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THEORY OF WING SECTIONS OF ARBITRARY SHAPE

By THEODORE THEODORSEN

SUMMNARY

This paper presents a solution of the problem of the
‘theoretical flow of a frictionless incompressible fluid
past airfoils of arbitrary forms. The velocity of the 2-
dimensional flow 1is explicitly expressed for any point
at the surface, and for any orientation, by an eract
expression containing a number of parameters which are

functions of the form only and which may be evaluated by.

convenient graphical methods. The method is particu-
larly simple and convenient for bodies of streamline
forms.
and compared with experimental data.

The results have been applied to typical airfoils |

| tors contributing to the perfection of the airfoil.
| Above all, we must work toward the end of obtaining
a thorough understanding of the ideal case, which is
the ultimate limit of performance. We may then
attempt to specify and define the nature of the devia-
. tions from the ideal case.

No method has been available for the determination
* of the potential flow around an arbitrary thick wing
- section. The exclusive object of the following report
* is to present a method by which the flow velocity at
any point along the surface of a thick airfoil may be
determined with any desived accuracy. The velocity

" of the pototial flow around the thick airfoil has been

INTRODUCTION-

The theory of airfoils is of vital importance in aero-
nautics. It is true that the limit of perfection as
regards efficiency has almost been reached. This
attainment is a result of persistent and extensive
testing by a large number of institutions rather than
of the fact that the important design factors are known.
Without the knowledge of the theory of the air flow
around airfoils it is well-nigh impossible to judge or
interpret the results of experimental work intelligently
or to make other than random imiprovements ai the
expense of much useless testing.

A science can develop on a purely experimental basis
only for a certain time. Theory is a process of sys-
tematic arrangement and simplification of known facts.
As long as the facts are few and obvious no theory is
necessary, but when they become many and less simple
theory is needed. Although the experimenting itself
may require little effort, it is, however, often exceed-
ingly difficult to analyze the results of even simple

“experiments. There exists, therefore, always a ten-
dency to produce more test results than can be digested
by theory or applied by industry. A large number of
investigations are carried on with little regard for the
theory and much testing of airfoils is done with insuffi-
cient knowledge of the ultimate possibilities. This
state of affairs is due largely to the very common belief
that the theory of the actual airfoil necessarily would
be approximate, clumsy, and awkward, and therefore
useless for nearly all purposes.

The various types of airfoils exhibit quite different
properties, and if is one of the objects of aerodynamical

“science to detect and define in precise manner the fac-

. tour into the potential field around a circle.

. expressed by an exact formula, no approximation hav-

' ing been made in the analysis. The evaluation for
specific cases, however, requires a graphical determi-

" nation of some auxiliary parameters. Since the airfoil
is perfectly arbitrary, it is, of course, obvious that
graphical methods are to some extent unavoidable.

Curiously enough, the theory of actual airfoils as
presented in this report has been brought into a much
simpler form than has hitherto been the case with the
theory of thin airfoils. In the theory of thin airfoils

' certain approximations have restricted its application
to small cambers only. This undesirable feature has
been avoided, and the results obtained in this report
bhave a complete applicability to airfoils of any camber
and thickness.

The author has pointed out in an earlier report that
another difficulty exists in the theory of thin airfoils.
It consists in the fact that in potential flow the velocity
at the leading edge is infinite at all angles except one.
This particular angle at which the theory actually’
applies has been defined as the ideal angle of attack.
In the present work we shall not go any further into
this theory, since it is included in the following theory
as a special case of rather limited practical importance.

THEORY OF THICK AIRFOILS -

In the theory of functions there i a theorem by
Riemann?! which shows that it is always possible to
transform the potential field around any closed con-
The
direct transformation of an airfoil into a circle may,

i Handbuch der Physik, Band III, p. 245, Fundamentalsatz der konformen
Abbildung.
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for analytical purposes, conveniently be performed in
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two steps. The first step is to transform the airfoil into ;

a curve which ordinarily does not differ greatly from a :

circle by the transformation
2
$=2'+ ;i,

M

where { is a complex quantity defining the points in the
plane describing the flow around the airfoil and z’

is another complex quantity defining the points in the
plane describing the flow around the almost circular

curve. The constant a is of dimension length and is
merely a geometrical scale factor. In the following
theory, attention is directed to the fact that the shape
of the curve resulting from transformation (I) is arbi-
trary, since the airfoil shape is arbitrary. At a later
point we shall transform this curve into a circle.
The 2’ and the ¢ planes are shown superposed in
Figure 1. It will be noticed that at great distances

Fi6URE 1.—Showing the transformation from a noncireular curve B into an airfoil

from the origin 2’-»¢; that is, both flows are similar
at infinity., In particular, the “angle of attack,”
defined as the direction of flow at infinitity with
respect to some fixed reference line in the body, is
identical in both flows. Near the origin the two flows
are entirely different; one value of 2z’ is, however,
uniquely associated with a given value of ¢ by the
relation (I).

We shall, at a later point, determine the flow in the
2’ plane. At present we shall determine the appear-
ance of the airfoil when the almost circular curve B
is given, or what amounts to the same thing, we shall
determine the curve B when the airfoil is given. In

Figure 1, C'is a circle of unit radius. Since the matter |
of dimensions is rather important, we shall avoid ;
confusion in the following by adhering to this length |

as unity. The curve B is uniquely given by the rela-
tion z’=ae**¥ where ¢ is a known or unknown real
function of the angle 6 where 8 varies from zero to 2«
and ¢ Is the imaginary unit. Since the airfoil surface
corresponds to the surface of the curve, the former is
given from relation (I) as

g‘za eb”"‘i? oe ¥

{=a(e+e?) cos 47 a(# —e¥) sin 0

This relation may further be conveniently expressed
in hyperbolic functions '

§=2a cosh ¢ cos §+2ia sinh ¢ sin 4

. Since ¢ =z+1y, the coordinates of the airfoil (z, ¥) are

" given by

'z= 2a cosh ¥ cos #

y=2a sinh ¢ sin § (L) -

We obtain a relation between 6 and the éoord_inates
of the airfoil as follows: :

z
cosh 1f"=2a cos 8

Y

sinh ¢=2a sin @

¢ and since cosh? ¢y —sinh? ¢=1

T >2— y )2= 1
2a cos @ 2a sin 8

y 2
Zsin20=p+\/p2+<(—1>
L T 2- y‘ 2
v=1-(55) ~(%)

Similarly we obtain a relation between ¢ and the

- or developed

(1I1)

where

- coordinates of the airfoil by using the equation

T 2 y 2_ ] .
<2a cosh glx) + <2a sinh 5[/) =1

or developed
Ay
—p 4 \/pz 1 (_)

Since ¢ is generally small for wing sections it may be
more conveniently expressed for purposes of calcu-

Iv)

2 sinh?

lation as a series in terms of 2@—2.-» as follows:

in ¢
We have
e? =sinh ¢+ cosh ¢.
=sinh ¢+ 4/1+sinh? ¢ .

=1+sinh yb-l—%sinhzyb'-%- <.
Y=log, (l-l-sinh\lw-%sinh?x//—}-- . )
=sinhx,b—ésinh3 v+ ..
Yy 1

Y V.-
~2a sin 0‘§<2a sin 6) T
[for ¢ < log, 2]

(IVa)

We are now in a positien «,, reproduce the conformal
representation of an airfoil in the . plane, since tor
each point of the airfoil (z, y) both ¢ and ¢ have becn
determined.
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The curves ¥ =z2onstant are ellipses in the

. m . 2 . y 2—
(2_@5 2sh y\ +<2a, sinh 'g[/) =1

The foci are located at (£ 2a, 0).

The radius of curva-

; . . . (2asinh y)?
ture at the end of the major axis is P="Sgcosh i
_ (sinh ¢)*

“coshy

or 2(b

=y

“ngﬁed (for small ¥)

" This relation is useful for the determination of ¢ near
the nose and the tail.
The leading edge, corresponding to =0, is located at

L1

Thus we see that the length 4a corresponds to the
distance between the point midway between the nose
and the center of curvature of the leading edge to the
point midway between the tail and the center of
curvature of the trailing edge.?

To establish the magnitude of the velocity at any
point (z,y) on the airfoil, we start in customary manner
with the velocity around a circle in 2-dimensional
flow. Contrary to usual practice we will, however,
make the radius of the circle equal to ae?o where ¢

_is a small constant quantity. This quantity is shown
later in this report (equation (e)), to represent the
average value of ¢ taken around the circle C.

The potential function of the flow past this circle is

29

2a cosh g¢2a(1 + %) =2a+a

a’e®v\ 4T 2
==V _E
w ! (z + = )s, log o V)
(veference 1, p. 83) and the velocity ?
dw_ o/, _a*e¥\ Tl
dz L 1, 2 ) 27z (VD

where. T' is the circulation. This expression must
vanish at the rear stagnation point* (Kutta condition)
whose coordinate is z= —aefrtie ) where a is the
angle of attack and er is shown to be the angle of
zero lift.

1 The choice of axes is entirely arbitrary. It is a matter of convenience ooly to
choose the axes so that the airfoil appears as nearly elliptical as possible, thereby
making the “almost circular” curve B as nearly eircular as possible by means of
the single transformation I. It will be seen that the evaluatiou of the important
integral appearing in the appendix is then most easily accomplisked. In fact, the
transformation I itself is only 8 matter of convenience to permif the ready evaluation
of this integral. .

! %if actually equals z—ir, the image of the velocity vector about the r-azls.

+1tis worthy of mention to note that the theory outlined in thisreport may sctually

be applied to smooth bodies of arbitrary shape if the circulation is specified. The

term *“wing sections” has been used in the title to imply dodies with sharp {(or i
pearly sharp) trailing edges, whose eirculstion is or may be considered Gxed by the

Kutta condition or some eqmvalent as§ umptxou.

149900—33

¢ plane !

¢

|
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We obtain I'= — 2_75 V(l _a 8""'“)
late) . g—Hate
— 4 Vag( e P ety 6 P)
=47 Vaeo sin(a+ é:r) (VII)

This flow around the circle 1.4y now be transformed
into the flow around any other body. In the particular
case in which the flow at infinity is not altered the
circulation will not be altered and the force experienced
by a body at the origin will remain at the fixed value
L=p VT,

We will now transform this circle, defined as
z=ae’v*% into our curve B defined by the relation
2’ =qe¥*™¥, TFor this purpose we employ the general

transformation z'=zei(4n+'3n)— which leaves the flow
at infinity unaltered, the constants being determined
by the boundary conditions. By definition

’ Z’ = Zg’f'/"‘\(’o‘{“i(e—ﬁﬁ)‘
Consequently

=Pt i— o) = & (A, +iB,) o or

Yo 80— ) = (AatiBy) 35 (c0s no—i sin ng)
where 2z has been expressed in polar form
z=r(cos '¢+1 sin o)
and by De Moivre’s theorem

1

g (cos ne—1 sin ne)

1_
zn

Equating the real and imaginary parts we obtain the
two Fourier expansions:

[— cos ngo+§1‘ sin ’nqa] (a)
and
0—¢=n % cos ngo-—‘%” sin ngo:] (b)

. An n
The values of the coefficients el f—n’ as well as the

quantity v, may be determined from (a) as follows:

%=1f27¢ cos nede (c)
T wJ0
%:l 02:!, sin nedp (d)
and - '
1
Vo= sbdsﬂ C)
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The quantity 6—¢ is necessary in the following !

B

Let us eliminate the coefficient = A * and =

in (b) by means of (¢) and (d).
We obtain

analysis.

2=

(0_@)°=1E’L Ccos nS”el BI/SinnG’-"d‘?
T Jo

. 1 * 2%
—8in N, - ¥ cos nede
. = Jo

The subscript ¢ is added to indicate that the angles so

distinguished are kept constant while the integrations
are performed. The expression may be simplified

(6— ¢)C=— f ¥ (sin ne cos ng,—cos ne sin ne)de
"2z
=17ELJ. ¥ sin n(p—g,) de
7T Jo
But ,
(o—p) (2n+1) inifﬁ)
nqm 7 (o— (,oc)““ cot & 5 _Pe
2 sin ¥, ‘-‘9—"
Therefore,
I SN PN ),
(0_ @)C—ZL ¥ cotb d
1 (o= ©OS @Cn+1)Y (o— "5)
—5 de
2w Jo 2 sin (9” 2&”«:)

The latter integral is identically zero.
E. B. Advanced Caleulus, p. 368.
exercise 10.)
Then

0—p)e=5 (VIID)
For purposes of calculation this integral is expressed
in convenient form in the appendix.

We shall now resume the task of determining the
velocity at any point of the surface of the airfoil.
dz
(see equation (VI) and footnote). For corresponding
points on the curve B in the 2’ plane and on the airfoil

The velocity at the surface of the circle is

in the { plane the velocities are respectively %Qg . ?Ti’-
gl de de
i I P T

The quantities { and 2" ave related by the expression

9
a?
§'=Z’+ Z—,

{

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

Hence
dr -
dz’

a2
. 1_2

= (ag?+% —qemd i)

2 )
= la(e?—e7¥) cos §+ia (¢* +e¢7¥) sin 0]

5 [2a sinh ¢ cos 8-+2{a cosh y sin 4]

l\},._‘l\._.»-l

Using the relations (II),

2] o = _—y 9 [ = ______x
2q sinh ¢ e and 2a cosh ¢ v
we obtain
(?5,=§, (y cot §-+7 z tan 6). Ix)
It now remains to find the ratio ((11;2—, . From the
relation
Pz S (4B 3,
we obtain
: dz’ 1.d2
5§-=z'[2+d—zn(z1,, +i B )F,,
or
dz’ 1, d
& =7 (R0 w+ie-p))
o L i - o)+ log 2)
© dz 2 4/

But

z=qet,tie

. from which,

(See Wilson,
Follow method of

Lo Gog =4 og atyetio)= 3 o)
Therefore
%ﬁ:’=z'a@( ¥ (0—)+-ip)
d

dzf  ,d Lo A8
’azg':.z 879(\[/‘1"29) &2
. But we have
1 .de
LIS
z z
or
dz N
~—£=zd >=1 d{o—8) 4 zd@
and
dz_ . d(e—8)
7}““(1 YT dg
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{ience
ds’ 2’ d
T da( Y.
1 'T' ('1'0
where
e=p—0
o Cody 21—y
dz 77 TH¢ )
de dy
where ¢ and ¢/ indicate and 55, respectively
de "¢ do 3
Equations (IX) and (X) give now
dg def_dg¢ 1 s 21—y’
47 Az A (y cot 8-+1iz tan 8) ST
= (y cot 6--ix tan @) - 1 11_:_5— XD

Because we are interested more in the magnitude than.

in the direction of the velocity we will write for the
numerical value of this expression

_ +/(3% cot? 6+2° tan” 0) 14y
- aetr (1-+¢) '

(XIa)

Q-‘ICL
W e

The quantlby (2 ) cot’d -+ (2 > tan’ is readily seen

to be equal to (by relation (II))

. comes infinite for sinh ¢ =0 (thin airfoils).
. has been pointed out in an earlier report.

(2@ sin 6 tsin® ¢
or also
i sinh? ¢ +sin® @
Hence
f ¢4 /[<~a sin 0) +sin’ :l (1+97) (XIb)
idz ! e (1+¢") “

The numerical value of the velocity at the surface of
“the eircle is obtained by equations (VI) and (VII) as
follows:
Substituting the general point z=ae?sti(*e) where
« is the angle of attack as measured from the axis of
coordinates, in equation (VI)
dw

&= V(1= ¥ete)) — 2] Vsin (o + ep)eHate
=—V[l—cos 2(a+¢)+2sin(a+er) sin (a+ o)

+17 (sin 2 (e+ @)+ 2 sin (@+er) cos (a+o))]

dw ?
i a-lg = V2[4 sin’® (a+e7) + 8 sin (a+er) sin (a+ )
+4 sin® (a+ )]
tdw .y .
?£'=2 Visin {a+¢Y+sin (a+er)]

233

Replacing ¢ by 6+4¢ (:p, the angle of zero lift, is the
value of ¢—8 at the ¢ d.*,, we have

duw-

& =2 V[sin (a+0+4¢)+sin (a+ep)]

For a point on the airfoil we have, then,

g—? Jand from (XI), finally

[Sln (oc +0+e)+ sm (aten)](1+ e') e¥
J(Einh% +sin? 0) (1 +¢7)

where the various symbols have the following signif-
icance:

v is the velocity at any point (z, ¥) of the airfoil.

V is the uniform velocity of flow at infinity.

y is the ordinate of the airfoil as measured from
the 2-axis, where to fix the system of coordi-
nates (2a, 0) is the point midway between
nose and center of curvature of the nose,
and (—2a, 0) is the point midway between
the tail and center of curvature of the tail.

ais the angle of attack as measured from the
z-axis as indicated in Figure 6.

¥, 0, ¢, ¥, ¢, and ¢ are all functions of z.

Equation (XII), expressing the value of the velocity at
any point of an airfoil of any shape,issurprisingly simple
when the complex nature of the problem is considered.
It hasthe distinct advantage of being exact; no approxi-
mations have been made in the preceding analysis.

We shall note some of the properties of this impoxr-
tant relation. Because y is generally sinall, the term

Yy

9q sin 6
where sin ¢ is small.
A

sin 6
v=co

(X1I)

is of influence chiefly near the leading edge, -
It is noticed, however, that if
=0 for =0, equation (XII) yields in all cases

This means that the velocity at the nose be-
This fact
(Reference

2.) The quantity Qlfgr_ or sinh ¢ is thus of con-

né
siderable significance in the theory of thick airfoils.

The velocity near the tail is obtained by putting
g=n+A0 and e=ep+€eA0. Where A8 is a small angle,
in equation (XII)

v _eh(1+¢)[sin (f+ate) +sin (@+er)]
Vi A (sinh? ¢ +sin? 6) (1+¢77)
we get
¢ (1+¢) [—Ab+atertdAd+tater]

V@R AR (1+¢?)
e (1+e)Ap

YYD (1 -9’

e (1 +ée)

L [ (Ae)]ﬂ v

8 It should be pomted out that the regr stagnation point is chosen to be on the
z-axis at ==, The curvature at the tail is, as far a5 the specification of the ideal
cxrculanon is concerned, to be considered as a mecharical imperfection.

()
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¥ near the tail may be expressed as’

o (a8)2+

Yoty 2041
or
‘xb J/T‘ ,I_:__« re R
AgT ATV TV ART
¥r

The quantlty T is infinite if ¥z is different from zero

at A6=0. The velocity is in this case zero, indicat-
ing the presence of the rear stagnation point.
the other hand, ¢, is zero, that is, if the tail is per-
fectly sharp,

¥ _ —

and the velocity at the tail is

ety
oAy
or

LB+t

(L+y%)?

7)7'2 V

ADVISORY COMMITTEE FOR AERONATUTICS

3. Sin %, sin 6, and § are determined by ‘the relation

“)smf? pl\,p- () where p=1— ( ) (2@)

If, on !

(= — % [0.628¢/,+ 1.065 (¢, —

4. ¢ is given by the relation

v=(sts) (s t) +

2aq sin 6 %a sin 6

5. ¢ is plotted as a function of 6

1 i 2% K
b=z | vde = | Tyas

6. Determine e, = —~2£ z// ('-' ¢e) do by for-_

w

mula shown in the appendL\.

o)) +0.445 (P — Y_s)

+0.231 ('J/a - E[’—-s) +0.104 (\04 - W—4)]

~ where ¢, is the slope of the ¢ curve at o=, ¢, the

@

(For the Clark Y, v* is about 0.88 V2 near the tail.) “
We obtain the front stagnation point by letting

p=0 in equation (XII). Hence

at0tey=—{ater)

— (2ot exy+ep)

In a previous report (veference 2)

o 6_,v+€7'
i

has been defined as the ideal angle of attack.
seen that, for this angle of attack, 0 is zero or the stag-
nation point occurs directly at the nose.

value of ¢ at ¢=¢c+75—7, ¥, at (,o=.<pc+g§-, ete.
Y, the value of Y at o=, — 5 , ete.

. From the e versus # curve and from the ¢ versus

§ curves ¢’ and ¢’ are determined.

It is ¢

8. Determine F by the relation

(1 +e’)e"’"

[<2a sin 9> sin e—](l + Wz)

9. (0+¢) is determined in radians and degrees.
10. Sin(6+a+e)+sin(a+er) is now calculated

- where « is the angle of attack as measured from the

Equation (XTI) may also be applied to strut forms, ;
and for such symmetrical shapes takes even a simpler .

form.

PRACTICAL APPLICATION OF RESULTS

We will now apply Formula (XII) to the typical
case of the Clark Y airfoil and calculate the velocities
at points of the airfoil surface. The detailed method
of procedure is as follows.

1. The axis of coordinates is drawn through the
points (2a, 0) and (—2a, 0) located respectively at the
point midway between the nose and the center of
curvature of the nose and the point midway between
the tail and the center of curvature of the tail. (See
fig. 6.) The radius of curvature at the leading edge is
1.75 per cent chord.

2. The points (z, y) of the upper and lower surfaces
of the airfoil are determined with respect to this axis.

axis of coordinates.

11. %7=F.[gin (0+ate)+ sin (atep)]

2
12. qu= 1 ~(€7> (pressure)

The entire calculation, properly arranged, can be quite
accurately obtained in a very short time.

COMPARISON WITH EXPERIMENTAL RESULTS

In order to compare the theory with experimental
results, the geometric angle of attack ag as measuréd in
the wind tunnel must be corrected for a number of -
items, such as finite span and effect of wall interference.
We may, however, obtain approximately the apparent
or effective angle of attack e, (in radians as measured
from the ancrle of zero lift) by takmcr the quotient
of the area of the pressure-distribution curve and

| 5.5,sinceit is known that this value of the lift coefi-
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FIGURE 2.~Pressure-distribution curves along z-axis of ClarkY; ;: against per cent chord
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FiGUurEe 3.—Theoretical pressure distribution along y-axis of Clark Y

(a) a=9° 33",

() a=5° 19,

(€) a=~—1°16", (d) a=—3° 15

cient is very nearly realized in most cases. This has
been done in Table IIT, and the angle of attack «, which
should be substituted in the Equation (XII), is
given in the last column. The pressure distribution
curves, Figures 2a, b, ¢, d, and 3a, b, ¢, d, were obtained
by application of Equation (XII) to the Clark Y airfoil.
Numerical results are shown in Tables I, II, and IIL.
The experimental values are from original data sheets
for N. A. C. A. Technical Report No. 353, and are
not entirely consistent due to difficulties experienced
in these experiments. After the thecretical pressure
distribution curves have been obtained, the moments
about any required axis may be found. Table IV

2 - ; T
| L]
I e i R — K ‘___;__..x____..-.i
i i
08— ’
| . ?
M ‘ : :
o1
04 i Theeretical
Experimental
0 |
- __2" 0= 2a 4° Go 8a
(o4

F1GURE 4.—Moment against angle of attack

- gives some of these results and Figure 4 shows the
. comparison with experimental data taken from N. A.
- CAL

Technical Report No. 312.

- Laxerey MeyoriaL AERONAUTICAL LABORATORY,

Narioxan Apvisory COMMITTEE FOR AERONAUTICS,
Laxcrey Fiewp, Va,, October 15, 1931.



APPENDIX

EVALUATION OF THE FORMULA

1 2% — o,
e=(p—0).= *ﬂﬁ y’/cot(iz—‘p—) de

Although the above integrand becomes positively |
and negatively infinite around ¢=g¢, it is readily
verified that for ¢ finite, throughout the range 0—2x,
the integral remains finite, the positive and negative

infinite strips exactly canceling each other.

The value of the integral for any point ¢, may be

accurately obtained by the following device.

@2 10 @2 not too large -

1 D) . s
= ¢ cot R de is very nearly ¢, log

(21 ra PL T P
R [y i

sin

<

where ¥, is the average value of ¢ in the range ¢, to

¢ Also near ¢= ¢, we may write

’7

Yv=v.+ (0= o) ¥t (o—¢.)* %—?-!'

* Then for s a small quantity

@5t

v ¢/ (‘5 Soc) (W_:;‘ﬁ)_d

Pe—$ &

=4 s¢y’,

7,000‘0 (99 €9c)d

Pa—3

(Since the even powers drop out and the lilm ¢ cot o=1).

¢—0

‘Let us now divide the interval 0—2x into 10 parts, '

starting with ¢, as a reference point. (See fig. 5.)

g . @ . g . 2r
Nose @ Tail Nose

FiGURE 5.—The ¢ against ¢ curve, illustrating method of evaluation of e.

_ Et LT ¢ 37 37
s Qe 10 O @ 10’ 10 0 g~ 10’;05, Oto
: 5% - t . ir . t 97
i 10"’0‘ 10 0 @ 10"’° ‘ 10 ST
910 1 9 lu 77T
9o 510 e 7%~ 16 10 e 1976 1 1O
57 - 5'17 3u 3 w
¢ 15 ¢~ t0 e~ g and e— g t0 e = -

We -
know that if ¢ is a continuous function and the range -

e @

Cof 8.2
. line bodies, however, ¢ is small; for ordinary airfoils

. considered equal to ¢(a).
. matical accuracy we will, however, indicate how the

. Then,
H 1 27 - @,
€= "5, ), Yoot (e 2'}9')‘(@
sin sr
1 : 20
== Syt (= yor) log ——
sin 54
sin - om sin [y
20 20
+ (fa—¢-0) log 3 + (s — —)log“‘“‘;
sin 5 56 sin 55
sin Im
20
+ W) log —
Sin Q‘G

=—= [O 628 ¥/ +1.065 (Y1 —y¢_1) +0.445 (Yo —¢_2)

+0.231 (Y3—¥_s) T 0.104 (Y4 —y_y)]
. where ¢/, is the slope of the ¥ curve at o= ¢,
¥; value of ¢ at p=g,+ 755_, Yoy at o= 75’

2 3
ybg at o= ¢+ 5’ Y; at o= gac-l---g, ete.

To evaluate the above integral it is, strictly speak-
ing, necessary to know ¢ as a function of ¢ rather than
TWe have ¢=8+¢. For all flattened or stream-

it is, in fact, so small that ¢(6) may unconditionally be
For the sake of mathe-

problem may be solved also for bodies of more irregular
contour by successive approximations. We have

¥ (o) =y (0)+

As a first approximation we neglect the second and all
following terms of this expression. The value of e

WO+ - -

_thus obtained by graphical integration or otherwise

is then used in the expression for ¥(¢) and a second
Integration is performed ete.

i The equation foreisa nonlme ar integral equation and to obtam its exact solu-
tion is a difficult matter; fortunately because of the small magnitude of e the solu-

. tion is obtainable to any desired accuracy by ordinary definite integrals.
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APPLICATION OF FLOW FOR’\IULA TO THE SPECIAL
CASE OF AN ELLIPTIC CYLINDER

REPORT NATIONAL ADVISORY

As a matter of interest we will assume the form of

. z z Y V.
the bOdy to be the elhpse (émﬁ[/> + (52{;1}1}:?&) =1

Y =1y,=constant, ¢’ =0, e=0, ¢ =0, a=0.
Equation (XII) becomes

Y- eV
( ) sin §-¢¥ minll ¥
1% sinh? y +sin? _0 ) g N
v v \/ sinh® ¢ + <2a sinh r,b)
and -
q v (2a sinh ¢)*+ (2ay)?

This result checks exactly with the form given by
Dr. A. F. Zahm in N. A. C. A. Technical Report No.
253, Flow and Drag Formulas for Simple Quadrics,
equation 14.
REFERENCES
1. Glauert, H.: Elements of Airfoil and Air-Serew Theory.
Cambridge University Press, 1926.
2. Theodorsen, Theodore: On the Theory of Wing Sections

with Particular Reference to the Lift Distribution. T. R.
No. 383, N. A. C. A,, 1931.

EXPLANATION OF THE TABLES

The first part of Table I refers to the upper surface
or to positive ordinates of the Clark Y, the second
part to the lower surface or to negative ordinates.
Column 1 gives the location in per cent of the chord; 2
gives the ordinates with respect to the z-axis in this
same unit; 3 and 4 give z and y in the present system
of coordinates; 5, 6, and 7 give sin’® 4, sin 4, and 9,
respectively (Equatlon (IID)}; 8 gives ¢ {by equation
dy de
¢35 g
as obtained from ¢ against 6 and e against 6 curves;
(See figs. 7 and 8). Column 12 gives the quantity

(IVa)); 9 gives ¢ (appendix); 10 and 11 give

i

i Column 14 gives §+

! point z and angle of attack « is given by
and find V for zero angle of attack, i. e., we have ' r=V [sin (a+8

R AERONAUTICS

N[ i

(1+¢) er

e in degrees. The velocity at any

+e)+ sin {(@+er)]-F and the pressure,

oter i)

It must be noted that « is measured from the line of

+2‘a -Za
4a
Vi L
2‘9,‘ . 1.[/ ]
| I
" //_T\i(‘zgj
LY T
as, P ——F [
] 2
joW
1007 c

FiGure 6.—Clark Y airfoil—showing system of coordinates

flow to the z-axis as shown in Figure 6, and if otherwise
measured, must be reduced to this basis.

--Unit circle e®®

]

Upper

Nose

Lower

FIGURE 7.—The unit circle z=e%, the eircle z=¢***'%, and the corresponding
curve 2/ =¢*i+ie
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FiGURE 8.—(a) T.uc ¢ against 8 curve for the Clark Y.

(&) The ¢ against 8 curve for the Clark Y
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THEORY OF WING SECTIONS OF ARBITRARY SHAPF

TABLE I

"CLARK Y
UPPER SURFACE

‘ .
%e |yinG '; z ¥ sin%g sing | o ate ) e v P F razi-i:ens 0-te
° ’
0 0 . 2.035 0. 000 0. 000 0. 000 0.000 0. 188 —0. OTQ(EN) 0. 000 0.075 6.33 -—0.079 —4 32
1.25 1.99 1.985 . 0804 L0474 .218 .220 . L 184 —. 067 . 035 . 080 4.20 .153 8 47
2.50 3.08 1.934 . 124 . 0994 315 . 321 .198 -, 035 075 . 103 3.28 . 266 15 17
5.0 4.59 1.833 . 183 L1953 442 . 438 . 208 -. 038 . 060 L1156 2.52 . 420 21 4
7.5 5.61 1.732 . 228 .282 . 531 539 .213 —. 026 . 030 . 115 2.16 .533 30 33
10 6. 45 1.631 . 260 . 365 . 605 .649 .214 —. 016 . 020 . 120 1.92 .633 36 16
15 7.70 1.430 L3111 . 512 .716 . 798 216 . 003 . 000 120 1.66 . 801 45 53
20 8.55 1228 2345 1640 o801 | 920 | .24 .020 —. 030 (120 | 148 1949 5 22
30 9.23 L824 .372 .837 015 | L1s6 | 202 044 —. 060 1105 | 130 1.200 68 45
10 .28 .42 374 .957 978 | 1361 | .190 . 063 —. 063 L091 | L2l 1,494 81 35
50 - 8.74 L0175 .353 | 1.000 1000 | L5 | L1 - 030 —. 085 018 | LT 1.651 91 33
60 797 | —.3% 1313 . 963 982 | 1761 | .159 - 094 —~.100 070 1 118 1.855 106 18
70 6.32 | —.790 L9255 .847 920 | 1972 | 137 L1086 — 104 025 | L22 2.078 19 3
0 448 | —1.103 L181 .649 (806 | 2204 | L1312 110 —. 107 . 1.36 2314 132 31
90 240 | —1.59 .097 -368 L606 | 2400 | .080 2106 — 110 | —.015 | L78 2,508 148 43°
95 125 | —1.798 w050 1ol1es .443 | 2,653 | .036 1095 —080 | —075 | _2.30 2.718 159 10
100 106 | —2.001 1002 | 000 2000 | 3.142 | .030 1062(er) | —.053 | —.080 | Large 3,204 183 33
LOWER SURFACE
0 ] 2.035 0.000 : 0.006 @ 0.000 : 6.283 0.183 —0.079 0. 000 0. 075 6.33 6. 204 —4 32
1.25 1.53 1.935 -, 0617 | 0387 —-.197 | 6.0%5 . 156 i —. 100 . 170 . 085 4.71 5.985 -17 5
2.50 1.95 1.634 -, 0787 . 0822 —. 287 5.992 . 137 -—. 105 . 162 . 035 3.64 5. 887 -—22 41
5.0 2.38 1.833 -, 0560 . 171 —. 414 5.857 L1186 —. 110 . 130 . 000 2.55 5. 747 —30 43
7.5 2.61 1.732 —. 105 .258 . ~—.508 | 5.750 .103 —-. 107 .110 - 015 2.09 5.643 -—36 40
10 2.73 1,631 -, 110 342 1 —.385 i 5.638 . 094 -, 105 . 083 -, 032 1.81 5. 553 —41 50
15 2.84 1.430 —. 115 492 ¢ =702 | 5.503 . 082 -.100 . 080 -, 046 1.49 5.399 —50 40
20 2,78 1.228 —.112 625 | —.791 I 5,371 071 —. 093 075 —. 048 1.33 5.278 —57 35
30 2.47 .824 —. 0596 .81 . -.912 5.135 L0358 —. 081 . 058 —. 050 1.15 5. 054 -71 0
40 2.12 . 421 —. 0885 L9356 —-.978  4.922 ¢ 045 -, 072 L 043 —. 050 1.075 4,850 -82 6
50 1.78 L0175 —. 0720 1.000 ; —1.000 | 4.712 1,036 -, 058 . 040 -. 080 1.04 4.¢54 —393 21
60 1,38 —. 386 —. 0356 L962 ; —.981 | 4518 0,028 ; -, 015 . 030 -. 080 1.06 4.473 —103 40
70 103 -, 790 -, 0416 84—, 919 ; 4.306 ¢ .023 —, 034 . 025 -, 060 1.13 4.272 115 14
80 .74 ~1,193 -, 0295 .645 , —.803 ’ 4.075 ; .018 —0¢ . 022 ~. 070 1.275 . 4. 055 -~127 39
990 .40 ~1.596 -, 0161 .364 | —.604 3.7%0 ; .013 . 0L0 .018 —. 082 1. 685 3.790 -—142 51
95 .24 -1, 798 — 0097 191 ¢ —.438 3.595 [ 011 . 023 - 017 —. 090 2.30 3.618 152 43
100 .06 —2.001 ~—. 002 .000 | —.000 3.142 - 030 . 062 -, 033 -, 080 Large 3.204 -—176 27
TABLE II
CLARK Y
g1 =lsin @+a+absin Gake )] F 21— ~
a=9° 33’
¢T=3° 3% sin ((z—:—ez,) =sin 13° §’=0.2267
Upper surface t Lower surface
% bt | i ’( SiEH_] (o] l ir2 P ftat | s (eJ_SiiH_ v |t P
% ¢ O-tate ' oy OFatat+ o (20 ) = +ate | Lo-t-e ;—‘ }V] it
| OFetd sinlakey, ViV 7 | Gt isin (acbep)| 1P 7
o 1 f i ! o 7 I
] 5 1 . 0.0875 0. 3142 1.99 —2.96 5 1 ' .0.0875 0. 3142 1.99 3.96 —2.96
1.25 18 20 .3145 . 5412 2.26 —412 0 -7 32 ;| —.1311 . 0956 . 450 .203 797
2.50 24 50 .4200 . 6467 2.12 ~3.39 i —13 8 = ~— 2272 . 0005 . 002 . 000 1,000
5.0 33 37 | .5537 T804 1.97 ~-2.87 1 =21 10 ~. 3611 —.1344 L343 117 . 883
1.5 40 6 <6441 . 8708 1.83 ! —2.55 -27 7 -, 4538 -—. 2291 .479 .229 L7171
10 - 45 49 L7171 . 9433 1.82 -2.30 I —32 17 -, 5341 —. 3074 . 556 .308 . 692
15 55 26 . 8235 1. 0502 174 ! —2.04 —41 7 —. 6376 -, 4307 .643 .414 . 586
20 63 55 . 8981 1.1248 1.63 ! ~1.8 & --48 2 | — 7435 —. 5163 . 685 . 469 <531
30 78 18 . 9792 1. 20539 L7 ¢ —1.47 —61 27 ' - 8784 -, 6517 . 748 . 558 442
40 91 8 . 9998 1. 2263 1,49 | —-1,22 72 33 ! —.9540 —-. 7273 .788 .621 .379
50 04 8 . 9697 1.1964 1.40 —0.93 ' —83 48 —. 9941 —. 7674 . 800 . 640 . 360
60 115 49 . 9000 1. 1267 1.33 -0.76 . =94 7 —. 9974 —. 7707 . 821 . 674 .328
70 128 36 L7813 1. 0082 .23 ~0.51 : -105 41 . --.9827 -. 7357 . 834 .696 . 304
80 142 7 6141 . 8408 1,14 ¢ -0, 31 . —118 6 —. 8821 . 6554 . 836 .698 . 302
90 158 18 . 3703 . 5970 1. 06 -0.13 , --133 18 . — 7278 -, 5011 844 .711 . 289
95 168 43 . 1957 . 4224 97 0.05 i ~143 10 @ -.5995 -—. 3728 . 857 .735 . 265
100 i | i Formula (g) . 935 .875 L1235
Table IT gives the numerical values for Figure 2a in detail as an example. See also Table 1.
TABLE III TABLE IV
; i i 1 i i |
| : i . Aosle ' Mr
Geometric | Area of | ! Apparent measured ) | M, Moment
angle as experi- | } g.h"" o Irom‘_ | i Moment M, about
measured | mental ! 'm asb‘eed chord line ! Figure | 8bout line; Moment point
Figure | . from pressure | : eﬁ,olg to be used jHigure 05 tabout line| z=25
BUIE | ¢hord line | distri- | 55~ %4 ; serotire 5% basis t | per eent y=0 per cent
experi- bution | radians g e + for ‘chord chord,
mentally | curve ! 1&g =@ Tep comparison I I y=0
« A degrees with ag;) !
¢ ! ama, ~3° 23 | ;
! } I 28 ¢ —0,0896 | ~—0.0085 | ~—0.003
2 Lo lom 5 4 s PR R e
2a | 132 | 120 | o2 13 & 9 33 | 85 = b -
2b 7 2 855 1 .155 3 52 519 % 2d, —093 | .0015 - 091
2c -1 40 221 040 2 17 -1 18 . :
2d -4 35 . 030 ; . 0053 0 18 -3 15
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X -
E’&_// "\ - (, ) N
\ >
7
Positive directions of axes and angles (forces and moments) are shown by arrows -
Axig Moment about axis . Angle .. Velocities
- . Force - » - — -
- o paraitel) - ' T - 7 l- t Linear |- .-
i . . f Sym- axisy L . Sym-| Positive Designas { Sym~| (compo- NEETEN A
Designation bol Symb‘?l Designation bol direction - tion - . |- bol |nentalong Angular "
. Longitudinal___| X X rolling. . ... L Yoo Z | rc'xll_-.----: >¢¢ i P ﬂ
& Lateral .__._._.. Y Y pitching....] M Z—-> X | pitch__.__.] @ v q
Normal.._.__. z Z yawing. ... N X— Y | yaWoo..-| ¥ w T
- Absolute coeiﬁcients of moment k Angle of set of oontrol surface (relatlve to neu-
C.= O — M 0. N - iral position), 8 (Indlcate surface by pmper ‘
‘ . ng TmgeS . Th s subscnpt) ;
S ST . PROPELLER SYMBO
v } i
. . Lo R N4
D, Diameter. ; : 5 P, Power,

p, Geometric pltch :
p]D, Pitch ratio. o
V?, " Inflow velocity. "~ -

Eﬂiclency

Ve Shpstrea,m veloclty o : — B
7, Thrust absolute coefﬁclent OT— 3;9, ﬂ” Revolutmns per; second I.p. S‘ . e
S @ Eﬁectlve “hehx angle tan“ 2 ’

A Q Torque, absolute coefﬁclent Co= QD& f

R _ . 5. NUMERICAL RELATIONS ;
1 hp=176.04 kg/m/s 550 lb /ft /sec. -1 Ib, 04535924277 ¥
1 kg/m/s=0.01315hp - 7 - ) 1 kgr 2,2046224 1By, i

1 mi/hr.=0.44704 m/s -
1 mfs=2. 23693 m.l./hr



