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THEORY OF WING SECTHOXS OF ARBITRARY SHAPE 
By THEODORE T-HEODORSES 

. . 

SUDIDIARY I tors contribut.ing to the perfection of the airfoil. 

mis pal,er a of t ~ L e  of the I d b o r e  all, we must 1%-ork ton-usd the end of obtaining 
lheorafica~ pow o~ a frictionless ;ncoml,resji~~e a thorough understanding of the ideal case, ~t-hidl  is 

a i ~ o i l s  arbitrary jorms. ~h~ Teloc'ify qf /he  2- the ultimate limit of performance. We may then 

fimensional goto is ex2,1icitly ex21,.e,cccd for a n y  point attempt to specify ancl define the nature of the devia- 
at the swface, and for any orientation, by a n  eract case. 
expressiolL a 71urnbe,. paranzefe ,,.hich are KO method has been available for the determination 
functions of t~ejol .m o,ily and ;s.hich rfla2/ be eralunfetl by ' of the potential floxt- around a n  arbitrary thick wing 
conrenienf yhe method is particu- section. The  exclusire object o l  the follo~%ing report 

larly sinzple and conrenient jor bodies of is to present a method by  which the flow velocity a t  
forms. yhe hare been applied to a;,;ioils any point along the surface of s thick airfoil nlaF be 

and cofnpared with e~perinzental dafa.  I determined with any clesired a c c ~ r a c ~ - .  The velocity 
of the potc:~tial flow around the thick airfoil has been 

INTRODUCTION expressed by  an  exact formula, no spprosi~nation hav- 
~h~ theory of is of \-ita] importance in aero- ing bcen macle in the analysis. The evaluation for 

nautics. - ~ t  is true tha t  the limit of perfection as specific cases, ho~iyex-er, requires a graphical determi- 
regards efficit.ncJ- has alIllost been reached.   hi^ nation of some ausiliary parameters. Since the airfoil 

. attahnlent is a result of persistent aIlcl estensil-e is perfectly arbitrary, i t  is, of course, o b ~ i o u s  that  
testing by largc number of institutiolls ratller than graphical methods are to some extent unavoidable. 

of the fact that  the important design factors are knon-n. Curiously enough, the theory of actual airfoils as 
j ~ i t l ~ ~ ~ t  the knov;ledge of the of the aotv presented in this report has been brought into a much 

. around airfoils i t  is ,$-ell-nigh ilnpossiblc to judge or sinlpler for111 than has hitherto bcen the case nit11 the 
interpret the of esper.imenr;ll rr-ork ~intelligeIltly theory of thin airfoils. I n  the theory of thin airfoils 
or to make other than randorn inlprorements LLI the certain approxin~ntions have rest,ricted its application 
expense of much useless testing. to small cambers only. This undesirable feature has 

A science de.i-elop on a purely esper~llentnl btlsis been avoided, ancl the results obtained in this report 
only for time. ~l~~~~~ is a of sFs- haye n conlplete applicability to airfoils of any cnmber 

temntic arrangenlent and sinlplificn tion of linoxt-n f o  c ts. and thickness. 

As long as the facts are felt- nncl obvious no theorv is The  author has pointed out in an earlier report that  
necessary, but when they beconle nlany and less siillple another difficulty mists in the theory of thin airfoils. 
theory is needed. , ~ t h ~ ~ ~ l ,  tile experirlleniing itself I t  consists in the fact that  in potential flow tllc velocit3- 

require little effort, i t  is, hoJx-ever, often a t  the leading edge is infinite a t  all angles except one. 
ingly difficult to analvze the results of even -irnp?e This particular angle a t  11-hich the theory actually 
espcrinlents, There therefore, alTt-2_v- ten- applies has been defined as the ideal angle of attack. 
d e n c ~  to produce more test results than Can be digested I n  the present ~vork  Ire shall not go any further into 
by theory or bF industrv. -4 large number of this theory, sir~ce i t  is included in the following theor1 
inrestigations are on ?)-ith ~ t t l ~  f(zr the as a ~pecifil case of rather limited practical importance. 
theory and much testing of airfoils is done n i t h  ins&- 
cient Imoxi~ledge of the -dtinlate possibilities. This THEORY OF THICB AIRFOILS 

state of affairs is due largely to the re ry  conwiion belief I n  the theory of functions there is a theorem by 
that  the theory of the actual airfoil necessarily n;olrld Riemarin ~vlliclr shows that  i t  is ah-ays possible to 
be approxirnnte, clun1s;-, and a~\-l~;t.ard, and therefore transform the potential field around any closed con- 
useless for nearly all purposes. tour into the potential field around a circle. The  

The  various types of airfoils exhibit quite diEferent direct transformation of an airfoil into a circle may, 
~"operties, and i t  is one of the objects of aeroclpnmical 

1 Eandbuch der Physlhr, Rand 111, p. 245. Fundaruentalsatz der konformen 
scierlce to detect and define in precise nlnnner the fac- Abblidung. 
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for analytical purposes, conveniently be performed in , This relation may further be conveniently expressed 
two steps. The first step is to transform the airfoil into in h~perbolic functions 
a curve \{-llich ordinarily does not differ greatly from a ! 

circle by the transformation , {=2acosh$cos6+2iasinh$sinB 

where !: is a complex quantity defining the points in the ' 

plane describing the flow around the airfoil and z'  ' 

Since t=x + iy, the coordinates of the airfoil (x, y) are 
(I) L riven by 

x=2a cosh il. cos 0 
=2a sinh t,b sine 

l 
or developed 

I 
I 

i 2s in28=p+  d p Z t  <yy a (111) 

where 
1 
1 P= l-(zy-(&>' 
i 

Similarly we obtain a relation between y5 and the 
, coordinates of the airfoil by using the equation 
1 

Y 
FIGURE 1.-Shoving the trnnsformation from a noncircular curre B into an airfoil , 

is another complex quantity defining the points in the , ITe obtain a relation between 8 and the ;oordinates 
plane describing the flow around the alnlost circular of the airfoil as fol lo~~~s:  
curre. The constant a is of dimension length and is I x 
merely a geometrical scale factor. In the following / cosh 9 = 2a ------ cos 0 

theorr, attention is directed to the fact that the shape 

frorn the origin zf--31; that is, both flows are similar ' or developed 
a t  infinity. In particular, the "angle of attack," / 
defined as the direction of f l o ~ ~ -  a t  inEnitity with 2s inh2$=-p+ (IV) 
respect to some fixed reference line in the body, is 1 
identical in botll florvs. Near the o~igin the ti!-o fl0~r.s I Since $ is generally small for wing sections it may be 
are entirely different; one value of z' is, ]lov;ever, more con~~eniently expressed for purposes of calcu- 

of the curre resulting from transformation (I) is arbi- 
trary, since the airfoil shape is arbitrary. At a later 

- - 
' I  uniquely associated XI-ith a given value of !: by thc I lation as a series in terms of as follows: 

rela tion (I). I 2a sin 6 

sinh $ = ------- Y 
2a sin 0 

, , 

TTTe shall, at a later point, determine the flow in the 
z' plane. At present we shall dctcrmine the appear- 
ance of the airfoil when the almost circular curve B 
is given, or what amounts to t.he same tl~ing, we shall 
determine the curve B when the airfoil is given. In  
Figure 1, Cis  a circle of unit radius. Since the matter 
of dimensions is rather important, 'ire shall avoid 
confusion in the following by adhering to this length 
as unity. The curve B is uniquely given by the rela- 
tion zt=aeJ.+@ where $ is a lino~vn or unknown real 
function of the angle 6 where 0 varies from zero to 2~ 
and i is the imaginary unit. Since the airfoil surface 
corresponds to the surface of the curve, the former is 
given from relation (I) as 

point we shall transform this curve into a circle. and since cosh2 $ - sinl12 $ = 1 
The e' and the !: planes are  show^^ superposed in 

Figure 1. It will be noticed that at  great distances 1 
i 2a cos 6 2a sin 8 

2' 

!:=a eJ.+f-' LL e . 
C I A  

I=a(eJ . i - e -$1  cos 6 + i  a (P-e -J . )  sin 6 

R e  have 
e+ = sinh $4- cosh 9 

=sinh $4- J1+sinh2 9 ,  

[for $< log, 21 

lTTe are now in a positio- 1, reprxc\G;lce the conformal 
representation of an airfoil in the ;.I plane, since t >r 
each point of the airfoil (x, y) both 0 3nd y5 have bet? 
determined. 
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The curves $=,:qnst.ant ale ellipses in the ; plane ' 27. 2 aae?$o 

. . i I Weobtain I?=---dl- ,,, , --> z2 
-1 ' ! 

i t4(9 5 t T )  - e-""+'$ 
= 4avae+0( -  0". 'l 

\ r 5 b  The foci are located a t  ( + 2a ,  0). The radius of curra- / 

I = 4 ~ V a e f 0  sin(a 4- E ~ )  
( 2a  sinh IC,)2 (VII) 

ture at the end of the major axis is p= 2a cash J, This flow around the circle ~ , ,ay  now be transfornled 
p (sinh +)2 --- = -- N 

2 a  ' cosh $ = $? 

This relation is useful for the deterrninat,ion of $ near 
the nose and the tail. 

The leading edge, corresponding to 6 = 0, is located a t  

Thus we see that the length 4a corresponds to the 
distance between the point midri-ay between the nose 
and the center of curvature of the leading edge to the 
poipt midway between the tail and the center of 
curvature of the trailing edge.2 

To establish the magnitude of the velocity at any 
point (x, y) on the airfoil, u-e start in customary manner 
with the T-elocity around a circle in 2-dimensional 
flon-. Contrary to usual practice we will, ho~vever, 
make the radius of the circle equal to aeqo where Go 
is a small constant quantity. This quantity is shown 
later in this report (equation (e)), to represent the 
average value of $ talien around the circle C. 

The potential function of the flow past this circle is 

(reference 1, p. 53) and the velocity " 

into the flow around any other body. In the particular 
case in which the flow at  infinity is not altered the 
circulation will not be altered and the force experienced 
by a body a t  the origin will remain a t  the &xed ralue 
L=P v r. 

where. r is the circulation. This expression must 
vanish a t  the rear stagnation point"(Xutta condition) 
whose coordinate is z = - a e * ~ + ~ ( a + ~ ~ ) ,  \I-here a is the 
angle of attacli and ET is shown to be the angle of 
zero lift. 

1 Tha choice of ases is entirely arbitrary. I t  is a matter of conve~iance cldy to 
choose the ases so that the airfoil appears as nearlr elligtical as posjiblc, thereby 
rnakins the "almost circular" curre B ss nearly circular as posiijla by m.?ss of 
the single transformation I. I t  s i l l  be seen that the eraiuntioo of the iroportdnt 
integral appearing in the appendix is then most ezsily accomplished. In fact, the 
transformation I itself is only a matter of con~enience to permir the ready evaluation 
of this integral. 

8 dw zz actually equals u-in, the image of the relocity vector about the=-1x2. 

4 I t  ii worthy of mention to note that the theorq-outlined in tbk report m-:, sc:unllq. 
be applied to smooth bodies of arbitrary shape if the ci;cu!atiox is specified. The 
term "wing sections" has been used in the title to imply bodies v i t h  sharp (or 
nearly sharp) trailing edpes, whose circulstion is or may be cowidercd 5x24 by the 
h-utta condition or some equivalent assumption. 

We will now transform this circle, defined as 
z=ae+~+~u  into our curve B defbed by the relation 
~ ' = a e f + ~ .  For this purpose we employ the general 

Z 1 
tra~lsforination z' = ze n ("n+iB") 5 which leaves t,he flon- 
a t  infinity unaltered, the constants being determined 
by the boundary conditions. By definition 

Z /  = ZE+-+o+i(~-d. 
Consequently 

I: 1 
$-$,,+i(O- y)=, (A,+ iBn),(cos r ny-i  sin ny) 

where z has been expressed in polar form 

z=r(cos 'y+i sin P) 

and by De Moivre's theorem 

1 1  - = - (cos nP-i  sin ny) 
2" rn 

Equating the real and imaginary parts we obtain the 
two Fourier expansions : 

I: A #- $.=,[f cos 

and 

The values of the coefficients $:. 2. as well as the 

quantity $o, may be determined from (a) as folloxr-s: 

and 

I 

$=:%" # sin npdp 
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Tlle quantity 0- y is necessarj- in the fol1011-ing ' Hence 
A B (flee@- ae-r- ib)  analysis. Le t  us elinlinate the coefficient Tn and r 1 

in (b) by nleans of (c) and (d). 
V e  obtain 

1 
= - [a (6fi - e -3 )  cos 8 +{a (efi + 0) sin B] 

z ' 
1 1 

Z: 1 '2" 

(8-i")c=, eosnyc-Jo + s i n n d y  
I = [2a sin11 $ cos B i  2ia cosh # sin 61 

7r 
z' 

L-sing the relations (11), 
J2'$ cos 7lydy -sin 12(;,- 

Y x 20 sinh += - and 2a cosh #= - 
The subscript c is added to indicate that  the angles so sm 0 cos 6 

distinguished are Ixpt  constant 11-llile tile integrations ! 1%-e obtain 

are perforllled. The expression rnay be simplified a = 1 (y cot B f  i z tan 6). dz' z' ( I S )  

1 Z: 2" 
(6- Y),=; ,J J. (sin nw cos nu~-cOs n~ sin n ~ . , ) d ~  I t  n o ,  remains to find the r i t io  %. . f r o m  the 

d6 . 

v 
(u-YC) Ire obtain 

& .  1 2 cos (2n+ 1) ------- 
dzf v 

sin li. fr - yC) = cot (~T-YJ - 1 
.d 2 Y - ~ c  &=zf[1+ d d  ( ~ , + i  B,) 2] 

2 sln --, - z d z n  
Z or 

Therefore, (1 z' 1 d 
1 2* (9- %I - = z ' ( i ~ T 2 [ ( + - $ ~ + i  (e-lp)~) ( B - - Y ) , = ~ L  + ~ o t - - ~ - - d ~  dz 

d 
( 9 - u )  =z f  - ($+i (8-y)+ log z) 

?, cos (272 + 1) -----: 2 
dz 

# - -:*-.- 

2 a 9 - Y  
dp , But  

sin 7 2 = a d f i o i f ~  
A from ~vhich, 

Tlle latter integral is identically zero. (See TI-ilson, 
E. 13. Adranced Calculus, p. 368. Follo11- method of 1 d d d - = - 

z dz (log 2) = - (log a + +, + ip) = - (iy) 
exercise 10.) dz . dz 
Then Therefore 

(0 ((?--PC) 1J2"+eot----dp (T~III) 
Z7r 2 - ds: - d2 '2' d (++i ( B - - ~ ) + < ~ )  

For purposes of calculation this integral i s  expressed ' d 
in convenient form in the appendix. =zfdz  ( $ + i B )  

TTTe shall now resume the tasli of determining the ' 
velocity a t  any point of tile surface of the airfoil. This expression nltly be written 

dw ' The velocity a t  the surface of the circle is - 
dz ' dz'- -- d z  - ,..I a ( + + i ~ ) .  d dB - 

(see equation (TI) and footnote). For corresponding dz  
points on the curve B in the z' plane and on tlle airfoil B1lt ITe 

I 

dlo dz 1 1 .dp - =t- 
in  the ( plane the relocities are respectively - . - 

dz dz' I z d z  

dw dz dz' / or and - . - . -. 
dz dz' d{ 1 d z 

I 
I ---=id y = i  d(p-B)+i d6 
I Q 

The quantities ( and z' are related by the expression I and 



THEORY OF \I-ING SECTIOSS OF ARBlTRART SHAPE 233 

Replacing 9 by 8+c the angle of zero lift, is the 
value of 9 - 8 a t  tlie c ~i;" ,, we have 

/ %  =2 V[sin ( a+8+a) f s in  (a+aT)] 

For a point on the airfoil ~t-e have, then, 

or d w '  dz 
" , & j S  @ and from (XI), finally dz' 2' 1 - i$' 

- = - 
dz z l f a '  (XI 

[sin (a + 8 + E) + sin (a+ ET)] (1 + 6') e $ ~  
v = v -  - - - - - - -. - 

,6inh2$ + sin2 8) (1 f $") 
(XII)  

d a 
allere a' and $' indicate and 9;. respectively. where the various synlbols have tlie follox-ing signif- 

icance: 
I3quations ( I S )  and ( S )  give noxi- v is the velocity a t  any point (z, y) of the airfoil. 

V i s  the uniform vclocity of flolir a t  infinity. 
d l  dz' d{ 1 --- . ----= - 

2' 1 - i#' y is the ordintlte of tlie airfoil as ~lleasured from 
dz' dz dz z' (y cot 0 + ix tan 0) -ir-2 the x-axis, where to fix the sj-stem of coorcli- 

nates (2n, Q) is the point nlidlt-ay between 
1 1-i$' 

=(?/cot  O f  id tan 8) (XI) nose and center of curvature of the nose, 
z I + € '  nnd (-20, 0) is the point nlicln-ay betx-een 

tlie tail and center of curvature of the tail. 
Because I{-e are interested more in the magnitude thnn a is the angle of attacl; as m e a s ~ ~ r e d  from the 
in tlie' direction of t l ~ e  velocity x-e ~t-ill write for the x-asis as indicated in Figure 6. 
nun~ericnl value of this espression y, 0, $, p*', E, and E' are a11 functions of z. 

Equation (S I I ) ,  espressing tlic value of tlie velocity a t  
?l(y2 cot' 8 + 3:' tan' 0) (1 + 1 % ;  = 

- ( ~ 1 % )  any point of an airfoil of any shape, is surprisingly sirnple 
ae*o (1 + E') when the corliplex nature of the problem is consiclercd. 

I t  has the distinct advantage of beingesnct ; no approsi- 
Tlle quantity (&y cott?+(:iy tan% is readily seen mations ha re  been made in the preceding analysis. 

We shall note sorne of the properties of this itnpor- 

to be ecluaI to (by relation (11)) tant relation. Because y is generally srnall, the term 

- --?/---- is of influence cliiefly near tllc leading edge, 2n sin 8 
where sin 8 is small. I t  is noticed, ho~t-ever, that, if 

or also = O  for 8= 0, equation (111) yielcls in all cases 
sinh2 # + sin? 8 sin 8 

I I ~ n c e  I v =  co. This rneans that  the velocity a t  the nose be- 
- . -- - -. . - - - . . . -- - -- - comes infinite for sinh $= 0 (tliin airfoils). This fact 

1 d l  I 2a sin 8 
has been pointed out in an earlier report. (Reference 

1 -1=2--  
~ d z !  e+0 (1 + a') (XI b) 

or sinh # is thus of con- 2.) The quantity 2n z i ;~  
8 sidernble significance in the tlleory of tllicli airfoils. 

Tile numerical ralue of the relocitj- a t  the sufnce  of The relocitg tile tail is obtained by 
' the circle is obtained bj- eqilations (TI) and 071) as 8 = + A. and = ET + EfAo. ~ \ ~ l ~ ~ ~ ~  A8 is a angle, 
~OI~OM-S : 

in equation (S I I )  
Substituting the general point a = ae+lii (a'?), v-liere 
is the angle of attack as measured from the axis of ' v I - - e*~  - - -- (1 -!- 6') - .- [sin (8 + a + E) +sin (a + cT)] 

coordina tes, in ecluation (TI) V I  ~ { ~ ~ ~ ~ F ~ q ~ ~ ~ ( l ~  , p T )  

we get 
clzo 
d<= - J7(l - e-?i(a'p)) - 2i JTsin (a+ ) - f ( a i p )  e edo (I$€') [-As+ Q : + E T + E ' A ~ + ~ + E T ]  

= - V [ ] . - C O S ~ ( ~ ~  p)+-2~in(a:+~T) sin (orf9) J(#' + A8') (1 4- $") 

- f i  (sin 2 ((rCy)+2 sin (a+€,) cos (a'?))] - e + ~  (1 4- c ' ) ~  A8 - - - - - - --- - 

J($? -F A02) (1% +I2) 
Idtv 

= V2[4 sin2 (or f E ~ )  + S sin ( a t  E*) sin (a: + co) $0 1 + er)2 ! d3 --- - - - e _  ( - (f) + 4 sin2 (a + ?)I /[I T (;)1] (1 + $I2) 1 
/ _ _____ - - _ - - - - - 
/ 3 It should be pointed out that the rear stagnation point is choscn to be on the : * = 2 v[sin (at ul +sin (or + E,)] dz  I-srs at The curratura a t  the tall is, a4 far es.tbe.speclficatlon of the ideal 
i circulation is concerned, to be considered as a mechanical ~rnperlecilon. 
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# near the tail may be expressed as 3. Sin ?8, sin 8, and 6 are determined by  the relation 

The  quantity h is infinite if $, is different froom zero 
A 0 

a t  A6=O. The  relocity is in this case zero, indicat- 
ing the presence of the rear stagnation point. If, on 
the other hand, $, is zero, tha t  is, if the tail is per- 
fectly sharp, -' = J.' for a0 = o 

A 0 

and the 1-elocity a t  tlie tail is 

(For the Clark Y, vT5s about 0.88 near the tail.) 
IT'e obtain the front stagnation point by letting 

a = 0 in equation (XII). Hence 
c r + O + ~ ~ =  - (a++) 

I n  a previous report (reference 2) 

4. + is given by the relation 

5 .  t,b is plotted as a function of 6 

(P - PC) 6. Determine E~ = - $J cot -- -- d P by for: 2 
mula sho~i-n in the appendis: 

-k 0.231 ($3- $4) -k 0.104($4-$-4)] 

where $', is the slope of the $ curl-e a t  y5  pC tlie 
7i 2~ 

ra1ue of $ a t  y = ~ , - , + ~ ,  7,b2 a t  y=,yc+--, etc. 5 
T 

$-1 the 1-alue of $ a t p = yc - - , etc. 5 

'7. From t,lie E \-CSSUS t? c~ i rve  and from t,he $ versus 
0 curres E' and $' are determined. 

S. Determine F by the relation 

(I + ef)e+* F= ----- ----- - - -- 

-- 
2u sin 6 - 

9. (8  t e )  is determined in radians and degrees. 
lias been defined as the ideal angle of attaelc. It is Sin(6 +a+ +sin(ff is now calculated 
seen that, for tlGs angle of attack, 8 is zero or the stag- where a is the angle of attack as measured from the 
nation point occurs directly a t  the nose. axis of coordinates. 

Equation (XTI) inay also be applied to s trut  fonns, - - v and for such symmet.rica1 shapes takes even a simpler 11. -= F. [sin (0 +a + E) + sin (a:+ eT)] 
form. ;. 

12. - = 1 - (by (pressure) 
PRACTICAL APPLICATION O F  RESULTS P 

1 

17-e =on- apply Forlllula (XII) to the typical The entire calculation, properly arranged, can be quite 
case of the Clark P airfoil and calculate the velocities , accurately obtained in  a very short time. 
a t  points of the airfoil surface. The detailed method 
of procedure is RS follows. COMPARISON WITH ESPERI;\IEKTAL RESULTS 

1. The axis of coordinates is drawn through the 
points (Za, 0) and (-2a, 0) located respectively a t  the 
point rx l id~~ay between the nose and the center of 
curvature of the nose and the point rnid~r-ay be tmen  
the tail and the cenker of curvature of the tail. (See 
fig. 6.) The radius of curvature a t  the leading edge is 
1.75 per cent chord. 

2. The  points (x, y) of t,he upper and lorn-er surfaces 
of the airfoil arc determined rvith respect to this axis. 

I n  order to compare the theory with experinicntal 
results, the geometric angle of attack cuG as measured in 
the wind tunnel must be corrected for a number of . 

I itenis, such as finite span and effect of wall interference. 
1 T17e may, hen-ever, obtain approximately the apparent 

or effective angle of attack a, (in radians as measured 
from the angle of zero lift) by talcini the quotient 

' of the area of the pressure-disiribution curve and 
> 5.5,  since i t  is lino~r-n that  this value of the lift coeffi- 
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Per cenf chord 

Per cenf chord 

Per cenf chord Per cent chord 
P . FIGCRE 2.-Pressure-distribution curses along z-axis of ClarkY; - *gainst per cent chcrd 
9 

(a )  a=g933'. (b)  a-5' 19'. (c) -=-lo lGf .  (a) a=-3°  
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cient is x-er2- nearly realized in most cases. This has 
been done in Tsble 111, and the angle of attackrr, ~r-hicil 

-4 should be substituted in the Ecluation (SII ) ,  is 
g i ~ e n  in the last column. The pressure distribution 
curres, Figures ?a, b, c, d, and 3a, b, c, d, \!-ere obtained 

-3 bj- application of Equation (111) to the Clark Y airfoil. 
Xumel-ical results are shon-n in Tables I, 11, and 111. 
The experimental values are from original data sheets 
for K. 4 .  C. . Technical Report S o .  353, and are 

-2 not entirely consistent due to difficulties experienced 
in these experiments. After the theoretical pressure 
distribution curves ha\-e been obtained, the moments 

' 

-1 
about any  required axis ma;- be found. Table IV 

./2 

% 0 .08 
Per cen f chord 

M 
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FIGLRE 4.-1\Iomenl against angle of attack 

gives solne of these results and Figure 4 she\\-s the 

$ 0  comparison \%-it11 experimental data talien from N. A. 
C. . Technical Report S o .  312. 

/ 
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FIGLRE 3.-Theoretical l>rrssure distribution along g-axis o; Clarl; Y 

NATIOSAL L ~ D Y I S O R T  COIIIIITTEE FOR ,&EROSAUTICS, 
( a )  a = g O  33'. (b )  a=j" 19'. (c) a=-10 16'. ( d )  a=-so 15' LAXGLEY FIELD, T1.4., October 15, 1981. 

l ~ l ~ l l ' l i  I 
?- - i I . _  ---- ---x---" -------*------- "- ------- ;--.+-- 

I f /  
I I I 

I I 

I 
-t 

/ / I  I I 

I 

1 
I 

i l l  i !  
! '  
- 
Tbeore f~col - ----- x ----- 

<~penmen fol 



APPENDIX 
EVALU.4TION O F  T H E  FORJlULA : Then, 

'z (Y - YC) I) cot ------ 2 dy 
I 

Although the above integrand beconles positively 3 a  
and negatively infinite around y =  y,, it, is readily sin 

verified that  for I) finite, throughout the range 0 - 3 ~ ,  - 7r ($,-.l)log7 
sin 20 the integral remains finite, the positive and negative 

infinite strips exactly canceling each other. 
The value of the integral for any point p, mny be sin 5 - a 7a  

2 0 sin 20 
accurately obtained by the follo~ving device. 11-e t (A - $-2) 1% f ($3 - $4) log 7~ 
know that  if I) is a continuous function and t!:e range 
y2 to y2 not too large - sln 20 sln 20 

- Y2- PC s1n -- 2 sin - 
('- Y" dy  is r e q -  nearly I), log -- 2 + ($4 - $4) log -T 

sin ?11T-'c2c 
2 

\\-liere I)A is the ayerage value of + in the range y, to , = -- I [0.628 #',+ 1.065 ($I -I)-,) + 0.445 ($2- -4 ) -2 )  
pi. Also near y =  yc x-e may write a 

' I  +0.231 ($,-$-,) + 0.104 (1)4-1)-4)] 
I ) = I ) , + ( Y - Y ~ ) I ) ' ~ + ( Y - - ~ ~ , ~ & ~ -  . . . . 

where I)', is tlic slope of the $ curve a t  y =  p, 
Then for s a small quantity 

( 9 - 9 )  ~ 0 - k ~  

7r 7r c-I" ,,!,cot ----idp=? I)', ( y r  y c ! . c o t < ~ ~ )  dc I), rtllue of I) a t  y=p ,+  * #-I a t  p = ~ , - - ~ ,  
2 LC-. 2 2 5 

=4 sI)lc 2 7r 3  a 
I)z a t  y =  ye+-- J I)3 at  p= y,f - 9 etc. 

(Since the even powers drop out and tlie lirn p cot "= 1). 5 5 
v-0 

To evaluate tlie above integral i t  is, strictly speak- 
Let us now ddiidc the interval 0-3a into 10 parts, ing, necessary to kno\{- I) 8s a function of rather than 

starting y, as a reference point. (See fig. 5 . )  of 8.' TI-e have y = 8 C E. For all flattened or stream- 

line bodies, liowever, E is small; for ordinarj- airfoils 
i t  is, in fact, so small that  $(8) may unconditionally be 
considered equal to I)(4). For the sake of mathe- 

, matical accuracy M-e n-ill, however, indicate how the 
o I= r~ 277 problem nlny be solved also for bodies of Inore irregular 

Nose 9 TO;/ Nose c o n t ~ u r  by successive approsimations. TT'e have 
FIGCBE 5.-The fi against 9 curre, illuscratini: method of e r a l o ~ t i o n  of t .  

$(y)=I)(O)f eI)'(O)+ 
P 7i a 3 i i  , 3 a  

yc- - t 0 y , + ~ ~ 9 y ' f  - to  w c ' r O l y c - ~ ~ ~  10 10 As a first approsirllation \re neglect the second and all 
. 5- 5, - " 
L -'' i r I X  97; follo~ting terrrls of this espression. The value of E 

c t 10tpc+ -- to p c f  iq"?" to 9,' - - 1  10 10 10 + thus obtained by graphical integration or otherwise 

9 - - 9a 97; m. 
I ii i a 

is then used in the expression for I)(p) and a second 
$,, '-1Lt0 - - 

c 4 lo v o ~ ~ c - -  to csc-lO~~c-iOto integration is performed, etc. 
-- . - - -- - - - - - - - . - . - -. - - - - - - - - - - - - - 

57i . 57; 3 ir 3  s - 1 The equation for c is a nonline,%r ~ntegral equation and to  obtain its exact s o h -  
yc-ib,yC-- topc--and ?,--- topc----  10  10 10 10 tion is obtainable to any desired accuracy by  ordinary defin~te integrals. 

tion is a difficult matter, fortunately because of the small magnitude of a the rolu- 
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~ ~ G G R E  8.-(a) T;.d & against 8 curre for the Clark Y. (b)  The c against 8 curve for the Clark Y 
\ 

APPLICATION OF FLOW FORJPULA TO THE SPECIAL 
CASE OF -4N ELLIPTIC CYLINDER 

. (1 + E') e+o F= - - -- - - - - - (e40 = 1 .'I 1)  ; 

-4s a matter of interest v-e \ill assume the form of ' I[(,&%-)' + sin2 e](1 + v2) 
I 

1 -.m0 
5 

the body to be the ellipse (iE13)1+(2ei~h;b))- 1 , Colonm 14 gi-i-es 8 + e in degrees. The reldcity n t any 

v : point x and angle of attack a is given by 
and find for zero angle of attack, i. e., \\-e hare  ; ,= jr [sin + sin ( a + E r ) ~ . ~  and tire pressure, 

' P $=$O=constai~t ,  J.'=o, E=O,  E' =o, Q = O .  I bF-=1 -(~y 
Equation (S I I )  becomes 1 P 

y . e# -- 
It must be noted that a is measured from the line of 

. 
-- Sa--- 

and 

P 
2" 

This result checlis exactly 
Dr. A. 3'. Zallm in N. A. C. IOOX c 

253, Flov- and Drng Formulas for Simple Quadrics, 
equation 14. 

REFERENCES 

1. Glauert, H.: Elements of Airfoil and Air-Screw Theory. 
Cambridge University Press, 1926. 

2. Tlieodorsen, Theodore: On the  Theory of TT7ing Sections 
n i t h  Particular Reference t o  the Lift Distribution. T. R. 
S o .  383, N. A. C. A., 1931. 

EXPLANATION OF THE TABLES 

The first part of Table I refers to the upper surface 
or to positive ordinates of the Clark Y, the second 
part to the lolrer surface or to negative ordinates. 

FIGURE 6.-Clark Y a i r fo~ l - sho~ ing  system of coordinates 

flo~v to the x-axis as shox-n in Figure 6, and if other]$-ise 
measured, must be reduced to this basis. 

, 
Column 1 gives tho location in per cent of the chord; 2 / 
giws the ordinates ~ r i t h  respect to the :c-axis in tlris I 
snnlc unit; 3 and 4 give x and y in the present system 1 
of coordinates; 5, 6, and 7 @-re sin2 0, sin 8, and e, 
respectively (Equation (111)); S gives $ (by equation 1 

d$ d (ITTa)); 9 gives c (appendix); 10 and 11 give - and 2 1 . 
de d e j  

as obtained fro111 $ against 0 and E against 0 curves; 
(See figs. 7 and 8). Column 12 gives the quantity , FIGURE i.-The unit circle z=e*$,  the circle z=eq"+', aud the corresponding 

curre z'=&+ln 
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