. 662	. 0375	187	
10	. 599	. 0761	191	. 600	. 0605	168	. 773	. 0488	214	
12	. 695	. 0972	223	. 723	. 0737	186	. 830	. 0673	217	
14	. 809	. 121	238	. 825	. 0808	203	. 803	. 105	247	
16	. 929	. 150	267	. 842	. 109	310	. 771	· · · · · · · · · · · · · · · · · · ·	260	
18	. 964	. 168	272				-			

TABLE 23

R. A. F. 15 triplane. G/c = 1.2. Stagger = -30°

	Upper wing				Middle wir	ıg	Lower wing			
α	C _L	CD	CM		Cp	CM	C _L	C _b	C_M	
Degrees								-j		
- 3	-0.049	+0.0137	-0.014	-0.061	± 0.0125	- 0. 015	-0.089	+0.0164	-0.009	
-2	+.002	. 0127	- 026	009	. 0131	040	015	. 0153	032	
-1	. 079	.0123	060	+.069	. 0135	058	+.073	. 0142	060	
0	. 136	. 0134	076	. 135	. 0142	085	: . 161	. 0147	085	
+1	. 185	. 6155	083	. 189	. 0159	086	. 226	. 0155	096	
2	. 235	. 0180	094	. 238	. 0186	104	. 294	. 0160	104	
3	. 283	. 0210	102	. 291	. 0214	109	. 368	. 0182	122	
4	. 340	. 0258	~ 125	. 358	. 0256	~. 127	. 436	. 0211	141	
6	. 456	. 0397	161	. 466	. 0363	~-, 150	. 569	. 0303	175	
8	. 561	. 0565	175	. 579	. 0523	176	. 692	. 0399	201	
10	. 669	. 0791	211	. 690	. 0677	200	. 799	. 0553	229	
12	. 769	. 101	239	. 798	. 0822	231	. 887	0752	258	
14	. 878	. 124	269	. 899	. 0977	—. 253	852	. 112	275	
16	. 984	. 149	285	, 905	. 127	268	. 828		- 297	
18	1.01	. 183	308							

TABLE 24

R. A. F. 15 triplane. G/c = 0.6. Stagger = 0°

	Upp	er wing		1	Middle wir	ıg		Lower win	ĸ
α	C_L	C_D	C_M	C_L	CD	C _M	C_L	<i>C</i> _D	См
$\begin{array}{c} Degrees \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \end{array}$	$\begin{array}{c} -0.\ 050\\ +.\ 006\\ .\ 073\\ .\ 134\\ .\ 185\\ .\ 255\\ .\ 310\\ .\ 365\\ .\ 478\\ .\ 587\\ .\ 700\\ .\ 808\end{array}$	$\begin{array}{c} \pm 0,0162\\ ,0147\\ ,0135\\ ,0141\\ ,0145\\ ,0161\\ ,0183\\ ,0212\\ ,0286\\ ,0399\\ ,0539\\ ,0690\\ \end{array}$	-0.008 017 031 060 071 086 097 118 145 165 193 .210	+0.010 .058 .093 .124 .153 .200 .242 .278 .356 .425 .500 .565	$\begin{array}{c} +0.0135\\ .0140\\ .0145\\ .0156\\ .0171\\ .0187\\ .0207\\ .0231\\ .0298\\ .0382\\ .0470\\ .0545\\ \end{array}$	$\begin{array}{c} -0.\ 031\\\ 047\\\ 059\\\ 067\\\ 078\\\ 086\\\ 095\\\ 100\\\ 111\\\ 122\\\ 129\\\ 143\end{array}$	$\begin{array}{c} +0.017\\ 0.078\\ 129\\ .178\\ .221\\ .260\\ .312\\ .360\\ .446\\ .530\\ .610\\ .685\end{array}$	+0.0114 .0126 .0139 .0163 .0197 .0229 .0266 .0301 .0401 .0517 .0632 .0721	-0.045 067 081 104 110 124 133 155 176 192 215
14 . 16 . 18	. 917 . 946	, 0859 , 146	237 - 254	. 651 . 716 . 762	. 0625 . 0883	148 168 293	, 740 , 780 , 838	. 152 . 232	250

TABLE 25

R. A. F. 15 triplane. G/c = 0.8. Stagger = 0°

	Upp	er wing		1	Middle win	ıg	Lower wing			
α	C_L	Cp	C_{M}	C_L	C_D	C_M	CL	<i>C</i> _D	См	
- Dauraan						1				
-3	0.042	+ 0. 0149	0, 009	0.007	± 0.0133	0. 026	-0.007	+0.0126	-0.03	
	1 092	.0138	032	054	. 0139	049	+.064	. 0139	05	
- 1	090	0132	. 047	. 098	. 0144	056	. 122	.0145	-, 07	
	156	0142	. 068	. 141	0159	070	. 175	. 0161	09	
	- 100	0149	086	. 177	. 0178	. 077	. 221	.0196	10	
11	. 200	0173	098	. 224	. 0195		, 269	.0225	, 11	
2	. 210	0110		279	.0222	103	. 324	. 0255	; 12	
3		0101	- 130	323	. 0251	111	.370	. 0296	13	
4	. 398	. 0201	161	414	0331	124	. 469	. 0390	· 15	
6	. 513	, 0520	182	497	0431	147	. 559	. 0504	18	
8	. 627	. 0100	180	581	0544	150	. 650	. 0624	15	
10	. 756	. 0012	204		0646	169	. 732	. 0717	2	
12	. 857	. 0714	218	740	0758	- 184	. 785	, 0891	22	
14	. 980	. (1984)	245	(19	11-9	- 213	.817	. 157	2f	
16	1, 01	1, 33	268	. 821	1112	. 250	855	. 230		
18	1, 01	1		, 866	. 104	<u>2</u> .89				

TABLE 26

R. A. F. 15 triplane. G/c = 1.0, Stagger -0°

	Uppe	er wing		Mi	iddle wing		1.	ower wing	
α		Cp	C _M	CL		C _M	CL	Ср -	C_M
$\begin{array}{c c c} Degrees & -3 & -2 \\ -3 & -2 & -1 & \\ 0 & +1 & 2 & \\ 3 & 4 & 6 & \\ 4 & 6 & \\ 4 & 6 & \\ 10 & 12 & \\ 14 & \\ 16 & \\$	-0.037 +.032 .106 .173 .225 .354 .419 .546 .667 .787 .997 1.02	+0.0149 .0143 .0143 .0159 .0176 .0201 .0228 .0271 .0374 .0520 .0678	$\begin{array}{c} -0.\ 010\\\ 034\\\ 055\\\ 082\\\ 086\\\ 111\\\ 131\\\ 146\\\ 165\\\ 201\\\ 225\\ \hline\ 257\\\ 307\\ \end{array}$	$\begin{array}{c} -0.\ 003 \\ +.\ 056 \\ .109 \\ .158 \\ .200 \\ .248 \\ .303 \\ .352 \\ .452 \\ .550 \\ .645 \\ .732 \\ .828 \\ .885 \end{array}$	$\begin{array}{c} +0.0161\\ .0124\\ .0129\\ .0149\\ .0167\\ .0186\\ .0212\\ .0248\\ .0340\\ .0462\\ .0592\\ .0707\\ .0854\\ .128\end{array}$	$\begin{array}{r} -0.\ 034\\\ 047\\\ 061\\\ 073\\\ 074\\\ 074\\\ 107\\\ 153\\\ 158\\\ 169\\\ 200\\\ 209\\\ 244\end{array}$	$\begin{array}{c} -0.027\\ +.049\\ .118\\ .167\\ .219\\ .273\\ .331\\ .387\\ .492\\ .591\\ .682\\ .771\\ .830\\ .866\\ .892\end{array}$	+0.0134 .0136 .0138 .0157 .0183 .0210 .0239 .0278 .0373 .0491 .0613 .0713 .0923 .154 .230	$\begin{array}{c} -0.\ 023\\\ 052\\\ 072\\\ 098\\\ 114\\\ 123\\\ 137\\\ 156\\\ 182\\\ 206\\\ 219\\\ 223\\\ 271\end{array}$

.

,

	Upp	er wing			liddle wing		Lower wing			
α	CL	C_D	CM	CL	C_D	C _M	C_L	CD	См	
Degrees								di serina S		
-3	-0.003	+0.0145	-0.016	-0.007	+0.0136	-0.030	-0.036	± 0.0152	-0.022	
-2	+ 034	. 0129	038	+.068	. 0133	051	+.035	. 0150	046	
-1	. 107	. 0125	061	. 132	. 0143	- 078	. 108	. 0156	066	
0	. 178	. 0142	080	. 181	. 0161	095	. 173	. 0176	088	
+1	. 237	. 0161	095	. 225	0189	109	. 226	. 0204	102	
2	. 306	. 0179	117	. 283	. 0216	114	. 283	0230	113	
3	. 374	. 0215	130	. 341	. 0248	132	. 347	.0259	130	
4	. 441	. 0256	138	. 387	. 0285	—. 14 i	. 402	. 0298	140	
6	. 566	. 0363	170	. 500	.0378	159	. 509	. 0395	161	
8	. 693	. 0511	208	. 596	. 0506	175	. 617	. 0512	187	
10	. 814	. 0689	—. 223	. 702	. 0643	201	. 710	. 0630	206	
12	. 934	. 0872	247	. 793	0774	224	. 799	.0732	232	
14	1.03	. 112	267	. 883	.0952	244	. 817	. 097.5	245	
15	1.04	. 134	282							
16	1.05	. 156	296	. 922	. 137	263	. 868	. 161	- 295	
18				. 927			. 886	. 233	, 201,	

TABLE 27 R. A. F. 15 triplane. G/c = 1.2. Stagger = 0°

 TABLE 28

 R. A. F. 15 triplane.
 G/c = 0.6.
 Stagger = +15°

Upper wing				Middle wing			Lower wing		
a	C_L	C_D	CM	$C_{\rm L}$	C_{L}	Су	CL	CD	C_M
Degrees						1			
-4	, 			0.000	+0. 0141	~0.033			
-3	-0. 049	+0.0235	-0.006	+.049	. 0139	047	+0.009	+0.0111	0. 045
$^{-2}$	+. 022	0163	031	. 097	. 0147	065	. 068	. 0114	05
-ı	. 102	. 0142	059	. 133	. 0156	067	. 113	.0128	074
0	. 161	. 0122	066	. 155	. 0174	073	. 158	. 0142	084
+1	. 232	. 0120	085	. 176	. 0190	071	. 194	. 0168	095
2	. 294	. 0129	094	. 228	. 0208	087	. 225	. 0188	094
3	. 356	. 0164	104	. 264	0243	102	. 270	. 0221	110
4	. 411	. 0186	116	. 303	. 0278	104	. 321	. 0264	- 123
6	. 542	. 0274	147	. 382	. 0357	124	. 407	. 0384	-, 145
8	. 670	. 0395	172	. 458	0461	-, 136	. 487	. 0517	159
10	. 797	. 0550	197	. 543	. 0588	155	. 570	. 0690	-, 180
12	. 914	. 0690	174	. 622	. 0671	171	. 650	. 0828	202
14	. 975	. 0923	236	. 700	. 0794	182	. 715	. 0948	218
16	. 973	. 130	250	. 770	. 102	-, 199	. 778	. 119	244
18	. 898	. 165	256	. 857	. 154	240	. 832	. 186	
20							. 876	. 262	320

.

•

TABLE 29

R. A. F. 15 triplane. G/c = 0.9. Stagger = +15°

Upper wing			Middle wing			Lower wing			
α	CL	Cp	См	CL	CD	CM	CL	CD	C _M
Эедтеев					• ••	-	······································	-	-'
-3	-0.046	+0.0142	-0.012	+0.006	+0.0137	-0.028	- 0. 023	+0.0131	-0.02
-2	+.031	. 0131	034	. 068	. 0134	058	+.045	. 0124	03
-1	. 116	. 0121	059	. 119	. 0138	066	. 103	. 0129	060
0	. 187	. 0132	076	. 158	. 0166	076	. 154	. 0143	079
+1	. 248	. 0141	100	. 197	. 0183	084	. 200	. 0164	09
2	. 323	. 0151	—. 110	. 245	. 0199	080	. 239	. 0182	097
3	. 387	. 0203	125	. 298	. 0235	106	. 288	. 0212	- 109
4	. 456	. 0232	139	. 346	. 0274	119	. 344	. 0248	- 120
6	. 592	. 0341	167	. 444	. 0371	142	. 440	.0372	- 143
8	. 728	. 0488	203	. 534	. 0497	158	. 530	. 0508	165
10	. 862	. 0671	234	. 634	. 0653	183	. 627	0680	- 195
12	982	. 0843	258	. 724	. 0785	206	. 718	. 0813	216
14	1.06	. 112	272	. 817	. 0932	224	. 802	. 0936	- 233
16	1.05	. 160	—. 306	. 906	. 154	328	. 819	. 124	- 238
18	- -			. 957	. 255	288	. 865	197	- 981

AIR FORCES ON A SYSTEMATIC SERIES OF MODELS

TABLE 30

R. A. F. 15 triplane. G/c = 1.2. Stagger = $\pm 15^{\circ}$

	Upper wing				Middle wing			Lower wing		
α	C_L	C_D	C_M	C _L	C_D	C_M	C_L	CD	См	
$\begin{array}{c c} Degree \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c c} -0.057 \\ +.016 \\ .105 \\ .182 \\ .243 \\ .323 \\ .394 \\ .465 \\ .601 \\ .716 \\ .886 \\ .886 \\ .1.00 \\ 1.05 \\ 1.05 \end{array}$	$\begin{array}{c} +0.0146\\ 0.0133\\ 0.0121\\ 0.0133\\ 0.0144\\ 0.0158\\ 0.0232\\ 0.0347\\ 0.0500\\ 0.0686\\ 0.0872\\ 117\\ 170\end{array}$	$\begin{array}{c} -0.019\\045\\066\\088\\103\\123\\138\\156\\182\\214\\224\\214\\238\\333\end{array}$	0,003 +-015 .079 .164 .207 .257 .321 .378 .486 .591 .701 .800 .902 .978 1.01	$\begin{array}{c} +0.0139\\ .0130\\ .0130\\ .0163\\ .0163\\ .0183\\ .0203\\ .0240\\ .0281\\ .0290\\ .0528\\ .0699\\ .0848\\ .103\\ .144\\ .229\end{array}$	$\begin{array}{c} -0.\ 026\\\ 046\\\ 059\\\ 083\\\ 092\\\ 095\\\ 115\\\ 133\\\ 157\\\ 179\\\ 210\\\ 233\\\ 252\\\ 277\\\ 336\end{array}$	$\begin{array}{c} -0.043 \\ +.031 \\ .102 \\ .582 \\ .260 \\ .260 \\ .316 \\ .374 \\ .480 \\ .587 \\ .698 \\ .784 \\ .855 \\ .889 \\ .907 \end{array}$	$\begin{array}{c} +0.0143\\ 0.0141\\ 0.0156\\ 0.0176\\ 0.0297\\ 0.0270\\ 0.0393\\ 0.0537\\ 0.0537\\ 0.0537\\ 0.0537\\ 0.0543\\ 0.0847\\ 1.034\\ 2.0587\\ 1.034\\ 2.0587\end{array}$	$\begin{array}{c} -0.021 \\065 \\066 \\088 \\088 \\086 \\102 \\116 \\156 \\179 \\209 \\235 \\240 \\263 \\318 \end{array}$	
	i i		i					· · · · · · · · · · · · · · · · · · ·		

TABLE 31

R. A. F. 15 triplane. G/c = 0.6. Stagger = $\pm 30^{\circ}$

	Մրթ	er wing	I	Middle wing			Lower wing			
α	C _L	C _P	C_M	e_L	C_D	ĊM	C_L	C'p	C_M	
								:		
ngrees 2	- 0.014	4-0.0165	~-0.016	± 0.052	+0.0127	~ 0.042	= 0,009	± 0.0112	0.029	
0 1	1.063	0166	036	. 097	. 0121	. 048	+.042	. 0099	044	
	1.000	0147	. 058	. 128	. 0130	057	. 079	,0102	057	
1	. 100	n149	- 077	. 158	, 0146	061	. 124	. 0119	069	
. 0 .	. 210	0142	- 104	189	. 0166	064	. 166	. 0148	073	
11	. 299	.0147	. 107	950	0190	073	. 201	. 0181		
2	. 370	. 0106	190	970	0226	084	. 239	. 0220	086	
3	. 438	. 0197	120	219	0267	094	. 287	. 0269	107	
4	. 500	. 0195	- 155	204	0371	- 109	. 376	. 0405	130	
<i>t</i> i	. 648	. 0273	144	. 004	0516	141	453	. 0540	-, 150	
8	. 790	. 0400	-, 198	. 470	. 0.010	142	535	0748	167	
10	. 930	. 0528	227	. 595	. 0045	145	615	0902	- 190	
12	1.02	,0738	250	. 643	. 0785	- 165	- 010	109	- 218	
14	1,05	. 120	265	. 763	. 0988	181	1 . 700	. 109		
16	1,00		295	887	. 131	210	.769	, 130	· 220	
18				. 955	. 177	— 265	. 844	, 166	-, 268	

TABLE 32

R. A. F. 15 triplane. G/c = 0.9. Stagger $+30^{\circ}$

Upper wing				N	liddle win	g	Lower wing		
α	C _L	Cu	CM	CL	Ср	См	C _L	Co	См
$\begin{array}{c} Degrees \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \end{array}$	$\begin{array}{c} -0.\ 623\\ +.\ 063\\ .154\\ .227\\ .305\\ .384\\ .458\\ .529\\ .674\\ .825\\ .962\\ 1.07\\ 1.12\\ 1.08\end{array}$	+0.0152 .0150 .0169 .0143 .0143 .0165 .0192 .0222 .0313 .0469 .0634 .0862 .138	$\begin{array}{c} -0.014\\053\\084\\089\\106\\129\\143\\156\\192\\217\\256\\281\\319\\357\end{array}$	$\begin{array}{c} +0.009\\ .065\\ .120\\ .164\\ .206\\ .257\\ .311\\ .360\\ .458\\ .560\\ .656\\ .758\\ .879\\ .973\end{array}$	+0.0124 0108 0109 0152 0152 0157 0214 0256 0386 0549 0737 0857 107 141	$\begin{array}{c} -0.\ 030\\\ 051\\\ 060\\\ 078\\\ 078\\\ 078\\\ 078\\\ 078\\\ 102\\\ 111\\\ 143\\\ 170\\\ 183\\\ 202\\\ 242\\\ 262\\ \end{array}$	$\begin{array}{c} -0.\ 002 \\ +.\ 037 \\ .\ 085 \\ .\ 133 \\ .\ 181 \\ .\ 220 \\ .\ 268 \\ .\ 325 \\ .\ 418 \\ .\ 505 \\ .\ 596 \\ .\ 667 \\ .\ 657 \\ .\ 828 \\ .\ 898 \\ \end{array}$	+0.0124 .0114 .0114 .0127 .0155 .0185 .0219 .0271 .0396 .0557 .0710 .0846 .101 .124 .165	$ \begin{array}{c c} -0.024\\042\\056\\065\\077\\083\\097\\111\\141\\16\\18\\19\\21\\23\\26\\ \end{array} $

Upper wing				Middle wing			Lower wing		
α	C_L	C_D	См	CL	C_D	CM	C _L	CD	См
Degrees						1		1	
-3	0. 035	+0.0146	-0. 016	-0.009	+0.0148	-0.022		± 0.0136	-0.019
$^{-2}$	+.057	. 0147	043	+.048	.0118	045	+.037	. 0116	- 03
-1	. 148	. 0134	073	. 109	. 0115	060	. 093	0127	05
0	. 216	. 0140	095	. 161	. 0129	076	. 153	0151	- 08
+1	. 290	0149	099	. 210	. 0153	080	. 204	. 0183	- 09
2	. 369	. 0168	123	. 264	. 0177	093	. 249	0207	- 10
3	. 449	. 0201	143	. 328	0217	108	. 310	. 0231	- 10
4	. 523	.0236	164	. 382	. 0264	123	. 359	0283	- 12
6	. 682	. 0343	194	. 495	. 0393	154	. 463	0410	- 15
8	. 832	. 0504	229	. 605	i . 0557	191	. 566	. 0582	- 18 ⁻
10	. 970	. 0671	270	. 716	. 0720	215	. 665	.0740	- 210
12	1.08	. 0879	283	. 835	0878	242	. 752	. 0884	- 22
14	1.12	. 143	330	. 953	. 110	. 264	. 858	109	- 249
16	1.07	·····		1.02	.152	284	922	. 136	- 247
18							. 941	. 198	287

TABLE 33 R. A. F. 15 triplane. G/c=1.2. Stagger = $\pm 30^{\circ}$

TABLE 34.—R. A. F. 15 triplane. Stagger=-30°

		C_{LV}	C_{LM}	CLL	$rac{C_{LU}}{C_{LC}}$	$C_{LM} \\ C_{LC}$	$\frac{C_{LL}}{C_{LC}}$
G/c = 0.6	$90\% C_{LC,0,xxx} = 0.688$	0.650	0.816	0.705	0.916		
	$50\% C_{LC,max} = .383$	313	330	500	0. 519	0.300	0, 384
3	25% CLC 191	196	. 000		. 212	. 295	. 433
Glown 0	0007 C	. 158	. 105	. 272	. 241	. 288	. 471
$u_{f} = 0.3$	90% CLC max. = .705	. 720	. 745	. 831	. 314	. 324	.362
	$50\% C_{LC max.} = .425$. 370	384	. 526	. 290	. 302	. 408
	$25\% C_{LC max.} = .212$. 184	. 186	. 270	. 288	. 292	420
G/c = 1.2	$90\% C_{LC max.} = .819$. 768	. 800	. 888	. 312	. 326	362
1	$50\% C_{LC max} = .455$. 412	. 428	. 520	302	314	394
	$25\% C_{LC mBX} = .228$. 208	. 214	. 258	. 304	. 313	. 383
L		-		i			

		- Stagg	$er = 0^{\circ}$				
		C_{LU}	C_{LM}	c_{LL}	$\frac{C_{LT}}{C_{LC}}$	$C_{LM} = C_{Lt^{+}}$	$C_{LL} = C_{LC}$
G/c = 0.6	$90^{\circ}_{\circ}C_{LC max} = 0.755$	0. 894	0.635	0.742	0.394	0, 280	0, 326
	$50\% C_{LC \max} = .420$. 476	.350	. 436	. 378	. 278	. 344
	$25\% C_{LC \text{ max.}} = .210$. 216	. 181	. 240	. 343	. 288	.369
G/c = 0.8	$90\% C_{LC max.} = .825$. 955	. 733	. 778	. 386	. 296	. 318
	$50\% C_{LC max.} = .458$. 510	. 406	. 456	. 371	. 296	. 333
	$25\% C_{LC max} = .229$. 240	. 207	. 240	. 349	. 302	. 349
G/c = 1.0	$90\% C_{LC max.} = .852$. 956	. 786	. 805	. 374	. 308	. 318
	$50\% C_{LC \text{ max.}} = .473$. 522	. 436	. 467	. 368	. 307	. 325
•	$25\% C_{LC max.} = .237$. 253	. 222	. 239	. 356	. 312	. 332
G/c = 1.2	$90\% C_{LC \text{ max.}} = .864$. 958	. 815	. 812	. 370	. 314	. 316
	$50\% C_{LC \text{ max}} = .480$. 520	. 454	. 466	.361	. 315	. 324
	25% CLC max. = .240	. 252	. 233	. 232	.352	. 324	. 324

 $Stagger = +15^{\circ}$

		CLU	CLM	C11	$\frac{C_{LU}}{C_{LC}}$	CLM CLC	CLL CLC
<i>G/c</i> =0.6	$90\% C_{LC max} = 0.773$ $50\% C_{LC max} = .430$	0. 957 . 528	0. 670 . 373	0. 692 . 394	0.413 .408	0. 289 . 288	0. 298
G/c=0.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 246 1. 01	. 199 . 752	. 205 . 745	. 380 . 401	. 305 . 300	. 315 . 299
G/c = 1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 565 . 273	. 424 . 222	. 415	. 405 . 392	. 304 . 319	. 291 . 289
	50% CLC max. = .490 25% CLC max. = .245	. 568	. 818 . 457 . 235	. 803 . 448 . 226	. 387 . 386 	. 308 . 311 . 220	. 305 . 303

.

Stagger = +3	0°
--------------	-------------

		C_{LV}	Clm	CLL	$\frac{C_{LU}}{C_{LC}}$	Clm Clc	C_{LL} C_{LC}
-	$G/c = 0.6$ 90% $C_{LC \text{ max}} = 0.802$	1.04	0.702	0.657	0. 434	0.292	0.274
-	50% Crcmm = .446	. 613	. 378	. 353	. 457	. 282	.261
į.	25% Cramer = 223	. 296	. 202	. 170	. 442	. 302	,256
÷	$Q_{0} = 0.0$ $Q_{0} = 0.00$ $C_{10} = -865$	1.09	. 796	. 698	. 420	. 305	. 275
i.	6/c = 0.9.1. $50% + 0.001111$	624	426	. 383	. 433	. 296	.271
	3670 CLC mar. = 240	312	. 217	. 186	434	. 302	.264
ł.	$C_{12} = 1.9$ 0.00% $C_{12} = -908$	1.09	855	. 775	. 402	. 314	. 284
1	G/C = 1.2 $50% CLC max. = 500$	623	462	. 429	. 411	, 306	.283
1	25% CLC max = .252	. 310	. 232	. 212	. 410	. 307	. 283
			. <u> </u>				

TA	в	LE	35

Centers of pressure in per cent of chord on a R. A. F. 15 biplane

1

	Stagger -30°							Stagger 0°							
G/c	0.	6	0.	9	1.	2	0.	6	0.	8	1.	0	1.	2	
α	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	
$D c grees -1 \\ 0 \\ +1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	$\begin{array}{c} -39.6 \\ -34.4 \\ -32.5 \\ -31.8 \\ -29.9 \\ 2 \\ -27.3 \end{array}$	$ \begin{array}{r} -51.5 \\ -44.8 \\ -40.5 \\ -37.4 \\ -34.1 \\ -31.9 \\ -30.4 \\ -27.6 \\ -28.0 \end{array} $	$\begin{array}{c} -76.3 \\ -61.0 \\ -52.7 \\ -42.3 \\ -36.5 \\ -35.7 \\ -33.3 \\ -34.0 \\ -29.7 \\ -29.1 \end{array}$	$\begin{array}{c} -75.0 \\ -51.5 \\ -45.2 \\ -40.0 \\ -35.9 \\ -34.7 \\ -30.7 \\ -28.6 \\ -28.2 \\ -29.2 \end{array}$	$\begin{array}{r} -63.1\\ -55.5\\ -48.2\\ -40.9\\ -36.4\\ -37.0\\ -32.9\\ -31.5\\ -30.0\\ -29.4 \end{array}$	$\begin{array}{c} -80.\ 0\\ -47.\ 9\\ -41.\ 8\\ -37.\ 6\\ -36.\ 0\\ -33.\ 4\\ -30.\ 0\\ -27.\ 4\\ -28.\ 4\end{array}$	$\begin{array}{r} -70.\ 2\\ -42.\ 0\\ -39.\ 9\\ -33.\ 0\\ -35.\ 6\\ -31.\ 7\\ -25.\ 6\\ -26.\ 6\\ -26.\ 1\\ -27.\ 0\end{array}$	$\begin{array}{r} -88.5 \\ -62.4 \\ -50.0 \\ -50.2 \\ -44.5 \\ -41.5 \\ -34.2 \\ -33.2 \\ -30.9 \\ -30.6 \end{array}$	$ \begin{array}{r} -65. \\ 1 \\ -50. \\ 0 \\ -41. \\ 5 \\ -39. \\ 0 \\ -36. \\ 6 \\ -32. \\ 8 \\ -32. \\ 8 \\ -29. \\ 3 \\ -29. \\ 3 \\ -28. \\ 1 \\ -28$	$\begin{array}{r} -76.\ 7\\ -59.\ 9\\ -53.\ 6\\ -47.\ 6\\ -40.\ 0\\ -36.\ 4\\ -34.\ 5\\ -33.\ 9\\ -31.\ 4\\ -22.\ 9\end{array}$	$ \begin{array}{r} -87.3 \\ -55.0 \\ -48.9 \\ -41.5 \\ -38.1 \\ -36.8 \\ -32.6 \\ -29.8 \\ -27.3 \\ -27.3 \\ -25.4 \\ -27.7 \end{array} $	$\begin{array}{r} -67.4 \\ -57.0 \\ -49.6 \\ -41.2 \\ -39.3 \\ -35.2 \\ -32.8 \\ -31.0 \\ -30.1 \\ -31.0 \end{array}$	$\begin{array}{c c} -86,5\\ -52,8\\ -42,6\\ -41,4\\ -36,2\\ -34,6\\ -33,0\\ -31,1\\ -29,7\\ -29,3\\ \end{array}$	$\begin{array}{r} -82.5 \\ -55.0 \\ -46.3 \\ -40.7 \\ -37.4 \\ -35.7 \\ -32.9 \\ -30.8 \\ -28.4 \\ -28.9 \\ -30.1 \end{array}$	
14 16 19	-24.7 -18.8 -18.8	-31.7 -33.3	-27.0 -27.0 -30.2		-28.9 -29.1	-31.9	-23.5 -23.6	-34.5	-28.5	-34.7	-31.3	-33.1		- 33. 5	

TABLE 36

Centers of pressure in per cent of chord on a R. A. F. 15 biplane

			Stagger +1	5°		Stagger +30°								
G/c	0	.6 0.9		0.9		1.2 0.6		6	0.9		1.2			
a	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing		
Degrees -1 0 +1 2 3 4 6 8 10 12 11	$\begin{array}{c} -51. \ 0 \\ -44. \ 0 \\ -35. \ 0 \\ -37. \ 0 \\ -30. \ 4 \\ -28. \ 7 \\ -27. \ 4 \\ -26. \ 8 \\ -25. \ 6 \\ -23. \ 9 \\ -25. \ 6 \end{array}$	$\begin{array}{r} -56.9\\ -50.5\\ -42.7\\ -41.1\\ -38.4\\ -35.7\\ -32.3\\ -34.0\\ -31.4\\ -31.7\\ -30.9\end{array}$	$\begin{array}{c} -49. \\ -49. \\ 1 \\ -41. \\ 6 \\ -39. \\ 5 \\ -32. \\ 1 \\ -31. \\ 8 \\ -29. \\ 5 \\ -27. \\ 8 \\ -26. \\ 4 \\ -25. \\ 5 \\ -26. \\ 0 \\ -26. \\ 3 \end{array}$	$\begin{array}{c} -63. \ 0 \\ -46. \ 2 \\ -43. \ 5 \\ -37. \ 6 \\ -36. \ 6 \\ -34. \ 4 \\ -33. \ 2 \\ -30. \ 9 \\ -29. \ 6 \\ -28. \ 6 \end{array}$	$\begin{array}{c} -57.3 \\ -48.7 \\ -42.2 \\ -36.7 \\ -32.9 \\ -31.0 \\ -28.8 \\ -28.3 \\ -26.9 \\ -27.6 \\ -28.8 \\ 202 \\ 2$	$\begin{array}{c} -54.9\\ -50.0\\ -42.7\\ -38.7\\ -36.4\\ -31.8\\ -29.0\\ -31.0\\ -29.8\\ -27.6\\ -20.8\\ -20.2\\ \end{array}$	$\begin{array}{c} -46.2 \\ -36.6 \\ -34.9 \\ -31.8 \\ -29.6 \\ -28.8 \\ -27.6 \\ -26.5 \\ -25.8 \\ -23.0 \\ -29.0 \end{array}$	$\begin{array}{c} -52.5 \\ -55.2 \\ -42.7 \\ -42.6 \\ -36.1 \\ -35.4 \\ -33.6 \\ -32.5 \\ -31.5 \\ -30.7 \\ -30.3 \\ -20.4 \end{array}$	$\begin{array}{r} -48. \ 4 \\ -47. \ 5 \\ -36. \ 0 \\ -37. \ 5 \\ -33. \ 0 \\ -31. \ 6 \\ -30. \ 7 \\ -29. \ 8 \\ -26. \ 1 \\ -24. \ 3 \\ -29. \ 0 \\ -33. \ 1 \end{array}$	$\begin{array}{r} -67.8 \\ -48.4 \\ -43.0 \\ -38.8 \\ -36.2 \\ -33.9 \\ -33.9 \\ -33.2 \\ -30.2 \\ -30.0 \\ -29.7 \\ -30.5 \end{array}$	$\begin{array}{c} -58.2 \\ -44.4 \\ -38.2 \\ -37.3 \\ -32.7 \\ -33.0 \\ -29.4 \\ -23.9 \\ -24.1 \\ -30.8 \\ -33.3 \end{array}$	$\begin{array}{r} -68.9\\ -52.6\\ -43.1\\ -39.9\\ -36.5\\ -36.5\\ -32.8\\ -31.7\\ -30.4\\ -30.0\\ -29.3\\ -29.2\end{array}$		

10121-27---3

Stagger	-3	0°	0°		$+30^{\circ}$		
a	Upper wing	Lower wing	Upper wing	Lower wing	Upper wing	Lower wing	
Degrees			1	···			
-5		-75.3	-65, 8	-71.1	-53.6	73, 5	
-3	-95.1	-56.4	-52.2	-55.2	-46.2	-56.1	
- 1	-74.2	-48.6	-44.1	-48.3	-42.7	-48.7	
0	-65.9	- 14. 5	- 40. 9	-47.1	-38.9	-47.6	
+1	-63.3	-41.6	-41.4	-44.6	-37.9	-46.5	
2	-58.7	-41.3	- 39. 3	-43.6	-36.3	-43.8	
3	-56.7	-37.6	-36.5	- 41.3	-37.1	-42.4	
4	-52.6	-37.3	-36.7	40.1	-36.8	-40,9	
6	-48.8	-35.7	- 34. 6	-37.0	-35.4	-38.9	
8	- 46, 0	-34.8	-33.4	- 36. 0	-33.2	-37.8	
10	-43.9	-33.2	-32.3	- 35, 1	-31.8	-36.0	
12	-41.1	-31.8	-31.5	-34.1	-30.8	-35.6	
14	-39, 0	-32.1	-30.8	-32.6	-30.2	34. 6	
16	-38.0	-32.5	-29.8	- 32.6		-34.1	
18	-36.1	· - • • · · · · · ·			-31.3	-34. (
	1	_					

TABLE 37

Centers of pressure in per cent of chord on a U. S. A. T. S. 5 biplane of G/c = 0.9

TABLE 38

Centers of pressure in per cent of chord on R. A. F. 15 triplane

				stagge	er -30°						
G[c		0. 6			0. 9		1. 2				
α	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing		
Degrees											
-2											
1			-71.1	~ 77.4		-82.9	-76.0	- 84.0			
0			- 57. 8	57, 8	= 64, 7	-53.4	55, 9	-63.0	-52.9		
+1			-47.4	-50.0	-53.5	45, 2	- 14. 9	-45.5	42. 5		
2			-43.5	-41.8	-44.9	-38.4	-39.8	43, 5	- 35. 2		
3			- 38, 4	41.0	-38.2	~ 34.4	- 35, 9	-37.3	- 33, 0		
-4	-35, 8	-35.3	35, 1	-36.2	36, 1	×30.6	-36, 6	35.4	-32.9		
6	34.2	-33.4	-30.3	-34.6	32. 2	-29.5 .	-35.2	32. 0	- 30.7		
8	-34.7	31.7	-27.7	33. 1	31. 5	-28.5	-31.4	- 30, 3	-29.4		
10	-36.4	28.7	-29.1	-31.6	$-27, 9^{-1}$	27.9	31, 4	- 28, 9	-28.7		
12	-30.0	-27.4	- 27.1	-31.8	-25.7 .	26.2	-30.9	- 29, 0	-29.2		
14	29.7	-26.1	-30.8	-29.3	-24.8	30, 8	-30.6	28.2	-32.3		
16	-27.5	-23.3	-37.1	-28.3	- 36, 9		-28, 6	- 29. 6			
18	-28.6			~28.1			-27.6				

TABLE 39

Centers of pressure in per cent of chord on R. A. F. 15 triplane

						Stagger 0°	•		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
G/c	0.6			0.8			1.0			1.2		
α	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing
Degrees		-			· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
-2	-28.3	-81.0	-85.9		-90.7	-89.0					75.0	
-1	-42.5	-63.5	-62, 8	-52.3	-57.2	-64.0	-51 8	58, 0	-61.0	-57.0	- 75, 0	стт'
0	- 44, 8	-54.0	-52.2	-43.6	-49.6	-54.4	-47.4	-46.2	- 54 5 :	-45.0	- 59 5	-01.1 50.0
-+1	-38.4	-51.0	-47.0	-41.2	-43.5	-49.3	-38.2	- 48, 5	- 44. 7	-40.1	48. 4	-45.1
2	-33.6	-42.8	-42.2	- 35, 1	-37.8^{+1}	-42.6	-37.5	-37.8	-41.6	-38.1	-40.2	- 39. 8
3	-31.2	- 39. 1	-39.5	-34.5	-36, 8	-38.8	-36.9	-35.2	-37.0	-34.6	-38, 6	-37.3
4	-32.4	-35, 9	-36.8	-32.7	-34.3	-37.5	-34.8	-33.2	35, 3	-31.2	-36.3	- 34.7
0	- 30, 3	-31.1	-34, 6	-31,4	-29.9	- 33, 0	-30.2	-33.7	31. 6 ,	- 30. 0	-31.7	-31.5
10	-28, 1	-28.6	-33.1	-29.2	-29.6	-32.1	-30.2	-28.7	-30, 7	30. 0 +	-29.4	-30.2
19	-27.0	-25.7	-31.4	-27.1	-25.8	-30.5	-28.6^{+}	-26.2	-30.2^{+}	28. 6	-28.6	-29.0
14	-26.0	-25, 4 99, 0	-31.4	-25, 5	- 25, 5	-29.0		27. 4	-28.5	-26.5	-28.3^{+1}	28. 9
16	- 26. 0	- 92.6	29, 3	-25, 2	-24.7	-28.2	- 25, 9	-25.4	-27, 0	-26, 0	-27.7	-28.5
18		- 20, 0	-51.5	- 26, 5	-26.0	32.4	- 30, 0	-27.5	-31.0^{-1}	27.0	~ 28.5 [-32.9
					-28.4					-28.1		

TABLE 40

Centers of pressure in per cent of chord on R. A. F. 15 triplane

1	Stagger + 15°													
G/c	-	0.6	•		0.9		1.2							
: α	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing	Upper wing	Middle wing	Lower wing					
Dearces														
- 2		-67.0	77. 9		-85.3	-88.3		!						
- 1	57. 8	- 50, 4	65, 5	- 50, 8	- 55, 5	- 58, 3	-62, 8	74.7	-64, 8					
0	·· 11.0	- 47. 1	- 53, 2	- 40.7	- 48, 1	-54.3	- 48, 4	50, 7	-56.3					
+1	- 36, 6	~ 40, 3	- 47.5	- 40, 3	- 42.6	-47.5	- 12.4	- 44, 0	-46.5					
2	-32.0	-38, 0	42.5	~ 31.4	- 32.5	- 40, 4	-37.9	-36.8	- 39, 1					
3	-29, 2	38, 5	~40,6	-32.2	- 35. 5	37.7	34. 9	-35.5	-34.6					
1	-28.2	-34.2	-38.2	30, 5	- 34.3	- 34, 9	-33, 5	-35.4	- 33, 6					
6	-27.1	32, 3	- 35, 5	-28.4	31, 8	-31.9	-31.0	-32, 2	-32.3					
8	-25.7	-29.6	-32.5	-27.9	- 29.1	31.6	-30, 0	- 30, 2	-30.4					
10	21.8	-28.1	31, 4	-27.2^{-1}	- 28, 8	-31.0	-27.6	-29.9	-29.9					
12	-19, 2	-27.4	-30, 9	-26.4	28, 1	-29.2	-27.8	-29.2	-30, 0					
14	-24.4	-26.1	-30.4	-25.8^{-1}	- 27, 5	- 29.1	-28.1	-28.1	-28.1					
16	-25.8	-25.9	-31.2	-29, 0	-36, 2	- 29, 0	-31.3	-28.4	-29.6					
18	-28, 2	-27.8	- 33. 1		-29.0	-31.8		-32.7	-34.2					
		i			I	I		<u> </u>						

TABLE 41

Centers of pressure in per cent of chord on R. A. F. 15 triplane

				Stagger +30°												
	0,9		1.2													
Lower U wing v	pper Middle ving wing	Lower wing	Upper wing	Middle wing	Lower wing											
	-85, 5 - 78, 5		-75.5	-93.8	-94.7											
-72.1 -	-54.5 - 50.0	-64.7	-49, 1	-55.0	-62.4											
- 55, 6 -	-39, 2 -44, 5	-50.3	-44.0	-47.2	-52.3											
-44.0	-34, 8 -37, 9	-41.5	-34.2	-38.1	-45.1											
- 39. 1 -	-33, 5 -35, 6	-37.6	-33.3	-35.1	-40.4											
- 35, 8 -	-31, 2 32, 7	-36.4	-31.8	-32.8	-35.7											
- 37, 4 -	-29.4 - 30.7	-34.6	-31.4	-32.4	-34.7											
	-28.4 -31.4	-33.3	-28.4	-31.0	-32.7											
- 32, 9 -	· 26, 4 30, 3	-32.0	-27.5	31. 4	-32.0											
-31.1 -	-26, 7 = -27, 8	30, 1	-28.0	- 30, 0	-31.5											
- 30, 6 -	-26, 4 = -26, 6	-29.4	-26.3	-29.0	-29.4											
-30,9 -	-28.6 -27.9	-28.1	-29.5	-27.8	-28.9											
-29,0	-27.0	-27.7		-27.8	-26.7											
-31.3		-28.7			-30.1											
	-29.0 -31.3	$\begin{array}{c} -29.0 \\ -31.3 \\ \end{array} \qquad \qquad -27.0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											

.

1.0

1.2

1.0

.8

1.6

Ċ, |_4

.2

0

-,2°

1.2

F1G. 4.—Curves of coefficients of moments and lift of individual wings for R. A. F. 15 biplane. G/c=0.9; Stagger -30°

FIG. 14.—Curves of coefficients of moments and lift of individual wings for R. A. F. 15 biplane. G/c=0.9; Stagger $\pm 10^{\circ}$

AIR FORCES ON A SYSTEMATIC SERIES OF MODELS

Fig. 21. Curves of coefficients of moments and lift of individual wings for U. S. A. T. S. 5 biplane, -G/c = 0.9; Stagger +30°

FIG. 25. Curves of coefficients of moments and lift of individual wings for R. A. F. 15 triplane = G/co-1.2; Stagger = 30°

AIR FORCES ON A SYSTEMATIC SERIES OF MODELS

FIG. 58.—Centers of pressure in per cent of chord for R. A. F. 15 triplane. G/c=1.2; Stagger -30°

FIG. 59.—Centers of pressure in per cent of chord for R. A. F. 15 triplane. G/c=0.6; Stagger 0°

FIG. 61. Centers of pressure in per cent of chord for R. A. F. 15 triplane. $G/c{=}1.0;$ Stagger 0°

FIG. 66. Centers of pressure in per cent of chord for R. A. F. 15 triplane. $G/c \approx 0.6$; Stagger $\pm 30^{\circ}$

FIG. 65. Centers of pressure in per cent of chord for R. A. F. 15 triplane. G/c=1.2; Stagger +15°

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY -

.

.

. . .

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis			Mome	ut axis	Angle	9	Velocities		
Designation	Sym- bol	Force (parallel to axis) symbol	Designa- - tion	Sym- bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal Lateral Normal	X Y Z	X Y Z	rolling pitching yawing	L M N	$\begin{array}{c} Y - \longrightarrow Z \\ Z \longrightarrow X \\ X \longrightarrow Y \end{array}$	roll pitch yaw	Ф Ө Ұ	u v w	p q r

Absolute coefficients of moment

$$C_L = \frac{L}{qbS} C_M = \frac{M}{qcS} C_N = \frac{N}{qfS}$$

- D, Diameter.
- p_e , Effective pitch
- p_{g} , Mean geometric pitch.
- p_s , Standard pitch.
- p_v , Zero thrust.
- p_a , Zero torque.
- p/D, Pitch ratio.
- V', Inflow velocity.
- V., Slip stream velocity.

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

- T, Thrust.
- Q, Torque.
- P, Power.

(If "coefficients" are introduced all units used must be consistent.)

- η , Efficiency = T V/P.
- n, Revolutions per sec., r. p. s.
- N, Revolutions per minute., R. P. M.
- Φ , Effective helix angle = $\tan^{-1}\left(\frac{V}{2\pi rn}\right)$

5. NUMERICAL RELATIONS

1 HP = 76.04 kg/m/sec. = 550 lb./ft./sec.

- 1 kg/m/sec. = 0.01315 HP.
- 1 mi./hr. = 0.44704 m/sec.
- 1 m/sec. = 2.23693 mi./hr.

1 lb. = 0.4535924277 kg. 1 kg = 2.2046224 lb. 1 mi. = 1609.35 m = 5280 ft. 1 m = 3.2808333 ft.

